International Journal of Computer Applications (0975 — 8887)
Volume 95— No. 11, June 2014

Automatic Testing of AJAX Applications through
Dynamic Analysis of User Interface State Change

Swapnil S. Mane
Research Scholar
Annasaheb Dange College
of Engineering & Technology,
Ashta, Tal-Walwa Dist-Sangli.

ABSTRACT

The growing popularity and importance of web applications
have been increasing continuously in recent years. Use of
JAVASCRIPT and dynamic DOM (Document Object Model)
manipulation on the client side of web applications is
becoming a widespread approach for achieving rich
interactivity and responsiveness in modern web applications.
AJAX (Asynchronous JAVASCRIPT and XML) based web
applications rely on asynchronous client-server
communication and client-side runtime manipulation of the
DOM tree. This not only makes them fundamentally different
from traditional web applications but also make them more
error prone and harder to test. The proposed method for
testing automatically AJAX application is based on a crawler
to infer a state-flow graph for all client-side user interface
states of an AJAX application. Focus is on obtaining a model
by “crawling” an AJAX application, automatically clicking
buttons and other user interface elements. In order to
recognize failures in executions, use of invariants are
proposed [1]. These invariants can be generic (e.g., after any
client-side change the DOM should remain W3C-compliant
valid HTML) or application-specific (e.g., the home-button in
any state should lead back to the starting state).

General Terms
AJAX, JAVASCRIPT, XML, DOM

Keywords

Crawler, event, traditional, modern, testing

1. INTRODUCTION

For today’s web applications, one of the key facilitating
technologies includes AJAX. With AJAX the web browsers
not only offer the user navigation through a sequence of
HTML pages, but also provide dynamic rich interaction via
graphical user interface (GUI) components. Over the last three
decades, the internet has become an essential part of everyday
life. Users rely on the internet for tasks related to
communication, information and commerce. In addition, the
popularity of web-based applications is increasing with
hundred millions of people. There is a need to crawl web
applications (automatically discover all states of applications)
and process them in various ways.

The web is undergoing a significant change. A technology
that has lately gained a prominent position under the AJAX
(Asynchronous JAVASCRIPT and XML) in which the
combination of JAVASCRIPT and Document Object Model
(DOM) manipulation along with asynchronous server
communication is used to achieve a high level of user

Amol B. Rajmane
Assistant Professor
Ashokrao Mane Group of Institutions,
Vathar tarf Vadgaon, Tal-Hatkanangale,
Dist- Kolhapur.

interactivity. Highly visible examples include Gmail and
Google Docs. Following are the new challenges.

e Searchability -Searchability ensures that AJAX sites
are crawled and indexed by the general search
engines.

e Testability-Testability involves systematically
dynamic user interface (Ul) elements

One way to address these challenges is through the use of a
crawler that can automatically crawl different states of a
highly dynamic AJAX site and create a model of the
navigational paths and states.

General web search engines, such as Google and Bing, cover
only a portion of the web called the publicly indexable web
that consists of the set of web pages reachable using hypertext
links, ignoring forms [7] and client-side scripting. The web
content behind forms and client-side scripting is referred to as
the hidden web, which is estimated to comprise several
millions of pages. Although there has been extensive research
on crawling and exposing the data behind forms, [8] crawling
the hidden web is induced as a result of client-side scripting.
Crawling AJAX-based applications is fundamentally more
difficult than crawling classical multi-page web applications.
In traditional web applications, states are explicit and
correspond to pages that have a unique URL assigned to them.
In AJAX applications, the state of the user interface is
determined dynamically through changes in the DOM that are
only visible after executing the corresponding JAVASCRIPT
code.

2. LITERATURE SURVEY

Modern web interfaces incorporate client-side scripting and
user interface manipulation which is increasingly separated
from server-side application logic. Although the field of rich
web interface testing is mainly unexplored, much knowledge
may be derived from two closely related fields traditional web
testing and GUI application testing.

a) Authors Ali Mesbah and Arie van Deursen [1] [2][3]
have suggested model for performining automatic testing of
web application through invariant. It is based on invariants
which does not give better result. Also it is more vulnerable
for various attacks and does not provide mechanism for it.

b) Benedikt et al. [4] have presented a model for
automatically exploring paths of multipage websites
through a crawler and detector for abnormalities such as
navigation and page errors (which are configurable through
plugins). This model uses smart profiles to extract candidate
input values for form-based pages. Although the crawling

12

algorithm has some support for client-side scripting execution
and provides insufficient detail to determine whether it would
be able to deal with modern AJAX web applications

¢) Author Y.W. Huang, C.H. Tsai, T.P. Lin, S.K.
Huang, D.T. Lee, and S.Y. Kuo [9] have been proposed for
automatically assessing web application security. The general
approach is based on a crawler capable of detecting data entry
points which can be seen as possible points of security attack.
Malicious patterns, e.g., SQL and XSS vulnerabilities, are
then injected into these entry points and the response from the
server is analyzed to determine vulnerable parts of the web
application

d) A model-based testing approach for web
applications is proposed by Ricca and Tonella [10]. They
introduced ReWeb, a tool for creating a model of the web
application in UML, which is used along with defined
coverage criteria to generate test cases, which rely on a finite
state machine together with constraints defined by the tester.
All such model-based testing techniques focus on classical
multipage web applications. They mostly use a crawler to
infer a navigational model of the web. Unfortunately,
traditional web crawlers are not able to crawl AJAX
applications.

3. COMMENTS

From the above survey we can comment that,

e In traditional web applications, states are explicit
and correspond to pages having a unique URL
(Uniform Recourse Locator).

e |t does not handle browsers DOM tree.

e Reloading of whole page is occurred instead of
reloading of specific content on the page. so it takes
more times for generating response.

e Response to a client-side event can be injected into
the single-page interface and therefore faults are
propagating at the DOM level.

e Itis more vulnerable to possible attacks.

4. NEED OF WORK

The work carried out in literature survey is based on
traditional web application which having number of
limitations. To overcome these limitations, we proposed
automatic testing of web application by implementing AJAX
crawler. In this AJAX crawler crawl the requested web page
through the embedded web browser and find out clickable
element before and after firing event on the clickable element.
Based on the result we have generated DOM structure and
compare it to analyze proposed system.

5. PROPOSED WORK

Here focus is to implement the AJAX Crawler and event
generation for testing of modern web application which solves
the boundaries of the traditional web application. Emphasis is
given on analyzing browsers DOM tree for finding out
clickable element on the application and generating different
events on them for representing state flow graph of
application. This provides all the possible transitions between
different user interface states.

International Journal of Computer Applications (0975 — 8887)
Volume 95— No. 11, June 2014

6. SYSTEM ARCHITECTURE

N

Crawler
User

Interface Embedded
Browser

DOM
Analyzer

.

On new state
Model

7

DOM
Validator

l

Transform
DOM to HTML

Test
Validate HTML Executer

Figure 1: System Architecture
Figure 1 shows architecture of proposed system, in which
crawler crawls the web pages that are to be opened through
embedded browser. The crawler controller controls the
execution of AJAX crawler by using different plug-ins with
access of state machine, and based on the plug-ins execution
DOM structure generated with validation.

7. THE MODULES OF THE PROPOSED
WORK

7.1 Devising a mechanism to detect clickable element
from web applications:

A crawling is more efficient for finding out clickable element
from web application. The idea is to explore all the possible
elements from web applications and those unexplored
elements that are terminated left. We provide backtracking
technique which is responsible for exploring unexplored
element.

Post Cravling
Model

Test-Case
Generator
\

7.2 Devising a mechanism to find out the states and
possible transitions before firing event on clickable
element:

In this module we can open web application in the browser
and analyze browsers DOM tree before firing event. This
DOM tree gives states of user and possible transitions.

7.3 Devising a mechanism to find out the states and
possible transitions after firing event on clickable
elements:

In this module we can analyze browsers DOM tree after firing
event and represent states and possible Transitions between
them and infere a state flow graph for all possible transitions.

7.4 Devising a mechanism for analyze proposed system:
In this module we can provide new plugins for DOM
validation and post-crawling for spotting out development

13

errors and generation of validation report for web applications
and compare the results.

8. EXPERIMENTAL SETUP

The proposed work is carried out by using Eclipse Kepler IDE
with supported JDK 1.6 on Windows XP operating system.
Initially we have used Eclipse Hellos with JDK 1.5 but, it is
not supported for advanced libraries. We have configured
AJAX application by adding external libraries that are to be
supported for execution. To generate DOM structure of
resulted web page, we have used DOM viewer and for
comparison between two DOM structures used Wincompare
tool is used.

9. RESULTS

Here, we have shown the result of proposed work, which
implement a crawler for dynamic analysis of user interface
state change on the given web application. In this, we have
compared traditional web application with AJAX web
application and it shows that AJAX web application is faster
than traditional web application and also AJAX application
having more functionality as compared to the traditional
application.

Table 1. Experimental benchmarks with different
parameters

Sr. | Attribute Traditional AJAX
No. Application Application
1 user synchronous asynchronous
request execution execution
2 content not updated dynamically
dynamically updated
3 response “click, wait and no more “click,
page refresh” wait and
page refresh”,
4 code plain html Javascript/Dhtml

Table 1 indicates comparison analysis between traditional
web application and AJAX web application by considering
different parameters.

Work is carried out on each and every module separately. The
step by step execution of work is mentioned below.
Step 1:
e Open the web application through the embedded
browser.

e After opening the web page crawler is to be
initialized to crawl the requested web page.

International Journal of Computer Applications (0975 — 8887)
Volume 95— No. 11, June 2014

Q@ 01l o0 Fr) lpages il il

Crawljax Demo And Instruction Site

VR
' g
+ hbmaie

H

Craving Velcome to the Crawljax Testing page

oot Benerts

Waloodtons Crawria lavatoo e atrmatvaly comieg adesing AJAT based spefations

Craj ol g ATAY. based e aggcao by efcking s an il o ik T oveates e B gaph o e s ofhe weh pplvaion This ke Bom gagh wic
ey et base oy tpes of ot e

* Hoas “Ths st explens bt congure Cramlm e s ants s et e T Cramfe
'

(b
e Applicatons for Cravljy
o Condtens p———
VI r
Illplll + Hon ctonaltesing [Aroseshity, 11, ey,)
+ Tetecinp broken ikolmageatieoktps
Figure 2: Loading First Web Page
Step 2

e After loading the web page crawler start to crawls
the web page and find outs clickable elements and
generate DOM tree.

G [l ot il il

Dl

tmcf;z:

HAL dng="teep: . . o 1995 xheel ™

Ry
et
METh combent="cext/ Tl charsst=1a0-835-1" Mibp-equiv="(omtent-Type"
Hert:

METh combeat="cravljan, cravlior, aja, test, testing, plugiss, imarizts, conditions, fore” name="tepwrdst
Hert:

TETh comtent="index, folloe® name="robots"

et

METh comteat="Dew and instruction site for (rawljee® name="description®

et

TILE

e Crosfar

et

LTHR Eype="test/ozs” rel="stylesheet® href="atyle.ces”

Hext:

SCAIPT bype="cext/ famaseript” ste="1ib) jmery-2.0.3,nin, 5" Language="jsvascript”
et

SCRIPT bype="cext/ jamascript” ste="3s/gezeral, 3s° Lanquage="javascript”
et

ritat:

BT

et

TV 10="heaer”

oz Do dnd tion 3

et
IV i

Figure 3: DOM Structure
Step 3:
e In third step crawler again load the web page and
find outs clickable elements and generate DOM
tree.

14

r "o 2 T o
(' [il oS e 2l

[_

Crawljax Demo And Instruction Site

+ Eo
+ g
+ fimaten

Crawling l’apem

+ Select Pemets T Cramt

Toe il g pepers elted o Crawlgm e poblsted.

Figure 4: Loading Second Web Page

e In fourth after loading the second web page crawler
start to find out clickable elements.

) DO Fewe bl i
B G b Hy o I

e |t x|¢

ekt imin @ P et
i g ated Frecttnal | Sl | WGy

D i i

SERTET Language="je

SCRPY Language="jevasceigt” ste="3spaeral. Js” tppe="ent/ vescrip”

e
0T

DIV id="header”
fed:
il
L

Crowl Doy £nd b e

DIV id"wenckar®

nstat ofje [onehm. Pbin. Pafim R, Bhs Higeche, ¢ obbit Oivine

Figure 5: DOM Structure
Step 5:
e We compare the resulted DOM tree of first web
page and second web page and based on the
comparison generate the final result.

International Journal of Computer Applications (0975 — 8887)
Volume 95— No. 11, June 2014

Fiem
<ilibat 13 Cralia/hly A(v The following papers relsted to Crauljax are pblished:

<pCraaliar is & Jav kool for entomstically creuling +nd testing A7RX hased |t

<qprsdsar can crasl any WIAE based ueh application by clicking links and 51
creates a state-£1ow qraph of Eie states of the ueb applicstion. This state-f
tests. </pr

<pThis site explains how b confipere Crauljar and also acts 2 & best site

iligplications for Ceawljes</Bly
aly
livTwariant-based testinge/1iy
<livhegression testinge/Li>
«lidhon functional besting (Arcessibility, Iin, secwity, ...)</lD>

Lidletecting broken Links/images/tealtifsc/1ix

li>stronpand vie its plugin ssppert ewen wre.... </stronp/li>
il
Abetn/ily

<Setting up Commler only takes & comple of minmtes:<fp
ab

2 8 new Javm project.</1>
e the Crawljes.jar (exd its needed libravies| to your project.<
Copp/paste the code Frageest below,</lix 1

<predrsaljartonfiqurationfui Ider builder = Crauljarontiguration,builderfor|
builder, cralbules () , insertRandoeiatalnlnpetBoms [false|

1 click these elerents

;
") sathictribate e, "clicksble"];

i bt don't click these

Figure 5: DOM Comparison

It shows the result of DOM structure before executing event
on clickable element and after executing event on clickable
element. Here we clearly identified changes made in the
browsers DOM structure.

10. CONCLUSION

In this paper, we have proposed a method for testing AJAX
application automatically. Our current work consists
extending the crawler functionality for supporting automated
testing of modern web applications. We implement the
plugins for automatic testing. Our future work will include
development of more testing plug-ins.

11. ACKNOWLEDGEMENT

I would like to thanks my guide Prof.A.B.Rajmane for his
valuable and constructive comments. | would also like to
thanks Prof. Mrs. A.N. Mulla, HOD Computer Science &
Engineering Department, Annasaheb Dange College of
Engineering & Technology, Ashta for her valuable support.

12. REFERENCES

[1] Ali Mesbah, Member, IEEE Computer Society,Arie van
Deursen, Member, IEEE Computer Society, and Danny
Roest “ Invariant-Based Automatic Testing of Modern
Web Applications“ IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 38, NO. 1,
JANUARY/FEBRUARY 2012.

[2] A. Mesbah and A. van Deursen, “Invariant-Based
Automatic Testing of Ajax User Interfaces,” Proc. IEEE
31st Int’l Conf. Software Eng., pp. 210-220, 2009.

[3] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling
Ajax by Inferring User Interface State Changes,” Proc.
Eighth Int’l Conf. WebEng., pp. 122-134, 2008.

[4] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb:
Automatically Testing Dynamic WebSites,” Proc. 11th
Int’l Conf. World Wide Web, pp. 654-668, 2002.

[5] Ali Mesbah, Arie van Deursen, and Stefan Lenselink
“Crawling Ajax-based Web Applications through
Dynamic Analysis of User Interface State Changes”
Report TUD-SERG-2011-033.

15

) clidéa href="http: \/aver] udelft .nl fruikipub Main Techical Beparks,

[6] Cristian Duda , Gianni Frey, Donald Kossmann , Reto
Matter, Chong Zhou ,

ETH Zurich, Switzerland “AJAX Crawl: Making AJAX
Applications Searchable” IEEE International Conference
on Data Engineering 2009. Web Information and Data
Management (WIDM’04). ACM Press, New York, NY,
9-15.

[8] LAGE, J. P., DA SILVA, A. S., GOLGHER, P. B., AND
LAENDER, A. H. F. 2004. Automatic generation of

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 95— No. 11, June 2014

agents for collecting hidden Webpages for data
extraction. Data Knowl. Eng. 49, 2, 177-196.

[9] Y.W. Huang, C.H. Tsai, T.P. Lin, S.K. Huang, D.T. Lee,
and S.Y.Kuo, “A Testing Framework for Web

Application Security Assessment,” J. Computer
Networks, vol. 48, no. 5, pp. 739-761,2005.

[10] A. Marchetto, P. Tonella, and F. Ricca, “State-Based
Testing of Ajax Web Applications,” Proc. IEEE First
Int’l Conf. Software Testing Verification and Validation,
pp. 121-130, 2008.

16

