

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

DOI : 10.5121/ijsea.2012.3115 207

COMPARATIVE EVALUATION OF A MAXIMIZATION

AND MINIMIZATION APPROACH FOR TEST DATA

GENERATION WITH GENETIC ALGORITHM AND

BINARY PARTICLE SWARM OPTIMIZATION

Ankur Pachauri and Gursaran

Department of Mathematics, Dayalbagh Educational Institute, Agra 282110
ankurpachauri@gmail.com, gursaran.db@gmail.com

ABSTRACT

In search based test data generation, the problem of test data generation is reduced to that of function

minimization or maximization.Traditionally, for branch testing, the problem of test data generation has

been formulated as a minimization problem. In this paper we define an alternate maximization formulation

and experimentally compare it with the minimization formulation. We use genetic algorithm and binary

particle swarm optimization as the search technique and in addition to the usual operators we also employ

a branch ordering strategy, memory and elitism. Results indicate that there is no significant difference in

the performance or the coverage obtained through the two approaches and either could be used in test data

generation when coupled with the branch ordering strategy, memory and elitism.

KEYWORDS

Search based test data generation, program test data generation, genetic algorithm, software testing

1. INTRODUCTION

Search-based software test data generation has emerged [1, 2, 3, 4, 5, 6] as a significant area of

research in software engineering. In search based test data generation, the problem of test data

generation is reduced to that of function minimization or maximization. The source code is

instrumented to collect information about the program as it executes. Collected information is

used to heuristically measure how close the test data is to satisfying the test requirements. The

measure is then used to modify the input parameters to progressively move towards satisfying the

test requirement. It is here that the application of metaheuristic search techniques has been

explored. Traditionally, for branch testing, the problem of test data generation has been

formulated as a minimization problem. In this paper we define an alternate maximization

formulation and experimentally compare with the traditional minimization formulation.

During testing, program P under test is executed on a test set of test data - a specific point in the

input domain - and the results are evaluated. The test set is constructed to satisfy a test adequacy

criterion that specifies test requirements [7, 8]. The branch coverage criterion is a test adequacy

criterion that is based on the program flow graph. More formally, a test set T is said to satisfy the

branch coverage criterion if on executing P on T, every branch in P’s flow graph is traversed at

least once.

Metaheuristic techniques such as genetic algorithms [9], quantum particle swarm optimization

[10], scatter search [11] and others have been applied to the problem of automated test data

generation and provide evidence of their successful application. Amongst these several have

addressed the issue of test data generation with program-based criteria [10] and in particular the

branch coverage criterion [10, 11, 12, 13, 14, 15, 16, 17, 18]. Further, [12, 13, 14, 19, 20] have

formulated the problem as a minimization problem. In this paper we consider an alternate

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

208

maximization formulation and compare it with the minimization strategy. We use both Genetic

Algorithm and the Binary Particle Swarm Optimization as the search strategy.

In this paper, in Section 2 we describe the Genetic Algorithm (GA) and in Section 3 we describe

the Particle Swarm Optimization (PSO) and Binary Particle Swarm Optimization (BPSO). We

outline the basic maximization and minimization strategies for test data generation in Section 4

and also describe the other strategies employed by us. In Section 5 we present the experimental

setup and in Section 6 we discuss the results of the experiments. Section 7 concludes the paper.

2. GENETIC ALGORITHM

Genetic Algorithm (GA) is a search algorithm that is based on the idea of genetics and evolution

in which new and fitter set of string individuals are created by combining portions of fittest string

individuals of the parent population [21]. A genetic algorithm execution begins with a random

initial population of candidate solutions {si} to an objective function f(s). Each candidate si is

generally a vector of parameters to the function f(s) and usually appears as an encoded binary

string (or bit string) called a chromosome or a binary individual. An encoded parameter is

referred to as a gene, where the parameter’s values are the gene’s alleles. If there are m inputs

parameters with the i
th
 parameter expressed in ni bits, then the length of the chromosome is

simply∑
i

in . In this paper each binary individual, or chromosome, represents an encoding of test

data.

After creating the initial population, each chromosome is evaluated and assigned a fitness value.

Evaluation is based on a fitness function that is problem dependent. From this initial selection, the

population of chromosomes iteratively evolves to one in which candidates satisfy some

termination criteria or, as in our case, fail to make any forward progress. Each iteration step is

also called a generation.

Each generation may be viewed as a two stage process [21]. Beginning with the current

population, selection is applied to create an intermediate population and then recombination and

mutation are applied to create the next population. The most common selection scheme is the

roulette-wheel selection in which each chromosome is allocated a wheel slot of size in proportion

to its fitness. By repeatedly spinning the wheel, individual chromosomes are chosen using

“stochastic sampling with replacement” to construct the intermediate population. Additionally

with elitism the fittest chromosomes survive from one population to the other.

After selection, crossover, i.e., recombination, is applied to randomly paired strings with a

probability. Amongst the various crossover schemes are the one point, two point and the uniform

crossover schemes [21]. In the one point case a crossover point is identified in the chromosome

bit string at random and the portions of chromosomes following the crossover point, in the paired

chromosomes, are interchanged. In addition to crossover, mutation is used to prevent permanent

loss of any particular bit or allele. Mutation application also introduces genetic diversity.

Mutation results in the flipping of bits in a chromosome according to a mutation probability

which is generally kept very low.

The chromosome length, population size, and the various probability values in a GA application

are referred to as the GA parameters in this paper. Selection, crossover, mutation are also referred

to as the GA operators.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

209

3. PARTICLE SWARM OPTIMIZATION AND BINARY PARTICLE SWARM

OPTIMIZATION

Particle Swarm Optimization (PSO) was initially proposed to find optimal solutions for

continuous space problems by Kennedy and Eberhart [22, 23] in 1995. In PSO the search starts

with a randomly generated population of solutions called the swarm of particles in d-dimensional

solution space. Particle iis represented as Xi= (xi1, xi2,…..,xid) which is called the position of the

particle i in d-dimensional space. With every particle i a velocity vector Vi = (vi1,vi2,…..,vid) is

associated that plays an important role in deciding next position of particle and is updated in each

iteration. For updating the velocity of each particle, the particle’s best Pibest=(pi1,pi2,…..,pid) which

is the best position of particle i achieved so far and global best Pgbest=(pg1,pg2,….pgd) which is the

best position of the swarm achieved so far by any particle of the swarm, are used. Following

equations (1) and (2) are used to find new velocity and position of particle i in iteration t+1.

Vi(t+1)=w.Vi(t)+c1ϕ1(pibest-Xi(t))+c2ϕ2(pgbest-Xi(t)) (1)

Xi(t+1)=Xi(t)+Vi(t+1) (2)

In equation (1), w is the inertia weight which controls the impact of previous history of velocity

on global and local search abilities of particles [23], c1 and c2 are positive learning constants

which determine the rate by which the particle moves towards individual’s best position and the

global best position. Usually, c1 and c2 are chosen in a way so that there sum doesn’t exceed 4. If

it exceeds 4 at any time then both the velocities and positions will explode toward infinity. ϕ1

andϕ2 are random numbers drawn from uniform probability distribution of (0, 1). In this way

positions and velocities of the particles are evolved in each iteration until the optimal solution is

not obtained.

In 1997 Kennedy and Eberhart [24] introduced the binary particle swarm optimization (BPSO)

algorithm. In the binary version every particle is represented by a bit string and each bit is

associated with a velocity, which is the probability of changing the bit to 1. Particles are updated

bit by bit and velocity must be restricted within the range [0, 1]. Let P be the probability of

changing a bit from 0 to 1, then 1-P will be the probability of not changing the bit to 1. This

probability can be represented as the following function:

),),1(),(()1)((gdidididid pptvtxftxP −== (3)

where P(xid=1) is the probability that an individual particle i will choose 1 for the bit at the d
th
site

in the bit string, xid(t) is the current state of particle i at bit d, vid(t-1) is a measure of the string’s

current probability to choose a 1, pid is the best state found so far for bit d of individual i, i.e., a

1or a 0, pgd is 1 or 0 depending on what the value of bit d in the global best particle.

The most commonly used measure for f is the sigmoid function which is defined as follows:

)(id
1

1
))(f(v

tvide
t

−
+

= (4)

where,

))1()(())1()(()1()(21 −−+−−+−= txptxptwvtv idgdidididid ϕϕ (5)

Equation (5) gives the update rule for the velocity of each bit, whereϕ1 andϕ2 arerandom numbers

drawn from the uniform distributions. Sometimes these parameters are chosen from the uniform

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

210

distribution, such that their sum is 4. The v value is sometimes limited so that f does not approach

0.0 or 1.0 too closely. In this case, constant parameters [Vmin, Vmax] are used. When vidis greater

than Vmax, it is set to Vmax and if vid is smaller to than Vmin, then Vid is set to Vmin. This simply

limits the ultimate probability that bit xid will take on a zero or one value. A higher value of Vmax

makes new vectors less likely. Thus Vmax in the discrete particle swarm plays the role of limiting

exploration after the population has converged [24], i.e., it can be said that Vmax controls the

ultimate mutation rate or temperature of the bit vector. Smaller Vmax leads to a higher mutation

rate [24]. This is explored in the experiment described in this paper.

4. TEST DATA GENERATION FOR BRANCH COVERAGE

In search based test data generation, test data is generated to meet the requirements of a particular

test adequacy criterion. The criterion in our case is the branch coverage criterion. The setup phase

begins with the choice of a suitable representation for test data and the identification of a suitable

fitness function.

The inputs for one execution of the program under test P, i.e., a single test data, are represented in

a binary string also called a binary individual. For instance, if the input to P is a pair of integers

x= (I1, I2), then this pair is represented in a bit sequence of length rep(I1)+rep(I2) where rep(x) is

the number of bits taken to represent x. The length of the bit strings representing I1 and I2 are

chosen to represent the largest legal value that can be input to P. In the representation, the bit

sequence representing I1 is followed by the bit sequence representing I2.

The fitness of a binary individual is computed as

Fitness (x) = Approximation Level + Normalized Branch Distance

Traditionally, test data generation problem is formulated as a minimization problem as in [12, 13,

14, 19, 20] in which the approach level numbering starts from the target branch and the

normalized branch distance is computed as,

Normalized Branch Distance = 1- 1.001
-distance

As opposed to this, the test data generation problem

can also be formulated as a maximization problem.

The definition of approximation level and

normalized branch distance is also different from [2]

although the basic idea is similar.

The approximation Level is a count of the number of

predicate nodes in the shortest path from the first

predicate node in the flow graph to the predicate

node with the critical branch- a branch that leads the

target to be missed in a path through the program- as

shown in Figure 1.

The Normalized Branch Distance is computed

according to the formula

Normalized Branch Distance = (1/ (1.001
distance

))

where, distance, or branch distance, as defined in [20, 25], is computed at the node with the

critical branch using the values of the variables or constants involved in the predicates used in the

conditions of the branching statement. Table 1 summarizes the computation of distance.

Table 1. Branch distance

computation.

 Decision

Type

Branch

Distance

1 a < b a – b

2 a <= b a – b

3 a > b b – a

4 a >= b b – a

5 a == b Abs(a – b)

6 a != b Abs(a – b)

7 a && b a + b

8 a || b min(a , b)

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

211

Entries one through five are the same as in [19]. Table 1 also describes the computation of

distance in the presence of logical operators AND (&&) and OR (||). In both these cases, the

definition takes into account that branch distance is to be minimized whereas the fitness is to be

maximized.

Figure 1.Approximation Level and Branch Distance Computation

In general, in order to generate test data to satisfy the branch coverage criterion using GA and

BPSO, the sequence in which the branches will be selected for coverage must be defined. A

chosen branch may become difficult to cover if the corresponding branch predicate is not reached

by any of the test data or individuals in the current population. One of the proposals made by

Pachauri and Gursaran [26] for sequencing is the path prefix strategy. We adopt this strategy for

the experiments described in this paper. Further, each time a branch is traversed for the first time,

it may be necessary to store the test data that traverse the branch and inject these into the

population when the sibling branch is selected for traversal. This is referred to as memory and is

used in this paper. In order to ensure that individuals reaching the sibling branch of the target are

not destroyed by the genetic algorithm operators, elitism is adopted. Up to 10% of fit individuals,

with a minimum of one individual, are carried forward to the next generation. Furthermore, it is

also possible to initialize the population each time a new branch is selected for coverage or leave

it uninitialized. In the experiments described in this paper, the population is not initialized.

Infeasibility may prevent test data from being generated to satisfy a coverage criterion. It may be

dealt with as follows. If the search is attempting to traverse a particular branch, but is unable to do

so over a sufficiently large, predetermined, number of iterations, then the search run is aborted

and the branch is manually examined for infeasibility. If the branch is found to be infeasible then

it is marked as traversed and the search is rerun.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

212

5. EXPERIMENTAL SETUP

In this section we describe the various experiments carried out to test the performance of test data

generation with genetic algorithm.

5.1 Benchmark Programs

Benchmark programs chosen for the experiments have been taken from [11, 27]. These programs

have a number of features such as real inputs, equality conditions with the AND operator and

deeply nested predicates that make them suitable for testing different approaches for test data

generation.

• Line in a Rectangle Problem: This program takes eight real inputs, four of which

represent the coordinates of rectangle and other four represents the coordinates of the

line. The program determines the position of the line with respect to the position of

rectangle and generates one out of four possible outputs:

A. The line is completely inside the rectangle;

B. The line is completely outside the rectangle;

C. The line is partially covered by the rectangle; and

D. Error: The input values do not define a line and/or a rectangle.

The maximum nesting level is 12. In total this program’s CFG has 54 nodes and 18

predicate nodes.

• Number of Days between Two Dates Problem: This program calculates the days between

two given dates of the current century. It takes six integer inputs- three of which represent

the first date (day, month, and year) and other three represents the second date (day,

month, and year). The CFG has 43 predicate nodes and 127 nodes

• Calday: This routine returns the Julian day number. There are three integer input to the

program. First input represent month, second represent day and the third represent the

year. It's CFG has 27 Nodes with 11 predicate nodes. It has equality conditions,

remainder operator. The maximum nesting level is 8.

• Complex Branch:It accepts 6 short integer inputs. In this routine there are some complex

predicate conditions with relational operators combined with complex AND and OR

conditions, it also contains while loops and SWITCH-CASE statement. Its CFG contains

30 nodes.

• Meyer’s Triangle Classifier Problem: This program classifies a triangle on the basis of its

input sides as non triangle or a triangle, i.e., isosceles, equilateral or scalene. It takes three

real inputs all of which represent the sides of the triangle. It's CFG has 14 Nodes with 6

predicate nodes. The maximum nesting level is 5. It has equality conditions with AND

operator, which make the branches difficult to cover.

• Sthamer’s Triangle Classifier Problem: This program also classifies a triangle on the

basis of its input sides as non triangle or a triangle that is isosceles, equilateral, right

angle triangle or scalene. It takes three real inputs; all of them represent the sides of the

triangle but with different predicate conditions. It's CFG has 29 Nodes with 13 predicate

nodes. The maximum nesting level is 12. It has equality conditions with AND operator

and complex relational operators.

• Wegener’sTriangle Classifier Problem: This program also classifies a triangle on the

basis of its input sides as non triangle or a triangle that is isosceles, equilateral,

orthogonal or obtuse angle. It takes three real inputs; all of them represent the sides of the

triangle but with different predicate conditions. It's CFG has 32 Nodes with 13 predicate

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

213

nodes. The maximum nesting level is 9.

• Michael’s Triangle Classifier Problem: This program also classifies a triangle on the

basis of its input sides as non triangle or a triangle that is isosceles, equilateral or scalene.

It takes three real inputs; all of them represent the sides of the triangle but with different

predicate conditions. It's CFG has 26 Nodes with 11 predicate nodes. The maximum

nesting level is 6.

5.2 GA Operator and Parameter Settings

Table 2 lists the various operator and parameter settings for the genetic algorithm used in this

study.

Table 2.Operator and Parameter Settings for genetic algorithm

 Parameter/ Operator Value

1 Population Size 6, 10, 16, 20, 26, …, 110.

2 Crossover type Two point crossover

3 Crossover Probability 1.0

4 Mutation Probability 0.01

5 Selection Method Binary tournament

6 Branch Ordering Scheme Path Prefix Strategy

7 Fitness Function As described in Section 3.

8 Population Initialization Initialize once at the beginning of the GA run

9 Population Replacement Strategy Elitism with upto 10% carry forward

10 Maximum Number of Generations 107

11 Memory Yes

Table 3 lists the various operator and parameter settings for the Binary Particle Swarm Optimization

(BPSO) used in this study.

Table 3.Operator and Parameter Settings for Binary Particle Swarm Optimization (BPSO)

Parameter/ Operator Value

ϕ1, ϕ2
Random numbers from the uniform

distribution (0,4), such that ϕ1+ϕ2≤4

w

[0.5+ (rnd/2.0)], where rnd is random

number drawn from uniform distribution

(0,1).

6. RESULTS

Experiments with the two approaches were carried out and compared independently for Genetic

Algorithm and for Binary Particle Swarm Optimization. For each population size, hundred

experiments were carried out and the following statistics were collected:

• Mean number of generations. It may be noted that the termination criterion for each

experiment is either full branch coverage or 10
7
 generations whichever occurs earlier.

The number of generations to termination over hundred experiments is used to compute

the mean. The mean does not tell us if all the branches were covered.

• Mean percentage coverage achieved.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

214

Additionally ANOVA was carried out using SYSTAT 9.0 to determine significant difference in

means for experiments with Genetic Algorithm only.

In all the experiments with GA and BPSO, full (100%) coverage was achieved for all population

sizes, for all benchmark programs and for both maximization and minimization approaches. This

implies that the differentiating factor would have to be the difference in the mean number of

generations.

Figure 2 and Figure 3 plot the mean number of generations for both the maximization and

minimization approach with Genetic Algorithm. Table 4 summarizes the results of ANOVA with

F and p values for the GA based results. Considering a significance level of 0.05, it can be seen

that the difference for all the benchmark programs is not significant except for some isolated

cases which are not generalizable.

Similar results are also obtained for BPSO, which can also be seen in Figure 4 through Figure 5.

Results with both the approaches are comparable.

Further analysis in our case shows that with the path prefix strategy and memory, individuals are

present in each generation that cause a traversal of the sibling branch of the target. This coupled

with elitism may actually speed up the test data discovery process.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

215

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

216

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

217

7. CONCLUSION

In search based test data generation, the problem of test data generation is reduced to that of function

minimization or maximization. Traditionally, for branch testing, the problem of test data generation

has been formulated as a minimization problem. In this paper we have defined an alternate

maximization formulation and experimentally compared it with the minimization formulation. We

have used a genetic algorithm and binary particle swarm optimization as the search technique and in

addition to the usual operators we have also employed the path prefix strategy as a branch ordering

strategy and memory and elitism. Results indicate that there is no significant difference in the

performance or the coverage obtained through the two approaches and either could be used in test

data generation if coupled with the path prefix strategy, memory and elitism.

ACKNOWLEDGEMENTS

This work was supported by the UGC Major Project Grant F.No.36-70/2008 (SR) for which the

authors are thankful.

REFERENCES

[1] M. Harman & B. Jones, (2001), “Search Based Software Engineering”, Journal of Information and Software

Technology, vol. 43, No. 14,pp833-839.

[2] P. McMinn, (2004), “Search-Based Software Test Data Generation: A Survey,” Software Testing, Verification

and Reliability, vol. 14, No.2, pp105-156.

[3] M. Harman, A. Mansouri, and Y. Zhang, (2009),”Search based software engineering: A comprehensive

analysis and review of trends techniques and applications”, Technical Report TR-09-03, Department of

Computer Science, King's College London.

[4] M. Harman and A. Mansouri, (2010),"Search Based Software Engineering: Introduction to the Special Issue

of the IEEE Transactions on Software Engineering,"IEEE Transactions onSoftware Engineering, vol.36,

No.6, pp737-741.

[5] S. Ali, L.C. Briand, H. Hemmati, R.K. Panesar-Walawege, (2010), "A Systematic Review of the Application

and Empirical Investigation of Search-Based Test Case Generation",IEEE Transactions onSoftware

Engineering, vol.36, No.6, pp742-762.

[6] M. Harman and P. McMinn, (2010), "A Theoretical and Empirical Study of Search-Based Testing: Local,

Global, and Hybrid Search",IEEE Transactions onSoftware Engineering, vol.36, No.2, pp226-247.

[7] H. Zhu, A. V. PatrickHall, and H. R. John, (1997), “Software Unit Test Coverage and Adequacy”,ACM

Computing Surveys, vol. 29, No. 4, pp366–427.

[8] M. Harman, L. Hu, R.M. Hierons, C. Fox, S. Danicic, A. Baresel, H. Sthamer, and J. Wegener, (2002).

“Evolutionary Testing Supported by Slicing and Transformation”, In Proceedings of IEEE International

Conference on Software Maintenance, Montreal, Canada (ICSM ’02), pp 285–285.

[9] C. Michael, G. McGraw and M. Schatz, (2001), “Generating Software Test Data by Evolution”,IEEE

Transaction on Software Engineering, vol. 27, pp1085-1110.

[10] K. Agarwal and Gursaran, (2010), “Towards software test data generation using discrete quantum particle

swarm optimization. In Proceedings of the 3rd India software engineering conference (ISEC '10). ACM,

New York, NY, USA, pp65-68.

[11] R. Blanco, J. Tuya and B. Adenso-Díaz. (2009). “Automated test data generation using a scatter search

approach” Inf.Softw. Technol. Vol. 51, No. 4, pp.708-720.

[12] B.F. Jones, D. Eyres, and H. Sthamer, (1998), “A Strategy for using Genetic Algorithms to Automate

Branch and Fault-based Testing”,Computer Journal, vol. 41,No. 2, pp98–107.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

218

[13] J. Wegener, A. Baresel and H. Sthamer (2001), “Evolutionary Test Environment for Automatic Structural

Testing”,Information and Software Technology Special Issue on Software Engineering using Metaheuristic

Innovative Algorithms, vol. 43,No. 14, pp841–854.

[14] E. D´ıaz, J. Tuya and R. Blanco (2003), “Automated Software Testing using a Metaheuristic Technique

based on Tabu Search”. In Proceedings of the 18th IEEE International Conference on Automated Software

Engineering (ASE ’03), Montreal, Canada, pp310–313.

[15] P. McMinn, D. Binkley and M. Harman, (2009), “Empirical evaluation of a nesting testability

transformation for evolutionary testing”, ACM Trans. Softw. Engg. Methodol. Vol. 18, No. 3.

[16] M. Harman, (2008), “Testability Transformation for Search-Based Testing”, In Keynote of the 1st

International Workshop on Search-Based Software Testing (SBST) in conjunction with ICST 2008,

Lillehammer, Norway.

[17] M.A. Ahmed and I. Hermadi (2008), “GA-based Multiple Paths Test Data Generator”, Computers &

Operations Research, vol. 35, No. 10, pp3107–3124.

[18] Y. Chen, Y. Zhong, T. Shi, and J. Liu (2009), “Comparison of Two Fitness Functions for GA-Based Path-

Oriented Test Data Generation”, In Proceedings of the 2009 Fifth International Conference on Natural

Computation (ICNC '09), IEEE Computer Society, Washington, DC, USA, Vol. 4, pp177-181.

[19] B. Korel, B. (1990),“Automated Software Test Data Generation”. In Transactions on Software Engineering,

SE vol. 16, No. 8, pp870–879.

[20] A. Baresel, H. Sthamer and M. Schmidt. (2002), “Fitness Function Design to Improve Evolutionary

Structural Testing”, Inproceedings of the 2002 Conference on Genetic and Evolutionary Computation

(GECCO ’02), New York, USA, pp1329–1336.

[21] D.E. Goldberg, (1989), Genetic Algorithms in search optimization & machine learning, Pearson Education

Asia.

[22] J. Kennedy and R. Eberhart, “Particle swarm optimization,” In Proc. Of the IEEE Int. Conf. on Neural

Networks, Piscataway, NJ, 1995, pp.1942–1948.

[23] M. Dorigo and T. Stützle, “The particle swarm: social adaptation in information-processing system”, New

Ideas in Optimization, McGraw-Hill, London, 1999, pp. 279-387.

[24] J. Kennedy and R.C. Eberhart. “A discrete binary version of the particle swarm algorithm”, IEEE

International Conference on Systems, Man, and Cybernetics, 1997.

[25] P. McMinn and M. Holcombe, (2006), “Evolutionary Testing Using an Extended Chaining

Approach”,Evolutionary Computation, vol.14, No.1, pp. 41-64.

[26] A. Pachauri and Gursaran, (2011), “Software Test Data Generation using Path Prefix Strategy and Genetic

Algorithm”, In Proc. of the International Conference on Science and Engineering (ICSE 2011),ISBN: 978-

981-08-7931-0, pp131-140. Available on http://rgconferences.com/proceed/icse11/pdf/152.pdf

[27] E. D´ıaz, J. Tuya and R. Blanco and J. J. Dolado (2008), “A Tabu Search Algorithm for Structural Software

Testing”, Computers & Operations Research, vol. 35, No. 10, pp3052–3072.

