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Abstract 

Hyperspectral image classification has received an increasing amount of interest in 

recent years. However, when representing pixels as vectors, the dimensionality of feature 

space is high, which causes “curse of dimensionality” problem. In this paper, in order to 

alleviate the impact of above problem, a manifold sparse coding method is proposed. 

Firstly, matrix decomposition technique is used to find a concept set and calculates 

relative data projection in the concept set. Secondly, manifold learning regularization is 

imported into objective function to capture the intrinsic geometric structure in the data. 

Finally, LASSO regularization is used to obtain sparse representation of data projection. 

Experimental results on real hyperspectral image show that the proposed method has 

better performance than the other state-of-the-art methods. 
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1. Introduction 

In the research field of hyperspectral imaging, the remote sensors capture hyperspectral 

images in hundreds of narrow spectral bands. Pixels in hyperspectral image are 

represented as vectors. The reflection of spectral band corresponds to the entry in pixel 

vectors. The rich information contained in hyperspectral image data can provide accuracy 

and robust classification of the land-covers.  

Recently, many machine learning methods have been developed to tackle the 

hyperspectral data classification problem. Camps-Valls [1] presented the kernel-based 

methods from a general viewpoint, and illustrates the main characteristics of different 

kernel approaches both theoretically and experimentally under the light of hyperspectral 

data classification. Chen [2] proposed a new algorithm for hyperspectral image 

classification based on sparse representation. A pixel is assumed to be sparsely 

represented by a few concepts in a given training dictionary. The sparse representation of 

a test spectral sample is recovered by solving a sparsity-constrained optimization problem 

via greedy pursuit algorithms. Kang [3] proposed a spectral-spatial classification 

framework based on edge-preserving filtering. Sun [4] proposed a novel task driven 

dictionary learning method with joint or Laplacian sparsity prior for hyperspectral image 

classification. The corresponding optimization algorithms are developed using fixed point 

differentiation, and are further simplified for ease of implementation. Li [5] considered a 

GMM classifier based on an LFDA- and LPNMF-induced feature subspace for 

hyperspectral image classification. The LFDA and LPNMF dimensionality-reduction 
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techniques have superior locality-preserving properties and preserve the local manifold 

structure for hyperspectral data with complex distributions, from which the GMM 

classifier is able to accurately learn the class-conditional statistics. Di [6] presented a new 

sequential co-regularization active learning framework that utilizes multi-view 

consistency and the local proximity assumption for remote sensing image classification. 

However, when representing pixels as vectors, the high number of spectral channels 

and low number of labeled training samples decrease the classification precision severely, 

which is called “curse of dimensionality” problem. To alleviate this problem, a 

dimensionality reduction step is usually adopted before classification. In this paper, in 

order to alleviate the impact of above problem, a manifold sparse coding method is 

proposed based on our former research works [7-10]. Firstly, matrix decomposition 

technique is used to find a concept set and calculates relative data projection in the 

concept set. Secondly, manifold learning regularization is imported into objective 

function to capture the intrinsic geometric structure in the data. Finally, LASSO 

regularization [11] is used to obtain sparse representation of data projection. Experimental 

results on real hyperspectral image show that the proposed method has better performance 

than the other state-of-the-art methods. 

 

2. Hyperspectral Image Cube 

Figure 1, shows the whole hyperspectral image cube H. I, J and K corresponds to 

three dimensions of the data cube. I and J stand for width and length dimension. K 

stands for the spectral dimension. One band image is represented as  Hk, which is a 

data matrix with I J dimensions. One pixel is represented as a vector 
ix  with K 

dimensions. 

I

J

K

Hk

 

Figure 1. Hyperspectral Image Cube 

3. Manifold Sparse Coding 

In this section, we first state the general problem of Matrix decomposition 

technique, the objective function in the optimization process, and the traditional 

solution to the optimization problem. After this, the need of introducing manifold 

regularization in the objective function is presented. The formulation and 

characteristics of manifold regularization are briefly introduced. For a full 

theoretical description of manifold learning methods, the reader is referred to [12-

14]. This section is closed with a LASSO problem to obtain sparse expression of 

hyperspectral image pixels. 

 

3.1. Matrix Decomposition Technology 

Pixel classification is the fundamental problem in hyperspectral image 

processing. Researchers have long sought efficient classification algorithm for 

pixels. For a given hyperspectral image, the pixel may has hundreds of distinct 
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features. However, the freedom degree of each pixel could be far less. Instead of the 

original feature space, it is better to find a representative concept space to describe 

pixels. The dimensionality of data in representative concept space is much smaller 

than the original feature space. Matrix decomposition technique can be used to 

achieve this goal. 

Given a data matrix
1 2[ , ,..., ] m n

nX x x x R   , each column of which corresponds 

to a pixel in hyperspectral image. Let 1 2[ , ,..., ] m p

pQ q q q R    be the concept 

matrix, each column of which can be regarded as a basic concept. 

Let
1 2[ , ,..., ] p n

nR r r r R    be the representation of original data in new concept 

space. Each column of R is the p-dimensional representation of the original pixels 

with respect to the concept set. Matrix decomposition technique is used to find these 

two matrixes Q and R so as to X QR . Therefore, matrix decomposition technique 

can be regarded as a dimensionality reduction method since it reduces the dimension 

of pixels from m to p. The objective function of matrix decomposition can be 

formulated as follows: 

2

,
min || ||
Q R

X QR                                                                                                                (1) 

There are already lots of algorithms to solve matrix decomposition problem [15-

16]. Different algorithms add different constraints on the above objective function 

to achieve different goals. LSA (Latent Semantic Analysis) [15] is a popular matrix 

decomposition algorithm. Based on SVD (Singular Value Decomposition), LSA 

requires the rank of matrix QR is less than k. NMF (Nonnegative Matrix 

Factorization) [16] is another popular matrix decomposition algorithm. Different 

form LSA, NMF requires that the entries in matrix Q and R are nonnegative.  

 

3.2. Manifold Learning Regularization 

Recently, researchers have considered that high-dimensional data, such as image, 

global climate patterns, or human gene expression, are sampled from a sub-manifold 

of the ambient Euclidean space. In fact, the pixel data in hyperspectral image can’t 

fill up the high dimensional Euclidean space uniformly. Therefore, in the process of 

matrix decomposition, the intrinsic manifold structure should be considered to guide 

the dimensional reduction. In this paper, a manifold learning regularization is added 

into objective function of optimization process, with which we can calculate the 

concept set through an iterative computational method. 

Given n data points 
1 2, ,..., nx x x  where each data point corresponds to a pixel in 

hyperspectral image. We can construct a weighted graph with n nodes, one for each 

data point. The weight of edges connecting neighboring data points are defined as 

follows: 

2|| ||

( ) ( )

0

i jx x

t
i j j i

ij
e if x KN x or x KN xS

otherwise




   



                                                        (2) 

Wherein ( )iKN x  denotes the set of k nearest neighbor data points of
ix . 

Parameter t is a real number. Define a diagonal matrix D, the entries of which are 

column sums of S. L=D-W is the Laplacian matrix. Manifold learning requires that 

the connected points in the weighted graph are as close as possible in the sub-

manifold space. A reasonable method to achieve the requirement is to minimize the 

following function: 
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2

,

1
|| || ( )

2

T

i j ij

i j

r r S trace RLR                                                                                     (3) 

Therefore, after adding the above manifold regularization, we can get the 

following objective function: 

2 2

,
min || || || || ( )T

Q R
X QR Q Trace RLR                                                                    (4) 

Wherein, regularization term 
2|| ||Q  is used to avoid over-fitting. 0  is the 

parameter of manifold regularization. To solve this optimization problem, we divide 

the algorithm into two steps: Learning projection matrix R while fixing the concept 

set Q, and learning concept set Q while fixing the projection matrix R. 

 

3.2.1. Learning Projection Matrix R: This section discusses how to solve 

optimization problem (4) by fixing the concept matrix Q. the problem (4) becomes:  

2min || || ( )T

R
X QR Trace RLR                                                                                   (5) 

To solve problem (5), we update each column vector 
ir  in R individually, while 

fixing all the other column vectors ( )jr j i  in R. The matrix decomposition 

optimization function 
2|| ||X QR  can be rewritten as follows: 

2

1

|| ||
n

i i

i

x Qr


                                                                                                                    (6) 

The manifold learning regularization ( )TTrace RLR can be rewritten as follows: 

( )TTrace RLR =
, 1

( )
n

T

ij i j

i j

Trace L rr


 =
, 1

n
T

ij j i

i j

L r r


 =
, 1

n
T

ij i j

i j

L r r


                                          (7) 

Therefore, the problem (5) can be rewritten as follows: 

2

1 , 1

min || ||
n n

T

i i ij i j

i i j

x Qr L r r
 

                                                                                      (8) 

We update 
ir  while letting the other vectors fixed. Thus, we get the optimization 

function: 

2min ( ) || || 2T T

i i i ii i i ij i j

j i

f r x Qr L r r L r r 


                                                              (9) 

Let ( ) / 0i if r r   , we can get the solution of value of 
ir : 

1( ) ( )T T

i ii i ij j

j i

r Q Q L I Q x L r 



                                                                           (10) 

 

3.2.2. Learning Concept Matrix Q: This section discusses the method of learning 

concept matrix Q, while fixing the projection matrix R. The optimization problem 

(4) becomes: 

2 2min || || || ||
Q

X QR Q                                                                                              (11) 
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By making the derivative of Formula (11) with respect to Q and setting it to 0, we 

can get the optimal solution of matrix Q as follows: 

1( )T TQ XR I RR                                                                                                     (12) 

3.3. LASSO Regularization 

The above section calculates the concept set matrix Q through importing manifold 

learning regularization term into matrix decomposition optimization function. To 

make the projection matrix R sparse, we import LASSO regularization to constrain 

the column of matrix R, letting most of the entries in column vector 
ir  becomes 

zero. The projection matrix R can be computed column by column independently 

through solving the following optimization problem. 

2min || || | |
i

i i i
r

x Qr r                                                                                                   (13) 

Wherein 
ix  and 

ir  is the i-th column of matrix X and R respectively. LASSO 

adds the constraint | |ir  into objective function to ensure the sparseness of
ir . The 

above optimization problem has the following equivalent formulation:  

2

1 1

1

min ( )

. . | |

i

pm

ji jk ki
r

j k

p

ki

k

x q r

s t r 

 







 



                                                                                                 (14) 

The pathwise coordinate optimization algorithm [17] can be used to solve the 

optimization problem in Equation (14). The bound   is a parameter, which is often 

chosen through a model selection procedure such as cross-validation. Problem (14) 

can also be transformed as a lagrange problem: 

2

1 1 1

( ) ( ) | |
p pm

i ij jk ki ki

j k k

f r x q r r
  

                                                                              (15) 

Wherein 0  ,  in Formula (15) is corresponds to  in Formula (14). If ( )ir  is 

the optimization solution of Formula (15), then 
1

| ( ) |
p

ki

k

r 


 . 

When facing one dimensional projection problem, the lasso solution is simple. 

The sparse estimate of 
ir  is as follows [18]: 

' ' '

' ' ' '

'

0 | |

( , ) 0 | |

0 | |

i i i

lasso

i i i i i

i

r if r and r

r S r r if r and r

if r

 

  



   


    




                                                         (16) 

Wherein 
'

1

m

i ji j

j

r x q


  is the simple least-squares coefficient. Now we return to 

multi-dimensional problem. Assume the entries in 
ir  are uncorrelated, we can 

rewrite Formula (15) as follows: 
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2

1

( ) ( ) | | | |
m

i ji jk ki jl li ki li

j k l k l

f r x q r q r r r 
  

                                                        (17) 

Let all values of 
kir  for k l  fixed. Through Minimizing formula (17), we can 

get the solution of 
lir  as follows: 

1

( ( ), )
m

li jl ji jk ki

j k l

r S q x q r 
 

                                                                              (18) 

4. Experimental Results 

Having presented manifold sparse coding based method (MSC for short) in the 

previous sections, we now demonstrate the effect of our new method through a 

comparative experiment. The experiment is done in a real-world hyperspectral 

image data acquired by AVIRIS. The used hyperspectral image in our experiments 

was collected by the AVIRIS sensor over the Indian Pines region in 1992. Indian 

Pines data has 145 lines and 145 columns, which was acquired over a mixed 

agricultural and forest area. This data contains 220 spectral channels in the 

wavelength range from 0.4 to 2.5 micrometer. Spectral resolution is 10 nanometer. 

Spatial resolution is 20 meter. After pre-processing, several noise spectral bands 

were removed from the original data set, leaving a total of 200 channels to be used 

in our experiments. For illustrative purposes, Figure 2, shows the 30th band of the 

AVIRIS Indian Pines data. This data has 16 ground-truth classes. 

 

Figure 2. 30th Band in India Pines Data Set 

In order to assess MSC algorithm proposed in this paper, we choose two 

algorithms for comparison: 1) ID algorithm proposed in literature [19] with SVM 

classifier; 2) MVPCA algorithm proposed in literature [20] with SVM classifier. 

Figure 3, displays the classification precision of algorithm ID, MVPCA and MSC. 

As is shown in Figure 3, the classification precision improves along with the 

increasing number of features. Among them, MSC algorithm achieves the best 

performance. 
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Figure 3. Comparison of Classification Precision 

5. Conclusions 

In this paper, we have presented a novel matrix decomposition method for 

hyperspectral image classification called manifold sparse coding (MSC for short). 

MSC have two steps to decrease the dimensional of data. In the first stage, through 

importing manifold learning regularization into objective function of matrix 

decomposition, MSC learns the concept set by exploiting the intrinsic geometric 

structure of the original data. In the second stage, MSC import LASSO method to 

learn a sparse representation with respect to the learned concept set for each pixel. 

Experimental results on real hyperspectral image show that the proposed method has 

better performance than the other state-of-the-art methods. In the future, on the one 

hand, manifold learning can be further exploited in the process of feature selection. 

On the other hand, we will apply transductive-SVM for the classification of 

hyperspectral image. 
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