
Expert Systems with Applications 41 (2014) 694–708
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Sliding window based weighted maximal frequent pattern mining over
data streams
0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.07.094

⇑ Corresponding author. Tel.: +822 34082902.
E-mail addresses: ganginlee@sju.ac.kr (G. Lee), yunei@sejong.ac.kr (U. Yun),

khryu@chungbuk.ac.kr (K.H. Ryu).
Gangin Lee a, Unil Yun a,⇑, Keun Ho Ryu b

a Department of Computer Engineering, Sejong University, Seoul, South Korea
b Department of Computer Science, Chungbuk National University, South Korea
a r t i c l e i n f o

Keywords:
Data mining
Data stream
Sliding window
Weighted maximal frequent pattern mining
a b s t r a c t

As data have been accumulated more quickly in recent years, corresponding databases have also become
huger, and thus, general frequent pattern mining methods have been faced with limitations that do not
appropriately respond to the massive data. To overcome this problem, data mining researchers have
studied methods which can conduct more efficient and immediate mining tasks by scanning databases
only once. Thereafter, the sliding window model, which can perform mining operations focusing on
recently accumulated parts over data streams, was proposed, and a variety of mining approaches related
to this have been suggested. However, it is hard to mine all of the frequent patterns in the data stream
environment since generated patterns are remarkably increased as data streams are continuously
extended. Thus, methods for efficiently compressing generated patterns are needed in order to solve that
problem. In addition, since not only support conditions but also weight constraints expressing items’
importance are one of the important factors in the pattern mining, we need to consider them in mining
process. Motivated by these issues, we propose a novel algorithm, weighted maximal frequent pattern
mining over data streams based on sliding window model (WMFP-SW) to obtain weighted maximal fre-
quent patterns reflecting recent information over data streams. Performance experiments report that
MWFP-SW outperforms previous algorithms in terms of runtime, memory usage, and scalability.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

One of the data mining areas, frequent pattern mining has been
actively studied together with various approaches and widely ap-
plied in numerous fields such as industry and business as well as
computer science. As well-known fundamental frequent pattern
mining algorithms, there are Apriori (Agrawal & Srikant, 1994)
based on Breadth First Search and FP-growth (Han, Pei, Yin, &
Mao, 2004) on the basis of Depth First Search. On the basis of those
basic algorithms, a variety of pattern mining algorithms have been
proposed, such as frequent pattern mining without the minimum
support threshold specified by users (Chuang, Huang, & Chen,
2008; Li, 2009; Zhang & Zhang, 2011), sequential frequent pattern
mining (Chang, Wang, Yang, Luan, & Tang, 2009; Muzammal & Ra-
man, 2011; Yun, Ryu, & Yoon, 2011). Furthermore, frequent pattern
mining has been utilized in extensive applications such as medical
and bio data analysis (Sallaberry, Pecheur, Bringay, roche, & Teisse-
ire, 2011; Xiong, He, & Zhu, 2010), stock market and protein net-
works (Sim, Li, Gopalkrishnan, & Liu, 2009), network
environment (Fang, Deng, & Ma, 2009; Lin, Hsieh, & Tseng, 2010),
traffic data analysis (Liu, Zheng, Chawla, Yuan, & Xing, 2011), anal-
ysis of web-click streams (Li, 2008; Li, Lee, & Shan, 2006), and so
on. Frequent pattern mining can be applied not only in static dat-
abases like the above methods but also in data streams. Data
streams mean that transaction data are added constantly, and thus,
they have continuous and unlimited features. Note that data
stream mining has to satisfy the following requirements (Farzan-
yar, Kangavari, & Cercone, 2012). (1) Each data element needed
for data stream analysis has to be examined only once. (2)
Although data streams become constantly large as data elements
are continuously added, memory usage for mining operations
should be limited to an acceptable and constant range. (3) All of
the entered data elements have to be processed as soon as possible.
(4) Results of data stream analysis should be available instantly as
well as their quality should also be acceptable whenever users
want the results. However, the previous frequent pattern mining
methods do not satisfy these requirements since they have to con-
duct two or more database scans to mine frequent patterns. There-
fore, to overcome these problems, mining approaches with only
one scan (Tanbeer, Ahmed, Jeong, & Lee, 2009a, 2009b) have been
suggested. Although these data stream mining methods can extract
frequent patterns over data streams effectively, there are still the
following issues. In data streams, data elements are constantly
added and their sizes are continuously increased according to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.07.094&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.07.094
mailto:ganginlee@sju.ac.kr
mailto:yunei@sejong.ac.kr
mailto:khryu@chungbuk.ac.kr
http://dx.doi.org/10.1016/j.eswa.2013.07.094
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708 695
accumulation of transaction data. Therefore, frequent patterns
generated over data streams also become large, which means
spending a lot of time mining the patterns, and thereby it can vio-
late one of the requirements for the data stream mining, immedi-
ate processing. In order to solve the problem, closed frequent
pattern (CFP) and maximal frequent pattern (MFP) notations Bur-
dick, Calimlim, Flannick, Gehrke, & Yiu, 2005; Chen, Bie, & Xu,
2011; Farzanyar et al., 2012; Grahne & Zhu, 2005; Gouda & Zaki,
2005; Huang, Xiong, Wu, Deng, & Zhang, 2007; Li, 2009; Luo &
Chung, 2008, 2012; Priya, Vadivel, & Thakur, 2012; Selvan & Nat-
araj, 2010; Shiozaki, Ozaki, & Ohkawa, 2006; Thomas, Valluri, &
Karlapalem, 2006; Yang, Li, Zhang, & Hu, 2007; Yun, Shin, Ryu, &
Yoon, 2012; Zeng, Pei, Wang, & Li, 2009, which can represent gen-
eral frequent patterns as more compact forms, can be utilized. The
MFP notation guarantees more efficient pattern compressibility
than that of the CFP notation although slight pattern losses can oc-
cur when MFPs are again converted into the general ones. Conse-
quently, if the MFP method with outstanding compressibility is
applied into the data stream mining, we can find valid patterns
over data streams more efficiently due to its advantage. As data
have been accumulated in data streams continuously, importance
of certain data entered a long time ago can decline or they may
be no longer needed, while that of recently added data can be rel-
atively high. To apply these characteristics in the mining process, a
variety of window model-based mining approaches (Ahmed, Tanb-
eer, Jeong, & Lee, 2009; Chen, Shu, Xia, & Deng, 2012; Deypir,
Sadreddini, & Hashemi, 2012; Farzanyar et al., 2012; Li, 2011;
Mozafari, Thakkar, & Zaniolo, 2008; Shie, Yu, & Tseng, 2012; Tanb-
eer et al., 2009b; Zhang & Zhang, 2011) have been proposed, and
damped window, landmark window, and sliding window tech-
niques can be selectively applied according to characteristics of
data streams. Especially since the sliding window-based mining
approaches perform mining operations with only the most recent
data among accumulated data streams, we can obtain recent
high-quality results by using them. Data streams (or stream dat-
abases) are composed of numerous items, where each item repre-
sents objects in the real world. For example, in a retail market data
stream, items reflect information regarding products, and in a data
stream for traffic accidents, each item becomes accident informa-
tion, where importance assigned to each item is actually different.
Thus, we can obtain high-quality mining results reflecting not only
items’ frequency (or support) but also their importance (or weight)
by applying the weight factor into the data stream mining. In this
paper, we propose a novel algorithm satisfying the aforementioned
issues, called weighted maximal frequent pattern mining over data
streams based on sliding window model (WMFP-SW). To our
knowledge, it is the first approach for mining weighted maximal
frequent patterns (WMFPs) over sliding window model-based data
streams. Through the proposed algorithm, we can always extract
mining results regarding the latest data over data streams, and
can gain the resulting patterns more quickly through the MFP tech-
nique and weight conditions. The main contributions of this work
are summarized as follows.

1. We introduce a novel algorithm, WMFP-SW which can
efficiently mine WMFPs with only one scan over sliding
window-based data stream environment and a tree struc-
ture, WMFP-SW-tree used for the WMFP mining work. We
also describe another tree structure, WMFP-tree managing
WMFP information and performing subset-checking tasks
effectively and an array structure, WMFP-SW-array for
improving efficiency of mining operations. We help under-
stand mining processes of the proposed algorithm by pro-
viding various examples.

2. Pruning strategies for reducing needless mining operations
efficiently are described. Since WMFP-SW considers not only
patterns’ supports but also their weights when it decides
whether extracted patterns are valid or not, the correspond-
ing pruning range becomes lager than that of general fre-
quent pattern mining. In addition, elements except for the
latest ones are excluded in the mining procedure by the slid-
ing window model, and thereby WMFP-SW conducts mining
operations with faster runtime and less memory usage. We
also provide a strategy which can prune unnecessary opera-
tions causing meaningless pattern generation in single paths.

3. To evaluate performance of the proposed algorithm, we
compare ours with previous state-of-the-art algorithms,
and various real and synthetic datasets applying weight
conditions are used in performance experiments. These
experimental results show that WMFP-SW presents more
outstanding performance compared to the previous ones.

The remainder of this paper is organized as follows. Related
work for this paper is introduced in Section 2, and thereafter, we
describe details of the proposed algorithm, data structures, and
pruning techniques in Section 3. Results of performance evaluation
for ours and previous algorithms are presented in Section 4, and
finally we conclude this paper in Section 5.

2. Related work

As an early frequent pattern mining algorithm, Apriori (Agrawal
& Srikant, 1994) finds frequent patterns over static databases. The
algorithm performs mining operations in Breadth First Search (BFS)
manner and has to generate numerous candidate patterns in the
process of actual frequent patterns. Moreover, to obtain complete
results of frequent patterns, the algorithm should scan databases
repeatedly, and especially in the worst case, the scanning task
has to be performed as many as the number of items of the longest
transaction in a database. Thereafter, FP-Growth algorithm (Han
et al., 2004) based on Depth First Search (DFS) was proposed in or-
der to overcome that problem, and most of the numerous algo-
rithms suggested so far are on the basis of the framework and
techniques of FP-growth. The algorithm can more efficiently con-
duct mining work with two fixed database scans and does not gen-
erate candidate patterns in comparison to Apriori.

2.1. Sliding window-based frequent pattern mining over data streams

Although mining methods based on FP-Growth have an effect
on static databases, they are not suitable for data streams accumu-
lating data continuously. Since these methods perform more than
two database scans, they do not deal with data streams instantly.
Moreover, since they construct trees with items remained after
infrequent items are deleted, they have to discard previously gen-
erated trees and build new trees again if new transaction data are
added into data streams. In data streams, although a certain item is
currently infrequent, it can become frequent one according to addi-
tion of new transaction data. However, those two scan-based
methods must read databases from the first again since they al-
ready eliminated infrequent items in the previous step. To solve
this, mining methods suitable for data streams (Ahmed, Tanbeer,
Jeong, Lee, & Choi, 2012; Chen & Wang, 2010; Tanbeer et al.,
2009a) have been proposed, and they can perform mining tasks
with only one database scan, thereby responding to changes of
data streams immediately. After that, sliding window-based fre-
quent pattern mining approaches (Ahmed et al., 2009; Chen
et al., 2012; Deypir et al., 2012; Farzanyar et al., 2012; Li, 2011;
Mozafari et al., 2008; Shie et al., 2012; Tanbeer et al., 2009b; Zhang
& Zhang, 2011) have been proposed, which can mine frequent pat-
terns considering the latest transaction data of large data streams.
Especially in those paper (Tanbeer et al., 2009a, 2009b), an efficient

696 G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708
tree-restructuring method, BSM was proposed. The method per-
forms restructuring operations more effectively than previous ones
such as the path adjusting method, etc. IWFP algorithm (Ahmed
et al., 2012) is a weighted frequent pattern mining algorithm over
data streams, applying the BSM method. Among accumulated data
streams, the most important elements are recently added data in
general. In other words, importance of previously added data can
be lowered or meaningless, while that of lately accumulated ones
can be relatively higher. Therefore, to reflect these characteristics,
the sliding window model can be applied into mining process. The
method divides data streams into windows composed of a set of
constant-sized transactions and finds frequent patterns from re-
cently generated windows, where the size of windows and the
number of them can be assigned as various values by users.
Through the sliding window-based approach, we can always ob-
tain frequent patterns reflecting recent information. In Tanbeer
et al. (2009b), Tanbeer et al. suggested a frequent pattern mining
algorithm over sliding window-based data streams, applying the
BSM technique to tree restructuring steps in order to raise effi-
ciency of mining operations.

2.2. Maximal frequent pattern mining over data streams

Mining all frequent patterns over data streams as well as static
databases can cause numerous computational overheads in gen-
eral if data sizes are large. In sliding window-based data stream
mining, since the remaining parts except for the latest windows
are not considered, the overheads can be reduced, but we cannot
still avoid causing them if the size of windows or the number of
them becomes large. For this reason, the MFP notation, which
can compress generated frequent patterns into a small number of
compressed forms, can be utilized in the mining process, and a
variety of MFP mining methods (Burdick et al., 2005; Chen et al.,
2011; Farzanyar et al., 2012; Gouda & Zaki, 2005; Grahne & Zhu,
2005; Huang et al., 2007; Luo & Chung, 2008, 2012; Priya et al.,
2012; Selvan & Nataraj, 2010; Yang et al., 2007; Yun et al., 2012;
Zeng et al., 2009) have been proposed. In MAFIA algorithm (Bur-
dick et al., 2005), vertical bitmap representation was proposed so
as to help mine MFPs more efficiently. The algorithm uses an addi-
tional data structure with a bitmap form to reduce the number of
tree traversals. After the bitmap is constructed, MAFIA can know
pattern’s frequency through AND operation of the bitmap even
though it does not try to traverse trees actually. FPmax⁄ (Grahne
& Zhu, 2005) is a state-of-the-art MFP mining algorithm, where
FP-array, an additional data structure for mining MFPs more
quickly, was proposed, thereby decreasing tree traversal times
considerably. Since FP-array has information of patterns’ supports,
the algorithm can calculate them in advance before trees are actu-
ally traversed when growth processes are performed. Conse-
quently, this technique not only can reduce tree traversal
operations effectively but also can enhance pruning efficiency by
preventing generation of needless conditional trees. However,
since the above algorithms have two scan-based processes, they
are not suitable for the data stream mining.

2.3. Applying weight conditions into frequent pattern mining over data
streams

Each item existing in data streams has unique importance (or
weight). For instance, given items over retail data streams, support
information of them mean their sales volume, and their weight
information represents prices or profits for each item. Therefore,
when both of those two elements are considered, we can gain min-
ing results reflecting complex factors in the real world. Weights of
items in data streams are used in the mining process after they are
converted into normalized values within a certain range. The rea-
son is that if a weight of any item is too large, it is hard to denote
its weighted support as a finite number of digits. The main chal-
lenge of applying weights is to maintain the anti-monotone prop-
erty. However, the application generally destroys that property
since weighted infrequent patterns can become weighted frequent
ones as pattern growth operations are conducted. For this reason,
researchers have made efforts to maintain the anti-monotone
property, and a variety of methods (Ahmed et al., 2009, 2012;
Wang & Zeng, 2011; Yun & Ryu, 2011; Yun et al., 2011, 2012) have
been proposed. WFPMDS (Ahmed et al., 2009) mines weighted fre-
quent patterns over data stream environment based on the sliding
window model. The algorithm conducts tree restructuring work
with the BSM technique and provides the most recent mining re-
sults from the sliding window whenever users request them. In
this study, the framework of the proposed algorithm, WMFP-SW
is based on the state-of-the-art MFP mining algorithm, FPmax⁄
and the outstanding tree restructuring technique, BSM.

3. Weighted maximal frequent pattern mining over data
streams based on sliding window model (WMFP-SW)

In this section, we first present preliminaries, that include def-
initions and concepts helping understand the proposed algorithm.
In addition, details of WMFP-SW are introduced, where we de-
scribe data structures for the WMFP mining over data streams
based on the sliding window, techniques related to them, pruning
strategies for eliminating meaningless patterns and their opera-
tions from mining process, and an overall procedure of WMFP-
SW and its explanation in detail.

3.1. Preliminaries

Given a data stream, DS consisting of multiple transactions, Ts, DS
includes Ts added so far and is denoted as DS = [T1,T2,T3, . . .,Tn). Thus,
new transactions such as Tn+1,Tn+2 . . . can be added into DS after Tn. A
set of items composing DS, I is denoted as I = {i1, i2, i3, . . ., in}, where
each item, i has unduplicated unique values. Each T is composed of
a partial or full set of I and expressed as T = {i1, i2, i3, . . ., ik}, where
every i has unique values and is not duplicated to each other. Ts
are identified as unique ID, called TID. Each i in I has a weight, w,
and a set of w, W is expressed as W = {w1,w2,w3, . . .,wn}.

A pattern, P is composed of one or more items included in T. In
the sliding window model, DS can be divided into multiple win-
dows, denoted as DS = {x1,x2, . . .,xm}, where each window, x con-
sist of several panes (or batches) and represented as
x = {p1,p2, . . .,pi}, 1 6 i 6 n. A pane, p is a set of transactions and
denoted as p = {Tx,Tx+1, . . .,Ty}, 1 6 x 6 y 6 n.

Example 1. Fig. 1 is to express data in Table 1 as a data stream,
where both the window size (i.e. the number of panes) and pane size
(i.e. the number of transactions) are set as 2. In the data stream,
sliding window process is performed as follows. We first read p1 and
p2 to fill x1. After that, when reading the next pane, p3, we remove
the old pane, p1. Then, p2 and p3 belong to the current window, x2. In
the same manner, the old pane, p2 is deleted and the new pane p4 is
entered into the current window, x3 in the next step. As a result, the
current window always has the latest data stream information, and
thus, the sliding window-based mining methods can instantly
provide users with frequent pattern results considering the most
recent data whenever they request mining results.
Definition 1. Let |x| be the number of transactions in a current
window, x, and i and j be the first and last transaction indexes
among the transactions of x respectively. Then, a support of any
pattern, P, SUP(P) can be calculated as the following formula.

Fig. 1. A sliding window-based data stream derived from Table 1.

Table 1
An example database and weight information of the database.

TID Transaction Item Weight

100 B, E A 0.5
200 C, E B 0.7
300 A, B, C, D, G C 0.8
400 B, C, F D 1.0
500 A, B, C, D, E, F E 0.4
600 B, E, F F 0.9
700 A, C, D, E G 0.6
800 A, D, E H 0.3
900 B, C, E, H

G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708 697
CheckðP; TIDkÞ ¼
1; if P is contained in Tk corresponding to TIDk

0; otherwise

�

SUPðPÞ ¼
Pj

k¼iCheckðP; TIDkÞ
jxj ð1Þ

|x| is computed as |x| = j � i + 1. If SUP(P) is not smaller than a gi-
ven minimum support threshold, d, P is a frequent pattern.

Definition 2. Given a pattern, P = {i1, i2, i3, . . ., im} and a set of
weights for P, PW = {w1,w2,w3, . . .,wm}, a weighted support of P,
WSUP(P) is computed as follows.
WaverageðPÞ ¼
Pm

k¼1wk

m

WSUPðPÞ ¼ SUPðPÞ �WaverageðPÞ ð2Þ

In the formula, m means the length of P, i.e. the number of items. If
WSUP(P) is larger than or equal to d, P becomes a weighted frequent
pattern.

Definition 3. Let P be a certain pattern and P0 be a super pattern of
P. Then, a set of all P0s, Psuperset can be denoted as Psuperset = {P01,P02,
P03, . . .,P0n}. If P satisfies the following condition, it becomes MFP.

8P0i 2 Psuperset ! SUPðP0iÞ < d ð3Þ

Whether P is WMFP or not can be determined by the following for-
mula changed from the equation (3).
8P0i 2 Psuperset !W SUPðP0iÞ < d ð4Þ
3.2. Structures for WMFP-SW

Our WMFP-SW algorithm performs mining operations based on
tree structures, and accordingly, we need tree structures suitable
for finding WMFPs over sliding window-based data streams. For
this reason, we define WMFP-SW-tree needed for pattern expan-
sion, WMFP-tree managing extracted WMFP information and con-
ducting subset checking operations, and WMFP-SW-array
improving performance of the WMFP mining by reducing traversal
time of conditional WMFP-SW-tree.

3.2.1. WMFP-SW-tree and WMFP-tree
The basic structure of WMFP-FP-tree is similar to FP-tree (Han

et al., 2004), but the tree has additional weight data and is con-
structed with only one scan. As windows are changed, a part of
the tree is removed, new data are added into the tree, and then tree
restructuring operations are performed. WMFP-SW-tree is com-
posed of a header table including items’ supports (or counts),
weights, and node links, and a tree actually storing data, where tail
nodes with the last items for each inserted transaction have not
only node counters (or supports) but also pane counters. As shown
in Fig. 2(a) and (b), tail nodes have both support and pane counter
information, and the pane counters are denoted as numbers in
parentheses. For example, (1,0) means that a path including this
tail node belongs to the first pane and its support is 1. Through this
information, we can easily eliminate nodes of old panes and insert
transaction data of new panes into the tree. A global WMFP-SW-
tree is constructed with transaction data composing the current
window while conditional WMFP-SW-trees are generated with
partial data corresponding to each item in the header table. The
global tree maintains support descending order by conducting tree
restructuring processes continuously. Note that we explain the
reason why to sort the tree in support descending order in the next
section. WMFP-tree is used to store WMFPs obtained from pattern
growth process. Its framework is similar to WMFP-SW-tree, but
there are several different features. In its header table, support
and weight information for each item is excluded since they are
unnecessary when we manage WMFP information. In the WMFP-
tree, level data for each node are included, instead of supports.
Through them, subset checking operations for WMFPs can be
performed more efficiently, and details of the subset checking pro-
cedures are available at (Grahne & Zhu, 2005). Once a global
WMFP-SW-tree is constructed, it is maintained until mining pro-
cess fully terminates, although its data are continuously changed
due to frequent deletion and insertion tasks. In contrast, WMFP-
tree is newly generated whenever mining requests occur from
users since previously mined WMFP information is not available
any longer. An overall procedure for mining WMFPs over data
streams based on the sliding window model is as follows. (1)
Transactions are read as many as the size of a current window,
and they are inserted into a global WMFP-SW-tree. (2) The tree
is restructured according to support descending order of the in-
serted items, if necessary. (3) If there occurs a mining request,
WMFP mining operations are performed with the restructured glo-
bal tree. (4) If new transaction data are entered to data streams,
transactions included in previous old panes are deleted while
new ones are inserted into the tree. (5) After returning to the step
2, we iterate the same work until the WMFP mining procedure is
completely finished.

For each item contained in the header table of the tree, WMFP
mining operations are conducted in the divide and conquer meth-
od, extracted WMFP information is stored in WMFP-tree, and
thereafter the information is used for the WMFP subset checking
process. Item selection in the header table starts from the bottom
one, and we generate conditional WMFP-SW-trees regarding the
selected items. After that, we find WMFPs, constructing conditional
trees of the conditional ones recursively. Selected items are called
prefix, and its length becomes longer as conditional trees are recur-
sively generated. After the above operations are performed with
respect to all of the items in the header table of the global tree, a
complete set of WMFPs is obtained.

Fig. 2. WMFP-SW-tree and WMFP tree for x1.

698 G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708
Example 2. Fig. 2 represents a global WMFP-SW-tree when a
current window is x1 in Fig. 1. x1 consists of TID:100, 200, 300,
and 400, and its item order is not yet sorted since the current state
is an initial step of building the tree.
Therefore, items of transactions are first stored in the tree
according to their incoming sequence as shown in Fig. 2(a). Since
the current WMFP-SW-tree has broken item order, restructuring
process is required. Fig. 2(b) shows the tree after the restructuring
work, where its item order is changed from B ? E ? C ? A ? D ?
G ? F to B ? C ? E ? A ? D ? F ? G, and the number of nodes
composing the tree is reduced from 11 to 9. Fig. 2(c) and (d) shows
WMFP mining results when users request them. As shown in the
figures, we can obtain different results according to a user-given
minimum support threshold, d without reconstructing a global tree
due to the advantages of data stream mining. When d is 2, we can
gain WMFPs with 1-length, {B: 2.1} and {C: 2.4}, while when d is 1,
patterns with 2-length, {B, C: 1.5} and 1-length, {D: 1} are
extracted.

3.2.2. WMFP-SW-array
The global WMFP-SW-tree can be constructed in the above

manner with one scan, and all items consisting of the current win-
dow are contained in the global tree depending on the characteris-
tics of data streams, since currently weighted infrequent items can
become weighted frequent ones as the window is updated. How-
ever, conditional WMFP-SW-trees generated from the global tree
do not need to have information regarding weighted infrequent
items since we only require currently weighted frequent items in
the process of extracting WMFPs. Thus, the invalid items should
be removed when conditional trees are created. However, to con-
duct these operations, we have to know item information for con-
ditional databases needed when constructing the conditional trees,
which requires two scanning work. Motivated by Grahne and Zhu
(2005), we therefore define an additional data structure, named
WMFP-SW-array that makes conditional trees generated with only
one scan, and improve mining performance by applying it into the
mining process.
Definition 4. Given a conditional database for any prefix P, CDB, a
set of items composing CDB, ICDB is denoted as ICDB = {i1, i2, i3,
. . ., in}. Then, WMFP-SW-array for CDB is expressed as
(n � 1) � (n � 1) two-dimensional matrix, and is filled with the
items in ICDB. Indexes for each row and column of the array are
sorted in their support descending order, and each space of the
array represents support information of items corresponding to
lows and columns. Through it, we can learn items’ support
information in advance without scanning CDB.

However, this WMFP-SW-array technique cannot be applied to the
global WMFP-SW-tree due to the following reason. In the sliding win-
dow-based data streams, all items are included in the global tree with-
out pruning any item. As a result, the number of items has no choice but
to be increased considerably although it is relatively smaller than con-
sidering entire data streams. Therefore, if we express all of the items on
the window as WMFP-SW-array, we have to consume enormous run-
time and memory resources to construct the corresponding array.
Moreover, if the number of items in any window is enormously large,
it is generally impossible to make the array in a common computing
environment such as PC. However, if WMFP-SW-array is partially ap-
plied in constructing conditional trees, we can perform WMFP mining
operations with no penalties in terms of runtime and memory usage.
The reason is that arrays for conditional trees have relatively a small
number of items by pruning invalid items as well as they can be de-
leted from memory when corresponding conditional trees are re-
moved. Through the application of the array, we can obtain the
following mining advantage.

Lemma 1. Let CT be a set of initial conditional WMFP-SW-trees
derived from a global tree and CT0 be a set of all possible conditional
trees recursively generated from CT. Then, constructing CT0 except for
CT can be performed with only one scan.
Proof. Let i be an item selected in the header table of the global,
i.e. prefix. Then, i’s conditional WMFP-SW-tree contained in CT is
generated as the following sequence. (1) We first read all upper
nodes of the node including i in the global tree, and construct i’s
conditional database, i’s CDB using the read nodes. In this process,
support information of i’s CDB is identified, and then i’s WMFP-SW-
array is generated through the information. (2) Scanning i’s CDB

G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708 699
again, we construct i’s WMFP-SW-tree. Once i’s array is created,
subsequent tasks for CT0 require only one scan when we build con-
ditional trees derived from i’s conditional tree. Assuming that any
item, j is newly added into the prefix, ij’s WMFP-SW-tree included
in CT0 is constructed as follows. (1) We first find support informa-
tion for the newly selected item, j in i’s WMFP-SW-array. (2) Scan-
ning ij’s CDB and referring to the support information found from
the array, we build ij’s WMFP-SW-tree at a time. That is, WMFP-
SW-array replaces support checking operations by the first tree
scan. For this reason, we can generate all conditional WMFP-SW-
trees except for the initial ones in CT with only one scan.
Example 3. Fig. 3 is WMFP-SW-arrays obtained from Fig. 2(b),
where a minimum support threshold, d is set as 1. In this figure,
numbers for each matrix mean items’ supports, and real numbers
next to item names represent weight information. Gray spaces of
the matrixes are currently invalid items.

Note that the global WMFP-SW-array shown in Fig. 3(a) is used to
help understand a concept and an example of the WMFP-SW-array
technique although it is not actually made in the mining process. If
G is selected as prefix in Fig. 2(b), we can know support information
of valid items through Fig. 3(a). Since we already learn this informa-
tion, we can construct G’s conditional tree at a time traversing the
tree in Fig. 2(b) and removing needless items such as {E,F}. In the
process of generating the tree, G’s conditional WMFP-SW-array is
constructed at the same time as shown in Fig. 3(b). Since G’s tree
has a single path in this example, recursive operations is not per-
formed any longer, and processes for mining WMFPs are conducted.
Fig. 3(c)–(e) represent WMFP-SW-arrays regarding F, D, and A’s con-
ditional trees respectively. However, arrays for the items, E, C, and B
are not generated. If the item, E is selected as prefix, the correspond-
ing conditional database is {B}, {C}.Then, since there is no item pair in
the database, its WMFP-SW-array is not required. The case of C is
also equal to that of E. Since B’s conditional database and tree have
an empty set, its array is not constructed.
3.3. Updating WMFP-SW-tree according to the sliding window

In data streams based on the sliding window, transactions con-
sisting of the window are continuously updated depending on
stream flows. To perform this process, we need techniques for
restructuring trees, deleting old panes, and inserting new panes.
In this section, details of them are described and related examples
are presented.
3.3.1. Restructuring WMFP-SW-tree
In the two scan-based mining methods such as FP-growth, the

first scan calculates items supports, where we can know meaning-
Fig. 3. WMFP-SW-arrays generat
less item information and their order. In the second scanning pro-
cess, a complete global tree is obtained by sorting transactions in
the order and inserting them into the tree. In contrast, since a glo-
bal tree should be generated within only one scan in the sliding
window-based data streams, another solution is needed. In order
to build the global tree with one scan, transactions of the current
window have to be inserted into the tree in advance according to
their incoming order or other standards. In this process, we can
know support information regarding items composing transactions
and their order. Thereafter, we can obtain a completely sorted glo-
bal tree by restructuring the previous tree referring to the found
order without constructing it again. the restructuring procedure
is as follows. (1) For each unsorted path in a global tree, we extract
it one at a time. (2) Extracted paths are sorted in support descend-
ing order and inserted into the tree again. (3) For the nodes in the
sorted and inserted paths, their node links are reconnected reflect-
ing changed positions. (4) Until there is no longer unsorted path,
we repeat the above tasks. When any path is extracted, its common
support is based on that of the very end node (i.e. the leaf node) in
the path. Therefore, supports of corresponding nodes in the tree are
reduced as many as those of extracted paths’ nodes, where if there
are nodes with 0 supports, they are removed. In the process of rein-
serting sorted paths, if there are parts matched with the entered
ones among the previous paths in the tree, these parts are not in-
serted in new locations but corresponding supports are just in-
creased. If the above operations terminate, we can gain a
complete global WMFP-SW-tree finishing the tree restructuring
process. When WMFP-SW-tree is restructured in the sliding win-
dow-based data stream environment, support descending order
is more effective than weight ascending order. In the weighted fre-
quent pattern mining area, the most well-known sorting methods
are support descending order and weight ascending order. In any
tree sorted in support descending order, items with relatively high
supports are located in the upper portion of the tree. As a result,
sharing parts between the nodes naturally become large, which
contributes to building the tree having a more compact size. How-
ever, since weights of items cannot be sorted, additional operations
for computing MaxW, which is used to prune weighted infrequent
patterns, is required. Details of it are explained in the next section
again. Any tree sorted in weight ascending order has a complicated
and sparse structure since it is not sorted in support descending or-
der and thus sharing parts are relatively small. On the other hand,
we can immediately learn MaxW without any additional task due
to the effect of weight ascending order. In case mining operations
are conducted with static databases and two scan-based process,
support descending order can be more efficient than weight
ascending order and vice versa according to characteristics of used
datasets. However, when weight ascending order is applied to data
streams, it causes fatal deterioration in performance despite the
ed from the tree in Fig. 2(b).

700 G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708
advantage of MaxW. There are very large and various items within
any window in general although they are smaller than those consid-
ering whole data streams. Furthermore, all items including
weighted infrequent ones remain in the global tree according to
the feature of data streams, and especially the invalid ones are likely
to be located in the upper or middle portion of the tree. Therefore,
the corresponding tree becomes more complex and larger in com-
parison to the tree construction in static databases, which means
that we have to spend more time and memory traversing the tree
compared to another tree having the same data but sorted in support
descending order. In contrast, if we apply support descending order,
invalid items hardly have an effect on constructing the compact tree
since they are located in bottom portion of the tree.

Consequently, since applying support descending order over
data streams based on the sliding window can reduce the number
of nodes which have to be searched for mining WMFPs, it guaran-
tees more outstanding performance than that of weight ascending
order in spite of the disadvantage by MaxW.

Example 3. Fig. 4 shows how to restructure WMFP-SW-tree corre-
sponding to x1 over the data stream in Fig. 1. Restructuring operations
are performed from the first path. Lists in Fig. 4(a) represents item
orders before and after the tree is sorted, where Item, Cnt, and W means
item names, items’ supports (or counts), and their weights respec-
tively. Since the first three paths have an already sorted state, they do
not need to be sorted again and the operations for them are omitted.
However, since the last path is not sorted, its restructuring tasks are
conducted. When the path is reinserted into the tree after it is sorted, a
part of nodes in the path, {B,C} is shared since it is overlapped with the
previous path of the tree, {B, C, F}, while the remainder of the path, {A, D,
G} is inserted under the node, {C} as shown in Fig. 4(b). The red part of
the tree means newly created nodes. Note that corresponding node
links are reconnected with respect to the node changed in the process
of the tree restructuring steps, but we omit them in the figure for a
clear representation.
3.3.2. Removing old panes and inserting new panes
If users request mining results after the restructuring, WMFP

mining operations are performed. After that, we have to delete
old panes and add new ones to update the window and prepare
the next mining request. These operations can be easily and exactly
processed by pane counter information contained in tail nodes. Gi-
ven a set of tail nodes included in a certain old pane of any WMFP-
SW-tree, T = {t1, t2, . . ., tn}, we can obtain the tree extracting the old
pane by removing from the tree the nodes as many as the pane
counters corresponding to each t. Since there are sharing parts be-
tween nodes as items are inserted in the tree, a part of tree’s nodes
can belong to multiple transactions. However, one tail node be-
longs to only one transaction, and pane counters assigned to tail
nodes contain support information for specific paths correspond-
Fig. 4. Restructuring operation
ing to the tail nodes. Therefore, we can directly eliminate old panes
with no additional operations by utilizing this tail node and pane
counter information. Given any old pane consisting of multiple
transactions Trs, Pold = {Tr1,Tr2, . . .,Trn} and a set of tail nodes, ts
for each Tr, T = {t1, t2, . . ., tn}, each t has support values regarding Pold

and other normal panes. Therefore, if we decrease supports from t1

to the root nodes in the path including t1 according to Pold’s counter
number, it is the same as deleting Tr1. Iterating the same opera-
tions regarding all remaining tail nodes, all data included in Pold

can be completely extracted, where certain nodes with 0 supports
are eliminated. When nodes are deleted from a tree structure, we
should consider not only the nodes but also their child nodes in
general in order to prevent unintended losses of nodes. However,
we can immediately remove nodes with zero supports in WMFP-
SW-tree without considering their child nodes, and the following
property and lemma prove that the deletion is reasonable.

Property 1. A support of any node in WMFP-SW-tree is always
greater than or equal to the total supports of all its child nodes.
Proof. In WMFP-SW-tree, all nodes are added from its root node.
Moreover, since transaction data are inserted into the tree in a line,
upper nodes always have support values higher than or equal to
those of lower nodes. Therefore, given any node, n and a set of child
nodes of n, n0, the total support of n0 cannot exceed the value of n,
since all of the nodes in n0 share n.
Lemma 2. When a certain node, n is removed since its support is 0, if
there are child nodes of n, they also have the same support as it and
thus deleted.
Proof. If any node to be deleted, n does not have any child node,
removal of it has no problems. Moreover, although n has child nodes,
we can also erase it without any node losses. The reason is that any
child node does not have more than parent’s support depending on
Property 1. That is, given a node with zero support, n and any child
node of n, nc, the support of nc always becomes zero since the value
is at most n’s value. For this reason, we can directly eliminate nodes
in WMFP-SW-tree if their supports are zero.

After old panes are completely deleted, new panes are inserted in
the global tree, where added item’s order follows support descend-
ing order of the items in the tree just before old panes are extracted.
Inserting new panes depending on the previous order has an effect
on constructing a more compact tree in comparison to inputting
them according to their incoming order, which also contributes to
reducing operations needed for tree restructuring processes since
the number of nodes to be considered becomes smaller. After the
insertion of the new panes, item order suitable for the newly up-
dated tree is sorted again, and then, the tree is restructured
s for WMFP-SW-tree (x1).

G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708 701
depending on the new order. Thereafter, if mining requests occur,
WMFP-SW algorithm mines WMFPs and provides users with the re-
sult. Otherwise, the algorithm maintains the latest state at all times
extracting and adding old and new panes again.

Example 4. Let us consider updating the tree in Fig. 4(b) as the
current window is changed from x1 to x2 as shown in Fig. 1. The
process of deleting the old pane, p1 is shown in Fig. 5, and gray dotted
lines and letters in Fig. 5(a) indicate transactions belonging to p1.
Fig. 5(b) represents WMFP-SW-tree after p1 is extracted. Since the
remaining pane, p2 becomes the first pane in the current window,
the corresponding pane counters shift from the second to the first.
Fig. 6 shows how to insert the new pane, p3 in the tree and
restructure it. The previous item order is B ? C ? E ? A ? D ?
F ? G. Therefore, the transactions contained in p3 are sorted as {B, C,
E, A, D, F} and {B, E, F}. As shown in Fig. 6(a), the current global tree
includes all of the transactions corresponding to x2 according to the
insertion of p3. However, since the current order of the tree is an
unsorted state, we have to restructure it. The first and second paths
of the tree do not need to be sorted again since they already have
correct order, while the third and fourth ones should be re-sorted
since they have broken order. In Fig. 6(b), it is observed that the third
path, {B, C, E, A, D, E} is sorted according to the new order, where gray
and red parts mean extracting and reinserting the path respectively.
After the insertion, the node, E becomes a new tail node of the path.
Then, the path has two tail nodes as shown in the figure. That is, the
path, {B, C, F, A, D, E} is composed of the two transactions, {B, C, F} and
{B, C, F, A, D, E}, and they can be distinguished as the tail nodes.
Fig. 6(c) represents processes of restructuring the last path. Since the
path does not have any part sharing with the tree contrasted with
the case of the previous third path, it is assigned to a new one. The
tree after the restructuring tasks are finished is shown in Fig. 6(d),
where we can observe that the current tree becomes more compact
compared to the previous tree before the restructuring operations
shown in Fig. 6(a).
3.4. Pruning strategies in WMFP-SW

In the mining process, not all mining operations generate valid
patterns. They can find either meaningful patterns or useless ones
as the case may be. Thus, to reduce the number of operations causing
invalid pattern generation, pruning techniques can be used. In this
section, we describe pruning strategies which can be applied in min-
ing WMFPs over data streams based on the sliding window model.

3.4.1. Pruning patterns by MaxW
Weight conditions not only can be utilized to find valid patterns

related to characteristics of the real world but also can be used for
a strong pruning constraint. However, applying them into the min-
Fig. 5. Deleting the old pane from W
ing process does not satisfy the anti-monotone property in general.
That is, any weighted infrequent pattern can become weighted fre-
quent ones as mining operations are gradually conducted on the
basis of the weight conditions. As a result, incorrect pruning oper-
ations by the weights can cause pattern losses. To solve this and
perform efficient pruning procedures, we define a pruning condi-
tion applied in the sliding window model, named MaxW.

Definition 5. In a global WMFP-SW-tree, MaxW is set as the
largest value among weights of all items included in the current
window, while, in a conditional WMFP-SW-tree, it is set as the
maximum weight in items of the current conditional tree.
Example 5. In Fig. 6(d), MaxW is assigned as follows. In the global
tree, it is set as 1.0 since this value is the maximum weight in the
tree’s items. Therefore, assuming that a minimum support thresh-
old, d is 2, all of the items except for G continue to remain in the
tree although the items, A and E are currently weighted infrequent.
Since multiplying 1 (G’s support) by 1.0 (the current MaxW) is
lower than d, G and all possible patterns including it do not become
weighted frequent in any case. Although A and E are currently
invalid, certain patterns containing them can become valid
WMFPs. However, if real weights for each item are directly applied
into the pruning process instead of MaxW, then none of patterns
with the items, A and E are generated since they are pruned in
the initial stages. On the other hand, if MaxW is used, we can pre-
vent these pattern losses since they are preserved. In G’s condi-
tional WMFP-SW-tree, MaxW is still 1.0 since the item, D
continues to be contained into the tree. However, in A’s and F’s
conditional trees, MaxW is lowered as 0.9 since D does not partic-
ipate in the mining process any longer and the new maximum
weight becomes 0.9 in the conditional trees.

Even if MaxW for a global tree is only used in the whole pruning
steps, it does not have any effect on generating correct mining re-
sults. However, MaxW for conditional trees can be more decreased
than that for the global tree as shown in the above example, which
means that the range of generated candidate WMFPs can be more
reduced. Note that all of the patterns remaining after the pruning
by MaxW do not become valid WMFPs immediately. Since they
are candidates, only a portion of them become real WMFPs if their
results computed by the equation (2) are not smaller than a given
minimum support threshold and they satisfy the equation (4).

3.4.2. Pruning patterns in single-paths
There are additional considerations for the WMFP mining. In

the general MFP mining method, if a single path occurs in the pro-
cess of constructing conditional trees in a recursive manner, we
can simply extract MFP from the single path by combining prefix
added so far with all items of the single path. However, in the
MFP-SW-tree in the Fig. 4(b).

Fig. 6. Inserting the new pane into WMFP-SW-tree in the Fig. 5(b) and restructuring the tree.

702 G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708
WMFP mining approach, since the combination is a candidate, we
have to confirm whether it is valid or not through the equation (2)
and (4). If it is valid, the corresponding pattern directly becomes
real WMFP. However, if it is weighted infrequent, we need addi-
tional operations for finding WMFPs from the single path, and to
conduct these tasks efficiently, we use the following strategies.

Definition 6. If a candidate WMFP obtained from a certain single
path, S is an invalid pattern, a set of all possible subsets from S, PS is
generated and denoted as PS = {ps1,ps2, . . .,psn�1}, where an empty
set, ps0 and the entire set of S, psn are excluded since they do not
lead to generating valid WMFPs. Each ps is a set of combinations
with the same length. For example, ps1 includes all of the subsets
having one length in S.

If a combination of prefix with single path’s items is not WMFP,
we have to find meaningful WMFPs again combining the prefix
with all of the elements in PS one by one. Therefore, these opera-
tions generally require a number of time resources, but we can
effectively reduce them by the following lemma.

Lemma 3. Given a single path with n length, S = {i1, i2, . . ., in} and a set
of all valid subsets included in S, PS = {ps1,ps2, . . .,psn�1}, mining
WMFPs from psn�1 contributes to improving performance of the
proposed algorithm by pruning needless pattern operations occurring
in S.
Proof. Considering that WMFP mining tasks are performed in
regard to all of the elements in PS without any strategy, the num-
ber of the components is 2n (it is exactly 2n � 2, but the constant is
excluded on the basis of the Big-O notation). Assuming that k is the
time spent for the one element, the total time to process all of them
becomes O(k � 2n). However, if the operations start from psn�1,
then the following advantage occurs according to the feature of
the maximal pattern mining. In case valid WMFPs are discovered
from psn�1, all subsets contained in the found patterns need not
be considered again since we want only WMFPs, not all general
patterns. Thus, the subsets included between ps1 and psn�2 are
excluded in the next mining process, and thereby we can quicken
the mining speed. Furthermore, if WMFPs found from psn�1 include
all items composing S, the corresponding total time becomes
O(k � n) (for any single path with n items, psn�1 always has n ele-
ments), since we have only to calculate the operations regarding
the only psn�1. As a result, given the execution time for all of the
elements, T and that by the proposed technique, T0, it is always true
that T P T0

Through the above strategy, we can reduce mining times spent
on single paths, and the advantage by it becomes larger as used
datasets generate more single paths.
3.5. WMFP-SW algorithm

In this section, an overall procedure of WMFP-SW algorithm
applying the proposed methods and techniques is described.
Through the steps shown in Fig. 7, we can observe how WMFPs
are mined over the sliding window-based data streams.

In the WMFP-SW procedure, the algorithm first makes prepara-
tion for the WMFP mining (line 1) and conducts its operations
while there exist transactions which are not yet processed from
DS (lines 2–8). Since T = ø means that none of data is inputted into
T, if it is true, WMFP-SW fills an window from DS and constructs T
(lines 3–4). Otherwise, the window is updated since T – ø indicates
that previous data were filled in T (line 5). After that, T is restruc-
tured if necessary, and tasks for mining WMFPs are performed if
there are requests from users (lines 6–8).

In the sub procedure, Create_Window, steps for inserting trans-
actions into an empty tree are conducted (lines 1–8). The window
size represents the number of panes and the pane size means the
number of transactions. Transactions are inserted in T according
to their incoming order (line 4), and thereafter, the algorithm com-
putes support descending order regarding the items composing T
(line 8). When the current window is updated according to the

G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708 703
flow of data streams, the sub procedure, Update_Window is per-
formed. The old pane is deleted (lines 1–6), nodes’ supports of
the paths belonging to it are decreased, and specific nodes with 0
supports are directly removed in T based on Lemma 2 (lines 4–
6). After the deletion, the algorithm shifts pane counters for the
previous tail nodes to the left one by one (line 7). Then, the new
pane is added into T, where each transaction of it is sorted in the
previous order (lines 8–9). Whenever these transactions are in-
serted, corresponding tail node information is set (line 10). After
the window is updated, its order is sorted again to prepare the next
restructuring process. If the window is created or updated, T is
restructured through the sub procedure, Restructure_Tree. For each
path in T, extraction, sorting, and reinsertion tasks are conducted
(lines 1–4), and nodes with 0 support are eliminated in these pro-
cesses (line 5). If the algorithm performs the tasks of the WMFP-
SW procedure by the line 6, it means that preparations for mining
WMFPs are completely finished. If mining requests occur from
users at this time, the sub procedure, Mine_WMFP is called. Then,
for each items in the header table of T, the algorithm excludes
some of the items which are permanently unnecessary in this min-
ing process through the technique by MaxW (lines 2–5). If T is a
single path (a global tree generally has multiple paths and thus this
routine is mainly the part for conditional trees), the algorithm con-
Input : A data stream, DS, A window size, Sizew, A pa
Output : A set of WMFPs, P
Variables : T : A global WMFP-SW-tree, Order : Ite

MaxW : A weight value used for pattern-pru
WMFP-SW procedure

1. P = ø, T = ø , Order = ø, prefix = ø;
2. while there are transactions to be processed in D
3. if T = ø, do
4. call Create_Window(T, Order);
5. else call Update_Window(T, Order);
6. call Restructure_Tree(T, Order);
7. if mining request occurs by users, do
8. call Mine_WMFP(T, prefix, P);

Create_Window(T, Order)
1. A current window size, ωω = ø, A current pane siz
2. while ωω ≠ Sizew, do
3. while p ≠ Sizew, do
4. insert a transaction of DS into T accordin
5. p p + 1;
6. p = ø;
7. ω ω + 1;
8. Order support descending order for the items

Update_Window(T, Order)
1. for each path, pi in the old pane, do
2. find a tail node, ti for pi;
3. for each node, nk in pi, do //bottom up manne
4. nk.support nk.support – ti.support.first
5. if nk.support = 0, do
6. delete nk;
7. shift pane counters of all remaining tail nodes in
8. for each transaction, tri of the new pane in DS, d
9. insert tri into T according to Order;

10. set tail node information for tri;
11. Order support descending order for the items

Restructure_Tree(T, Order)
1. for each path, pi in T, do
2. if pi is not sorted, do
3. extract and sort pi depending on Order;
4. reinsert pi into T and set pi’s tail node inf
5. delete certain nodes with 0 support from

Mine_WMFP(T, prefix, P)
1. for each items, ik in T’s header table, do //botto

 2. set ik as prefix;
 3. MaxW the maximum weight among the
 4. if prefix.support * MaxW < δ, do
 5. go to line 1;
 6. else
 7. if T is a single-path, do
 8. pattern = prefix all items in T;

9. if WSUP(pattern) ≥ δ and Subset_C
10. P = P pattern;

 11. else
 12. PS all possible combinations
 13. for each combination, ci in PS, d
 14. if WSUP(prefix ci) ≥ δ an
 15. P = P (prefix ci);
 16. else //multiple path
 17. generate ik’s conditional WMFP-SW
 18. for each items, im in the header table

19. prefix’ = prefix im;
20. call Mine_WMFP(T’, prefix’, P

Fig. 7. WMFP-SW
firms whether it is really WMFP to combine T’s all items with the
prefix added so far (lines 7–15). If the condition of the line 9 is sat-
isfied, this combination is stored into P (line 10). Otherwise, subse-
quent operations are performed on the basis of Definition 6 and
Lemma 3, and resulting patterns are added into P (lines 12–15).
If T has multiple paths (line 16), for each item of the header table
in T, the algorithm generates the corresponding conditional
WMFP-SW-tree and WMFP-SW-array, sets prefix, and then calls
Mine_WMFP recursively (lines 17–20), where the created WMP-
SW-array contributes to constructing subsequent conditional trees
with only one scan according to Lemma 1. After the procedure is
completely finished, we can gain the most recent WMFP pattern
information corresponding to the current window data.
4. Performance evaluation

4.1. Experimental environment

In this section, performance evaluation for the proposed algo-
rithm, WMFP-SW is conducted and its analysis results are pro-
vided. Target algorithms are WFPMDS (Ahmed et al., 2009) for
mining weighted frequent patterns over the sliding window-based
ne size, Sizep, A minimum support threshold, δδ

m order, prefix : A current prefix added so far
ning, PS : A data structure used for single paths

S, do

e, p = ø;

g to its incoming order;

 included in the current T;

r
;

 T to left by one;
o // 1≤i≤Sizep

 included in the current T;

ormation again;
T;

m-up manner

items’ weights in T;

hecking(pattern) is false, do

 for the items in T;
o
d Subset_Checking(prefix ci) is false, do

-tree, T’ and WMFP-SW-array;
 of T’, do

); //recursive call

algorithm.

Table 3
Window and pane sizes for the used datasets.

Dataset Pane size (K) Window size

W1 W2 W3 W4 W5

Accidents 50 2 3 4 5 6
Pumsb 5 2 4 6 8 –
Retail 10 2 3 4 5 6
Mushroom 1 2 4 6 8 –
TaLbNc 10 4(fixed)
T10I4DxK 10 4(fixed)

704 G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708
data streams and its optimized version, WFPMDS⁄. As the ad-
vanced method of CPS-tree (Tanbeer et al., 2009b) which is a fa-
mous and outstanding algorithm for mining frequent patterns
over the sliding window-based data streams, WFPMDS is suitable
for our algorithm. Since there is no algorithm that can mine
WMFPs over data streams based on the sliding window model
among the previous algorithms to our knowledge, we optimized
WFPMDS to allow it to extract WMFPs. We wrote all the algo-
rithms in C++ language, and they were executed in 3.33 GHz
CPU, 3 GB RAM, and WINDOWS 7 OS environment. For runtime
and memory usage experiments, real datasets, which are available
at http://fimi.cs.helsinki.fi/data/, Accidents, Pumsb, Retail, and
Mushroom were used. Table 2 includes information regarding
these datasets in detail. Furthermore, for scalability tests, synthetic
datasets, TaLbNc and T10I4DxK are used and details of them are
shown in Table 2, which can be obtained from the IBM dataset gen-
erator available at http://www.almaden.ibm.com/software/pro-
jects/hdb/ resources. Table 3 represents window and pane size
information regarding the used datasets. As shown in the table,
various values are assigned as the sizes for extensive experiments.
For instance, W1 of Accidents dataset means 50 K � 2 = 100 K. On
the other hand, since both TaLbNc and T10I4DxK are the datasets
for the scalability tests, their window sizes are fixed as a certain va-
lue. Performance evaluation for the algorithms is conducted as fol-
lows. First, the algorithms continue to update their own windows,
iterating insertion, deletion, and restructuring steps over data
streams for each dataset.

In the middle of these steps, if mining requests occur from
users, they mine valid patterns with their own restructured global
trees. Note that we assume that those requests occur after all
transactions are read in order to perform experiments quickly
and exactly. After the above processes completely terminate, we
analyze their performance with figures of their total runtimes
and maximum memory usages.
4.2. Runtime results

In the runtime experiments of this section, items’ weights for
the used real datasets are set between 0.5 and 0.8. Graphs in
Figs. 8–11 represent the results of runtimes for each algorithm
and dataset, where the windows have fixed sizes and these values
are varied according to each dataset as shown in the figures. Fig. 8
is the results of the Accidents dataset, where WMFP-SW guaran-
tees the most outstanding runtime performance in all cases. More-
over, the proposed algorithm shows almost constant runtime
results regardless of the minimum support threshold, d while those
of the other ones become larger as d is gradually decreased. Fig. 9
represents execution times to mine patterns with the Pumsb data-
Table 2
Details of datasets used in experiments.

Dataset # of Trans # of Items Avg. trans. size Size (M)

Accidents 340,183 572 45 33.8
Pumsb 49,046 2113 74 15.9
Retail 88,162 16,470 13 3.97
Mushroom 8124 120 23 0.83
T10L1000N10000 98,043 10,000 10 4.96
T20L2000N20000 99,863 20,000 20 10.73
T30L3000N30000 99,871 30,000 30 16.43
T40L4000N40000 99,853 40,000 40 22.13
T10I4D100 K 100,000 1000 10 3.83
T10I4D200 K 200,000 1000 10 7.86
T10I4D400 K 400,000 1000 10 15.3
T10I4D600 K 600,000 1000 10 23
T10I4D800 K 800,000 1000 10 30.6
T10I4D1000 K 1,000,000 1000 10 38.3
set. These results show that WMFP-SW can conduct mining oper-
ations more quickly in common with the previous cases.

In Figs. 10 and 11 for the Retail and Mushroom datasets, our
algorithm also guarantees the fastest and most stable performance
in every case. Due to the strategies for the WMFP-SW-array and
single paths, WMFP-SW algorithm provides users with the best re-
sults regardless of datasets and d. Moreover, degree of runtime in-
creases due to the reduction of d is smaller than that of the others.
In contrast to our algorithm, WFPMDS shows the slowest runtimes
in all of the cases. Since the algorithm extracts all weighted fre-
quent patterns, its resulting patterns are larger than those of the
other algorithms as well as needed runtimes become longer. The
optimized algorithm of WFPMDS, WFPMDS⁄ can discover the same
results as those of WMFP-SW, but its performance falls behind the
proposed algorithm although it outperforms the original version,
WFPMDS. The performance gap between the algorithms is remark-
ably represented in Fig. 11. While the runtime of WMFPMDS is
considerably increased as d becomes low, the other two algorithms
have slowly increasing runtime graphs due to the advantage of
WMFP.

4.3. Results of memory usage

Experiments performed in this section present memory usage
results for each real datasets. Used parameters are equal to those
of the runtime experiments. Fig. 12 presents memory usage results
for the Accidents dataset, where we can show that all of the algo-
rithms have stable memory consumption regardless of d. However,
our WMFP-SW requires the lowest memory usages in all cases, and
this tendency is similarly represented in the other experiments. In
Fig. 13 for the Pumsb dataset, although the gap between WMFP-
SW and the others is smaller than that in the Accidents, WMFP-
SW still outperforms the others.

In the results of the Retail dataset shown in Fig. 14, the three
algorithms have stable memory usages except that WMFP-SW con-
sumes a little more memory when d is 0.02%. Although their abso-
lute memory usages are different from each other, the reason why
their memory consumption is almost constant is as follows. Since
Fig. 8. Accidents dataset (W2).

http://www.fimi.cs.helsinki.fi/data/
http://www.almaden.ibm.com/software/projects/hdb/
http://www.almaden.ibm.com/software/projects/hdb/

Fig. 9. Pumsb dataset (W2).

Fig. 10. Retail dataset (W5).

Fig. 11. Mushroom dataset (W1).

Fig. 12. Accidents dataset (W2).

Fig. 13. Pumsb dataset (W2).

G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708 705
all of the transaction data of the current window are contained into
a global tree, the amount of memory used for constructing the glo-
bal tree is far larger than that consumed in the mining operations
in general. Furthermore, since the global trees for each algorithm
maintain the same state regardless of d, almost constant memory
is required as shown in the figures, where gaps of absolute memory
usages between those algorithms occur due to the proposed tech-
niques and structural differences among them. However, in Fig. 15
for the Mushroom, different characteristics are observed. As shown
in Table 2, the number of items composing the Mushroom dataset
is relatively small since it has a dense feature and the smallest file
size of the used datasets. As a result, its constructed global tree
consumes relatively little memory, and thus, the memory usages
are visibly changed according to d as shown in the figure. Espe-
cially, WFPMDS⁄ consumes the most memory in every case com-
pared to the other algorithms. WMFP-SW shows the most
outstanding memory performance in general, although its memory
usage becomes gradually similar to that of WFPMDS depending on
the increase of d.
4.4. Experimental results by changes of window sizes

In this section, we present runtime and memory usage results
regarding changes of window sizes. Used parameters are based
on Table 3 and assigned weights are also equal to the previous
experiments.

Figs. 16 and 17 are results of the Retail dataset, and d is fixed as
0.1%. Results of the Mushroom dataset are shown in Figs. 18 and
19, where d is set as 5%. In Fig. 16, it is observed that all of the three
algorithms have increasing runtimes as the window size becomes
large. On the other hand, we can show that required runtimes are
gradually decreased according to the increasing window size in
Fig. 18. The reason is as follows. If there are dense and sparse data-
sets with the same size, restructuring trees made in the sparse
dataset generally needs longer runtimes than that doing in the
dense dataset since the former case creates more complex and la-
ger trees. In the Retail, as a window size becomes larger, the num-
ber of restructured paths is also more increased since divided
windows have a sparse feature. As a result, corresponding run-
times gradually increase as shown in the figure. In the Mushroom,
its divided windows lose a dense characteristic as the original
dataset is split into small parts. Accordingly, longer execution
times are needed with respect to the small windows. However,
in case the window size increases, the corresponding runtimes
are reduced in contrast to the case of the Retail, since constructed
trees have increasingly more dense nature as the window has more
items. In the memory tests shown in Figs. 17 and 19, they have a
similar tendency although their absolute memory consumption is

Fig. 14. Retail dataset (W5).

Fig. 15. Mushroom dataset (W1).

Fig. 16. Runtime of Retail dataset (d = 0.1%).

Fig. 17. Memory usage of Retail dataset (d = 0.1%).

Fig. 18. Runtime of Mushroom dataset (d = 5%).

Fig. 19. Memory usage of Mushroom dataset (d = 5%).

706 G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708
different from each other. In contrast to the results of the runtime
experiments in Figs. 16 and 18, memory usages are gradually in-
creased as the window sizes become larger since the sizes of the
trees corresponding to the current windows increase due to the
rise of the windows, as shown in Figs. 17 and 19.

4.5. Scalability results

Figs. 20 and 21 present scalability results of T10I4DxK datasets
in terms of runtime and memory usage, where they have random
weights between 0.5 and 0.8, their d value is fixed as 0.1%, and x
value increases from 100 to 1000 K. In WFPMDS and WFPMDS⁄
of Fig. 20, we can show that their graph slopes sharply rise after
x is 200 K, which means that their scalability results by the increas-
ing transactions are unfavorable. On the other hand, the runtime of
WMFP-SW stably increases according to the growth of the transac-
tions. In Fig. 21, all of the algorithms show steady memory con-
sumption regardless of the number of transactions. Since they
are tree-based algorithms, if the number of attributes is not in-
creased, they have almost constant memory usages even though
the number of transactions becomes larger. The next experiments,
Figs. 22 and 23 represent results of the TaLbNc datasets, and their
experimental environment is equal to that of T10I4DxK. In the
experiments, the results of Fig. 22 have a tendency different from
those of Fig. 20. WFPMDS⁄ and WMFP-SW guarantee stable run-
time increases although the number of attributes becomes larger
while WFPMDS has sharply increasing runtimes. Since WFPMDS

Fig. 20. Runtime scalability of T10I4DxK (d = 0.1%).

Fig. 21. Memory usage scalability of T10I4DxK (d = 0.1%).

Fig. 22. Runtime scalability of TaLbNc (d = 0.1%).

Fig. 23. Memory usage scalability of TaLbNc (d = 0.1%).

G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708 707
has to extract an enormous number of WFPs according to the in-
crease of the attributes, the corresponding graph slope rapidly rises
as shown in the figure, while the others have relatively better run-
time scalability due to the advantage of the maximal pattern
technique. WMFP-SW especially shows the best scalability perfor-
mance due to the proposed techniques. Increasing the number of
attributes eventually means that more information should be con-
tained into the tree, and thus, corresponding memory usages for
the algorithms gradually grow like Fig. 23. However, we can ob-
serve that memory scalability of both WFPMDS and WFPMDS⁄ falls
behind that of the proposed algorithm, WMFP-SW. Through the
provided experimental results, we can know that the proposed
algorithm presents outstanding performance in terms of runtime,
memory usage, and scalability over the sliding window-based data
streams. In addition, it is observed that our algorithm outperforms
the previous algorithms in the performance experiments regarding
changes of window sizes.
5. Conclusions

In this paper, we proposed an algorithm for mining weighted
maximal frequent patterns (WMFPs) over data streams based on
the sliding window model, called WMFP-SW, and suggested data
structures needed to find WMFPs, WMFP-SW-tree, WMFP-tree,
and WMFP-SW-array. WMFP-SW effectively extracted WMFPs
reflecting the latest information over data streams due to the de-
scribed window updating and restructuring methods, the reduc-
tion of tree scans by the WMFP-SW-array, mining strategies for
single paths, and so on. The extensive experiments presented in
this paper showed that the proposed algorithm could mine WMFPs
more effectively than the previous algorithms by proving that
WMFP-SW guaranteed more outstanding performance in terms
of runtime, memory usage, and scalability. The suggested tech-
niques and strategies can be applied in other areas such as closed
frequent pattern mining, high utility pattern mining, etc. in addi-
tion to the maximal frequent pattern mining, and applying them
is expected to contribute to improving performance in various
fields.

Acknowledgments

This research was supported by the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Education, Science
and Technology (NRF No. 2013005682 and 20080062611).

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In
Proceedings of the 20th international conference on very large data, bases (pp. 487–
499), September 1994.

Ahmed, C. F., Tanbeer, S. K., Jeong, B. S., & Lee, Y. K. (2009). An efficient algorithm for
sliding window-based weighted frequent pattern mining over data streams.
IEICE Transactions, 92-D(7), 1369–1381.

Ahmed, C. F., Tanbeer, S. K., Jeong, B. S., Lee, Y. K., & Choi, H. J. (2012). Single-pass
incremental and interactive mining for weighted frequent patterns. Expert
Systems with Applications, 39(9), 7976–7994.

Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., & Yiu, T. (2005). MAFIA: A maximal
frequent itemset algorithm. IEEE Transactions on Knowledge and Data
Engineering, 17(11), 1490–1504.

Chang, L., Wang, T., Yang, D., Luan, H., & Tang, S. (2009). Efficient algorithms for
incremental maintenance of closed sequential patterns in large databases. Data
& Knowledge Engineering, 68, 68–106.

Chen, Y., Bie, R., & Xu, C. (2011). A new approach for maximal frequent sequential
patterns mining over data streams. International Journal of Digital Content
Technology and its Applications, 5(6), 104–112.

Chen, H., Shu, L., Xia, J., & Deng, Q. (2012). Mining frequent patterns in a varying-size
sliding window of online transactional data streams. Information Sciences, 215,
15–36.

Chen, L., & Wang, C. (2010). Continuous subgraph pattern search over certain and
uncertain graph streams. IEEE Transactions on Knowledge and Data Engineering,
22(8).

http://refhub.elsevier.com/S0957-4174(13)00595-2/h0005
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0005
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0005
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0010
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0010
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0010
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0015
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0015
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0015
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0020
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0020
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0020
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0025
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0025
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0025
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0030
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0030
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0030
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0035
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0035
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0035

708 G. Lee et al. / Expert Systems with Applications 41 (2014) 694–708
Chuang, K. T., Huang, J. L., & Chen, M. S. (2008). Mining Top-k frequent patterns in
the presence of the memory constraint. The International Journal on Very Large
Data Bases, 17(5), 1321–1344.

Deypir, M., Sadreddini, M. H., & Hashemi, S. (2012). Towards a variable size sliding
window model for frequent itemset mining over data streams. Computers &
Industrial Engineering, 63(1), 161–172.

Fang, G., Deng, Z., & Ma, H. (2009). Network traffic monitoring based on mining
frequent patterns. Fuzzy Systems and Knowledge Discovery, 7, 571–575.

Farzanyar, Z., Kangavari, M. R., & Cercone, N. (2012). Max-FISM: Mining (recently)
maximal frequent itemsets over data streams using the sliding window model.
Computers & Mathematics with Applications, 64(6), 1706–1718.

Gouda, K., & Zaki, M. J. (2005). GenMax: An efficient algorithm for mining maximal
frequent itemsets. Data Mining and Knowledge Discovery, 11(3), 223–242.

Grahne, G., & Zhu, J. (2005). Fast algorithms for frequent itemset mining using FP-
trees. IEEE Transactions on Knowledge and Data Engineering, 17(10), 1347–1362.

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery, 8(1), 53–87.

Huang, Y., Xiong, H., Wu, W., Deng, P., & Zhang, Z. (2007). Mining maximal
hyperclique pattern: A hybrid search strategy. Information Sciences, 177(3),
703–721.

Li, H. (2008). A sliding window method for finding Top-k path traversal patterns
over streaming Web click-sequences. Expert Systems with Applications, 36(3),
4382–4386.

Li, H. (2009). Interactive mining of Top-K frequent closed itemsets from data
streams. Expert Systems with Applications, 36(7), 10779–10788.

Li, H. (2011). MHUI-max: An efficient algorithm for discovering high-utility
itemsets from data streams. Journal of Information Science, 37(5), 532–545.

Li, H., Lee, S., & Shan, M. (2006). DSM-PLW: Single-pass mining of path traversal
patterns over streaming Web click-sequences. Computer Networks, 50,
1474–1487.

Lin, K. W., Hsieh, M., & Tseng, V. S. (2010). A novel prediction-based strategy for
object tracking in sensor networks by mining seamless temporal movement
patterns. Expert Systems with Applications, 37(4), 2799–2807.

Liu, W., Zheng, Y., Chawla, S., Yuan, J., & Xing, X. (2011). Discovering spatio-temporal
causal interactions in traffic data streams. In Proceedings of the 17th international
conference on knowledge discovery and data mining (pp. 1010–1018).

Luo, C., & Chung, S. M. (2008). A scalable algorithm for mining maximal
frequent sequences using a sample. Knowledge and Information Systems, 15(2),
149–179.

Luo, C., & Chung, S. M. (2012). Parallel mining of maximal sequential patterns using
multiple samples. The Journal of Supercomputing, 59(2), 852–881. http://
dx.doi.org/10.1007/s11227-010-0476-1.

Mozafari, B., Thakkar, H., & Zaniolo, C. (2008). Verifying and mining frequent
patterns from large windows over data streams. In Proceedings of the 24th
international conference on data, engineering (pp. 179–188).

Muzammal, M., & Raman, R. (2011). Mining sequential patterns from probabilistic
databases. Advances in Knowledge Discovery and Data Mining, 201–221.
Priya, R. V., Vadivel, A., & Thakur, R. S. (2012). Maximal pattern mining using fast
CP-tree for knowledge discovery. International Journal of Information Systems
and Social Change, 3(1), 56–74.

Sallaberry, A., Pecheur, N., Bringay, S., roche, M., & Teisseire, M. (2011). Sequential
patterns mining and gene sequence visualization to discover novelty from
microarray data. Journal of Biomedical Informatics, 44, 760–774.

Selvan, S., & Nataraj, R. V. (2010). Efficient mining of large maximal bicliques from
3D symmetric adjacency matrix. IEEE Transactions on Knowledge and Data
Engineering, 22(12), 1797–1802.

Shie, B., Yu, P. S., & Tseng, V. S. (2012). Efficient algorithms for mining maximal high
utility itemsets from data streams with different models. Expert Systems with
Applications, 39(17), 12947–12960.

Shiozaki, H., Ozaki, T., & Ohkawa, T. (2006). Mining closed and maximal frequent
induced free subtrees. In Proceedings of the 6th IEEE international conference on
data mining (pp. 14–18).

Sim, K., Li, J., Gopalkrishnan, V., & Liu, G. (2009). Mining maximal quasi-bicliques:
Novel algorithm and applications in the stock market and protein networks.
Statistical Analysis and Data Mining, 2(4), 255–273.

Tanbeer, S. K., Ahmed, C. F., Jeong, B. S., & Lee, Y. K. (2009a). Efficient single-pass
frequent pattern mining using a prefix-tree. Information Sciences, 179(5),
559–583.

Tanbeer, S. K., Ahmed, C. F., Jeong, B. S., & Lee, Y. K. (2009b). Sliding window-based
frequent pattern mining over data streams. Information Sciences, 179(22),
3843–3865.

Thomas, L.T., Valluri, S.R., & Karlapalem, K. (2006). MARGIN: Maximal frequent
subgraph Mining. In Proceedings of the 6th IEEE international conference on data
mining (pp. 1097–1101).

Wang, J., & Zeng, Y. (2011). DSWFP: Efficient mining of weighted frequent pattern
over data streams. Fuzzy Systems and Knowledge Discovery, 2, 942–946.

Xiong, Y., He, J., & Zhu, Y. (2010). TOPPER: An algorithm for mining Top k patterns in
biological sequences based on regularity measurement. In 2010 IEEE
international conference on bioinformatics and biomedicine workshops (pp. 283–
288).

Yang, C., Li, Y., Zhang, C., & Hu, Y. (2007). A novel algorithm of mining maximal
frequent pattern based on projection sum tree. Fuzzy Systems and Knowledge
Discovery, 1, 458–462.

Yun, U., & Ryu, K. (2011). Approximate weight frequent pattern mining with/
without noisy environments. Knowledge-Based System, 24(1), 73–82.

Yun, U., Ryu, K., & Yoon, E. (2011). Weighted approximate sequential pattern mining
within tolerance factors. Intelligent Data Analysis, 15(4), 551–569.

Yun, U., Shin, H., Ryu, K., & Yoon, E. (2012). An efficient mining algorithm for
maximal weighted frequent patterns in transactional databases. Knowledge-
Based Systems, 33, 53–64.

Zeng, X., Pei, J., Wang, K., & Li, J. (2009). PADS: A simple yet effective pattern-aware
dynamic search method for fast maximal frequent pattern mining. Knowledge
and Information Systems, 20(3), 375–391.

Zhang, X., & Zhang, Y. (2011). Sliding-window Top-k pattern mining on uncertain
streams. Journal of Computational Information Systems, 7(3), 984–992.

http://refhub.elsevier.com/S0957-4174(13)00595-2/h0040
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0040
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0040
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0045
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0045
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0045
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0050
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0050
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0055
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0055
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0055
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0060
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0060
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0065
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0065
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0070
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0070
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0070
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0075
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0075
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0075
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0080
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0080
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0080
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0085
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0085
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0090
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0090
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0095
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0095
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0095
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0100
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0100
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0100
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0105
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0105
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0105
http://dx.doi.org/10.1007/s11227-010-0476-1
http://dx.doi.org/10.1007/s11227-010-0476-1
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0115
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0115
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0120
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0120
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0120
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0125
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0125
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0125
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0130
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0130
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0130
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0135
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0135
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0135
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0140
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0140
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0140
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0145
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0145
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0145
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0150
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0150
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0150
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0155
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0155
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0160
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0160
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0160
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0165
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0165
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0170
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0170
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0175
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0175
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0175
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0180
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0180
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0180
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0185
http://refhub.elsevier.com/S0957-4174(13)00595-2/h0185

	Sliding window based weighted maximal frequent pattern mining over data streams
	1 Introduction
	2 Related work
	2.1 Sliding window-based frequent pattern mining over data streams
	2.2 Maximal frequent pattern mining over data streams
	2.3 Applying weight conditions into frequent pattern mining over data streams

	3 Weighted maximal frequent pattern mining over data streams based on sliding window model (WMFP-SW)
	3.1 Preliminaries
	3.2 Structures for WMFP-SW
	3.2.1 WMFP-SW-tree and WMFP-tree
	3.2.2 WMFP-SW-array

	3.3 Updating WMFP-SW-tree according to the sliding window
	3.3.1 Restructuring WMFP-SW-tree
	3.3.2 Removing old panes and inserting new panes

	3.4 Pruning strategies in WMFP-SW
	3.4.1 Pruning patterns by MaxW
	3.4.2 Pruning patterns in single-paths

	3.5 WMFP-SW algorithm

	4 Performance evaluation
	4.1 Experimental environment
	4.2 Runtime results
	4.3 Results of memory usage
	4.4 Experimental results by changes of window sizes
	4.5 Scalability results

	5 Conclusions
	Acknowledgments
	References

