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Abstract 

Query processing technology has recently received a lot of attention in the business 

intelligence and information service communities. However, the existing approaches can 

not efficiently optimize the query performance in the uncertain big data environment. In 

this paper, we propose QPPUBG, a novel and efficient query processing platform for 

uncertain big data. QPPUBG mainly includes four modules: (i) query equivalence 

reconstructing for uncertain big data; (ii) multiple query optimization over probability 

relation components; (iii) query execution plan constructing over probability relation 

components, and (iv) physical implementation solution of query for uncertain big data. 

Specially, QPPUBG can support the possible world instance semantics and efficiently 

handle arbitrary decision spaces. Moreover, QPPUBG can seamlessly integrate the 

above four modules into the modern parallel computation frameworks. We present the 

extensive experiments that demonstrate QPPUBG is both efficient and effective. 
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1. Introduction 

As the in-depth application of information and network technologies, the data in 

enterprises increase exponentially. And fast obtaining the useful information by query 

processing is an important tool to provide efficient decision-making for enterprise users. 

Recently, the researchers have focus on using online analytical processing (OLAP) and 

data mining (DM) these two aspects to improve the quality of decision-making [1]. 

Online analytical processing aims to adopt a series of complex multi-dimensional queries 

including top-n query, KNN query, rank query, range query, skyline query and iceberg 

query, to explore and analyze the whole enterprise data and return the profile information 

from massive data. Then users can complete decision analysis according to small-volume 

profile information. 

During recent two years, big data has recently received a lot of attention in many 

countries such as America, China, Japan, Britain, and Germany. Specially, American 

government announce to invest two hundred million dollars for the research plan of big 

data [3]. The European Commission is funding a 2-year-long big data public private 

forum through their seventh framework program to engage companies, academics and 

other stakeholders in discussing big data issues [4]. It is not difficult to find that the age of 

big data was approaching. From literature [5], we can see that the 4V’s of big data – 

volume, velocity, variety and veracity—makes the query processing challenging for the 

traditional data analysis technologies. And these 4V characteristics indicate that the data 

volume is too huge, and data values change too fast, and it does not follow the rules of 

conventional query processing. Hence, we need to design and develop the new 

technologies for efficient query processing, and under-stand the problem deeply enough 

to perform the analytics. Literature [6] proposes sophisticated parallel statistical 

algorithms for big data, with a focus on density-based methods. Specially, in this paper, 

the authors implement these algorithms using both map/reduce and SQL interfaces over a 

variety of storage mechanisms. Literature [7] presents an end-to-end solution for scalable 
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access to big data integration, were end users will formulate queries based on a familiar 

conceptualization of the underlying domain. Literature [8] first introduces the Hadoop 

map/reduce and uses it for query processing big data, and then proposes several different 

data management techniques, such as job optimization, physical data organization. 

Literature [9] proposes a HACE theorem that characterizes the features of the big data 

revolution, and proposes a big data processing model, from the data mining perspective. 

As data acquisition requirement of enterprises increases, uncertain big data has 

received a lot of attention. In most of trades (e.g. finance, telecommunication, aero-space), 

enterprises are restricted by the accuracy of data acquisition devices, and the self-vague of 

big data, and hence the uncertainty of big data is ubiquitous in data sources of enterprises 

[10]. Because uncertain big data needs to add the probability distribution information and 

possible world instance semantics for the objects, query processing over uncertain big 

data is more complex than certain big data. Thereby, the existing approaches can not 

efficiently optimize the query performance in the uncertain big data environment. 

Motivated by the above facts, in this paper, we first propose QPPUBG (Query 

Processing Platform for Uncertain Big Data), an efficient platform for query processing 

and optimization over uncertain big data. Detailed, our QPPUBG platform mainly 

includes the following four modules: (i) query equivalence reconstructing for uncertain 

big data; (ii) multiple query optimization over probability relation components; (iii) query 

execution plan constructing over probability relation components, and (iv) physical 

implementation solution of query for uncertain big data. Specially, our QPPUBG platform 

can support the possible world instance semantics and efficiently handle arbitrary decision 

spaces. Furthermore, our QPPUBG platform can seamlessly integrate the above four 

modules into the modern parallel computation frameworks. We present the extensive 

experiments that demonstrate that our QPPUBG platform is both efficient and effective. 

 

2. Platform Framework Overview 

As the appearance of uncertain big data, existing query processing approaches have 

serious drawbacks in the aspects of real-timing, robustness and self-adaptability. To solve 

these main drawbacks, we design and develop QPPUBG, an efficient platform for query 

processing and optimization over uncertain big data. The platform framework of 

QPPUBG is shown in Figure 1. 

Our QPPUBG platform mainly includes four modules: 

 

2.1. Module 1: Query Equivalence Reconstructing for Uncertain Big Data 

The modern storage models of uncertain big data are based on possible world 

instance semantics [11], there-fore compared with a certain object, they need to 

store the exponential number of probability relation instances. And for convenient 

management and query, these storage models store uncertain big data by two stages. 

In the first stage, various probability instances of the same relation object are 

organized as a restrictive G-Tabset table . In the second stage,  is factorized 

multinomial number of probability relation components, and each probability 

relation component is the conjunction of several probability relation instances. In 

many real applications, enterprises usually do not store massive probabilit y relation 

instances, and only store two equivalent data: (1) the small -scale set W of 

probability relation components, W={WSD1,…,WSDn}; and (2) the set D of Datalog 

language rules, D={DL1,…, DLm}. Specially, the form of DLi can be denoted as 

WSDi:-Insi1…Insix, which indicates that the probability relation component W is 

the conjunction of x probability relation instances Insi1,…, Insix. 
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Figure 1. The Platform Framework of QPPUBG 

In our QPPUBG platform, in order to understand, the input parameter of the 

proposed query SQ is probability relation instances, i.e. SQ:- (Ins1…Insx). This 

means that our QPPUBG platform obtains the query result from the input data 

Ins1 x. In order to let the query optimizer identify and analyze the query 

sentence over un-certain big data, in this module, we equally transform SQ to 

serveral queriers over probability relation components, i.e. SQ:-

( WSD1)( WSD2)… ( WSDu), un. 

 

2.2. Module 2: Multiple Query Optimization over Probability Relation 

Components 

Based on Module 1, our QPPUBG platform has u que (WSD1),…, 

(WSDu). For each query (WSDi), i[0, 1], its input parameter is one probability 

relation component WSDiW. In order to return the complete query result, a 

straightforward method is to respectively obtain the query results of these u 

probability relation components. However, we find that this straightforward method 

has two serious performance drawbacks: (1) since the query is CPU-sensitive, this 

method will spend much CPU time; and (2) since each probability relation 

component usually occupies massive storage space, it needs much I/O time to put 

these u probability relation components from disk to the memory.  

In order to overcome the above two drawbacks, our QPPUBG platform is based 

on the cost evaluation and selects the optimal v (v<u) WSD1’,…,WSDv’ from the set 

W of probability relation components {WSD1,…,WSDn}. Specially, the query object 

set of WSDi’ (1iv) can be used to handle the queries over probability relation 

components among WSD1,…,WSDu. Thus, our QPPUBG platform only needs less 

number of queries and less size of probability relation components. 

Furthermore, in our QPPUBG platform, we theoretically prove that compared 

with the straightforward method, our optimization method can save 1/e37% CPU 

time and (e-1)/e63% I/O cost. 
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2.3. Module 3: Query Execution Plan Constructing Over Probability Relation 

Components 

After our QPPUBG platform achieves v (v<u) probability relation components 

WSD1’,…, WSDv’, for each WSDi’, before obtaining its query object set, the query 

optimizer needs to produce efficient query execution plan logically. 

For this purpose, in our QPPUBG platform, we design the rule system  to 

equally transform execution order between the query operator and uncertain relation 

operators (e.g. Uselection, Conf, Merge and Ujoin). And we present the cost 

evaluation of before-transformation and after-transformation. Meanwhile, we 

theoretically prove the correctness of the rule system . 

Based on the rule system , we modify the left-depth conjunction tree, and thus 

can improve the query execution plan. 

 

2.4. Module 4: Physical Implementation Solution of Query for Uncertain Big 

Data 

After the query optimizer produces the query execution plan, it submit this query 

execution plan to the query processor. Then, our QPPUBG platform calls the query 

processor to physically implement this query execution plan, and obtain the query 

object set and its existence probability under possible world instance semantics. 

We find that it will arise the following two problems if our QPPUBG platform 

integrates the existing query implementation methods into the query processor: 

(1) The existing query implementation methods are only for fixed decisive spaces, 

and the indexes used in these existing methods, such as R-tree, kd-tree and AR-tree 

[12], are scalar. The scalar index structures map the multidimensional coordinate 

space into one-dimensional real number. And hence it loses most location 

information. Consequently, these existing methods can not be extended to arbitrary 

decisive spaces. 

(2) The existing query implementation methods do not adequately consider the 

efficiency of the existence probability under possible world instance semantics. And 

the time complexity of obtaining existence probability for these existing methods is 

#P-Hard. Hence it is impractical in the real applications. 

In our QPPUBG platform, in order to solve the above problems, we use the 

regular grid index to replace the scalar index structures, and equally transform the 

computation of existence probability under possible world instance semantics to the 

computation of the number of true assignments for disjunctive normal form (DNF). 

The detailed process is seen in Section III. 

 

3. Specific Realization of Our QPPUBG Platform 

In this section, we give the specific realization of our QPPUBG platform. 

 

3.1. Realization for Module 1 

In the modern enterprises, the storage form of uncertain big data is the probability 

relation components W and Datalog language rules D. However, for the proposed 

query SQ, its input parameter is probability relation in-stances. Hence, in order to 

produce efficient query execution plan, our QPPUBG platform needs to equally 

reconstruct SQ to several queries over probability relation components. For realize 

this task, we solve the following two difficult points: ( i) the time complexity of 

equal reconstruction, and (ii) the designing of efficient equal re-construction 

algorithm. 

For the first difficult point, our QPPUBG platform uses the Datalog tool and the 

first order predicate logic as the reconstruction description language, and defines the 
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formalized semantics for the query of uncertain big data. Then, based on the 

reconstruction semantics of the first order predicate logic, our QPPUBG platform 

describes the extensional condition which the query needs to be satisfied. And 

according to this extensional condition, our QPPUBG platform proposes the 

decidability proof of query equal reconstruction, the reconstruction time complexity 

of including/excluding negative predicate, the reconstruction time complexity of 

including/excluding HAVING clause, the reconstruction time complexity of 

including/excluding arithmetic predicate, the reconstruction time complexity of 

including/excluding CONF clause, and the reconstruction time complexity under 

multi-set semantics. 

For the second difficult point, our QPPUBG platform realizes the equal 

reconstruction algorithm through two phases. In the first phase, our QPPUBG 

platform is based on the Datalog language rules D, and uses the inversion rules 

technology [13] to filter the probability relation components M which are irrelevant 

to the query in polynomial time complexity. And in the second phase, our QPPUBG 

platform first confirms the minimal number u of probability relation components 

used for equal reconstruction. Then for the probability relation components W-M, 

our QPPUBG platform takes the predicate isomorphism as the filtering 

characteristics, and utilizes the Apriori property [14] to obtain all the candidate  

probability relation components H1,…, H whose cardinal numbers equal u. Finally, 

our QPPUBG platform selects arbitrary one set Hi (i[0, 1]) of candidate  

probability relation components, and uses Hi as the output result of the equal 

reconstruction algorithm. 

 

3.2. Realization for Module 2 

After implementing the query equal reconstruction, our QPPUBG platform has u 

queries (WSD1),…, (WSDu). For each query (WSDi), i[0, 1], its input 

parameter is one probability relation component WSDiW. In Module 2, the task of 

our QPPUBG platform is to obtain the query result sets from these u probability 

relation components. 

In order to complete the above task, our QPPUBG platform first constructs the 

query cost model, which needs to adequately consider the distribution 

characteristics of uncertain big data. We propose two different technologies to 

construct the query cost model: 

(i) In the first technology, our QPPUBG platform uses the query optimizer of  

existing uncertain database systems to collect statistical informations of the query 

periodically. The statistical informations include multidimensional index structures 

of the original data set, the combined probability function, the probability density 

function, and the frequency of repeated values of uncertain objects, etc. And then 

our QPPUBG platform utilizes the APA1+ sampling estimator [15] whose precision 

bound is e/(e＋ 0.5)84.3% to locally sample the statistical informations, and 

approximates the query cost model of the whole original data set according to the 

one on the small sample data set. 

(ii) In the second technology, our QPPUBG platform is based on the Monte Car lo 

method [16], and uses the VG dynamic generator to produce the interval histogram 

for each dimension in the decision space, then obtains the probability density 

function of uncertain data set. Next, our QPPUBG platform presents the multiple 

integral expressions with a rigorous correctness proof. Specially, in the multiple 

integral expressions, the main body of integrand is the probability density function, 

and the integrating range is the value range of uncertain data on the decision space. 

Based on the query cost model, our QPPUBG platform then proposes an efficient 

method to select the optimal v (v<u) WSD1’,…,WSDv’ from the set W of probability 
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relation components {WSD1,…,WSDn}. Specially, the query object set of WSDi’ 

(1iv) can be used to handle the queries over probability relation components 

among WSD1,…,WSDu.  The detailed process can be described as follows: 

(i) When u is smaller (6), our QPPUBG platform usually spends less time cost to 

complete the task of query optimization. In this case, we first construct the weighted 

directed bipartite graph, and map probability relation components W and S into the 

set of nodes. Meanwhile, based on the query cost model, we map the cost among 

probability relation components into the sets of nodes and edges. And then, we 

equally transform the multi-query optimization problem on probability relation 

components to the minimum weighted set cover problem, and obtain the exact v 

optimal probability relation components. 

(ii) According to the graph theory [17], the minimum weighted set cover problem 

is NP-complete time complexity. Hence when u is larger (>6), the scale of the 

weighted directed bipartite graph will rapidly increase. This makes our QPPUBG 

platform spend more time cost to complete the task of multi-query optimization. In 

this case, we utilize the shortest path optimization theory of graph [18], and 

introduce a virtual vertex, then transform the weighted directed bipartite graph to 

Steiner weighted path graph [19] in constant time complexity. Finally, we present an 

efficient method which has the optimization lower-bound guarantee, and produce 

the Steiner tree from Steiner weighted path graph in polynomial time complexity. 

Based on the Steiner tree, we obtain the approximate optimal solution of multi -

query optimization. According to the directed Steiner tree theory, the time 

complexity and the optimization lower-bound of our approximate method can be 

adjusted and balanced by a positive which is no less than 1. 

 

3.3. Realization for Module 3 

Obtaining efficient query execution plan has two difficult points: (i) design the 

correct rule system  to equally transform execution order between the query 

operator and uncertain relation operators (e.g. Uselection, Conf, Merge and Ujoin); 

(ii) obtaining efficient query execution plan according to the rule system . 

For the first difficult point, our QPPUBG platform proposes the operation laws 

(such as the commutative law, combined law, grouping law and duplicate 

elimination law, etc.,) which are satisfied between the query operator and different 

uncertain relation operators. And our QPPUBG platform supports the equal 

transformation between different operation execution orders. Meanwhile, we are 

based on the multi-set theory and the first-order predicate logic, and proves the 

correctness an completeness of the rule system . 

For the second difficult point, our QPPUBG platform takes the simple query 

execution plan provided by the query optimizer as the basic point. And on the left -

depth conjunction tree, our QPPUBG platform uses the different equivalence 

transformation rules to produce different candidate operation execution sequences 

through the strategy of pushing up/down operation nodes, merging/splitting 

operation nodes, and transforming operation nodes, etc. Then based on the query 

cost model, our QPPUBG platform computes the time cost for each candidate 

sequence, and select the optimal sequence to produce the query execution plan with 

the least time cost. In order to efficiently reduce the number of candidate sequences, 

our QPPUBG platform balances the time cost of searching optimal execution plan 

and the benefit of implementing this execution plan, and proposes a heuristic 

algorithm to fast produce the quasi-optimal query execution plan with the 

optimization lower-bound guarantee. 
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3.4. Realization for Module 4 

In order to physically implement the query execution plan on uncertain big data, 

we need to complete the following two tasks: (i) efficiently organize and index 

uncertain relation objects, and can fast obtain the query objects set on arbitrary 

decision space; and (ii) efficiently compute the existence probability under possible 

world instance semantics for query objects set. 

For the first task, our QPPUBG platform designs the regular grid index structure 

to organize and index uncertain relation objects on arbitrary decision space (shown 

in Figure 2). And then our QPPUBG platform obviously de-creases the time cost of 

obtain the query objects set through two phases: (i) in the first phase, our QPPUBG 

platform is based on the minimal description length rule [20] and automatically 

deletes possible world instances in the regular grid which the users are not 

interested in; (ii) in the second phase, our QPPUBG platform uses the domination 

and mutex relationships between cells in the regular grid to reduce the comparison 

number between possible world instances. Furthermore, in order to save the storage 

space of the index structure, our QPPUBG platform presents the interval dynamic 

partitioning technique for each dimension in the regular grid, and balances the 

quantitative distribution of possible world instances in each cell. 

 

 

Figure 2. The Regular Grid Index Structure 

For the second task, our QPPUBG platform equally transforms the computation of 

existence probability under possible world instance semantics to the computation of the 

number of true assignments for disjunctive normal form (DNF), and designs two different 

methods to solve this task. The first method uses the Davis-Putnam function [21] to 

exactly obtain the number of true assignments for DNF. Given a DNF normal form, our 

QPPUBG platform uses the Davis-Putnam function to transform sub-DNF normal forms 

which are independent and do not share variables, and then exactly obtains the number of 

true assignments by the recursive way. The second method uses the Karp-Luby random 

algorithm [22] to the approximation of true assignments with the precision lower-bound 

guarantee in polynomial time. Specially, the Karp-Luby random algorithm is based on the 

idea of Monte Carlo, and confirms the approximation of true assignments through N-step 

stochastic simulation. 

 

4. The Advantages of our QPPUBG Platform 

Our QPPUBG platform has the following five advantages: 
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(1) As for the uncertain big data, our QPPUBG platform uses the probability relation 

components W and the Datalog language rules D to equally reconstruct the query of 

probability relation instances. Further, Our QPPUBG platform proposes the efficient 

equal reconstruction algorithm, and presents the reconstruction time complexity under 

multi-set semantics. 

(2) Our QPPUBG platform adequately considers the distribution characteristics of 

uncertain big data, and adopts two different technologies to construct the query cost 

model. Then based on the query cost model, our QPPUBG platform obtains the query 

execution plan in the query optimizer. 

(3) Our QPPUBG platform equally transforms the problem of the multi-query 

optimization on probability relation components to the minimum weighted set cover 

problem of bipartite graph and the problem of directed Steiner tree, and separately obtain 

the exact optimal and quasi-optimal solutions. 

(4) For the uncertain big data, our QPPUBG platform designs the correct rule system 

 to equally transform execution order between the query operator and uncertain relation 

operators (e.g. Uselection, Conf, Merge and Ujoin). And then by using the rule system , 

our QPPUBG platform extends the left-depth conjunction tree, and obtains the efficient 

query execution plan. Specially, the correctness and completeness of the rule sys-tem  

is through strict theoretical proof. 

(5) On the physical level, for different decision demands, Our QPPUBG platform 

designs the query implementation technology for arbitrary decision spaces. Meanwhile, 

based on the Davis-Putnam function and the Karp-Luby random algorithm, Our QPPUBG 

platform obtains the exact and approximate values of query objects set under possible 

world instance semantics. 

 

5. Experimental Evaluation 

This section conducts an empirical study of our QPPUBG platform using the 

benchmark synthetic da-tasets DATA_1, DATA_2, and DATA_3. The DATA_1 dataset 

has 107 tuples, and the number of dimensions varies in the range [2, 10]. The DATA_2 

dataset has 8 dimensions, and the number of tuples varies in the range [210
7
, 10

8
]. In the 

DATA_3 dataset, the number of tuples varies in the range [10
8
, 510

8
], and the number 

of dimensions varies in the range [5, 25]. We evaluate the efficiency and the scalability of 

our QPPUBG platform. 

In the first group of experiments, we use the DATA_1 dataset. Figure 3 shows the 

experimental results for this group. 
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Figure 3. The First Group of Experiments 
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In the Figure 3, we can observe that our QPPUBG platform has the good query 

performance and high extendibility. For example, in Figure 3, when the number of 

dimensions of the DATA_1 dataset equals 2, the query time of our QPPUBG platform is 

equal to 2.69 seconds. And when the number of dimensions of the DATA_1 dataset 

equals 10, the query time of our QPPUBG platform is equal to 119.64 seconds. 

In the second group of experiments, we use the DATA_2 dataset. Figure 4 shows the 

experimental results for this group. 

 

 

The Number of Tuples (*M) 

Figure 4. The Second Group of Experiments 

In the Figure 4, like the first group of experiments, we can observe that our QPPUBG 

platform has the good query performance and high extendibility. For example, in Figure 4, 

when the number of tuples of the DATA_2 dataset equals 210
7
, the query time of our 

QPPUBG platform is equal to 4.53 seconds. And when the number of tuples of the 

DATA_2 dataset equals 10
8
, the query time of our QPPUBG platform is equal to 216.96 

seconds. 

 

 

The Number of Dimensions and the Number of Tuples (*M) 

Figure 5. The Third Group of Experiments 
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In the third group of experiments, we use the DATA_3 dataset. Figure 5 shows the 

experimental results for this group. 

In the Figure 5, like the first two groups of experiments, we can observe that our 

QPPUBG platform has the good query performance and high extendibility. For example, 

in Figure 5, when the number dimensions and the number of tuples of the DATA_3 

dataset equal 5 and 10
8
 respectively, the query time of our QPPUBG platform is equal to 

79.34 seconds. And when the number dimensions and the number of tuples of the 

DATA_3 dataset equal 25 and 510
8
 respectively, the query time of our QPPUBG 

platform is equal to 1142.17 seconds. 

 

6. Conclusions 

Query processing on uncertain big data is an important problem in the business 

intelligence and information service communities. In order to improve the query 

performance and extendibility, we design and develop the QPPUBG platform which 

mainly includes four closely related modules: (i) query equivalence reconstructing for 

uncertain big data; (ii) multiple query optimization over probability relation components; 

(iii) query execution plan constructing over probability relation components, and (iv) 

physical implementation solution of query for uncertain big data. Specially, QPPUBG can 

support the possible world instance semantics and efficiently handle arbitrary decision 

spaces. Moreover, QPPUBG can seamlessly integrate the above four modules into the 

modern parallel computation frameworks. We present the extensive experiments that 

demonstrate QPPUBG is both efficient and effective. 
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