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ABSTRACT 

In search based test data generation, the problem of test data generation is reduced to that of function 

minimization or maximization.Traditionally, for branch testing, the problem of test data generation has 

been formulated as a minimization problem. In this paper we define an alternate maximization formulation 

and experimentally compare it with the minimization formulation. We use genetic algorithm and binary 

particle swarm optimization as the search technique and in addition to the usual operators we also employ 

a branch ordering strategy, memory and elitism. Results indicate that there is no significant difference in 

the performance or the coverage obtained through the two approaches and either could be used in test data 

generation when coupled with the branch ordering strategy, memory and elitism. 
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1. INTRODUCTION 

Search-based software test data generation has emerged [1, 2, 3, 4, 5, 6] as a significant area of 

research in software engineering. In search based test data generation, the problem of test data 

generation is reduced to that of function minimization or maximization. The source code is 

instrumented to collect information about the program as it executes. Collected information is 

used to heuristically measure how close the test data is to satisfying the test requirements. The 

measure is then used to modify the input parameters to progressively move towards satisfying the 

test requirement. It is here that the application of metaheuristic search techniques has been 

explored. Traditionally, for branch testing, the problem of test data generation has been 

formulated as a minimization problem. In this paper we define an alternate maximization 

formulation and experimentally compare with the traditional minimization formulation. 

During testing, program P under test is executed on a test set of test data - a specific point in the 

input domain - and the results are evaluated. The test set is constructed to satisfy a test adequacy 

criterion that specifies test requirements [7, 8]. The branch coverage criterion is a test adequacy 

criterion that is based on the program flow graph. More formally, a test set T is said to satisfy the 

branch coverage criterion if on executing P on T, every branch in P’s flow graph is traversed at 

least once.  

Metaheuristic techniques such as genetic algorithms [9], quantum particle swarm optimization 

[10], scatter search [11] and others have been applied to the problem of automated test data 

generation and provide evidence of their successful application. Amongst these several have 

addressed the issue of test data generation with program-based criteria [10] and in particular the 

branch coverage criterion [10, 11, 12, 13, 14, 15, 16, 17, 18]. Further, [12, 13, 14, 19, 20] have 

formulated the problem as a minimization problem. In this paper we consider an alternate 
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maximization formulation and compare it with the minimization strategy. We use both Genetic 

Algorithm and the Binary Particle Swarm Optimization as the search strategy. 

In this paper, in Section 2 we describe the Genetic Algorithm (GA) and in Section 3 we describe 

the Particle Swarm Optimization (PSO) and Binary Particle Swarm Optimization (BPSO). We 

outline the basic maximization and minimization strategies for test data generation in Section 4 

and also describe the other strategies employed by us. In Section 5 we present the experimental 

setup and in Section 6 we discuss the results of the experiments. Section 7 concludes the paper. 

2. GENETIC ALGORITHM 

Genetic Algorithm (GA) is a search algorithm that is based on the idea of genetics and evolution 

in which new and fitter set of string individuals are created by combining portions of fittest string 

individuals of the parent population [21]. A genetic algorithm execution begins with a random 

initial population of candidate solutions {si} to an objective function f(s). Each candidate si is 

generally a vector of parameters to the function f(s) and usually appears as an encoded binary 

string (or bit string) called a chromosome or a binary individual. An encoded parameter is 

referred to as a gene, where the parameter’s values are the gene’s alleles. If there are m inputs 

parameters with the i
th
 parameter expressed in ni bits, then the length of the chromosome is 

simply∑
i

in . In this paper each binary individual, or chromosome, represents an encoding of test 

data.  

After creating the initial population, each chromosome is evaluated and assigned a fitness value. 

Evaluation is based on a fitness function that is problem dependent. From this initial selection, the 

population of chromosomes iteratively evolves to one in which candidates satisfy some 

termination criteria or, as in our case, fail to make any forward progress. Each iteration step is 

also called a generation.  

Each generation may be viewed as a two stage process [21]. Beginning with the current 

population, selection is applied to create an intermediate population and then recombination and 

mutation are applied to create the next population. The most common selection scheme is the 

roulette-wheel selection in which each chromosome is allocated a wheel slot of size in proportion 

to its fitness. By repeatedly spinning the wheel, individual chromosomes are chosen using 

“stochastic sampling with replacement” to construct the intermediate population. Additionally 

with elitism the fittest chromosomes survive from one population to the other. 

After selection, crossover, i.e., recombination, is applied to randomly paired strings with a 

probability. Amongst the various crossover schemes are the one point, two point and the uniform 

crossover schemes [21]. In the one point case a crossover point is identified in the chromosome 

bit string at random and the portions of chromosomes following the crossover point, in the paired 

chromosomes, are interchanged. In addition to crossover, mutation is used to prevent permanent 

loss of any particular bit or allele. Mutation application also introduces genetic diversity. 

Mutation results in the flipping of bits in a chromosome according to a mutation probability 

which is generally kept very low. 

The chromosome length, population size, and the various probability values in a GA application 

are referred to as the GA parameters in this paper. Selection, crossover, mutation are also referred 

to as the GA operators.  
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3. PARTICLE SWARM OPTIMIZATION AND BINARY PARTICLE SWARM 

OPTIMIZATION 

Particle Swarm Optimization (PSO) was initially proposed to find optimal solutions for 

continuous space problems by Kennedy and Eberhart [22, 23] in 1995. In PSO the search starts 

with a randomly generated population of solutions called the swarm of particles in d-dimensional 

solution space. Particle iis represented as Xi= (xi1, xi2,…..,xid) which is called the position of the 

particle i in d-dimensional space. With every particle i a velocity vector Vi = (vi1,vi2,…..,vid) is 

associated that plays an important role in deciding next position of particle and is updated in each 

iteration. For updating the velocity of each particle, the particle’s best Pibest=(pi1,pi2,…..,pid) which 

is the best position of particle i achieved so far and global best Pgbest=(pg1,pg2,….pgd) which is the 

best position of the swarm achieved so far by any particle of the swarm, are used. Following 

equations (1) and (2) are used to find new velocity and position of particle i in iteration t+1.  

Vi(t+1)=w.Vi(t)+c1ϕ1(pibest-Xi(t))+c2ϕ2(pgbest-Xi(t))               (1) 

Xi(t+1)=Xi(t)+Vi(t+1)       (2) 

In equation (1), w is the inertia weight which controls the impact of previous history of velocity 

on global and local search abilities of particles [23], c1 and c2 are positive learning constants 

which determine the rate by which the particle moves towards individual’s best position and the 

global best position. Usually, c1 and c2 are chosen in a way so that there sum doesn’t exceed 4. If 

it exceeds 4 at any time then both the velocities and positions will explode toward infinity. ϕ1 

andϕ2 are random numbers drawn from uniform probability distribution of (0, 1). In this way 

positions and velocities of the particles are evolved in each iteration until the optimal solution is 

not obtained. 

In 1997 Kennedy and Eberhart [24] introduced the binary particle swarm optimization (BPSO) 

algorithm. In the binary version every particle is represented by a bit string and each bit is 

associated with a velocity, which is the probability of changing the bit to 1. Particles are updated 

bit by bit and velocity must be restricted within the range [0, 1]. Let P be the probability of 

changing a bit from 0 to 1, then 1-P will be the probability of not changing the bit to 1. This 

probability can be represented as the following function:                                                                    

),),1(),(()1)(( gdidididid pptvtxftxP −==     (3) 

where P(xid=1) is the probability that an individual particle i will choose 1 for the bit at the d
th
site 

in the bit string, xid(t) is the current state of particle i at bit d, vid(t-1) is a measure of the string’s 

current probability to choose a 1, pid is the best state found so far for bit d of individual i, i.e., a 

1or a 0, pgd is 1 or 0 depending on what the value of bit d in the global best particle.  

The most commonly used measure for f is the sigmoid function which is defined as follows: 

)(id
1

1
))(f(v

tvide
t

−
+

=        (4) 

where, 

))1()(())1()(()1()( 21 −−+−−+−= txptxptwvtv idgdidididid ϕϕ    (5) 

Equation (5) gives the update rule for the velocity of each bit, whereϕ1 andϕ2 arerandom numbers 

drawn from the uniform distributions. Sometimes these parameters are chosen from the uniform 
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distribution, such that their sum is 4. The v value is sometimes limited so that f does not approach 

0.0 or 1.0 too closely. In this case, constant parameters [Vmin, Vmax] are used. When vidis greater 

than Vmax, it is set to Vmax and if vid is smaller to than Vmin, then Vid is set to Vmin. This simply 

limits the ultimate probability that bit xid will take on a zero or one value. A higher value of Vmax 

makes new vectors less likely. Thus Vmax in the discrete particle swarm plays the role of limiting 

exploration after the population has converged [24], i.e., it can be said that Vmax controls the 

ultimate mutation rate or temperature of the bit vector. Smaller Vmax leads to a higher mutation 

rate [24]. This is explored in the experiment described in this paper. 

4. TEST DATA GENERATION FOR BRANCH COVERAGE  

In search based test data generation, test data is generated to meet the requirements of a particular 

test adequacy criterion. The criterion in our case is the branch coverage criterion. The setup phase 

begins with the choice of a suitable representation for test data and the identification of a suitable 

fitness function.  

The inputs for one execution of the program under test P, i.e., a single test data, are represented in 

a binary string also called a binary individual. For instance, if the input to P is a pair of integers 

x= (I1, I2), then this pair is represented in a bit sequence of length rep(I1)+rep(I2) where rep(x) is 

the number of bits taken to represent x. The length of the bit strings representing I1 and I2 are 

chosen to represent the largest legal value that can be input to P. In the representation, the bit 

sequence representing I1 is followed by the bit sequence representing I2. 

The fitness of a binary individual is computed as 

Fitness (x) = Approximation Level + Normalized Branch Distance 

Traditionally, test data generation problem is formulated as a minimization problem as in [12, 13, 

14, 19, 20] in which the approach level numbering starts from the target branch and the 

normalized branch distance is computed as, 

Normalized Branch Distance = 1- 1.001
-distance 

As opposed to this, the test data generation problem 

can also be formulated as a maximization problem.  

The definition of approximation level and 

normalized branch distance is also different from [2] 

although the basic idea is similar.  

The approximation Level is a count of the number of 

predicate nodes in the shortest path from the first 

predicate node in the flow graph to the predicate 

node with the critical branch- a branch that leads the 

target to be missed in a path through the program- as 

shown in Figure 1.  

The Normalized Branch Distance is computed 

according to the formula 

Normalized Branch Distance = (1/ (1.001
distance

)) 

where, distance, or branch distance, as defined in [20, 25], is computed at the node with the 

critical branch using the values of the variables or constants involved in the predicates used in the 

conditions of the branching statement. Table 1 summarizes the computation of distance.  

Table 1. Branch distance 

computation. 

 Decision 

Type 

Branch 

Distance 

1 a < b a – b 

2 a <= b a – b 

3 a > b b – a 

4 a >= b b – a 

5 a == b Abs(a – b) 

6 a != b Abs(a – b) 

7 a && b a + b 

8 a || b min(a , b) 
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Entries one through five are the same as in [19]. Table 1 also describes the computation of 

distance in the presence of logical operators AND (&&) and OR (||). In both these cases, the 

definition takes into account that branch distance is to be minimized whereas the fitness is to be 

maximized. 

Figure 1.Approximation Level and Branch Distance Computation 

In general, in order to generate test data to satisfy the branch coverage criterion using GA and 

BPSO, the sequence in which the branches will be selected for coverage must be defined. A 

chosen branch may become difficult to cover if the corresponding branch predicate is not reached 

by any of the test data or individuals in the current population. One of the proposals made by 

Pachauri and Gursaran [26] for sequencing is the path prefix strategy. We adopt this strategy for 

the experiments described in this paper. Further, each time a branch is traversed for the first time, 

it may be necessary to store the test data that traverse the branch and inject these into the 

population when the sibling branch is selected for traversal. This is referred to as memory and is 

used in this paper.  In order to ensure that individuals reaching the sibling branch of the target are 

not destroyed by the genetic algorithm operators, elitism is adopted. Up to 10% of fit individuals, 

with a minimum of one individual, are carried forward to the next generation. Furthermore, it is 

also possible to initialize the population each time a new branch is selected for coverage or leave 

it uninitialized. In the experiments described in this paper, the population is not initialized. 

Infeasibility may prevent test data from being generated to satisfy a coverage criterion. It may be 

dealt with as follows. If the search is attempting to traverse a particular branch, but is unable to do 

so over a sufficiently large, predetermined, number of iterations, then the search run is aborted 

and the branch is manually examined for infeasibility. If the branch is found to be infeasible then 

it is marked as traversed and the search is rerun. 

 

 

 

 



 

 

 

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012 

212 

 

 

 

 

5. EXPERIMENTAL SETUP 

In this section we describe the various experiments carried out to test the performance of test data 

generation with genetic algorithm.  

5.1 Benchmark Programs 

Benchmark programs chosen for the experiments have been taken from [11, 27]. These programs 

have a number of features such as real inputs, equality conditions with the AND operator and 

deeply nested predicates that make them suitable for testing different approaches for test data 

generation.  

• Line in a Rectangle Problem: This program takes eight real inputs, four of which 

represent the coordinates of rectangle and other four represents the coordinates of the 

line. The program determines the position of the line with respect to the position of 

rectangle and generates one out of four possible outputs: 

A. The line is completely inside the rectangle;  

B. The line is completely outside the rectangle;  

C. The line is partially covered by the rectangle; and 

D. Error: The input values do not define a line and/or a rectangle. 

The maximum nesting level is 12. In total this program’s CFG has 54 nodes and 18 

predicate nodes. 

• Number of Days between Two Dates Problem: This program calculates the days between 

two given dates of the current century. It takes six integer inputs- three of which represent 

the first date (day, month, and year) and other three represents the second date (day, 

month, and year). The CFG has 43 predicate nodes and 127 nodes 

• Calday: This routine returns the Julian day number. There are three integer input to the 

program. First input represent month, second represent day and the third represent the 

year. It's CFG has 27 Nodes with 11 predicate nodes. It has equality conditions, 

remainder operator. The maximum nesting level is 8.  

• Complex Branch:It accepts 6 short integer inputs. In this routine there are some complex 

predicate conditions with relational operators combined with complex AND and OR 

conditions, it also contains while loops and SWITCH-CASE statement. Its CFG contains 

30 nodes. 

• Meyer’s Triangle Classifier Problem: This program classifies a triangle on the basis of its 

input sides as non triangle or a triangle, i.e., isosceles, equilateral or scalene. It takes three 

real inputs all of which represent the sides of the triangle. It's CFG has 14 Nodes with 6 

predicate nodes. The maximum nesting level is 5. It has equality conditions with AND 

operator, which make the branches difficult to cover. 

• Sthamer’s Triangle Classifier Problem: This program also classifies a triangle on the 

basis of its input sides as non triangle or a triangle that is isosceles, equilateral, right 

angle triangle or scalene. It takes three real inputs; all of them represent the sides of the 

triangle but with different predicate conditions.  It's CFG has 29 Nodes with 13 predicate 

nodes. The maximum nesting level is 12. It has equality conditions with AND operator 

and complex relational operators. 

• Wegener’sTriangle Classifier Problem: This program also classifies a triangle on the 

basis of its input sides as non triangle or a triangle that is isosceles, equilateral, 

orthogonal or obtuse angle. It takes three real inputs; all of them represent the sides of the 

triangle but with different predicate conditions.  It's CFG has 32 Nodes with 13 predicate 
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nodes. The maximum nesting level is 9. 

• Michael’s Triangle Classifier Problem: This program also classifies a triangle on the 

basis of its input sides as non triangle or a triangle that is isosceles, equilateral or scalene. 

It takes three real inputs; all of them represent the sides of the triangle but with different 

predicate conditions.  It's CFG has 26 Nodes with 11 predicate nodes. The maximum 

nesting level is 6. 

 

5.2 GA Operator and Parameter Settings 

Table 2 lists the various operator and parameter settings for the genetic algorithm used in this 

study. 

Table 2.Operator and Parameter Settings for genetic algorithm 

 Parameter/ Operator Value 

1 Population Size 6, 10, 16, 20, 26, …, 110. 

2 Crossover type Two point crossover 

3 Crossover Probability 1.0 

4 Mutation Probability 0.01 

5 Selection Method Binary tournament 

6 Branch Ordering Scheme Path Prefix Strategy 

7 Fitness Function As described in Section 3. 

8 Population Initialization Initialize once at the beginning of the GA run 

9 Population Replacement Strategy Elitism with upto 10% carry forward 

10 Maximum Number of Generations 107 

11 Memory Yes 

 

Table 3 lists the various operator and parameter settings for the Binary Particle Swarm Optimization 

(BPSO) used in this study. 
 

Table 3.Operator and Parameter Settings for Binary Particle Swarm Optimization (BPSO) 

Parameter/ Operator Value 

ϕ1, ϕ2 
Random numbers from the uniform 

distribution (0,4), such that ϕ1+ϕ2≤4 

w 

[0.5+ (rnd/2.0)], where rnd is random 

number drawn from uniform distribution 

(0,1). 

6. RESULTS 

Experiments with the two approaches were carried out and compared independently for Genetic 

Algorithm and for Binary Particle Swarm Optimization. For each population size, hundred 

experiments were carried out and the following statistics were collected: 

• Mean number of generations. It may be noted that the termination criterion for each 

experiment is either full branch coverage or 10
7
 generations whichever occurs earlier. 

The number of generations to termination over hundred experiments is used to compute 

the mean. The mean does not tell us if all the branches were covered. 

• Mean percentage coverage achieved. 
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Additionally ANOVA was carried out using SYSTAT 9.0 to determine significant difference in 

means for experiments with Genetic Algorithm only. 

In all the experiments with GA and BPSO, full (100%) coverage was achieved for all population 

sizes, for all benchmark programs and for both maximization and minimization approaches. This 

implies that the differentiating factor would have to be the difference in the mean number of 

generations. 

Figure 2 and Figure 3 plot the mean number of generations for both the maximization and 

minimization approach with Genetic Algorithm. Table 4 summarizes the results of ANOVA with 

F and p values for the GA based results. Considering a significance level of 0.05, it can be seen 

that the difference for all the benchmark programs is not significant except for some isolated 

cases which are not generalizable.  

Similar results are also obtained for BPSO, which can also be seen in Figure 4 through Figure 5. 

Results with both the approaches are comparable. 

Further analysis in our case shows that with the path prefix strategy and memory, individuals are 

present in each generation that cause a traversal of the sibling branch of the target. This coupled 

with elitism may actually speed up the test data discovery process.  
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7. CONCLUSION 

In search based test data generation, the problem of test data generation is reduced to that of function 

minimization or maximization. Traditionally, for branch testing, the problem of test data generation 

has been formulated as a minimization problem. In this paper we have defined an alternate 

maximization formulation and experimentally compared it with the minimization formulation. We 

have used a genetic algorithm and binary particle swarm optimization as the search technique and in 

addition to the usual operators we have also employed the path prefix strategy as a branch ordering 

strategy and memory and elitism. Results indicate that there is no significant difference in the 

performance or the coverage obtained through the two approaches and either could be used in test 

data generation if coupled with the path prefix strategy, memory and elitism. 
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