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Abstract

Hyperspectral image classification has received an incr smg am @nerest in
recent years. However, When representing pixels as vect tilme f feature
space is high, which causes “curse of dimensionality” is p r, in order to
alleviate the impact of above problem, a manlfo s co ng od is proposed.
Firstly, matrix decomposition technique is used set and calculates
relative data projection in the concept set. Se 0 dIy, mamf d learning regularization is
imported into objective function to capture rmsm‘x9 tric structure in the data.
Finally, LASSO regularization is used t@ parse representation of data projection.
Experimental results on real hyperspé‘ Imagess that the proposed method has
better performance than the other st he-a s.
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1. Introduction @ 5\\0

In the research ypers | imaging, the remote sensors capture hyperspectral
images in hundreds, ‘of nar péctral bands. Pixels in hyperspectral image are
representedsasw/ectars. Therefle€tion of spectral band corresponds to the entry in pixel
vectors. T @ inforr@' ontained in hyperspectral image data can provide accuracy

3 he land-covers.

Recently, man ine learning methods have been developed to tackle the
hyperspectral d sification problem. Camps-Valls [1] presented the kernel-based
methods from eral viewpoint, and illustrates the main characteristics of different

data cI

classifigation based on sparse representation. A pixel is assumed to be sparsely
ed by a few concepts in a given training dictionary. The sparse representation of
3 spectral sample is recovered by solving a sparsity-constrained optimization problem
via' greedy pursuit algorithms. Kang [3] proposed a spectral-spatial classification
framework based on edge-preserving filtering. Sun [4] proposed a novel task driven
dictionary learning method with joint or Laplacian sparsity prior for hyperspectral image
classification. The corresponding optimization algorithms are developed using fixed point
differentiation, and are further simplified for ease of implementation. Li [5] considered a
GMM classifier based on an LFDA- and LPNMF-induced feature subspace for
hyperspectral image classification. The LFDA and LPNMF dimensionality-reduction
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techniques have superior locality-preserving properties and preserve the local manifold
structure for hyperspectral data with complex distributions, from which the GMM
classifier is able to accurately learn the class-conditional statistics. Di [6] presented a new
sequential co-regularization active learning framework that utilizes multi-view
consistency and the local proximity assumption for remote sensing image classification.
However, when representing pixels as vectors, the high number of spectral channels
and low number of labeled training samples decrease the classification precision severely,
which is called “curse of dimensionality” problem. To alleviate this problem, a
dimensionality reduction step is usually adopted before classification. In this paper, in
order to alleviate the impact of above problem, a manifold sparse coding method is
proposed based on our former research works [7-10]. Firstly, matrix decomposition
technique is used to find a concept set and calculates relative data projection in the
concept set. Secondly, manifold learning regularization is imported into objective
function to capture the intrinsic geometric structure in the data. Finally, SSO»
regularization [11] is used to obtain sparse representation of data projection. Expesi |
results on real hyperspectral image show that the proposed method has bettt@ mance

than the other state-of-the-art methods.
N &
2. Hyperspectral Image Cube Q\
Figure 1, shows the whole hyperspectral im H. LN\ an corresponds to
three dimensions of the data cube. | and J standsfof width ngth dimension. K
stands for the spectral dimension. One Wage is represented as Hy, which is a

data matrix with 1xJ dimensions. Ope is repre d as a vector X, with K
dimensions.

$
R —

ure 1. Hyperspectral Image Cube

3. Manifold‘@se Coding

In thi#ﬂion, we first state the general problem of Matrix decomposition
techni t e objective function in the optimization process, and the traditional
salu 0 the optimization problem. After this, the need of introducing manifold
% zation in the objective function is presented. The formulation and
chefacteristics of manifold regularization are briefly introduced. For a full
theoretical description of manifold learning methods, the reader is referred to [12-

14]. This section is closed with a LASSO problem to obtain sparse expression of
hyperspectral image pixels.

3.1. Matrix Decomposition Technology

Pixel classification is the fundamental problem in hyperspectral image
processing. Researchers have long sought efficient classification algorithm for
pixels. For a given hyperspectral image, the pixel may has hundreds of distinct
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features. However, the freedom degree of each pixel could be far less. Instead of the
original feature space, it is better to find a representative concept space to describe
pixels. The dimensionality of data in representative concept space is much smaller
than the original feature space. Matrix decomposition technique can be used to
achieve this goal.

Given a data matrix X =[x, X,,...,X,] € R™", each column of which corresponds

to a pixel in hyperspectral image. Let Q=[q,,0,,...,q,]€ R™" be the concept
matrix, each column of which can be regarded as a basic concept.
Let R=[r,r,,....,r ] R™" be the representation of original data in new concept
space. Each column of R is the p-dimensional representation of the original pixels
with respect to the concept set. Matrix decomposition technique is used to find these
two matrixes Q and R so as to X =~ QR. Therefore, matrix decomposition tec nlqu X
can be regarded as a dimensionality reduction method since it reduces the d%

be

of pixels from m to p. The objective function of matrix decomposj
formulated as follows:

min || X —QRIF \* Q/

There are already lots of algorithms to solv on problem [15-
16]. Different algorithms add different constr on the x objective function
to achieve different goals. LSA (Latent Se ic Analygis), [15] is a popular matrix
decomposition algorithm. Based on S ngular \%e Decomposition), LSA
requires the rank of matrix QR than MF (Nonnegative Matrix
Factorization) [16] is another po@ratr position algorithm. Different
form LSA, NMF requires that t lesin m and R are nonnegative.

3.2. Manifold Learning R rlzatlon\%

e con3| at high-dimensional data, such as image,
uman gen xpression are sampled from a sub-manifold

of the ambient Exn act, the pixel data in hyperspectral image can’t
fill up the hig S|onal dean space uniformly. Therefore, in the process of

matrix de on, th rinsic manifold structure should be considered to guide
the dimen reduc@ this paper, a manifold learning regularization is added

into objective func optimization process, with which we can calculate the

Recently, researcher
global climate patte

concept set thro iterative computational method.
Given n da ts X, X%,,..., X, where each data point corresponds to a pixel in
hypersp tnal infage. We can construct a weighted graph with n nodes, one for each

e weight of edges connecting neighboring data points are defined as

if X, € KN(x;) or x; € KN(X;) (2)
otherwise

Wherein KN(x) denotes the set of k nearest neighbor data points of X; .

Parameter t is a real number. Define a diagonal matrix D, the entries of which are
column sums of S. L=D-W is the Laplacian matrix. Manifold learning requires that
the connected points in the weighted graph are as close as possible in the sub-
manifold space. A reasonable method to achieve the requirement is to minimize the
following function:
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1
EZ” L ||28ij —trace(RLR") ®3)
1]

Therefore, after adding the above manifold regularization, we can get the
following objective function:
min|| X -QR I” +a || Q| +ATrace(RLR") (4)

Wherein, regularization term «||Q|f” is used to avoid over-fitting. B> 0is the

parameter of manifold regularization. To solve this optimization problem, we divide
the algorithm into two steps: Learning projection matrix R while fixing the concept
set Q, and learning concept set Q while fixing the projection matrix R.

3.2.1. Learning Projection Matrix R: This section discusses how o\glye’
optimization problem (4) by fixing the concept matrix Q. the problem (4) beVo :
min | X -QR |* +BTrace(RLR™)

(5)
To solve problem (5), we update each column v, \%m l\%ually, while

fixing all the other column vectors r(pn@ W decomposition
optimization function || X —QR||* can be reétten as fo@vs

n 2 0
2 l1% Qi \@ (6)
The manifold learning re rﬁ@ﬁlon Tr, s%LRT) can be rewritten as follows:

Trace(RLR") =Trace( Yok k) = w ZL”r r; (7)

i,j=1

@rewrltten as follows:
it ®

etting the other vectors fixed. Thus, we get the optimization

0

Therefore, the

mini” @

We update T
function:

min f(a&‘. ~Qn [P +ALET 283 L, ©
j=i
&( (r,)/or, =0, we can get the solution of value of r:
T —

K =(Q Q+AL1) l(QTXi _ﬁzl—ijrj) (10)

j#i

3.2.2. Learning Concept Matrix Q: This section discusses the method of learning
concept matrix Q, while fixing the projection matrix R. The optimization problem
(4) becomes:

min|| X -QR I +allQIF (11)
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By making the derivative of Formula (11) with respect to Q and setting it to 0, we
can get the optimal solution of matrix Q as follows:

Q=XR"(al +RR")™ (12)
3.3. LASSO Regularization

The above section calculates the concept set matrix Q through importing manifold
learning regularization term into matrix decomposition optimization function. To
make the projection matrix R sparse, we import LASSO regularization to constrain

the column of matrix R, letting most of the entries in column vector r, becomes

zero. The projection matrix R can be computed column by column independently
through solving the following optimization problem.

min [ x, - Qr, I? +51 1, &

Wherein X, and r, is the i-th column of matrix X and R respectim ASSO
adds the constraint |, | into objective function to ensuré, the spa fr. The
above optimization problem has the following equiv@\ mulatiof

mrinjzm;(xji—gqj'krki)z O \V

. O(\ \‘b (14)

sit. Z| hil<n

L J
) N
The pathwise coordinate op@g ion algeki [17] can be used to solve the
1

optimization problem in Equii 4).‘T bouhd 77 is a parameter, which is often
chosen through a model se n proc N uch as cross-validation. Problem (14)

can also be transformed as a lagran oblem:
m R Q@ p QK'
()= (%, —&w NETTIY
i=1 0
Wherei@), Ai @ula (15) is corresponds to 77in Formula (14). If r.(4)is

p
the optimization so@ of Formula (15), then 7= "| (1) ].
k=1

When faci e dimensional projection problem, the lasso solution is simple.
The spara@mate of r, is as follows [18]:
OO r—A if r >0and A <1 |
@zS(ﬁﬂ)z r+A ifr<Oand A<|r | (16)
0 if 12 ri'|

(15)

m
Wherein ri' =ijiqj is the simple least-squares coefficient. Now we return to
j=1

multi-dimensional problem. Assume the entries in r, are uncorrelated, we can
rewrite Formula (15) as follows:
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f(r) ZZ(in _qukrki _qjlrli)2 +/12| i [+ A5 (17)
i1 o k=l

Let all values of r,, for k=1 fixed. Through Minimizing formula (17), we can
get the solution of r; as follows:

hi :S(Zqﬂ(xji_ij'krki):?/) (18)
j=1

k=l

4. Experimental Results

Having presented manifold sparse coding based method (MSC for short) in the
previous sections, we now demonstrate the effect of our new method through a
comparative experiment. The experiment is done in a real-world hyperspectr
image data acquired by AVIRIS. The used hyperspectral image in our ex% ts
was collected by the AVIRIS sensor over the Indian Pines region in SIndian

Pines data has 145 lines and 145 columns, which wag acquireg’ o mixed
agricultural and forest area. This data contains Z@ectral

els in the
wavelength range from 0.4 to 2.5 micrometer. Spe Iuw 0 nanometer.
Spatial resolution is 20 meter. After pre-pro several nois€ spectral bands
were removed from the original data set, leavi otal o%ﬁannels to be used
in our experiments. For illustrative purposes

igure 2, shows the 30th band of the
3 Wround-tru sses.

In ord Qess gorithm proposed in this paper, we choose two
algorithms ompa 1) 1D algorithm proposed in literature [19] with SVM

classifier; 2) MVP rithm proposed in literature [20] with SVM classifier.
Figure 3, disp classification precision of algorithm ID, MVPCA and MSC.
As is shown j ure 3, the classification precision improves along with the

increasing numier of features. Among them, MSC algorithm achieves the best
performa

&
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. 2
5. Conclusions \*

In this paper, we have presented a novel Qdec mMn method for
hyperspectral image classification called maniparse ing (MSC for short).
MSC have two steps to decrease the dimensjonal™of data. In first stage, through
importing manifold learning regularizat%into ebjeetjve function of matrix
decomposition, MSC learns the conee t"by explolbig the intrinsic geometric
structure of the original data. In th d st e C import LASSO method to
learn a sparse representation with.fe t to ed concept set for each pixel.
Experimental results on real ;ﬁtctral imz& ow that the proposed method has
better performance than théx tate-of@berart methods. In the future, on the one

hand, manifold learning can Bedfurther, ted in the process of feature selection.
On the other hand, ill ap ahsductive-SVM for the classification of

hyperspectral |mage *
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