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ABSTRACT 

Evaluation of the Advanced Encryption Standard (AES) algorithm in FPGA is proposed here. This Evaluation 

is compared with other works to show the efficiency. Here we are concerned about two major purposes. The 

first is to define some of the terms and concepts behind basic cryptographic methods, and to offer a way to 

compare the myriad cryptographic schemes in use today. The second is to provide some real examples of 

cryptography in use today. The design uses an iterative looping approach with block and key size of 128 bits, 

lookup table implementation of S-box. This gives low complexity architecture and easily achieves low latency 

as well as high throughput. Simulation results, performance results are presented and compared with previous 

reported designs. Since its acceptance as the adopted symmetric-key algorithm, the Advanced Encryption 

Standard (AES) and its recently standardized authentication Galois/Counter Mode (GCM) have been utilized 

in various security-constrained applications. Many of the AES-GCM applications are power and resource 

constrained and requires efficient hardware implementations. In this project, AES-GCM algorithms are 

evaluated and optimized to identify the high-performance and low-power architectures. The Advanced 

Encryption Standard (AES) is a specification for the encryption of electronic data. The Cipher Block Chaining 

(CBC) mode is a confidentiality mode whose encryption process features the combining (“chaining”) of the 

plaintext blocks with the previous Cipher text blocks. The CBC mode requires an IV to combine with the first 

plaintext block. The IV need not be secret, but it must be unpredictable. Also, the integrity of the IV should be 

protected.  Galois/Counter Mode (GCM) is a block cipher mode of operation that uses universal hashing over a 

binary Galois field to provide authenticated encryption. Galois Hash is used for authentication, and the 

Advanced Encryption Standard (AES) block cipher is used for encryption in counter mode of operation. To 

obtain the least-complexity S-box, the formulations for the Galois Field (GF) sub-field inversions in GF (24) are 

optimized By conducting exhaustive simulations for the input transitions, we analyze the synthesis of the AES 

S-boxes considering the switching activities, gate-level net lists, and parasitic information. Finally, by 

implementation of AES-GCM the high-performance GF (2128) multiplier architectures, gives the detailed 

information of its performance. An optimized coding for the implementation of Advanced Encryption 

Standard-Galois Counter Mode has been developed. The speed factor of the algorithm implementation has 

been targeted and a software code in Verilog HDL has been developed. This implementation is useful in 

wireless security like military communication and mobile telephony where there is a grayer emphasis on the 

speed of communication. 

Index Terms— Cipher block chaining, GaliosField, Advanced Encryption Standard, finite field, Galois/Counter 

Mode, high performance. 

 

I. INTRODUCTION  

Data Encryption Standard (DES) is the most common 

SKC scheme used today; DES was designed by IBM 

in the 1970s and adopted by the National Bureau of 

Standards (NBS) [now the National Institute for 

Standards and Technology (NIST)] in 1977 for 

commercial and unclassified government 

applications. DES is a block-cipher employing a 56-bit 

key that operates on 64-bit blocks. Symmetric-key 

ciphers use the same key for encryption and 

decryption, or to be more precise, the key used for 

decryption is computationally easy to compute given 

the key used for encryption. In turn, symmetric-key 
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ciphers fall into two categories: block ciphers and 

stream ciphers. Stream ciphers encrypt the plaintext 

one bit at a time, in contrast to block ciphers, which 

operate on a block of bits of a predefined length. Most 

popular block ciphers are DES, IDEA and AES, and 

most popular stream cipher is RC6.DES has a 

complex set of rules and transformations that were 

designed specifically to yield fast hardware 

implementations and slow software implementations 

The Advanced Encryption Standard-Galois/Counter 

Mode AES-GCM) provides authentication and 

confidentiality for sensitive data simultaneously. In 

the AESGCM, data confidentiality is provided by the 

Advanced Encryption Standard (AES). This paper 

explores the area-throughput trade-off for an ASIC 

implementation of the Advanced Encryption 

Standard (AES). Different pipelined implementations 

of the AES algorithm as well as the design decisions 

and the area optimizations that lead to a low area and 

high throughput AES encryption processor are 

presented. With loop unrolling and outer-round 

pipelining techniques, throughputs of 30 Gbits/s to 70 

Gbits/s are achievable in a 0.18-_m CMOS technology. 

Moreover, by pipelining the composite field 

implementation of the byte substitution phase of the 

AES algorithm (inner-round pipelining), the area 

consumption is reduced up to 35 percent. By 

designing an offline key scheduling unit for the AES 

processor the area cost is further reduced by 28 

percent, which results in a total reduction of 48 

percent while the same throughput is maintained. 

Therefore, the over 30 Gbits/s, fully pipelined AES 

processor operating in the counter mode of operation 

can be used for the encryption of data on optical 

links. The authentication of the AES-GCM is provided 

by the Galois/Counter Mode (GCM) using a universal 

hash function. The AES-GCM has been used for a 

number of applications such as the new LAN security 

standard WLAN 802.1ae (MACSec) and Fibre 

Channel Security Protocols (FC-SP). Moreover, it has 

been utilized in a number of cores from industry. In 

addition, two AES-GCM software-based 

implementations have been presented. Among the 

transformations in the AES encryption, the SubBytes 

(S-boxes) is the only non-linear one, requiring the 

highest area and consuming much of the AES power. 

Therefore, the performance metrics of the S-boxes 

affect those for the entire AES encryption 

significantly. For low-complexity implementations, 

the S-box can be realized using logic gates in 

composite fields. These S boxes can also be pipelined 

for achieving high performance. On the other hand, 

the S-boxes based on look-up tables (LUTs) could be 

area-efficient when implemented utilizing the 

memory resources available on FPGAs. In this paper, 

logic-gate optimizes and comprehensive synthesis of 

more than 40 different S-boxes  are used for deriving 

their performance metrics. This paper presents the 

area-throughput trade-offs of a fully pipelined, ultra 

high speed AES encryption processor. Different 

pipelined architectures that can achieve the required 

throughput for the above application and the area 

optimization opportunities for such designs are 

explored. 

II. Galois/Counter Mode of Operation (GCM) 

By definition, the Galois/Counter Mode is a block 

cipher mode of operation that uses universal hashing 

over a binary Galois field whose purpose is to 

provide authenticated encryption. This paper 

proposes an efficient solution to combine Rijndael 

encryption and decryption in one FPGA design, with 

a strong focus on low area constraints. The proposed 

design gets into the smallest Xilinx FPGAs3, deals 

with data streams of 208 Mbps, uses 163 slices and 3 

RAM blocks and improves by 68% the best-known 

similar designs in terms of ratio Throughput=Area. 

They also proposed implementations in other FPGA 

Families (Xilinx Vertex-II) and comparisons with 

similar DES, triple-DES and AES implementations. It 

can achieve data rates of 21.3 Gbps in Vertex-II 

FPGAs. The encryption/decryption mode can be 

changed on a cycle-by-cycle basis with no dead 

cycles. For the AES, the best similar RAM-based 

solution unrolls the 10 cipher rounds and pipelines 

them in an encryption-only process. This 

implementation in a Vertex-E FPGA produces a 

throughput of 11.8 Gbps and allows the key to be 

changed at every cycle. This DES implementation 

reaches higher throughput than the corresponding 



International Journal of Research and Applications (July - Sep © 2014 Transactions)  

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014) 

 
IJRA | 2014 |  Volume 1 |  Issue 3                                                                                                     P a g e  | 122 

AES implementation. The input and output for the 

AES algorithm each consist of sequences of 128 bits 

(digits with values of 0 or 1). These sequences will 

sometimes be referred to as blocks and the number of 

bits they contain will be referred to as their length. 

The Cipher Key for the AES algorithm is a sequence 

of 128, 192 or 256 bits. Other input, output and Cipher 

Key lengths are not permitted by this standard. The 

bits within such sequences will be numbered starting 

at zero and ending at one less than the sequence 

length (block length or key length). The number i 

attached to a bit is known as its index and will be in 

one of the ranges 0 ≤ i < 128, 0 ≤ i < 192 or 0 ≤ i < 256 

depending on the block length and key For the AES 

algorithm, the length of the input block, the output 

block and the State is 128 bits. This is represented by 

Nb = 4, which reflects the number of 32-bit words 

(number of columns) in the State. For the AES 

algorithm, the length of the Cipher Key, K, is 128, 192, 

or 256 bits. The key length is represented by Nk = 4, 6, 

or 8, which reflects the number of 32-bit words 

(number of columns) in the Cipher Key. For the AES 

algorithm, the number of rounds to be performed 

during the execution of the algorithm is dependent on 

the key size. The number of rounds is represented by 

Nr, where Nr = 10 when Nk = 4, Nr = 12 when Nk = 6, 

and Nr = 14 when Nk = 8.T.  

A. GCM Encryption and Decryption - Inputs and 

Outputs 

Encryption: The GCM encryption routine expects four 

inputs: 

 A secret key K, to be used with the underlying 

block cipher. AES is defined to support key 

lengths of 128-, 192- or 256-bits long.   

 An initialization vector IV that (in principle) can 

be of any length between 1 and 264 bits.  

 A plaintext P that can be of any length between 0 

and (239256) bits.  

 Additional authenticated data AAD that can be of 

any length between 0 and 264 bits. 

 

This procedure has two outputs: 

 A cipher text C that has the same length as 

the input plaintext P. 

 An authentication tag T, which in our case is 

of length exactly 128 bits. 

Below we denote the GCM encryption routine (using 

AES) by 

(C,T) := GCM-AES-enc(K; IV, P, AAD) 

The security of GCM relies on the secret key being 

secret, and on the IV being used as a nonce. That is, 

GCM only offers security as long as the same value 

for the IV is never used for encryption of more than 

one plaintext under the same key. 

Decryption: The GCM decryption routine has five 

inputs:  

 the key K, 

 initialization vector IV, 

 cipher text C, 

 additional authenticated data AAD, and 

 tag T, all as above.  

  

Its output is either the plaintext P as above, or the 

special signal fail (indicates that the inputs are not 

authentic). Below we denote the GCM decryption 

routine (using AES) by 

P/fail: = GCM-AES-dec (K; IV, C, AAD, T) 

A cipher text C, initialization vector IV, additional 

authenticated data A and tag T are authentic for key 

K when they are generated by the encrypt operation 

with inputs K, IV, A and P, for some plaintext P. The 

authenticated decrypt operation will, with high 

probability, return FAIL whenever its inputs were not 

created by the encrypt operation with the identical 

key. The additional authenticated data A is used to 

protect information that needs to be authenticated, 

but which must be left unencrypted. When using 

GCM to secure a network protocol, this input could 

include addresses, ports, sequence numbers, protocol 

version numbers, and other fields that indicate how 

the plaintext should be handled, forwarded, or 

processed.  In many situations, it is desirable to 

authenticate these fields, though they must be left in 

the clear to allow the network or system to function 
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properly. When this data is included in the AAD, 

authentication is provided without copying the data 

into the cipher text. The primary purpose of the IV is 

to be a nonce, that is, to be distinct for each invocation 

of the encryption operation for a fixed key. It is 

acceptable for the IV to be generated randomly, as 

long as the distinctness of the IV values is highly 

likely. The IV is authenticated, and it is not necessary 

to include it in the AAD field. Both confidentiality 

and message authentication is provided on the 

plaintext. The strength of the authentication of P, IV 

and A is determined by the length t of the 

authentication tag. When the length of P is zero, GCM 

acts as a MAC on the input A. The mode of operation 

that uses GCM as a stand-alone message 

authentication code is denoted as GMAC.  

B. ENCRYPTION 

Let n and u denote the unique pair of positive 

integers such that the total number of bits in the 

plaintext is (n − 1)128 + u, where 1 ≤ u ≤ 128. The 

plaintext consists of a sequence of n bit strings, in 

which the bit length of the last bit string is u, and the 

bit length of the other bit strings is 128. The sequence 

is denoted P1, P2. . . Pn−1, P*n, and the bit strings are 

called data blocks, although the last bit string, P*n , 

may not be a complete block. Similarly, the cipher 

text is denoted as C1, C2. . . Cn−1,C*n, where the number 

of bits in the final block C*n is u. The additional 

authenticated data A is denoted as A1, A2. . . Am−1, A*m 

, where the last bit string A*m may be a partial block of 

length v, and m and v denote the unique pair of 

positive integers such that the total number of bits in 

A is (m − 1)128 + v and 1 ≤ v ≤ 128. The authenticated 

encryption operation is defined by the following 

equations: 

H = E (K, 0128) 

 

Y0 =  IV || 0311 if len (IV) = 96 

          GHASH (H, {}, IV)    

                    Otherwise. 

Yi = incr(Yi−1) for i = 1, . . . , n   (1) 

Ci = Pi  E (K, Yi)  for i = 1. . . n − 1 

C*n = P*n MSBu (E (K, Yn)) 

T = MSBt (GHASH (H, A, C)  E (K, Y0)) 

Successive counter values are generated using the 

function incr(), which treats the rightmost 32 bits of 

its argument as a nonnegative integer with the least 

significant bit on the right, and increments this value 

modulo 232. More formally, the value of incr(F || I) is 

F || (I + 1 mod 232). The encryption process is 

illustrated in Figure 1.  

C. GCM encryption operation 

As the name suggests, GCM mode combines the well-

known counter mode of encryption with the new 

Galois mode of authentication. The key feature is that 

the Galois field multiplication used for authentication 

can be easily computed in parallel thus permitting 

higher throughput than the authentication algorithms 

that use chaining modes, like CBC. The GF (2128) field 

used is defined by the polynomial x128+x7+x2+1. The 

function GHASH is defined by GHASH (H, A, C) = 

Xm+n+1, where H is a string of 128 zeros encrypted 

using the block cipher, A is data which is only 

authenticated (not encrypted), C is the cipher text, m 

is the number of 128 bit blocks in A, n is the number 

of 128 bit blocks in C (the final blocks of A and C need 

not be exactly 128 bits), and the variable Xi for 

i = 0, ..., m + n + 1 is defined as 

Xi =  0     

 for i = 0 

   (Xi−1 Ai) · H   

  for i = 1. . . m − 1 

   (Xm−1  (A*m ||0128−v)) · H 

   for i = m  

 (2) 

   (Xi−1  Ci) · H   

  for i = m + 1. . . m + n − 1 

http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Counter_.28CTR.29
http://en.wikipedia.org/wiki/Galois_field
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Ciphertext
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   (Xm+n−1  (Cm* || 0128−u)) · H 

  for i = m + n 

   (Xm+n  (len(A) || len(C))) · H 

  for i = m + n + 1.  

where v is the bit length of the final block of A, u is 

the bit length of the final block of C, and || denotes 

concatenation of bit strings. 

 

Figure 1: The authenticated encryption operation. 

 For simplicity, a case with only a single block 

of additional authenticated data (labeled Auth Data 1) 

and two blocks of plaintext is shown. Here EK denotes 

the block cipher encryption using the key K, multH 

denotes multiplication in GF (2128) by the hash key H, 

and incr denotes the counter increment function. 

 

Figure 2: The authenticated decryption operation, 

showing the same case as in Figure 1. 

 
Figure 3 :A hardware implementation of GCM, 

showing the different data paths through the circuit. 

D. MULTIPLICATION IN GF (2128) 

The multiplication operation is defined as an 

operation on bit vectors in order to simplify the 

specification. This definition corresponds to the 

particular choice of the field representation used in 

GCM. Each element is a vector of 128 bits. The ith bit 

of an element X is denoted as Xi. The leftmost bit is X0, 

and the rightmost bit is X127. The multiplication 

operation uses the special element R = 11100001 || 

0120, and is defined in Algorithm 1. The function right 

shift () moves the bits of its 7 

 

Algorithm 1 Multiplication in GF (2128). Computes the 

value of Z = X · Y, where X, Y and 

Z  GF(2128). 

 Z  ← 0, V  ← X 

 for i = 0 to 127 do 

  if Yi = 1 then 

  Z ←  Z  V 

 end if 

 if V127 = 0 then 

  V   ← right shift (V) 

 else 

 V  ← right shift(V )  R 

 end if 

 end for 

 return Z 
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argument one bit to the right. More formally, 

whenever W = right shift (V ), then Wi = Vi−1 for 1 ≤ i≤ 

127 and W0 = 0. 

Authenticated encryption and decryption are the two 

functions within the GCM. The authenticated 

encryption performs two tasks; encrypting the 

confidential data and computing and authentication 

tag. The authenticated decryption function decrypts 

the confidential data and verifies the tag. The data 

flow of the authenticated encryption is shown in Fig. 

3. As seen in this figure, the mechanism for the 

confidentiality of data is a variation of the block 

cipher counter mode of operation, denoted by GCTRK 

(Galois Counter with the key K). Then, the function 

GCTRK performs the block cipher counter mode with 

the Initial Counter Block (ICB) and its increments 

(CB2 − CBi) and the plaintext blocks (P1 − Pi) as the 

inputs.  

 
     Figure 4 The GCM authenticated encryption data 

flow. 

Galois Hash (GHASHH) function is constructed by GF 

(2128) multiplications with a fixed parameter, called 

the hash subkey (H). The GHASHH function 

calculates  

        (1) 

where X1 to Xn are the n, 128-bit blocks of the input. It 

is noted that the hash subkey is generated by 

applying the AES to the zero block, i.e., 0 = (0, 0... 0) ∈ 

GF (2128). Then, the GHASHH function calculates (1). 

All the arithmetic operations in (1), i.e., additions, GF 

multiplications, and exponentiations are performed 

over GF (2128) constructed by the irreducible 

polynomial P(x) = x128 +x7 +x2 +x+1. As seen in Fig. 3.2, 

the total number of input blocks to GHASHH is n = m 

+ i + 1, where m and i are the number of blocks for the 

additional authenticated data (A1−Am) and the output 

of GCTRK, respectively. Eventually, the 

authentication tag T with length of t bits is derived. In 

the authenticated decryption, the same GHASHH 

procedure is performed on the authenticated data and 

ciphertext blocks to verify the tag.  

III. HIGH PERFORMANCE GCM PARALLEL 

ARCHITECTURE 

 High-performance parallel architectures for 

GCM improve the throughput and the latency of the 

structures for GHASHH. They also remove the need 

for consecutive GF (2128) multiplications with H for 

deriving (1). Because of the low complexity of the 

implementations of these exponents, we take 

advantage of these low-cost hash subkey powers in 

the proposed high-performance architectures. We 

utilize the powers in the form of H2j to obtain the 

other powers of the hash subkey with the least 

number of GF multiplications over GF (2128) for 

proposed architectures. For instance, we derive H+ = 

H2 × H or H6 = H4 × H2. This architecture is based on 

the composite field GF ((24)2). Algorithm 1 is used for 

obtaining the key formulation for the proposed 

GHASHH function. Although there is no restriction 

in choosing q, i.e., the number of parallel adder-

multipliers, we use q = 2j, 1 ≤ j ≤ log2 (n). This leads to 

lower number of clock cycles and higher throughput 

needed for the implementations. 

Algorithm 1 The proposed high-performance 

approach for implementing the GCM. 

Inputs: Xp ∈ GF (2128), 1 ≤ p ≤ n, and H2j ∈ GF (2128), 

0 ≤ j ≤ log2(q). 

Output: GHASH(X, H) =nj-1 XjHn−j+1. 

1: for i = 1 to q do 

2:  tempi ← Xi 
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3:  for j = 1 to (n/q) − 1 do 

4:   tempi = (tempi × Hq ⊕ Xi+jq) 

5:  end for 

6: Let q − i + 1 = (a0(i), . . . , alog2(q)(i))2 

7:  tempi = tempi × (Ha0(i)q ×H2 ×. . .×Ha(i)log2(q)) 

8:  end for 

9: GHASH(X, H) =qi-1 tempi 

10: return GHASH(X, H). 

In Algorithm1, the output GHASH(X,H) is obtained 

as follows: 

X1 ・ Hq × . . . × HqX2 ・ Hq × . . . × Hq×Hq−1 ⊕ . . . 

⊕ Xj ・ Hq × . . . × Hq×Hq−j+1 ⊕ . . . 

⊕ Xq ・ Hq × . . . × Hq. . . ⊕ XnH,   (1) 

where all operations are performed over GF(2128) 

constructed by the irreducible polynomial P(x) = x128 

+x7 + x2 + x + 1 and  comprises 128 XOR gates. 

 One can re-write (1) so that only the 

exponentiations of the hash subkey to the powers of 2 

in the form of H2j are utilized. This method of 

exponentiation is based on the binary exponentiation. 

As seen from this algorithm, for the exponentiations 

Hq−i+1, 1 ≤ i ≤ q, one can use the binary representation 

of q − i + 1 as (a0 (i), . . . , alog2(q)(i))2 . The hardware 

implementation of Algorithm 1 has been presented in 

Fig. 4.1. For implementing Algorithm 1 in hardware, 

in total, (n/q) +log2 (q) clock cycles are needed. For the 

first (n/q) −1 clock cycles, the GF (2128) multiplications 

by Hq are performed. This is achieved by a simple 

control unit selecting Hq. Then, for the next log2 (q) 

clock cycles, the other exponentiations are used. 

These include the powers of the hash subkey in the 

form of H2j and a number of field elements 1 = (0, 0... 

1) ∈ GF (2128) for bypassing the GF (2128) multiplication 

operations. We note that if n is not a multiple of q, 

one need to add q − mod (n, q) blocks containing 0 = 

(0, 0... 0) ∈ GF (2128) to the beginning of the n blocks to 

make the total blocks processed multiple of q. 

Performing this, the hash computation can be done 

normally based on the presented procedure. Finally, 

in one clock cycle, the result becomesnj-1 XjHn−j+1.  

 

Figure 5. The hardware architecture of the proposed 

high performance GCM GHASHH function 

GF (2128) Multipliers for the GCM - Different types of 

GF (2128) multipliers are utilized in the literature for 

implementing the GF (2128) multiplications in (1). The 

multiplications have been performed using bit-

parallel, digit-serial, and hybrid multipliers in 

composite fields. The efficiency of different 

multipliers, including the sub-quadratic ones, are 

compared. A high-speed AES-GCM core has been 

presented. It is noted that the considered GF (2128) 

multipliers in these works include the Mastrovito 

multiplier with quadratic space complexity, the 

Karatsuba-Ofman multiplier and the GF (2128) 

multiplier. We have considered the bit-parallel GF 

(2128) multiplier which has quadratic hardware 

complexity. It is noted that this GF (2128) multiplier 

has lower timing complexity compared to the sub-

quadratic hardware complexity GF (2128) multipliers. 

However, we note that according to the latency of the 

proposed architectures, i.e., (n/q) + log2 (q), increasing 

the number of parallel structures (q) results in having 

higher throughputs. Fig.5presents the proposed 

architecture for the AESGCM for q = 8 parallel 

structures. The AES-128 pipeline registers are shown 

by dashed lines in Fig. 4.5. As seen in this figure, 10 

clock cycles are needed for obtaining the cipher text. 

After these first 10 clock cycles, the results are 

obtained after each clock cycle. According to Fig. 5, 8 
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parallel AES-128 structures are implemented as part 

of GCTRK to provide inputs to GHASHH. As seen in 

this figure, the function GCTRK performs the AES 

counter mode with the Initial Counter Block (ICB) 

and its one-increments (CBi). Moreover, q = 8 

increments (using INC 8 module) and the plaintext 

blocks (Pi) are used as the inputs. It is assumed that 

the data is encrypted and the IV in the GCM is 96 bits 

which is recommended for high throughput 

implementation 

 

Figure 6. The proposed AES-GCM high-performance 

architecture for q = 8 (mod (n, q) = 0). 

The architecture shown in Fig. 5assumes that the 

number of blocks n is a multiple of the number of 

parallel structures q and there is no additional 

authenticated data (AAD). In case that n is not a 

multiple of q, one can append q − mod (n, q) zero 

blocks at the beginning of the blocks for which hash is 

computed. This is done by adding a masking gate 

along the dotted line as shown in Fig. 4.5. Moreover, 

in this case, the counter blocks and accordingly Pi’s in 

Fig. 5start from the q−mod (n, q) +1 column, i.e., the 

first actual input block. We also note that in case AAD 

is present, additional multiplexers are placed at the 

output of the GCTR block in Fig. 4.5along the dotted 

line so that instead of encrypted data, the AAD is fed 

to the architecture. When the AAD is done, the 

counter blocks provide the encrypted data. Finally, in 

Fig. 5and as the last processed block, the output of the 

GCTR block in the rightmost column is masked and 

LA, C (number for n) is fed (using an extra multiplexer 

which is not shown in Fig.5for the sake of brevity). 

AESK (J0) and H = AESK (0) can be also obtained or pre-

computed in Fig. 5. The results of our synthesis for 

the AES-GCM using the FPGA Vertex Xilinx tool are 

shown in the results The synthesis are based on the 

case for q = 8 parallel addition-multiplications using 

the bit-parallel GF (2128) multiplier which has 

quadratic hardware complexity. For achieving low 

hardware complexity for the AES-GCM, we have also 

synthesized six different steps for the Karatsuba-

Ofman multipliers. 

 

Figure 7(a) Cascade, (b) parallel, and (c) hybrid 

realization methods for hashSub key exponentiations 

IV. GCM-AES BLOCK SPECIFICATION 

GCM-AES (Galois Counter Mode – Advanced 

Encryption Standard) is an authenticated encryption 

mode designed by David McGrew and John Viega. 

This aims to explore hardware implementation of 

GCM-AES mode of operation specifically targeting 

FPGA (Field Programmable Gate Arrays). The aim of 

such an implementation is to benchmark GCM-AES 

on FPGA in terms of area, power and speed. GCM-

AES has been implemented as a full duplex block 

which means that the design consists of separate 

encryption-authentication and decryption-verification 

blocks. Thus, it can carry out encryption-

authentication and decryption-verification operations 

simultaneously.  

Encryption and Authentication Block  

 GCM-AES encryption block works on one single 

frame (Message + AAD) at any given time. A 

frame consists of one or more AAD blocks or zero 

or more message blocks. Specifically, the 
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encryption block works on one message block or 

AAD block at any time.  

 The default block length is 128 bits.  

 A single control word starts the operation of 

GCM-AES encryption block with the Setup phase. 

This phase is done once per frame. After twenty 

clock cycles of latency incurred from the setup 

phase, the encryption block is ready to accept a 

message or AAD block.  

 The encryption block expects one or more AAD 

blocks where the last AAD’s block length need 

not be 128 bits. It should however be a multiple of 

a byte. Similarly, the encryption block expects 

zero or more message blocks where the last 

message block length need not be the default 

block length. It should as well be a multiple of a 

byte.  

 The design requires one or more AAD blocks to 

be input first and then zero or more plain text 

blocks. 

 The current implementation is capable of 

handling any message or AAD blocks per frame. 

It takes 10 clock cycles to encrypt a message block 

(default block length or less than that) with 10 

cycle AES-128 implementation when the 

corresponding encrypted cipher text is produced. 

The GCM-AES encryption block relies on AES-

128 encryption block for encryption and Galois 

Field multiplication for authentication. Galois 

Field Multiplier used in this implementation 

produces result in 8 clock cycles. Cipher text is 

not produced in case of AAD block.  

 The length of the frame does not need to be 

known by the encryption block.  

The encryption block works on a frame with the 

following format: 

 

 
Figure 7. The AES-128 structure for (a) simple loop, 

(b) unrolled pipelined, and (c) unrolled sub-pipelined 

architectures  

Decryption and Verification Block  

1 The GCM-AES decryption block is similar to 

GCM-AES encryption block. Thanks to Counter 

Mode. Tag calculation is exactly the same as 

GCM-AES encryption. The computed tag is 

compared against the provided tag. If the tags 

match, decrypted plain texts are considered valid.  

2 The GCM-AES decryption block works on the 

similar frame format as GCM-AES encryption 

block where now Message Blocks are replaced by 

zero or more Cipher text blocks.  

 

GCMAES Encryption and Authentication 

 

Figure 8 Interface diagram GCM-AES Encryption 

block 

GCM-AES design as described is coded in Verilog 

hardware descriptive language HDL. All simulations 

are done in Modelsim-Altera 6.5e (Quartus II 10.0sp1) 

Starter Edition Modelsim. XILINX ISE 9.2 is used for 

FPGA design flow using VirtexE technology (Family 

= VirtexE, Device = XCv400e, Package = bg560, Speed 

= -8). 

 

V. RESULTS 

We used test case for GCM-AES Encryption-Auth 

simulations. It is reproduced here for convenience  

K =  feffe9928665731c6d6a8f9467308308  

P =  d9313225f88406e5a55909c5aff5269a  

 86a7a9531534f7da2e4c303d8a318a72  

 1c3c0c95956809532fcf0e2449a6b525  

 b16aedf5aa0de657ba637b39A  

AAD=  feedfacedeadbeeffeedfacedeadbeefabaddad2  

IV =  cafebabefacedbaddecaf888  

The corresponding cipher text and Tag is  

CT =  42831ec2217774244b7221b784d0d49c  

 e3aa212f2c02a4e035c17e2329aca12e  
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 21d514b25466931c7d8f6a5aac84aa05  

 1ba30b396a0aac973d58e091  

All simulations are done in Mentor Graphic’s 

Modelsim. The design is mapped to FPGA belonging 

to VirtexE technology (Family = VirtexE, Device = 

XCv400e, Package = bg560, Speed = -8). Synthesis is 

performed by using Xilinx Synthesis Tool (XST). 

 
 

 
Figure 8 Simulation of GCM-AES Enc-Auth block 

  

Figure 8 shows simulation of GCM-AES Encryption-

Authentication block. Decryption-Verify block is 

exactly the same. Thus, only simulation of 

Encryption-Authentication block suffices. 

The synthesis report generated is shown below. 

 

Figure 9 Synthesis report of GCM-AES Enc-Auth 

block 

 
Figure 10 Floor plan design of GCM-AES Enc-Auth 

block 

 
Figure 11 FPGA Schematic of GCM-AES Enc-Auth 

block 
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Table 1 Description of GCM-AES Encryption block 

 

 

 

 

 

 

 

 

 

 

 

 VI CONCLUSION and FUTURE SCENARIO 

In this project, we have obtained optimized building 

blocks for the AES-GCM to propose efficient and high 

performance architectures. For the AES, through logic 

gate minimizations for the inversion in GF (24), the 

areas of the S-boxes have been reduced. We have also 

evaluated and compared the performance of different 

S-boxes using Xilinx tool. Furthermore, through 

exhaustive searches for the input patterns,  

dii_data 

dii stands for data 

input interface. 

Input 128 Data input that is either Nonce, message or AAD block 

dii_data_vld Input 1 When asserted (=1), dii_data contains either message or AAD block 

dii_data_type Input 1 
When asserted, dii_data contains AAD block. When deasserted (= 

0), dii_data contains message block 

dii_data_size Input 4 

Describes the size of valid dii_data. It ranges from 0-15 where 0 

indicates valid message consists of 1 byte in the LSB of dii_data and 

15 indicate full block length. Its value may change from 15 on the 

last message or AAD block 

dii_data_last_word Input 1 When asserted, dii_data contains the last message or AAD block 

dii_data_not_ready Output 1 

It is asserted by the GCM-AES indicating that it currently in the 

Setup phase or working with one message or AAD block and 

cannot accept an additional message or AAD block. 

cii_ctl_vld 

cii stands for control 

input interface 

Input 1 
When asserted, starts the execution of GCM-AES encryption block 

and triggers Setup phase 

cii_IV_vld Input 1 When asserted, dii_data contains IV value 

cii_K Input 128 It contains secret key used in GCM-AES block 

Out_data Output 128 It contains either the cipher text or Tag_data 

Out_vld Output 1 When asserted, it indicates Out_data contains cipher text 

Out_data_size Output 4 It describes the number valid bytes in Out_data 

Out_last_word Output 1 It describes whether the cipher text is the last cipher text 

Tag_vld Output 1 When asserted, Out_data contains Tag data. 

PIN  Direction  Size (bits)  Description  

clk  Input  1  Design clock  

reset  Input  1  Design reset  



International Journal of Research and Applications (July - Sep © 2014 Transactions)  

International Conference on Emerging Trends in Engineering & Technology (ICETET-2014) 

 
IJRA | 2014 |  Volume 1 |  Issue 3                                                                                                     P a g e  | 131 

 

 

 

 

 

 

 

 

We have performed simulation-based results using 

modelsim tool for different S-boxes to reach more 

accurate results compared to the statistical methods. 

We have also proposed high-performance and 

efficient architectures for the GCM. For the case study 

of q = 8 parallel structures in GHASHH, we have 

performed a hardware complexity reduction 

technique for the hash subkey exponentiations, 

having their timing complexities intact. Based on the 

available resources and performance goals to achieve, 

one can choose the proposed AES-GCM architectures 

to fulfill the constraints of different applications. 

In future the performance of the proposed efficient 

architectures for the AES-GCM and their fault 

detection approaches can be benchmarked using 

application-specific integrated circuit (ASIC) and 

field-programmable gate array (FPGA) hardware 

platforms. Larger devices can be chosen to have 

enough number of slices needed. Another future 

work for the FPGA platform can be explored noting 

that the AES is utilized for bit stream security 

mechanisms. Specifically, the AES decryption is 

hardware-implemented in many recent FPGAs. 

Incorporating the proposed hardware 

countermeasures and evaluating their effectiveness in 

counteracting internal/malicious faults on FPGAs 

would be an interesting future research topic. Finally, 

one can work on devising reliable architectures for 

the recently standardized GCM, which provides data 

authentication to block ciphers such as the AES. To 

the best of my knowledge, the aforementioned 

research on reliability of these architectures will be 

carried out for the first time. 
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