Node Selection Algorithm for Routing Protocols in VANET

Aruna Sharma¹ and Simar Preetsingh²

¹Research Scholar ²Assistant Professor DAV University, Jalandhar Dept. of Computer Science and Engineering ¹arusharma089@gmail.com, ²er.simarpreetsingh@gmail.com

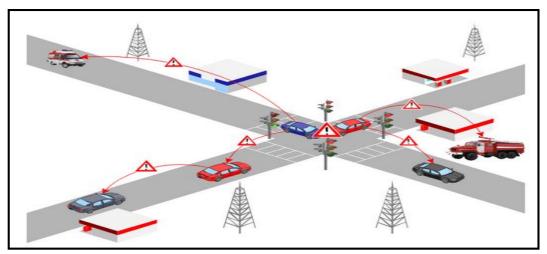
Abstract

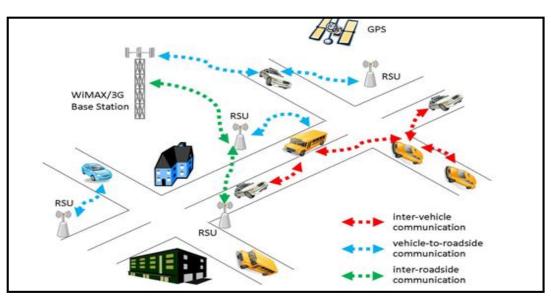
VANET stands for vehicular ad-hoc network. Vehicles attached to one another viva a temporary data type an instant system named "VANET". VANET is a technology which is used to getting the information and transmitting the information between the moving vehicles on the road. And the devices are installed on the vehicles like GPS and road transmitter which gives the signal. It incorporates a vehicle to vehicle transmission as well as vehicle to Road side transmission and is important component of ITS (Information transportation system). Node Selection Algorithm purpose to choose next-hop vehicle to help keep in touch with, through utilize "bridging approach" with information forwarding i.e., to select the vehicle from the east (west) to west(east). Quality of services assures is much more challengeable and difficulties MANET than traditional wired network. It is mainly used for hop to hop communication, channel access contention. VANET is to provide safety for passenger and drivers on the road.

Keywords: VANET, QOS, NSA, ACO, GV GRID

1. Introduction

VANET represents vehicular ad hoc network. It has been subgroup of cellular ad hoc network where communication between two moving nodes on the road. VANET can be used aboard security system for interacting between vehicles as well as roadside infrastructure. It is the kind of network where vehicle as well as roadside unit would be interacting nodes, giving one another with data such as for instant security warning as well as traffic data. It may be more efficient in preventing incidents and traffic congestion than if each vehicle attempts to resolve the issues individually.




Figure 1. Vehicular Ad Hoc Network (VANET)* *http://www.ics.uci.edu/~keldefra/figs/vanet.gif

International Journal of Advanced Science and Technology Vol.96 (2016)

In which every node can move freely within the network and every node can communicate with other node. This kind of network has the benefit to advise peoples of any occasion happened in the street forward, such as for instant traffic jam, incidents or poor weather. In this manner, the Amount of traffic incidents might reduce and several lives might be saved. Furthermore, an improved choice of non-congested highways will help to minimize pollution. Various exciting companies, such as for instant getting of media companies, could be probable and accessible through infrastructure over the roadside. Giving media service around VANET might need a QOS aware routing protocol that always has to calculate the accessible resources.

Purpose of VANET is to provide comfort for passenger and more efficient travel and also used for life saving for passenger, more efficient travel and also used for life saving for passenger. In VANET the more efficient type of communication are of following:

- Inter-vehicle communication
- Vehicle-to-roadside communication(v-RSU)

• Inter-Roadside Communication

Figure 2. Architecture of VANET Source: http://adrianlatorre.com/projects/pfc/img/vanet_full.jpg

2. Applications

VANET has some different application which makes it unique from MANET as well as challenging for designing VANET characteristic.

2.1. Safety Application

Safety application that provide various services like traffic signal violation, curve rate caution, emergency brake lights, pre crash detecting, collision caution, left change guide, street modify caution, and end indicator assist. These applications that increase vehicle or passenger's safety on the roads is called safety application.

2.2 Non Safety Application

Non safety application that provide various services like infotainment, internet connectivity, peer to peer communication etc. These applications are called user application.

International Journal of Advanced Science and Technology Vol.96 (2016)

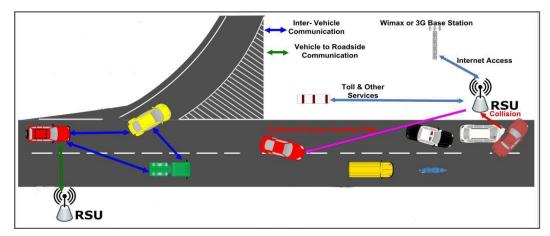


Figure 3. Vehicular Ad Hoc Networks and some Possible Applications

3. Security Goals

Aim is to secure the VANET are the same to secure the other network. The secure the VANET is to keep safe the information by an unauthorized node. The main objective is to provide Authentication, confidentiality, integrity and availability.

3.1. Authentication

It is the process of determining whether someone or something is, in fact, who or what it is declared to be.

3.2. Confidentiality

It is the group of principles or even an offer that restricted accessibility data. It guarantees the privacy of drivers against unauthorized node.

3.3. Integrity

It means the information can be modified only by unauthorized node.

3.4. Availability

It means that the network works properly and service should be available 24*7.

4. Routing Protocol

In VANETs, wireless transmission is a huge important engineering to aid the achievement of several purposes and functions and services. But, as a result of features of VANETs such as for instant large active topology and irregular connection, the present routing algorithms in MANETs aren't designed for many software situations in vehicular ad hoc network. Hence, researchers spare no effort to enhance existing algorithms as well as design new ones, so the transmission stability may be ensured. With respect to the quantity of source and destination included, routing methods may be split into 3 forms: geocast/broadcast, multicast, plus unicast methods.

4.1. Broadcast

It is necessity to circulating communications to unknown/unspecified locations, Broadcast protocols that have been requirement in vehicular ad hoc network. The present information transmitted methods on VANETs, like a spatially aware packet routing technique, SADV an disturbance aware routing scheme, FROV and a multihop broadcast protocol.

4.2. Multicast

Multicast is vital to communications a several cars in a several vehicular situations, such as for immediate intersections, hurdles, more traffic incidence, incidents, and hazardous path road conditions. The multicast standard into 2 major forms. First is topology-based methods, like for instant ODMRP (that generate source-based multicast mesh as well as forwards on the foundation of the class address), MAODV (that generate a tree having group-based multicast), plus GHM (that creates a meshes having group-based multicast). Second is the methods of location-based, like for instant PBM (that is built on the basis on jobs of most one-hop neighbors as well as jobs of most unique locations), SPBM (that presents hierarchical class membership management), LBM (that works on the multicast area as location data for multicast packets), plus IVG as well as RBM (which establish a multicast selection for security caution messages).

4.3. Unicast

Expert examine the unicast connection standards for VANETs in 3 methods: (1) greedy: nodes ahead packets because of their last neighbors towards the location, such as increased greedy traffic-aware routing (GyTAR);(2) opportunistic: nodes utilize the carry-toward method be able to opportunistically offer of the information on location, such as topology-assist geo-opportunistic routing; plus (3) trajectory based: nodes determine probable routes for location and offer the information by vehicles' with more than a single routes.

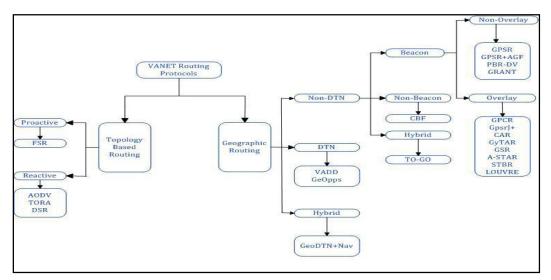


Figure 4. Unicast Routing Protocols in VANET

5. Related Work

In [6], QOS Routing protocol named GV Grid designed for VANET.GV Grid need the routing process that build a path from the source (a set node or a platform station) to cars that occur in certain geographical region. To keep up a top quality path is the target of GVGrid, *i.e.* For the vehicles' movement is an effective path. This type of path may be used for good quality interaction and the information connection between roadsides and vehicles, or between vehicles. The analysis benefits have demonstrate the GV Grid can offer paths with longer entire life, compared by having an current routing process for VANETs.

In [7], Media interaction around VANET (vehicular ad-hoc networks) may perform an essential position as time goes by intelligent transportation system (ITS). QoS help for vehicular ad hoc network thus become a vital problem. In that report, they examine QoS efficiency for multi-hop VANET utilising typical IEEE 802.11e EDCA MAC plus the planned triple-constraint QoS Routing protocol, DeReHQ is known as Delay-Reliability-Hop. Specifically, they examine the DeReHQ protocol as well as EDCA in roads plus towns.

In [8], VANET is probably the most encouraging part of research. As like different system that system also undergoes by the issues of safety and efficiency. To enhance the QoS with regard to way choice on the system. Here they have planned a fresh biography encouraged routing algorithm as well as usage ant colony optimization method get answers for automobile routing issue (VRP) that is locating an effective automobile path. Now which they take advantage the one of many the generally applied VANET protocol named DYMO, here increasing the DYMO protocol through mixing to ACO. This task has been focus on offering a sensible means to prevent of the issue for obstruction in the event an incident occurs in vehicular system. Ant Colony Optimization is likely to be applied to recognize the secure way from the system at few premature phases.

In [9], Vehicular Ad-Hoc Network (VANET) has attracted large amount of study work because of its applicable in the aspect of highway security, infotainment as well as driving knowledge received at a very really less price. Truly a wireless system, problems in VANET field contains arbitrary packet reduction at data link layer plus at transport layer during certain end to end connection. Failures has been determined by the rate in that the vehicles has been going in the system, Routing protocol applied plus the accessible channel. In that report this has been planned to examining the efficiency of Geographical Routing Protocol (GRP) below arbitrary flexibility having voice as well as traffic.

In [10], Vehicular interaction for intelligent transportation systems can provide security, ease for passengers, and more effective travels. This kind of system has the benefit to advice drivers of any occasion happened in the highway forward, such as for instant traffic jam, incidents or poor weather. In this manner, the amount of traffic incidents might reduce and several lives might be saved. Furthermore, an improved choice of non-congested highways will assist you to minimize pollution. Various other exciting companies, such as for instant accessing of media companies, will be probable and accessible through infrastructure across the roadside. Giving media services around VANETs may require a QoS-aware routing protocol that always have to calculate accessible resources.

In [11], VANET for ITS (Intelligent transportation system) for new year ago to provide QoS, the IEEE 802.11p physical layer, which is represented as VANET protocol, a huge amount of packet losses as a result of collisions. By using Time Division Multiple Access(TDMA) can be enhanced this performance to design a QoS routing protocol which reduced end to end delay while guaranteeing QoS constraint with respect to the propagation delay, throughput utilization. The QoS routing protocol based on LORA-CBF for VANET using TDM scheme LORA-CBF is an extension of protocol. UDP and TCP protocol are used as the real time and best effort to satisfy bandwidth requirement.

In [12], city environment, the vehicle communication is affected by the around obstacles due to the especial condition of wireless channels. However, most of prior works adopt the fixed radio range value of vehicles to transmit packets. They design an optimization forwarding range routing protocol for VANET in urban area. It has an optimized and adjustable forwarding range, which changes with different environments based on the path loss and the city model. And the proposed geo-routing protocol has a novel idea in computing the connectivity of roads and the adjustable strategy in a sparse network.

In [13], QOS-Aware node Selection Algorithm (QASA) for routing protocols to be suitable for a particular class of opportunistic networks, when applied to the Vehicular Ad

hoc Networks. Our algorithm aims to select the next-hop vehicle to communicate with, by exploiting the "bridging approach" for message forwarding *i.e.*, vehicles on the east (west) select from west (east). The QOS metrics that are being optimized are the throughput in the network, and packets end-to-end delay.

Title	Author and Year	Abstract	Merits	Demerits
Opportunistic	Luciana Pelusi,	The best situation	Routes are	Networks like
Networking:	Andrea Passarella,	report linked to	designed	city-bus network,
Data Forwarding	and Marco Conti	opportunistic	dynamically,	mesh network are
in Disconnected	(2006), <i>IEEE</i>	networking are	while	missing.
Mobile Ad Hoc	volume 44, Issue	surveyed and a	communications	
Networks	no. 11 ,Page no	taxonomy is	are en path	
	134-141.	organized about	between the	
		the primary	source plus the	
		routing as well as	target, as well as	
		forwarding	any probable node	
		methods in this	may	
		tricky	opportunistically	
		Environment.	utilized as next	
			hop, offered it	
			will probable to	
			carry information	
			nearer to the last	
			location.	
Analytical Model	Saleh Yousefi,	It is presented for	Description of	Lack of channel
for Connectivity	Eitan Altman,	understanding	affects of	randomness and
in Vehicular Ad	Rachid El-Azouzi,	connection in	numerous network	realistic traffic
Hoc Networks	and Mahmood	vehicular ad hoc	parameters, like	patterns in
	Fathy(2006),	network. This	road congestion	models.
	IEEETransactions	connection is in	parameters	
	on 57, no. 6 ,page	the ad hoc	(such as speed	
	no 3341-3356.	network formed	distribution as	
		among	well as traffic	
		automobiles	flow) plus the	
		which travel	broadcasting	
		ahead usual road	selection of	
		is investigated.	automobiles,	
			based on the	
			connection.	

Table 5.1. Related Work

Access Point	Ashish Agrawal	The issue of	Below delay	Average
Placement in	and Thomas D.C.	accessibility level	resistant	propagation rate
Vehicular	Little	positioning is	networking	can be improved
Networking	2008.	recognized as in a	presumption,	further.
		hybrid vehicular	minimal delay and	
		networking	maximum	
		Environment	propagation	
		composed of	rates may be	
		multihop	performed for	
		transmission	minimal vehicular	
		around moving	traffic densities.	
		automobiles	traffic defisities.	
		supported by		
		access points.		
Unhaid wahiaulaa	Anna Maria	It is shown	Characterizes the	Lack of real time
Hybrid vehicular				
communications based on V2V-	Vegni and	Where connection	most and least	validations and
	Thomas D.C.	is given by	bounds of	simulations.
V2I protocol	Little, 2011	equally current	message	
switching		network	propagation as	
		infrastructure via	well as	
		a vehicle-to-	comparison of	
		infrastructure	performance	
		protocol plus	with conventional	
		conventional	message	
		vehicle-to-vehicle	propagation on	
		networking.	the basis of	
			opportunistic	
			networking.	
Distributed	Shigang Chen and	A distributed	More call	Lack of secure
Quality-of-	Klara Nahrstedt,	QoS routing	admission	communication
Service	1999.	system which	Ratio and less-	environment.
Routing in Ad		chooses a network	cost routes has	
Hoc Networks		route having	been	
		enough	accomplished	
		methods to meet a	along simple	
		particular delay	routing overhead.	
		(or bandwidth)	6	
		necessity		
		in a dynamic		
		multihop mobile		
		environment.		
Design and	Ihn-Han Bael and	A hybrid	Hi-CAST is more	Hi-CAST is
Evaluation of Hi-	Stephan Olariu,	intelligent	advanced than	longer than
CAST and its	2013.	broadcast	Different	Simple and p-
Variants for	2013.	algorithm Hi-	algorithms in	Persistence
Safety Message		CAST and their	collision and	algorithms in time
Dissemination in		numerous	achievement.	because it uses the
VANET		variations have		delay broadcast
		now been		protocol.
		prlanned for alert		protocol.
1		priamed for alert	1	
		magaaga		
		message		
		message dissemination in VANET.		

International Journal of Advanced Science and Technology Vol.96 (2016)

	1	1	1	
A probabilistic	Ahmad Mostafa,	A novel reliable	Performance gain	Lack of
routing by using	Anna Maria	and low-collision	in terms of the	validations in real
multi-hop	Vegni, Dharma P.	packet-forwarding	throughput, and	urban traffic
retransmission	Agrawal, 2013.	scheme called	the percentage of	scenarios.
forecast with		Collision-Aware	successful	
packet collision-		REliable	transmissions.	
aware constraints		FORwarding		
in vehicular		(CAREFOR) has		
networks		been proposed for		
		vehicular ad hoc		
		networks, is		
		formulated by		
		probabilistic		
		rebroadcasting.		
CAREFOR:	Anna Maria	A probability-	Lesser collision	Lack of efficiency
Collision-Aware	Vegni, Ahmad	based multi-hop	probability, more	in real time
<i>RE</i> liable	Mostafa and	broadcast	throughputs, and	scenarios.
FORwarding	Dharma P.	protocol, named	eventually, a more	scenarios.
e e		Collision-Aware	amount of	
Technique for Vehicular Ad hoc	Agrawal, 2013.	REliable	effective	
Networks				
INELWORKS		FORwarding	transmissions.	
		(CAREFOR) is		
		proposed for		
		applications in		
		vehicular		
		networks.		
An Evaluation of	Radityo Anggoro,	It is defined the	Improvement in	Lack of reliability
Routing Protocols	Ryoji Nakamura,	way in which	vehicle mobility	of the network.
with Probabilistic	Teruaki Kitasuka,	probabilistic relay	as well as road	
Relay in VANETs	Tsuyoshi Itokawa,	can impact the	segment length.	
	Masayoshi	routing efficiency		
	Aritsugi, 2011.	for OLSR as well		
		as AODV below		
		VANETs		
		environments.		
An optimization	LI Xiao qing1, L	An optimization	It has an	Lack of security
forwarding range	I Hui1, YANG	range forwarding	enhanced results	and efficiency
routing protocol	Kai2 a n d L I U	protocol for	in sparse network	
Protocol for	Q i a o,Jan,2014	vanets in urban	as well as city	
VANET in City		areas which have	environment	
Environments		optimized as well		
		as adjustable		
		forwarding range		
		that improvement		
		with various		
		environments.		
	I	environmento.	I	1

CARAVAN: Context-AwaRe Architecture for VANETSawomir Kuklińskil and Grzegorz Wolny,Jan 2011Vanet concepts are integrated into popular platform and utilize them on the dependence of the service needs, attributes and node mobility features.The work is performed in layers the Mobility Layer, the Connectivity Layer as well as the Application Layer.Lack of real time scenarios.A QoS Approachbubakar AminuProposed aEnhancedLack of multi-hop
Architecture for VANETGrzegorz Wolny,Jan 2011popular platform and utilize them on the dependence of the service needs, the Application Layer.layers the Mobility Layer, the Connectivity Layer as well as the Application Layer.A QoS Approachbubakar AminuProposed aEnhancedLack of multi-hop
VANETWolny,Jan 2011and utilize them and utilize them on the dependence of the serviceMobility Layer, the Connectivity Layer as well as the Application Layer.A QoS Approachbubakar AminuProposed aEnhancedLack of multi-hop
on the dependence of the service needs, connectivity tattributes and node mobility features.the Connectivity Layer as well as the Application Layer.A QoS Approachbubakar AminuProposed aEnhancedLack of multi-hop
of the service needs, connectivity attributes and node mobility features.Layer as well as the Application Layer.A QoS Approachbubakar AminuProposed aEnhancedLack of multi-hop
needs, connectivity attributes and node mobility features.the Application Layer.A QoS Approachbubakar AminuProposed aEnhancedLack of multi-hop
A QoS Approach bubakar Aminu Proposed a Enhanced Lack of multi-hop
A QoS Approach bubakar Aminu Proposed a Enhanced Lack of multi-hop
node mobility features. node mobility features. A QoS Approach bubakar Aminu Proposed a Enhanced Lack of multi-hop
features. A QoS Approach bubakar Aminu Proposed a Enhanced Lack of multi-hop
A QoS Approach bubakar Aminu Proposed a Enhanced Lack of multi-hop
for Cluster-Based Mu'azu, Low QoS routing throughput communication
Routing in Tang Jung, protocol effective provided UDP as
VANETS Using Ibrahim A. at locating as well as TCP
TDMA Scheme Lawal1, Peer well as organizing traffic classes.
Azmat Shah,2013 a route
by clustering
method applying
TDMA
Performance A. Tamizhselvi Proposed a End to End delay Loss of packets
Evaluation of and Dr. R.S.D. Geographical has been i.e. packets are
Geographical Wahida Banu, Routing Protocol extensible lesser dropped while
Routing March 2012 (GRP) below for video communicating.
Protocol under random mobility traffic in
Different Traffic having voice as comparison to
Scenario well as voice traffic,
Traffic. performs properly
for video data is
relatively terms of
end to end delay
plus throughput.
GVGrid: A QoS Weihua Sun, GVGrid for multi- GVGrid can offer Maximum road
Routing Protocol Hirozumi hop mobile ad hoc paths with longer maps having
for Yamaguchi, Koji networks built life time, different vehicle
Vehicular Ad Hoc Yukimasa, Shinji by automobiles compared by densities as well
Networks Kusumoto,2006 that builts a path having an existing as Mobility to
on demand from a routing protocol address the
sender (a fixed for VANETs efficiency of this
node or a protocol.
base station) to
automobiles that
reside in or drive
through a given
Geographical
region.

	1		1	
On-demand QoS	P. I. Basarkod and	It is the stability	Lowering of	Lack of delay
and Stability	Sunilkumar S.	on the basis of	packet overhead,	distribution
Based Multicast	Manvi,March	multicast routing	development in	among nodes in
Routing in Mobile	2014	(OQSMR) system	Packet Delivery	the path.
Ad Hoc Networks		is formulated, that	Ratio (PDR), as	
		will be an	well as reduction	
		expansion of	in end-to-end	
		ad hoc on-demand	delays when	
		multicast routing	comparsion is	
		protocol	done with	
		(ODMRP) to	ODMRP, as well	
		offer QoS means	as improved	
		for real time	ODMRP (E-	
		purposes.	ODMRP)	
An Ant based	Poonam Narwal,	Ant colony	Provides an	Some other
Algorithm for	Naveen Goel, Dr	optimization	intelligent answer	optimization
Vehicular Ad-hoc	Arun K Khosla,	technique is	to ignore the issue	algorithms can
Networks	July 2012	employed to	of traffic in case	also be used.
		search answers to	an	
		the vehicle	Incident happens	
		routing problem	in vehicular	
		(VRP) i. e. to	network. ACO	
		search an	can be used to	
		reliable vehicle	describe the safe	
		path.	route from the	
			network.	

6. Conclusion

Our aim is to select the next hop vehicle to communicate for message forwarding, they have improve the QOS in terms of path over the network. To find solution to the vehicle routing protocol (VRP) *i.e.*, to find an efficient vehicle Route. For that the make use one of the commonly used VANET protocol called DYMO, here they improving the DYMO protocol by combining it with ACO. The work is about to provide an intelligent solution to avoid the problem of congestion in case an accident happen in vehicular network. ACO will be used to identify the safe path from the network. Being a wireless network, Issues in VANET domain include random packet loss in transport layer and in data link layer for a given end to end connection.

7. Future Scope

VANET is used on board safety system for communicating between vehicles and roadside infrastructure. In which every node can move freely within the network and every node can communicate with other node. This way, the number of traffic accidents may decrease and many lives could be saved. Node selection algorithm is to select the next–node vehicle to communicate for message forwarding; we have to improve the QOS in terms of path on the network. So that less number of packets lost at which the nodes are moving within the network, the better routing protocol used.

References

- [1] L. Pelusi, A. Passerella and A. Conti, "Opportunistic Networking: Data Forwarding in Disconnected Mobile Ad Hoc Networks", IEEE Communications Mag., vol. 44, (**2011**).
- [2] S. Yousefi, E. Altman, R. El-Azouzi and M. Fathy, "Analytical Model for Connectivity in Vehicular Ad Hoc Networks", IEEE Trans. of Vehicular Technology, vol. 57, (2006).

- [3] A. Agarwal and T. Little, "Access Point Placement in Vehicular Networking", Proc. of 1st Intl. Conf. on Wireless Access in Vehicular Environments, Troy, MI, (2008).
- [4] A. M. Vegni and T. D. C. Little, "Hybrid vehicular communications based on v2v-v2i protocol switching", International Journal of Vehicle Information and Communication Systems, (2011), pp. 213-231.
- [5] A. M. Vegni and T. D. C. Little, "A message propagation model for hybrid vehicular communication protocols", Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on, IEEE, (2010), pp. 382-386.
- [6] S. Weihua and Y. Hirozumi, "GV Grid: A QoS Routing Protocol for Vehicular Ad Hoc Networks", IEEE, (2006) June, pp. 130-139.
- [7] Z. Niu, W. Yao and Q. Ni, "Study on QOS Support in 802.11 e-based multi-hop Vehicular wireless Adhoc Network", IEEE International conference on networking, sensing and control, London, UK, (2007) April, pp. 15-17.
- [8] N. Poonam, G. Naveen and Dr K. Arun, "An Ant based Algorithm for Vehicular Ad-hoc Networks", International Journal of Scientific & Engineering Research, vol. 3, no. 7, (2012) July.
- [9] Tamizhselvi and Dr. R. S. D. Wahida Banu, "Performance Evaluation of Geographical Routing Protocol under Different Traffic Scenario", International Journal of Computer Science and Telecommunications, vol. 3, no. 3, (2012) March.
- [10] B. Carolina Tripp, M. Mezher Ahmad and A. Igartua M´onica, "Available Bandwidth-aware Routing in Urban Vehicular Ad-hoc Networks", IEEE, (2012).
- [11] M. Abubakar Aminu, J. Low Tang, A. Lawal Ibrahim and A. Shah Peer, "A QoS Approach for Cluster-Based Routing in VANET Using TDMA Scheme", IEEE, (2013), pp. 212-217.
- [12] X. Li, H. Li, K. Y. and Q. Liu, "An Optimization Forwarding Range Routing Protocol for VANET in City Environments", Chinese Journal of Electronics, vol. 23, no. 1, (2014) January.
- [13] M. Ahmad, V. Anna Maria and B. Asitha, "QoS-aware Node Selection Algorithm for Routing Protocols in VANET", Fourth International Conference on Selected Topics in Mobile & Wireless Networking, vol. 40, (2014), pp. 66-73.
- [14] A. M. Vegni and T. D. C. Little, "Hybrid vehicular communications based on v2v-v2i protocol switching", International Journal of Vehicle Information and Communication Systems, (2011), pp. 213-231.
- [15] A. M. Vegni and T. D. C. Little, "A message propagation model for hybrid vehicular communication protocols", in: Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on, IEEE, (2010), pp. 382-386.
- [16] S. Chen and K. Nahrstedt, "Distributed Quality-of-Service Routing in Ad-hoc Networks", IEEE Journal on Selected Areas in Communications, vol. 17, no. 8, (1999), pp. 1488-1505.
- [17] I.-H. Bae and S. Olariu, "Design and evaluation of hi-cast and its variants for safety message dissemination in vanet", Control, Automation and Systems (ICCAS), 2013 13th Intl. Conf., (2013), pp. 800-806.
- [18] J. Kim, Q. Zhang and D. P. Agrawal, "Probabilistic broadcasting based on coverage area and neighbor confirmation in mobile ad hoc networks", Proc. IEEE Global Telecomm. Conf. (GLOBECOM), (2004).
- [19] A. Mostafa, A. M. Vegni and D. P. Agrawal, "A Probabilistic Routing by using Multi-hop Retransmission Forecast with Packet Collision-Aware Constraints in Vehicular Networks", Ad Hoc Networks (Elsevier), (2014), pp. 14 118-129.
- [20] A. M. Vegni, A. Mostafa and D. P. Agrawal, "Carefor: Collision-aware reliable forwarding technique for vehicular ad hoc networks", Computing, Networking and Communications (ICNC), Intl. Conf. on, IEEE, (2013), pp. 773-777.
- [21] R. Anggoro, R. Nakamura, T. Kitasuka, T. Itokawa and M. Aritsugi, "An evaluation of routing protocols with probabilistic relay in VANETs", TENCON 2011 - 2011 IEEE Region 10 Conf., (2011), pp. 187-191.
- [22] H. Hartenstein and K. Laberteaux, "VANET: Vehicular Applications and Inter-networking Technologies", Wiley & sons, Ltd., (2010).

International Journal of Advanced Science and Technology Vol.96 (2016)