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Abstract 

This paper proposes a technique for polygonal approximation of chain-coded curve 

after relaxing the definition of digital straight segment. The initial approximation is 

modified by merging quasi linear vertices followed by insertion of additional vertices. The 

entire process involves comparison and computation on integral domain. It uses an 

approximation of perpendicular distance which is shown to impose an upper bound on 

perpendicular distance. The experimental results show improvement upon a similar work. 
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1. Introduction 

Approximation of a digital curve by a sequence of piece straight line segments has 

drawn considerable attention in research community and found its applications in pattern 

recognition, computer vision, cartography, and in other related areas. If the curve is closed 

then the approximation is called polygonal approximation otherwise, it is called a poly-

line approximation. These algorithms can be categorized as iterative and sequential, 

optimal and suboptimal. A number of algorithms for polygonal approximation of digital 

curve had been developed. The earliest among the these algorithms was an iterative 

splitting technique [1] followed by an iterative split-and-merge technique [2] and then the 

earliest one-pass sequential technique using perpendicular distance [3]. Though iterative 

splitting technique depends on initial segmentation but iterative split-and-merge does not. 

But in either technique, the fundamental problem is initial segmentation. Ramer [1] 

proposed that the top left corner and bottom corner of the input curve can be taken as 

initial vertices of the polygon. Researchers in this area also proposed techniques such as 

local vertex adjustment, split-and-merge post processing, to rectify the errors in the 

approximation because of the ad hoc initial segmentation albeit with additional cost. The 

one-pass sequential technique [3] is fast, but it rounds off sharp turnings and misses 

corners. Wall and Danielsson [4] used area deviation per unit length as a measure of co-

linearity and devised a one-pass sequential technique and succeeded to retain sharp 

turnings and corners using an additional test which was referred to as `peak test`. 

The above mentioned techniques generate a suboptimal polygon. Dunham [5] and 

others (e.g., [6]) used dynamic programming to find an optimal approximation of a curve 

by piece straight line segments. 

Pikaz and Dinstein [7], Zhu and Chirlian [8], Visvalingam and Whytt [9], introduced 

iterative point elimination that treats polygonal approximation as problem of elimination 

of points from a curve that are not likely to be candidate vertices of the approximation. 

Genetic approach has also been used to address the problem of polygonal approximation 

e.g., [10, 11]. 
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A digital curve can be defined by a sequence of vectors with its inclination a multiple 

of π/4 and length either unity or 2  and this sequence of vectors is called chain codes 

introduced by Freeman [12]. The run length of a direction is defined as the number of 

consecutive chains in the direction. For any two points P and Q lying on a digital curve, if 

every point on the curve is close to the line segment joining P and Q then the curve is said 

to have chord property. A digital curve is called a digital straight segment (DSS) if it 

satisfies chord property [13]. It is easy to prove a number of regularity properties [13] of 

DSS using its chord property. The regularity properties are referred to as rules that a DSS 

should satisfy. These rules, mentioned in [13], are reproduced here for the convenience of 

the reader. 

Rule 1 The runs have at most two directions, differing by π/4, and for one of these 

directions, the run length must be unity. 

Rule 2 The runs can have only two lengths which are consecutive integers. 

Rule 3 One of the run lengths can occur only once at a time. 

Rule 4 For the run length that occurs in runs, these runs themselves can only have two 

lengths which are consecutive integers and so on. 

It is possible to approximate a digital curve using DSS identification algorithm. If the 

curve is closed then this approximation is called polygonal approximation. But using DSS 

for polygonal approximation of digital curves results in too many straight line segments 

and this is why Bhowmick and Bhattacharya [14] relaxed the definition of DSS, retaining 

Rule 1, modifying Rule 2 and dropping the other rules and thereby introduced the concept 

of what they called Approximate Digital Straight Segment (ADSS). The definition of 

ADSS involves determination of singular and non-singular elements, and then allowing a 

segment to grow beyond a DSS as long as the run length of the nonsingular elements does 

not exceed the smallest run length  p  by more than 












1t

tp
floor , where t  modulo 2 

does not vanish. Bhowmick and Bhattacharya used 1t  and proposed that some other 

value of t  e.g., 3t , could, instead be used. They also imposed similar constraint on the 

value of the leftmost as well as the rightmost nonsingular run length so that an ADSS 

does not deviate too much from the digital curve and stated that the value of t  may differ 

among the leftmost, the rightmost and intermediate run lengths. Though ADSS extraction 

results in less number of visually straight segments than DSS does, but choice of 1t  

and 3t is ad hoc in nature having no bearing on the local topology of the curve and the 

choice requires human intervention. 

The ADSS acts as an initial segmentation of the digital curve. Usually decomposition 

of a digital curve by ADSS too, results in too many ADSS and this is why Bhowmick and 

Bhattacharya [14] merged multiple successive ADSS based on two different criterion 

functions namely, (i) sum of area deviation of the curve per unit length of approximating 

line segment (in the line of Wall and Danielsson [4]) and (ii) maximum area deviation of 

the curve per unit length of the approximating line segment. This results in representation 

of a digital curve by a polygon / poly-line approximation. Experiments with a variety of 

data set show that polygonal / poly-line approximation using criterion (ii) produces less 

accurate representation that those using criterion (i). Moreover, Wall and Danielsson [4] 

used a `peak test` and with it, succeeded to retain sharp turnings, but since no such test 

was used in Bhowmick and Bhattacharya [14] so the approximations are found to round 

off sharp turnings. 

This paper introduces Asymmetric Digital Straight Segment (AsymDSS) that does not 

require ad hoc choice of parameter but it can detect visually straight segments 

successfully in most of the scenarios. Segmentation of a digital curve into AsymDSS is 

followed by merging quasi linear vertices and inserting additional vertices (splitting), if 

required. Perpendicular distance in integral domain is introduced and used as a metric for 
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merging and subsequent splitting. To retain sharp turnings, distance to a point is used 

instead of perpendicular distance and this distance computation also is performed in 

integral domain. All arithmetic and comparisons involved in the entire process – 

decomposition of digital curve into AsymDSS, followed by merging and subsequent 

splitting – are in integral domain. 

In the next section, AsymDSS is introduced, in Section 3, technique for merging quasi 

linear vertices is presented, in Section 4, procedure for insertion of additional vertices is 

discussed, In Section 5, a brief discussion on Figure of Merit for measuring fidelity of 

polygonal approximation is presented, in Section 6, time complexity of the proposed 

method is derived, in Section 7, experimental results are presented with a brief analysis of 

the same and finally in Section 8, conclusion is drawn and an enhancement is proposed. 

 

2. Asymmetric Digital Straight Segment Detection 

AsymDSS detection starts off by identifying singular and nonsingular elements and 

continues to merge chain codes with the segment as long as singular element occurs 

singly without imposing any constraint on the length of nonsingular run lengths. This 

strategy is the consequence of retaining Rule 1 of DSS and dropping the rest of the rules, 

mentioned in the last section. The rationale behind dropping Rule 2 through 4 is that these 

rules were required for maintaining symmetry in a DSS. 

A number of digital curves along with the AsymDSS generated thereof are shown in 

Figure 1. Each of the digital curves results in a single AsymDSS because the singular 

element has length unity. The AsymDSS in Figure 1(a) and 1(b) are also ADSS but the 

curves in Figure 1(c) and 

 

         

(a)                (b) 

 

       

(c)              (d) 

Figure 1. Approximation of Different Digital Segments (shown with dots 
only) by Asymmetric Digital Straight Segment (Line Segment Overlaid on 
Dots). The Bottom-Right Approximation has the Highest Deviation in the 

Digital Curve from its Approximation 

1(d) are not ADSS (please see caption for detail), rather each of these curves consists 

of multiple ADSS, but each of these curves is detected as a single AsymDSS. It is evident 

from figures 1(c) and 1(d), an AsymDSS may deviate from a digital curve more than an 

ADSS, resulting in a coarse approximation of the curve and hence higher error in 

approximation, but AsymDSS does not require ad hoc parameter. As seen from Figure 

1(d), the approximation error may be significantly high. So AsymDSS should be 

subjected to splitting at a location on the digital curve furthest from the AsymDSS. 

It may be noted from the above paragraph that detection of AsymDSS needs 

comparison of chain-code only and no arithmetic operation is required as in the detection 

of ADSS. Moreover, ADSS detection requires an ad hoc choice of parameter t  whereas 

detection of AsymDSS does not require any such parameter. Since an AsymDSS may 

contain multiple ADSS hence it produces a coarser approximation than that produced by 

ADSS detection and is a faster decomposition technique than that of ADSS. Since ADSS 

detection results in too many tiny segments hence it requires an immediate merging so as 
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to merge quasi linear vertices. AsymDSS on the contrary, produces a coarser 

approximation and thereby it produces a visually good approximation of a digital curve 

(see experimental results) in most of the scenarios. 

 

3. Merging Quasi Linear Vertices 

Starting from an arbitrary vertex of polygon, generated by AsymDSS, vertices are 

merged one after another with an initial vertex until merging is no longer possible. The 

metric used for merging is the distance of a vertex to the line segment joining the initial 

vertex to the last vertex being considered for merging. If the maximum of the distances of 

the vertices from the line segment exceeds a threshold then all the vertices preceding the 

vertex at the maximum deviation are merged and the process is repeated using this vertex 

(with maximum deviation) as initial vertex and is continued beyond the starting vertex. If 

the starting vertex happens to be a vertex after merging then the merging terminates, 

otherwise, the process is continued until the index of the vertex generated last coincides 

with that of a vertex already generated through merging. If the digital curve is open, 

instead of being closed, then the merging should start at one end point and end at the 

other. The two end points of the curve also belong to the set of vertices of the poly-line 

approximation (since the curve is open hence the approximation is called poly-line 

approximation) of the curve. For closed digital curve, merging can be started from any of 

the vertices generated by AsymDSS and hence merging is independent of the starting 

vertex. 

The metric used for testing quasi linearity of consecutive vertices for merging the same 

is usually maximum perpendicular distance of a vertex from the approximating line 

segment, computed using floating point arithmetic. But this metric may miss corners and 

round off sharp turnings. Dunham [5] used distance to a line segment instead of 

perpendicular distance. Though this metric does not round off corners and preserves sharp 

turnings, but it needs floating point arithmetic. This paper introduces a measure for 

distance of a point from a line segment so that corners are not missed, sharp turnings are 

preserved and computation can be performed in integral domain. 

Consider three successive vertices namely,
k

V ,
1k

V ,
2k

V and it is required to determine 

whether 
1k

V is sufficiently close to the line segment 
2kk

VV . If 
k

V and 
2k

V coincide 

(Figure 2(a)) then to compute the distance of 
1k

V from the degenerate segment 
2kk

VV ,  

compute the distance of 
1k

V . 

 

      
 (a)      (b) 

          
(c)                            (d) 

Figure 2. Measuring Distance of 
1k

V from the Segment 
2kk

VV  (for Detail see 

the Text) 
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from 
k

V (
2k

V ) and compare it with a threshold . If this distance does not exceed  then 

1k
V is merged with the segment 

2kk
VV . If 

k
V and 

2k
V do not coincide and the 

orthogonal projection of 
1k

V is found to be farther away from 
k

V than 
2k

V  (Figure 2(b)) 

then the distance between the vertices 
1k

V and 
2k

V is considered as a measure of co-

linearity of 
1k

V with the segment 
2kk

VV . On the contrary, if the orthogonal projection of 

1k
V on the line joining 

k
V and 

2k
V is found to be farther away from 

2k
V than 

k
V  (Figure 

2(c)) then the distance between 
k

V and 
1k

V is the measure of co-linearity of 
1k

V with 

respect to the segment 
2kk

VV . If neither of these conditions holds then the orthogonal 

projection of the vertex 
1k

V on the line joining 
k

V and 
2k

V falls within the line segment 

2kk
VV and the perpendicular distance of 

1k
V from the line joining 

k
V and 

2k
V is a 

measure of co-linearity of 
1k

V . 

When the orthogonal projection of 
1k

V is father away from 
k

V than 
2k

V  (Figure 2(b)) 

then the dot product of the vectors 
12  kk

VV and 
2kk

VV is positive and in this case the 

distance between 
2k

V  and 
1k

V  is a measure of co-linearity of 
1k

V with respect to the 

segment 
2kk

VV , on the contrary, when the orthogonal projection of 
1k

V  is farther away 

from 
2k

V than 
k

V  (Figure 2(c)) then the dot product of the vectors 
1kk

VV and 
kk

VV
2

is 

positive and in this case the distance between 
k

V  and 
1k

V  is a measure of co-linearity of 

1k
V with respect to the segment 

2kk
VV . When the orthogonal projection of 

1k
V  lies 

between 
k

V and 
2k

V (Figure 2(d)), these dot products are not positive and in this case the 

perpendicular distance of 
1k

V  from the line joining 
k

V and 
2k

V is a measure of co-

linearity. The perpendicular distance of 
1k

V  from the line joining 
k

V and 
2k

V is defined 

by 

2

2

2

2

2212

)()(

|))(())((|

kkkk

kkkkkkkk

xxyy

yyxxxxyy
d








 ,    (1) 

),(
kk

yx being the coordinates of a vertex 
k

V . 

The above computation involves floating point arithmetic including square root 

operation in the denominator. So it is proposed to approximate the denominator of (1) 

either by isothetic distance (right hand side of (2)) or by city block distance (right hand 

side of (3)) i.e., one of the following approximations )( is proposed. 

 

|)||,max(|)()(
22

2

2

2

2 kkkkkkkk
xxyyxxyy 


    (2) 

 

||||)()(
22

2

2

2

2 kkkkkkk
xxyyxxyy k 


  (3) 

 

It may be noted that 

 

|)||,max(|)()(
22

2

2

2

2 kkkkkkkk
xxyyxxyy 


,   (4) 

but 



International Journal of Computer Graphics 

Vol. 6, No.2 (2015) 

 

 

6   Copyright ⓒ 2015 SERSC 

||||)()(
22

2

2

2

2 kkkkkkk
xxyyxxyy k 


  (5) 

 

So an upper bound on isothetic distance (right hand side of (4)) will impose an upper 

bound on Euclidean distance (left hand side of (4)). Replacing the denominator of the 

perpendicular distance d  in (1) by isothetic distance results in a metric of the form 

 
|)||,max(|

|))(())((|
'

22

2121

kkkk

kkkkkkkk

yyxx

yyxxxxyy
d








    (6) 

If an upper bound (a threshold)  is imposed on 'd then this in turn, will also impose an 

upper bound on d  and so instead of comparing 'd  against  (a floating point 

comparison), the following comparison in the integral domain is proposed. 

|)||,max(||))(())((|
222121 kkkkkkkkkkkk

yyxxyyxxxxyy 


        (7) 

If the orthogonal projection of 
1k

V falls within the segment 
2kk

VV then in order to 

decide whether the vertex 
1k

V is quasi linear (and hence can be merged) with the vertices 

k
V and 

2k
V  the metric in (7) is used. But the co-linearity is measured by the isothetic 

distance between 
k

V and 
1k

V  when 
k

V and 
2k

V coincides (Figure 2(a)), between 
1k

V and 

2k
V  when the orthogonal projection of 

1k
V  is farther away from 

k
V  than 

2k
V (Figure 

2(b)) and between 
k

V and 
1k

V  when the orthogonal projection of 
1k

V is farther away 

from 
2k

V than 
k

V (Figure 2(c)). 

 

4. Vertex Insertion 

Because of the presence of one or more very long non singular run lengths on 

AsymDSS, the curve may deviate significantly from the approximating line segment 

(Figure 1(d)) and so it may be necessary to split a segment into multiple ones. The 

splitting is performed at a point most distant from the approximating line segment. In 

most of the experiments carried out in this paper, this step hardly resulted in a 

significantly different approximation. But singular cases do exist where a large deviation 

of the digital curve from the approximating line segment may produce significantly high 

approximation error. The deviation may be a maximum at any point of the digital curve 

depending on the distribution of the non-singular run lengths along it. So it is necessary to 

make an attempt to decompose a line segment at a point on the digital curve furthest from 

the segment. 

In order to insert vertices between a pair of consecutive vertices 
k

V and 
1k

V , the 

deviation of all points  
jj

yx ,  of the digital curve intermediate of 
k

V and 
1k

V  is 

computed and the maximum of these deviations is compared with a threshold  . The 

deviation at a point  
jj

yx ,  is defined by 

          |||,|max
1111 kkkkkjkkkjkkj

xxyyyyxxxxyy 


    

(8). 

The second term on the right hand side of (8) is isothetic distance and is used here as an 

approximation of Euclidean distance for reasons stated in the last section. The maximum 

of these deviations over all points intermediate of 
k

V and 
1k

V is computed and tested to 

find out whether it is positive and if so, the point at which maximum deviation occurs is a 
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new vertex that should be inserted on the digital curve intermediate of 
k

V and 
1k

V . New 

vertices are inserted repeatedly in each segment until no more insertion is feasible. 
 

5. Time Complexity 

Since a sequential scan of the chain codes is performed by AsymDSS (processing each 

chain code once only) hence the time complexity of the AsymDSS is linear with the data 

size. This complexity is the same as that of ADSS [14]. At the merging stage, only the 

vertices generated by AsymDSS are considered and hence the worst case complexity of 

this phase is of the order of input data size. At the stage of vertex insertion, it is necessary 

to visit points of the curve intermediate of the vertices generated by AsynDSS perhaps 

more than once. If m  be the number of intermediate points of the two successive vertices 

k
V  and 

1k
V and if no vertex is required to be inserted between 

k
V  and 

1k
V then each of 

the m points is processed only once. On the contrary, if we assume that it one vertex 

'V (say) is required to insert and there happens to be 'm  points intermediate of 
k

V and 

'V then each of m points is processed once and additionally '1 mm   points of 

the m points are processed once more. Thus the total number of points processed 

is '12 mm  . In general, if it is necessary to insert )0( vertices between 
k

V  and 
1k

V  

then the number of times m points are processed is ,

1'

'








j

j
mm  where 10

'


j
 . 

Since m is only a fraction of n and is never of the order of m hence the processing time 

of the curve segment from the vertex 
k

V till the vertex 
1k

V linear with m . So the time 

complexity of the vertex insertion phase is also linear with data size n .  Since the time 

complexity of AsymDSS and that of merging is also linear with data size hence the time 

complexity of the proposed method is linear with data size. 

 

6. Fidelity of Approximation 

The measures used for fidelity of polygonal approximation are usually compression 

ratio, maximum error, integral square error and figure of merit. If a digital curve has n  

points that result in an approximation consisting of m vertices then the compression ratio 

is defined by mn / . The approximation error
i

e of a point
i

p from its nearest polygonal side 

is its perpendicular distance from the side and maximum error is the maximum of these 

distances. The integral square error is the sum of squares of these errors. Since a trade-off 

exists between approximation error and compression ratio hence figure of merit [15] 

defined by the ratio of compression ratio to integral square error expressed in percentage 

is used to compare the polygonal approximation of a curve generated by two different 

techniques. In case, integral square error is found to be zero then the figure merit is 

undefined and the approximation is regarded as a trivial approximation. 

 

7. Experimental Results 

The technique developed here has been tested extensively on a large number of 

digital curves and some of these results are shown in this paper. The Figure 3 

through 10 shows the polygonal approximation of different digital curves [16] 

overlaid on the input curve obtained using the proposed method and those 

obtained using the technique introduced in [14]. The vertices are marked with dots 

bigger than those of digital points. In each figure, the top most row show the 

approximations obtained by the proposed method, the second row shows the ones 

obtained by decomposing the curve using ADSS and then merging ADSS using 
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maximum error and the third row show the same using cumulative error. Each row 

shows approximations for three different values of tolerance parameter  1, 2, 3 

from left to right. 

 

           

            

                   
Figure 3. Digital Boundary of a Bottle and its Polygonal Approximation 

 

   

 

   
 

   

Figure 4. Digital Boundary a Car and its Polygonal Approximation 

     

 

    

 

    

Figure 5. Digital Boundary of a Brick and its Polygonal Approximation 
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Figure 6. Digital Boundary of a Crown and its Polygonal Approximation 

       
 

      
 

       

Figure 7. Digital Boundary of a Bitten Apple and its Polygonal 
Approximation 

     
 

     
 

     

Figure 8. Digital Boundary of a Key and its Polygonal Approximation 
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Figure 9. Digital Boundary of a Carriage and its Polygonal Approximation 

         
 

        
 

        

Figure 10. Digital Boundary of a Fork and its Polygonal Approximation 

The fidelity of the approximations namely, number of vertices  m , maximum 

error  


E , integral square error  
2

E , compression ratio  CR  and figure of merit (FoM, 

expressed in percentage) for different values of the tolerance parameter   are shown in 

Table I. 

It may be observed from the figures as well as from the table that the approximation 

error (maximum error and integral square error) produced by the proposed method is 

lower than that produced by applying ADSS followed by merging [14] and the proposed 

method detects higher number of vertices than by [14], and the figure of merit of the 

approximations produced by the proposed method is higher than that by [14]. This 

difference is found to be more significant at the higher values of the tolerance parameter 

τ. The ADSS followed by merging using sum of area criterion performs better than those 
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produced using maximum error criterion and use of either criterion is outperformed by the 

proposed method. As evident from the figures 3 through 10, sharp turnings as well as 

many not so sharp turnings are rounded by [14] whereas it is not so in the proposed 

method. The quality of approximation based on visual perception is observed to be better 

than those produced by [14]. 

Table 1. Number of Vertices (m), Maximum Error (E∞), Integral Square Error 
(E2), Compression Ratio(CR) and Figure of Merit (FoM) of Polygonal 

Approximation of Different Digital Curve for Values of τ = 1, 2, 3 

Digital curve Number of 

points 

 

Τ   

Fidelity measures of polygonal approximation 

 

Split-merge-split 
ADSS & Merging 

Maximum error criterion Cumulative error criterion 

m E∞ E2 CR FoM m E∞ E2 CR FoM m E∞ E2 CR FoM 

Bottle 

(Figure 3) 

327 
1 18 1.00 50.62 18.17 35.89 12 4.28 410.55 27.25 6.64 14 1.72 168.28 23.36 13.88 

2 12 1.87 113.93 27.25 23.92 6 3.74 850.50 54.50 6.41 10 2.25 344.80 32.70 9.48 

3 10 2.15 161.43 32.70 20.26 5 8.13 4014.32 65.40 1.63 8 3.12 740.15 40.88 5.52 

Car 

(Figure 4) 

443 
1 45 1.00 72.74 9.84 13.53 34 1.85 135.83 13.03 9.59 37 1.48 114.19 11.97 10.48 

2 30 1.64 161.09 14.77 9.17 24 4.96 846.15 18.46 2.18 28 2.06 240.90 15.82 6.57 

3 27 2.65 262.59 16.41 6.25 20 4.57 854.91 22.15 2.59 25 2.79 488.54 17.72 3.63 

Brick 

(Figure 5) 

500 
1 37 0.99 71.32 13.51 18.95 25 2.73 407.60 20.00 4.91 39 1.27 117.38 12.82 10.92 

2 22 1.77 155.89 22.73 14.58 16 2.99 629.30 31.25 4.97 23 2.22 300.60 21.74 7.23 

3 17 2.34 336.93 29.41 8.73 16 4.00 1069.74 31.25 2.92 21 2.26 415.91 23.81 5.72 

Crown 

(Figure 6) 

570 
1 94 1.00 86.90 6.06 6.98 83 3.59 569.93 6.87 1.20 93 1.68 154.75 6.13 3.96 

2 61 1.81 205.34 9.34 4.55 55 4.74 1158.65 10.36 0.89 64 2.13 333.05 8.91 2.67 

3 51 3.00 413.32 11.18 2.70 39 7.49 3883.54 14.62 0.38 52 3.16 545.86 10.96 2.01 

Bitten apple 

(Figure 7) 

697 
1 61 1.00 87.96 11.43 12.99 40 3.54 874.5 17.43 1.99 50 1.70 254.54 13.94 5.48 

2 40 2.00 235.47 17.43 7.40 24 10.62 12694.57 29.04 0.23 35 2.15 586.38 19.91 3.40 

3 32 2.85 594.51 21.78 3.66 18 12.52 16463.77 38.72 0.24 29 2.68 1051.73 24.03 2.29 

Key 

(Figure 8) 

791 
1 56 1.00 117.21 14.12 12.05 39 1.93 314.5 20.28 6.46 46 1.71 255.24 17.20 6.74 

2 35 1.93 356.97 22.60 6.33 29 5.41 3029.66 27.28 0.90 38 2.32 464.93 20.82 4.48 

3 31 2.53 501.44 25.52 5.09 16 14.08 15866.56 49.44 0.31 30 2.85 1513.58 26.37 1.74 

Carriage 

(Figure 9) 

 

729 
1 78 0.98 98.53 9.35 9.49 58 2.09 218.76 12.57 5.75 64 1.77 204.29 11.39 5.58 

2 48 1.94 338.02 15.19 4.49 44 3.44 646.38 16.57 2.56 51 2.18 461.50 14.29 3.10 

3 42 2.63 513.89 17.36 3.38 34 16.24 6801.14 21.44 0.32 38 2.82 836.34 19.18 2.29 

Fork 

(Figure 10) 

1322 
1 97 1.00 180.89 13.63 7.53 47 2.78 949.76 28.13 3.42 66 1.74 552.94 20.03 3.62 

2 53 1.92 508.62 24.94 4.90 33 6.05 3298.71 40.06 1.64 50 2.27 853.04 26.44 3.10 

3 34 3.00 1568.27 38.88 2.48 23 9.60 9448.94 57.00 0.60 33 3.16 1620.46 40.06 2.47 

 

8. Conclusion 

The AsymDSS has been introduced relaxing the definition of DSS followed by 

sequential merging and insertion of additional vertices. Merging is performed using an 

integral form of comparison of perpendicular distance and distance to a point so as to 

retain corners and sharp turnings whereas for vertex insertion only the former metric is 

used. It is observed that the approximation produced by the proposed method is better 

than those produced by [14]. It is possible to add an enhancement to this work producing 

symmetric approximation from symmetric digital curve if operations are performed twice 
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traversing the curve once in clockwise direction and then in the counter clockwise 

direction. 
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