

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 120

E L E C T R O N I C S R E S E A R C H A R T I C L E

Implementation of AES-GCM encryption algorithm for high performance and low power

architecture Using FPGA

V. Arun 1, K. Vanisree 2 and D. Laxma Reddy 3

1Asst.Prof.ECE,MLRIT,Dundigal, Hyderabad-500043,Telangana
2Assoc. Prof. ECE, ACE College of Engineering, R. R. Dt.- 501 301,Telangana

3 Asst.Prof.ECE,MLRIT,Dundigal, Hyderabad-500043,Telangana

ABSTRACT

Evaluation of the Advanced Encryption Standard (AES) algorithm in FPGA is proposed here. This Evaluation

is compared with other works to show the efficiency. Here we are concerned about two major purposes. The

first is to define some of the terms and concepts behind basic cryptographic methods, and to offer a way to

compare the myriad cryptographic schemes in use today. The second is to provide some real examples of

cryptography in use today. The design uses an iterative looping approach with block and key size of 128 bits,

lookup table implementation of S-box. This gives low complexity architecture and easily achieves low latency

as well as high throughput. Simulation results, performance results are presented and compared with previous

reported designs. Since its acceptance as the adopted symmetric-key algorithm, the Advanced Encryption

Standard (AES) and its recently standardized authentication Galois/Counter Mode (GCM) have been utilized

in various security-constrained applications. Many of the AES-GCM applications are power and resource

constrained and requires efficient hardware implementations. In this project, AES-GCM algorithms are

evaluated and optimized to identify the high-performance and low-power architectures. The Advanced

Encryption Standard (AES) is a specification for the encryption of electronic data. The Cipher Block Chaining

(CBC) mode is a confidentiality mode whose encryption process features the combining (“chaining”) of the

plaintext blocks with the previous Cipher text blocks. The CBC mode requires an IV to combine with the first

plaintext block. The IV need not be secret, but it must be unpredictable. Also, the integrity of the IV should be

protected. Galois/Counter Mode (GCM) is a block cipher mode of operation that uses universal hashing over a

binary Galois field to provide authenticated encryption. Galois Hash is used for authentication, and the

Advanced Encryption Standard (AES) block cipher is used for encryption in counter mode of operation. To

obtain the least-complexity S-box, the formulations for the Galois Field (GF) sub-field inversions in GF (24) are

optimized By conducting exhaustive simulations for the input transitions, we analyze the synthesis of the AES

S-boxes considering the switching activities, gate-level net lists, and parasitic information. Finally, by

implementation of AES-GCM the high-performance GF (2128) multiplier architectures, gives the detailed

information of its performance. An optimized coding for the implementation of Advanced Encryption

Standard-Galois Counter Mode has been developed. The speed factor of the algorithm implementation has

been targeted and a software code in Verilog HDL has been developed. This implementation is useful in

wireless security like military communication and mobile telephony where there is a grayer emphasis on the

speed of communication.

Index Terms— Cipher block chaining, GaliosField, Advanced Encryption Standard, finite field, Galois/Counter

Mode, high performance.

I. INTRODUCTION

Data Encryption Standard (DES) is the most common

SKC scheme used today; DES was designed by IBM

in the 1970s and adopted by the National Bureau of

Standards (NBS) [now the National Institute for

Standards and Technology (NIST)] in 1977 for

commercial and unclassified government

applications. DES is a block-cipher employing a 56-bit

key that operates on 64-bit blocks. Symmetric-key

ciphers use the same key for encryption and

decryption, or to be more precise, the key used for

decryption is computationally easy to compute given

the key used for encryption. In turn, symmetric-key

International Journal of Research and Applications (July - Sep © 2014 Transactions) 1(3): 120-131

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014)

ISSN (online): 2349-0020

International Journal of Research and Applications (July - Sep © 2014 Transactions)

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014)

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 121

ciphers fall into two categories: block ciphers and

stream ciphers. Stream ciphers encrypt the plaintext

one bit at a time, in contrast to block ciphers, which

operate on a block of bits of a predefined length. Most

popular block ciphers are DES, IDEA and AES, and

most popular stream cipher is RC6.DES has a

complex set of rules and transformations that were

designed specifically to yield fast hardware

implementations and slow software implementations

The Advanced Encryption Standard-Galois/Counter

Mode AES-GCM) provides authentication and

confidentiality for sensitive data simultaneously. In

the AESGCM, data confidentiality is provided by the

Advanced Encryption Standard (AES). This paper

explores the area-throughput trade-off for an ASIC

implementation of the Advanced Encryption

Standard (AES). Different pipelined implementations

of the AES algorithm as well as the design decisions

and the area optimizations that lead to a low area and

high throughput AES encryption processor are

presented. With loop unrolling and outer-round

pipelining techniques, throughputs of 30 Gbits/s to 70

Gbits/s are achievable in a 0.18-_m CMOS technology.

Moreover, by pipelining the composite field

implementation of the byte substitution phase of the

AES algorithm (inner-round pipelining), the area

consumption is reduced up to 35 percent. By

designing an offline key scheduling unit for the AES

processor the area cost is further reduced by 28

percent, which results in a total reduction of 48

percent while the same throughput is maintained.

Therefore, the over 30 Gbits/s, fully pipelined AES

processor operating in the counter mode of operation

can be used for the encryption of data on optical

links. The authentication of the AES-GCM is provided

by the Galois/Counter Mode (GCM) using a universal

hash function. The AES-GCM has been used for a

number of applications such as the new LAN security

standard WLAN 802.1ae (MACSec) and Fibre

Channel Security Protocols (FC-SP). Moreover, it has

been utilized in a number of cores from industry. In

addition, two AES-GCM software-based

implementations have been presented. Among the

transformations in the AES encryption, the SubBytes

(S-boxes) is the only non-linear one, requiring the

highest area and consuming much of the AES power.

Therefore, the performance metrics of the S-boxes

affect those for the entire AES encryption

significantly. For low-complexity implementations,

the S-box can be realized using logic gates in

composite fields. These S boxes can also be pipelined

for achieving high performance. On the other hand,

the S-boxes based on look-up tables (LUTs) could be

area-efficient when implemented utilizing the

memory resources available on FPGAs. In this paper,

logic-gate optimizes and comprehensive synthesis of

more than 40 different S-boxes are used for deriving

their performance metrics. This paper presents the

area-throughput trade-offs of a fully pipelined, ultra

high speed AES encryption processor. Different

pipelined architectures that can achieve the required

throughput for the above application and the area

optimization opportunities for such designs are

explored.

II. Galois/Counter Mode of Operation (GCM)

By definition, the Galois/Counter Mode is a block

cipher mode of operation that uses universal hashing

over a binary Galois field whose purpose is to

provide authenticated encryption. This paper

proposes an efficient solution to combine Rijndael

encryption and decryption in one FPGA design, with

a strong focus on low area constraints. The proposed

design gets into the smallest Xilinx FPGAs3, deals

with data streams of 208 Mbps, uses 163 slices and 3

RAM blocks and improves by 68% the best-known

similar designs in terms of ratio Throughput=Area.

They also proposed implementations in other FPGA

Families (Xilinx Vertex-II) and comparisons with

similar DES, triple-DES and AES implementations. It

can achieve data rates of 21.3 Gbps in Vertex-II

FPGAs. The encryption/decryption mode can be

changed on a cycle-by-cycle basis with no dead

cycles. For the AES, the best similar RAM-based

solution unrolls the 10 cipher rounds and pipelines

them in an encryption-only process. This

implementation in a Vertex-E FPGA produces a

throughput of 11.8 Gbps and allows the key to be

changed at every cycle. This DES implementation

reaches higher throughput than the corresponding

International Journal of Research and Applications (July - Sep © 2014 Transactions)

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014)

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 122

AES implementation. The input and output for the

AES algorithm each consist of sequences of 128 bits

(digits with values of 0 or 1). These sequences will

sometimes be referred to as blocks and the number of

bits they contain will be referred to as their length.

The Cipher Key for the AES algorithm is a sequence

of 128, 192 or 256 bits. Other input, output and Cipher

Key lengths are not permitted by this standard. The

bits within such sequences will be numbered starting

at zero and ending at one less than the sequence

length (block length or key length). The number i

attached to a bit is known as its index and will be in

one of the ranges 0 ≤ i < 128, 0 ≤ i < 192 or 0 ≤ i < 256

depending on the block length and key For the AES

algorithm, the length of the input block, the output

block and the State is 128 bits. This is represented by

Nb = 4, which reflects the number of 32-bit words

(number of columns) in the State. For the AES

algorithm, the length of the Cipher Key, K, is 128, 192,

or 256 bits. The key length is represented by Nk = 4, 6,

or 8, which reflects the number of 32-bit words

(number of columns) in the Cipher Key. For the AES

algorithm, the number of rounds to be performed

during the execution of the algorithm is dependent on

the key size. The number of rounds is represented by

Nr, where Nr = 10 when Nk = 4, Nr = 12 when Nk = 6,

and Nr = 14 when Nk = 8.T.

A. GCM Encryption and Decryption - Inputs and

Outputs

Encryption: The GCM encryption routine expects four

inputs:

 A secret key K, to be used with the underlying

block cipher. AES is defined to support key

lengths of 128-, 192- or 256-bits long.

 An initialization vector IV that (in principle) can

be of any length between 1 and 264 bits.

 A plaintext P that can be of any length between 0

and (239256) bits.

 Additional authenticated data AAD that can be of

any length between 0 and 264 bits.

This procedure has two outputs:

 A cipher text C that has the same length as

the input plaintext P.

 An authentication tag T, which in our case is

of length exactly 128 bits.

Below we denote the GCM encryption routine (using

AES) by

(C,T) := GCM-AES-enc(K; IV, P, AAD)

The security of GCM relies on the secret key being

secret, and on the IV being used as a nonce. That is,

GCM only offers security as long as the same value

for the IV is never used for encryption of more than

one plaintext under the same key.

Decryption: The GCM decryption routine has five

inputs:

 the key K,

 initialization vector IV,

 cipher text C,

 additional authenticated data AAD, and

 tag T, all as above.



Its output is either the plaintext P as above, or the

special signal fail (indicates that the inputs are not

authentic). Below we denote the GCM decryption

routine (using AES) by

P/fail: = GCM-AES-dec (K; IV, C, AAD, T)

A cipher text C, initialization vector IV, additional

authenticated data A and tag T are authentic for key

K when they are generated by the encrypt operation

with inputs K, IV, A and P, for some plaintext P. The

authenticated decrypt operation will, with high

probability, return FAIL whenever its inputs were not

created by the encrypt operation with the identical

key. The additional authenticated data A is used to

protect information that needs to be authenticated,

but which must be left unencrypted. When using

GCM to secure a network protocol, this input could

include addresses, ports, sequence numbers, protocol

version numbers, and other fields that indicate how

the plaintext should be handled, forwarded, or

processed. In many situations, it is desirable to

authenticate these fields, though they must be left in

the clear to allow the network or system to function

International Journal of Research and Applications (July - Sep © 2014 Transactions)

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014)

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 123

properly. When this data is included in the AAD,

authentication is provided without copying the data

into the cipher text. The primary purpose of the IV is

to be a nonce, that is, to be distinct for each invocation

of the encryption operation for a fixed key. It is

acceptable for the IV to be generated randomly, as

long as the distinctness of the IV values is highly

likely. The IV is authenticated, and it is not necessary

to include it in the AAD field. Both confidentiality

and message authentication is provided on the

plaintext. The strength of the authentication of P, IV

and A is determined by the length t of the

authentication tag. When the length of P is zero, GCM

acts as a MAC on the input A. The mode of operation

that uses GCM as a stand-alone message

authentication code is denoted as GMAC.

B. ENCRYPTION

Let n and u denote the unique pair of positive

integers such that the total number of bits in the

plaintext is (n − 1)128 + u, where 1 ≤ u ≤ 128. The

plaintext consists of a sequence of n bit strings, in

which the bit length of the last bit string is u, and the

bit length of the other bit strings is 128. The sequence

is denoted P1, P2. . . Pn−1, P*n, and the bit strings are

called data blocks, although the last bit string, P*n ,

may not be a complete block. Similarly, the cipher

text is denoted as C1, C2. . . Cn−1,C*n, where the number

of bits in the final block C*n is u. The additional

authenticated data A is denoted as A1, A2. . . Am−1, A*m

, where the last bit string A*m may be a partial block of

length v, and m and v denote the unique pair of

positive integers such that the total number of bits in

A is (m − 1)128 + v and 1 ≤ v ≤ 128. The authenticated

encryption operation is defined by the following

equations:

H = E (K, 0128)

Y0 = IV || 0311 if len (IV) = 96

 GHASH (H, {}, IV)

 Otherwise.

Yi = incr(Yi−1) for i = 1, . . . , n (1)

Ci = Pi  E (K, Yi) for i = 1. . . n − 1

C*n = P*n MSBu (E (K, Yn))

T = MSBt (GHASH (H, A, C)  E (K, Y0))

Successive counter values are generated using the

function incr(), which treats the rightmost 32 bits of

its argument as a nonnegative integer with the least

significant bit on the right, and increments this value

modulo 232. More formally, the value of incr(F || I) is

F || (I + 1 mod 232). The encryption process is

illustrated in Figure 1.

C. GCM encryption operation

As the name suggests, GCM mode combines the well-

known counter mode of encryption with the new

Galois mode of authentication. The key feature is that

the Galois field multiplication used for authentication

can be easily computed in parallel thus permitting

higher throughput than the authentication algorithms

that use chaining modes, like CBC. The GF (2128) field

used is defined by the polynomial x128+x7+x2+1. The

function GHASH is defined by GHASH (H, A, C) =

Xm+n+1, where H is a string of 128 zeros encrypted

using the block cipher, A is data which is only

authenticated (not encrypted), C is the cipher text, m

is the number of 128 bit blocks in A, n is the number

of 128 bit blocks in C (the final blocks of A and C need

not be exactly 128 bits), and the variable Xi for

i = 0, ..., m + n + 1 is defined as

Xi = 0

 for i = 0

 (Xi−1 Ai) · H

 for i = 1. . . m − 1

 (Xm−1  (A*m ||0128−v)) · H

 for i = m

 (2)

 (Xi−1  Ci) · H

 for i = m + 1. . . m + n − 1

http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Counter_.28CTR.29
http://en.wikipedia.org/wiki/Galois_field
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Ciphertext

International Journal of Research and Applications (July - Sep © 2014 Transactions)

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014)

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 124

 (Xm+n−1  (Cm* || 0128−u)) · H

 for i = m + n

 (Xm+n  (len(A) || len(C))) · H

 for i = m + n + 1.

where v is the bit length of the final block of A, u is

the bit length of the final block of C, and || denotes

concatenation of bit strings.

Figure 1: The authenticated encryption operation.

 For simplicity, a case with only a single block

of additional authenticated data (labeled Auth Data 1)

and two blocks of plaintext is shown. Here EK denotes

the block cipher encryption using the key K, multH

denotes multiplication in GF (2128) by the hash key H,

and incr denotes the counter increment function.

Figure 2: The authenticated decryption operation,

showing the same case as in Figure 1.

Figure 3 :A hardware implementation of GCM,

showing the different data paths through the circuit.

D. MULTIPLICATION IN GF (2128)

The multiplication operation is defined as an

operation on bit vectors in order to simplify the

specification. This definition corresponds to the

particular choice of the field representation used in

GCM. Each element is a vector of 128 bits. The ith bit

of an element X is denoted as Xi. The leftmost bit is X0,

and the rightmost bit is X127. The multiplication

operation uses the special element R = 11100001 ||

0120, and is defined in Algorithm 1. The function right

shift () moves the bits of its 7

Algorithm 1 Multiplication in GF (2128). Computes the

value of Z = X · Y, where X, Y and

Z  GF(2128).

 Z ← 0, V ← X

 for i = 0 to 127 do

 if Yi = 1 then

 Z ← Z  V

 end if

 if V127 = 0 then

 V ← right shift (V)

 else

 V ← right shift(V)  R

 end if

 end for

 return Z

International Journal of Research and Applications (July - Sep © 2014 Transactions)

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014)

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 125

argument one bit to the right. More formally,

whenever W = right shift (V), then Wi = Vi−1 for 1 ≤ i≤

127 and W0 = 0.

Authenticated encryption and decryption are the two

functions within the GCM. The authenticated

encryption performs two tasks; encrypting the

confidential data and computing and authentication

tag. The authenticated decryption function decrypts

the confidential data and verifies the tag. The data

flow of the authenticated encryption is shown in Fig.

3. As seen in this figure, the mechanism for the

confidentiality of data is a variation of the block

cipher counter mode of operation, denoted by GCTRK

(Galois Counter with the key K). Then, the function

GCTRK performs the block cipher counter mode with

the Initial Counter Block (ICB) and its increments

(CB2 − CBi) and the plaintext blocks (P1 − Pi) as the

inputs.

 Figure 4 The GCM authenticated encryption data

flow.

Galois Hash (GHASHH) function is constructed by GF

(2128) multiplications with a fixed parameter, called

the hash subkey (H). The GHASHH function

calculates

 (1)

where X1 to Xn are the n, 128-bit blocks of the input. It

is noted that the hash subkey is generated by

applying the AES to the zero block, i.e., 0 = (0, 0... 0) ∈

GF (2128). Then, the GHASHH function calculates (1).

All the arithmetic operations in (1), i.e., additions, GF

multiplications, and exponentiations are performed

over GF (2128) constructed by the irreducible

polynomial P(x) = x128 +x7 +x2 +x+1. As seen in Fig. 3.2,

the total number of input blocks to GHASHH is n = m

+ i + 1, where m and i are the number of blocks for the

additional authenticated data (A1−Am) and the output

of GCTRK, respectively. Eventually, the

authentication tag T with length of t bits is derived. In

the authenticated decryption, the same GHASHH

procedure is performed on the authenticated data and

ciphertext blocks to verify the tag.

III. HIGH PERFORMANCE GCM PARALLEL

ARCHITECTURE

 High-performance parallel architectures for

GCM improve the throughput and the latency of the

structures for GHASHH. They also remove the need

for consecutive GF (2128) multiplications with H for

deriving (1). Because of the low complexity of the

implementations of these exponents, we take

advantage of these low-cost hash subkey powers in

the proposed high-performance architectures. We

utilize the powers in the form of H2j to obtain the

other powers of the hash subkey with the least

number of GF multiplications over GF (2128) for

proposed architectures. For instance, we derive H+ =

H2 × H or H6 = H4 × H2. This architecture is based on

the composite field GF ((24)2). Algorithm 1 is used for

obtaining the key formulation for the proposed

GHASHH function. Although there is no restriction

in choosing q, i.e., the number of parallel adder-

multipliers, we use q = 2j, 1 ≤ j ≤ log2 (n). This leads to

lower number of clock cycles and higher throughput

needed for the implementations.

Algorithm 1 The proposed high-performance

approach for implementing the GCM.

Inputs: Xp ∈ GF (2128), 1 ≤ p ≤ n, and H2j ∈ GF (2128),

0 ≤ j ≤ log2(q).

Output: GHASH(X, H) =nj-1 XjHn−j+1.

1: for i = 1 to q do

2: tempi ← Xi

International Journal of Research and Applications (July - Sep © 2014 Transactions)

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014)

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 126

3: for j = 1 to (n/q) − 1 do

4: tempi = (tempi × Hq ⊕ Xi+jq)

5: end for

6: Let q − i + 1 = (a0(i), . . . , alog2(q)(i))2

7: tempi = tempi × (Ha0(i)q ×H2 ×. . .×Ha(i)log2(q))

8: end for

9: GHASH(X, H) =qi-1 tempi

10: return GHASH(X, H).

In Algorithm1, the output GHASH(X,H) is obtained

as follows:

X1 ・ Hq × . . . × HqX2 ・ Hq × . . . × Hq×Hq−1 ⊕ . . .

⊕ Xj ・ Hq × . . . × Hq×Hq−j+1 ⊕ . . .

⊕ Xq ・ Hq × . . . × Hq. . . ⊕ XnH, (1)

where all operations are performed over GF(2128)

constructed by the irreducible polynomial P(x) = x128

+x7 + x2 + x + 1 and  comprises 128 XOR gates.

 One can re-write (1) so that only the

exponentiations of the hash subkey to the powers of 2

in the form of H2j are utilized. This method of

exponentiation is based on the binary exponentiation.

As seen from this algorithm, for the exponentiations

Hq−i+1, 1 ≤ i ≤ q, one can use the binary representation

of q − i + 1 as (a0 (i), . . . , alog2(q)(i))2 . The hardware

implementation of Algorithm 1 has been presented in

Fig. 4.1. For implementing Algorithm 1 in hardware,

in total, (n/q) +log2 (q) clock cycles are needed. For the

first (n/q) −1 clock cycles, the GF (2128) multiplications

by Hq are performed. This is achieved by a simple

control unit selecting Hq. Then, for the next log2 (q)

clock cycles, the other exponentiations are used.

These include the powers of the hash subkey in the

form of H2j and a number of field elements 1 = (0, 0...

1) ∈ GF (2128) for bypassing the GF (2128) multiplication

operations. We note that if n is not a multiple of q,

one need to add q − mod (n, q) blocks containing 0 =

(0, 0... 0) ∈ GF (2128) to the beginning of the n blocks to

make the total blocks processed multiple of q.

Performing this, the hash computation can be done

normally based on the presented procedure. Finally,

in one clock cycle, the result becomesnj-1 XjHn−j+1.

Figure 5. The hardware architecture of the proposed

high performance GCM GHASHH function

GF (2128) Multipliers for the GCM - Different types of

GF (2128) multipliers are utilized in the literature for

implementing the GF (2128) multiplications in (1). The

multiplications have been performed using bit-

parallel, digit-serial, and hybrid multipliers in

composite fields. The efficiency of different

multipliers, including the sub-quadratic ones, are

compared. A high-speed AES-GCM core has been

presented. It is noted that the considered GF (2128)

multipliers in these works include the Mastrovito

multiplier with quadratic space complexity, the

Karatsuba-Ofman multiplier and the GF (2128)

multiplier. We have considered the bit-parallel GF

(2128) multiplier which has quadratic hardware

complexity. It is noted that this GF (2128) multiplier

has lower timing complexity compared to the sub-

quadratic hardware complexity GF (2128) multipliers.

However, we note that according to the latency of the

proposed architectures, i.e., (n/q) + log2 (q), increasing

the number of parallel structures (q) results in having

higher throughputs. Fig.5presents the proposed

architecture for the AESGCM for q = 8 parallel

structures. The AES-128 pipeline registers are shown

by dashed lines in Fig. 4.5. As seen in this figure, 10

clock cycles are needed for obtaining the cipher text.

After these first 10 clock cycles, the results are

obtained after each clock cycle. According to Fig. 5, 8

International Journal of Research and Applications (July - Sep © 2014 Transactions)

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014)

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 127

parallel AES-128 structures are implemented as part

of GCTRK to provide inputs to GHASHH. As seen in

this figure, the function GCTRK performs the AES

counter mode with the Initial Counter Block (ICB)

and its one-increments (CBi). Moreover, q = 8

increments (using INC 8 module) and the plaintext

blocks (Pi) are used as the inputs. It is assumed that

the data is encrypted and the IV in the GCM is 96 bits

which is recommended for high throughput

implementation

Figure 6. The proposed AES-GCM high-performance

architecture for q = 8 (mod (n, q) = 0).

The architecture shown in Fig. 5assumes that the

number of blocks n is a multiple of the number of

parallel structures q and there is no additional

authenticated data (AAD). In case that n is not a

multiple of q, one can append q − mod (n, q) zero

blocks at the beginning of the blocks for which hash is

computed. This is done by adding a masking gate

along the dotted line as shown in Fig. 4.5. Moreover,

in this case, the counter blocks and accordingly Pi’s in

Fig. 5start from the q−mod (n, q) +1 column, i.e., the

first actual input block. We also note that in case AAD

is present, additional multiplexers are placed at the

output of the GCTR block in Fig. 4.5along the dotted

line so that instead of encrypted data, the AAD is fed

to the architecture. When the AAD is done, the

counter blocks provide the encrypted data. Finally, in

Fig. 5and as the last processed block, the output of the

GCTR block in the rightmost column is masked and

LA, C (number for n) is fed (using an extra multiplexer

which is not shown in Fig.5for the sake of brevity).

AESK (J0) and H = AESK (0) can be also obtained or pre-

computed in Fig. 5. The results of our synthesis for

the AES-GCM using the FPGA Vertex Xilinx tool are

shown in the results The synthesis are based on the

case for q = 8 parallel addition-multiplications using

the bit-parallel GF (2128) multiplier which has

quadratic hardware complexity. For achieving low

hardware complexity for the AES-GCM, we have also

synthesized six different steps for the Karatsuba-

Ofman multipliers.

Figure 7(a) Cascade, (b) parallel, and (c) hybrid

realization methods for hashSub key exponentiations

IV. GCM-AES BLOCK SPECIFICATION

GCM-AES (Galois Counter Mode – Advanced

Encryption Standard) is an authenticated encryption

mode designed by David McGrew and John Viega.

This aims to explore hardware implementation of

GCM-AES mode of operation specifically targeting

FPGA (Field Programmable Gate Arrays). The aim of

such an implementation is to benchmark GCM-AES

on FPGA in terms of area, power and speed. GCM-

AES has been implemented as a full duplex block

which means that the design consists of separate

encryption-authentication and decryption-verification

blocks. Thus, it can carry out encryption-

authentication and decryption-verification operations

simultaneously.

Encryption and Authentication Block

 GCM-AES encryption block works on one single

frame (Message + AAD) at any given time. A

frame consists of one or more AAD blocks or zero

or more message blocks. Specifically, the

International Journal of Research and Applications (July - Sep © 2014 Transactions)

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014)

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 128

encryption block works on one message block or

AAD block at any time.

 The default block length is 128 bits.

 A single control word starts the operation of

GCM-AES encryption block with the Setup phase.

This phase is done once per frame. After twenty

clock cycles of latency incurred from the setup

phase, the encryption block is ready to accept a

message or AAD block.

 The encryption block expects one or more AAD

blocks where the last AAD’s block length need

not be 128 bits. It should however be a multiple of

a byte. Similarly, the encryption block expects

zero or more message blocks where the last

message block length need not be the default

block length. It should as well be a multiple of a

byte.

 The design requires one or more AAD blocks to

be input first and then zero or more plain text

blocks.

 The current implementation is capable of

handling any message or AAD blocks per frame.

It takes 10 clock cycles to encrypt a message block

(default block length or less than that) with 10

cycle AES-128 implementation when the

corresponding encrypted cipher text is produced.

The GCM-AES encryption block relies on AES-

128 encryption block for encryption and Galois

Field multiplication for authentication. Galois

Field Multiplier used in this implementation

produces result in 8 clock cycles. Cipher text is

not produced in case of AAD block.

 The length of the frame does not need to be

known by the encryption block.

The encryption block works on a frame with the

following format:

Figure 7. The AES-128 structure for (a) simple loop,

(b) unrolled pipelined, and (c) unrolled sub-pipelined

architectures

Decryption and Verification Block

1 The GCM-AES decryption block is similar to

GCM-AES encryption block. Thanks to Counter

Mode. Tag calculation is exactly the same as

GCM-AES encryption. The computed tag is

compared against the provided tag. If the tags

match, decrypted plain texts are considered valid.

2 The GCM-AES decryption block works on the

similar frame format as GCM-AES encryption

block where now Message Blocks are replaced by

zero or more Cipher text blocks.

GCMAES Encryption and Authentication

Figure 8 Interface diagram GCM-AES Encryption

block

GCM-AES design as described is coded in Verilog

hardware descriptive language HDL. All simulations

are done in Modelsim-Altera 6.5e (Quartus II 10.0sp1)

Starter Edition Modelsim. XILINX ISE 9.2 is used for

FPGA design flow using VirtexE technology (Family

= VirtexE, Device = XCv400e, Package = bg560, Speed

= -8).

V. RESULTS

We used test case for GCM-AES Encryption-Auth

simulations. It is reproduced here for convenience

K = feffe9928665731c6d6a8f9467308308

P = d9313225f88406e5a55909c5aff5269a

 86a7a9531534f7da2e4c303d8a318a72

 1c3c0c95956809532fcf0e2449a6b525

 b16aedf5aa0de657ba637b39A

AAD= feedfacedeadbeeffeedfacedeadbeefabaddad2

IV = cafebabefacedbaddecaf888

The corresponding cipher text and Tag is

CT = 42831ec2217774244b7221b784d0d49c

 e3aa212f2c02a4e035c17e2329aca12e

International Journal of Research and Applications (July - Sep © 2014 Transactions)

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014)

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 129

 21d514b25466931c7d8f6a5aac84aa05

 1ba30b396a0aac973d58e091

All simulations are done in Mentor Graphic’s

Modelsim. The design is mapped to FPGA belonging

to VirtexE technology (Family = VirtexE, Device =

XCv400e, Package = bg560, Speed = -8). Synthesis is

performed by using Xilinx Synthesis Tool (XST).

Figure 8 Simulation of GCM-AES Enc-Auth block

Figure 8 shows simulation of GCM-AES Encryption-

Authentication block. Decryption-Verify block is

exactly the same. Thus, only simulation of

Encryption-Authentication block suffices.

The synthesis report generated is shown below.

Figure 9 Synthesis report of GCM-AES Enc-Auth

block

Figure 10 Floor plan design of GCM-AES Enc-Auth

block

Figure 11 FPGA Schematic of GCM-AES Enc-Auth

block

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 120

Table 1 Description of GCM-AES Encryption block

 VI CONCLUSION and FUTURE SCENARIO

In this project, we have obtained optimized building

blocks for the AES-GCM to propose efficient and high

performance architectures. For the AES, through logic

gate minimizations for the inversion in GF (24), the

areas of the S-boxes have been reduced. We have also

evaluated and compared the performance of different

S-boxes using Xilinx tool. Furthermore, through

exhaustive searches for the input patterns,

dii_data

dii stands for data

input interface.

Input 128 Data input that is either Nonce, message or AAD block

dii_data_vld Input 1 When asserted (=1), dii_data contains either message or AAD block

dii_data_type Input 1
When asserted, dii_data contains AAD block. When deasserted (=

0), dii_data contains message block

dii_data_size Input 4

Describes the size of valid dii_data. It ranges from 0-15 where 0

indicates valid message consists of 1 byte in the LSB of dii_data and

15 indicate full block length. Its value may change from 15 on the

last message or AAD block

dii_data_last_word Input 1 When asserted, dii_data contains the last message or AAD block

dii_data_not_ready Output 1

It is asserted by the GCM-AES indicating that it currently in the

Setup phase or working with one message or AAD block and

cannot accept an additional message or AAD block.

cii_ctl_vld

cii stands for control

input interface

Input 1
When asserted, starts the execution of GCM-AES encryption block

and triggers Setup phase

cii_IV_vld Input 1 When asserted, dii_data contains IV value

cii_K Input 128 It contains secret key used in GCM-AES block

Out_data Output 128 It contains either the cipher text or Tag_data

Out_vld Output 1 When asserted, it indicates Out_data contains cipher text

Out_data_size Output 4 It describes the number valid bytes in Out_data

Out_last_word Output 1 It describes whether the cipher text is the last cipher text

Tag_vld Output 1 When asserted, Out_data contains Tag data.

PIN Direction Size (bits) Description

clk Input 1 Design clock

reset Input 1 Design reset

International Journal of Research and Applications (July - Sep © 2014 Transactions)

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014)

IJRA | 2014 | Volume 1 | Issue 3 P a g e | 131

We have performed simulation-based results using

modelsim tool for different S-boxes to reach more

accurate results compared to the statistical methods.

We have also proposed high-performance and

efficient architectures for the GCM. For the case study

of q = 8 parallel structures in GHASHH, we have

performed a hardware complexity reduction

technique for the hash subkey exponentiations,

having their timing complexities intact. Based on the

available resources and performance goals to achieve,

one can choose the proposed AES-GCM architectures

to fulfill the constraints of different applications.

In future the performance of the proposed efficient

architectures for the AES-GCM and their fault

detection approaches can be benchmarked using

application-specific integrated circuit (ASIC) and

field-programmable gate array (FPGA) hardware

platforms. Larger devices can be chosen to have

enough number of slices needed. Another future

work for the FPGA platform can be explored noting

that the AES is utilized for bit stream security

mechanisms. Specifically, the AES decryption is

hardware-implemented in many recent FPGAs.

Incorporating the proposed hardware

countermeasures and evaluating their effectiveness in

counteracting internal/malicious faults on FPGAs

would be an interesting future research topic. Finally,

one can work on devising reliable architectures for

the recently standardized GCM, which provides data

authentication to block ciphers such as the AES. To

the best of my knowledge, the aforementioned

research on reliability of these architectures will be

carried out for the first time.

REFERENCES

1 National Institute of Standards and Technologies,

“Announcing the Advanced Encryption Standard

(AES),” Federal Information Processing

Standards Publication, no. 197, Nov. 2001.

2 M. Dworkin, “Recommendation for Block Cipher

Modes of Operation: Galois/Counter Mode

(GCM) and GMAC,” NIST SP 800-38D, 2007.

3 Algotronics Ltd.: GCM Extension for AES G3

Core, 2007.

4 E. K¨asper and P. Schwabe, “Faster and Timing-

Attack Resistant AES-GCM,” In Proc. of CHES

2009, LNCS 5747, pp. 1-17, 2009.

5 K. Jankowski and P. Laurent, “Packed AES-GCM

Algorithm Suitable for AES/PCLMULQDQ

Instructions,” IEEE Trans. Computers, vol. 60, no.

1, pp. 135-138, Jan. 2011.

AUTHOR’S BIOGRAPHY

Mr.ARUN presently working as

Assistant Professor in MLR instuitute

of technology completed B.Tech in

Electronics and communication in

JNTU Hyderabad , M.Tech in

Embedded systems from, JNTU Hyderabad. His

interested areas are Embedded systems ,VLSI and

image processing.

Mrs.K.VANISREE, working as Associate professor,

HITS COE,Hyderabad, pursuinh P.Hd from JNTUH.

Her areas of interest are communications, Image

processing and signal processing

Mr. Laxmareddy presently working

as Assistant Professor in MLR

instuitute of technology completed

B.Tech in ECE from Mother Theresa

College of Engineering , Hyderabad

and M.Tech in computer

communications from RRS college of engineering and

Technology, JNTU Hyderabad. His interested areas in

communications and image processing.

Message length in Bytes

AAD length in Bytes

Key

Nonce

Message Block 1

Message Block 2

:

Message Block N

AAD Block 1

AAD Block 2

:

AAD Block M

