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Abstract  
We extend the computation and information sharing capabilities of networked robotics by proposing a cloud robotic architecture. The cloud 
robotic architecture leverages the combination of an ad-hoc cloud formed by machine-to-machine (M2M) communications among 
participating robots, and an infrastructure cloud enabled by machine-to-cloud (M2C) communications. Cloud robotics utilizes an elastic 
computing model, in which resources are dynamically allocated from a shared resource pool in the ubiquitous cloud, to support task 
offloading and infor-mation sharing in robotic applications. We propose and evaluate communication protocols, and several elastic 
computing models to handle different applications. We discuss the technical challenges in computation, communications and security, and 
illustrate the potential benefits of cloud robotics in different applications. 

 
 

Robotic systems have brought significant socio economic impacts to 
human lives over the past few decades [1]. For example, industrial robots 
(especially robot manipulators) have been widely deployed in factories  

to do tedious, repetitive, or dangerous tasks, such as assembly, 
painting, packaging, and welding. These preprogrammed robots 
have been very successful in industrial applications due to their high 
endurance, speed, and precision in structured factory environments. 
To extend the functional range of these robots or to deploy them in 
unstructured environments, robot-ic technologies are integrated with 
network technologies to foster the emergence of networked robotics.  

A networked robotic system refers to a group of robotic devices 

that are connected via a wired and/or wireless com-munication 

network [2]. Networked robotics applications can be classified as 

either teleoperated robots or multi-robot systems. In the former 

case, a human operator controls or manipulates a robot at a distance 

by sending commands and receiving measurements via the 

communication net-work. Application examples include remote 

control of a planetary rover and remote medical surgery. In the latter 

case, a team of networked robots complete a task coopera-tively in a 

distributed fashion by exchanging sensing data and information via 

the communication network. Examples include cooperative robot 

manipulators, a team of net-worked robots performing search and 

rescue missions, and a group of micro satellites working 

cooperatively in a desired formation. 

 
Networked robotics, similar to standalone robots, faces inherent 

physical constraints as all computations are conduct-ed onboard the 
robots, which have limited computing capabil-ities. Information 
access is also restricted to the collective storage of the network. 
With the rapid advancement of wire-less communications and recent 
innovations in cloud comput-ing technologies, some of these 
constraints can be overcome through the concept of cloud robotics, 
leading to more intelli-gent, efficient and yet cheaper robotic 
networks. In this arti- cle, we describe a cloud robotics architecture, 
some of the technical challenges, and its potential applications. 

Some pre-liminary results on the optimal operation of cloud 
robotics are also presented. 

The rest of the article is organized as follows. First, we outline 

various challenges and constraints in networked robotics. Next, we 

describe the cloud robotics architecture, and elaborate on two key 

enabling sub-systems. Follwing that we address technical challenges 

in designing and oper-ating the cloud robotics architecture. We will 

also highlight a few important robotic applications that will benefit 

from the cloud robotics. Finally, we conclude and summarize this 

article. 

 

Challenges in Networked Robotics 
 
Networked robotics, especially the multi-robot system as illus-trated 
in Fig. 1, distributes the workload of sensing, actuating, 
communication, and computation among a group of partici-pating 
robots. It has achieved great success in industrial appli-cations, 
intelligent transportation systems, and security applications. 
However, the advancement of networked robotics is restricted by 
resource, information, and communi-cation constraints inherent in 
the existing framework. We dis-cuss these constraints in detail in 
this section. 
 
Resource Constraints  
Although a robot can share its computation workload with other 

units in the formation, the overall effectiveness of the robotic 

network is limited by the collection of each robot’s resources, 

including onboard computers or embedded com-puting units, 

memories, and storage space. Physically, these onboard computing 

devices are restricted by the robots’ size, shape, power supply, 

motion mode, and working environment. Once the robots are 

designed, built and deployed, it is techni-cally challenging, if not 

infeasible, to change or upgrade their resource configurations. 
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Machine-to-machine (M2M) communication between neighboring robots 

 

 
Figure 1. Networked Robotics: a team of robots are interconnected with a communication net-work to 

collaboratively accomplish tasks. 
 

 

Information and Learning Constraints 
 
The amount of information a robot has access to is con-strained by 
its processing power, storage space, and the num-ber and type of 
sensors it carries. Networked robotics allows the sharing of 
information amongst robots connected by a communication network 
so that a global task can be solved or computed cooperatively using 
the whole network. However, networked robotics is constrained by 
the information observed or computed by robots in the network, and 
by the examples or scenarios that the network encounters, and hence 
limiting its ability to learn. A robotic team learning to navigate may 
per-form very well in a static environment, where all obstacles can 
be mapped out with increasing accuracy over time. On the other 
hand, the learning process has to be repeated once the environment 
changes or the robotic team is placed in a new unfamiliar 
environment. The map databases maintained by the robotic 
formation is also limited by the collective amount of storage space 
(including memory and disk) the formation has. 
 
Communication Constraints  
Common protocols for machine-to-machine (M2M) communi-

cations include proactive routing, which involves the periodic 

exchange of messages so that routes to every possible destina-tion in 

the network are maintained [3], and ad-hoc routing, which forms a 

dynamic route to a destination node only when there is a message to 

be sent [4]. Proactive routing incurs high computation and memory 

resources in the route discovery and maintenance process. Ad-hoc 

routing protocols suffer from a high latency as a route has to be 

established before a message can be sent, and are not practical if the 

network topology is highly dynamic. These drawbacks are 

significant in mobile robotic networks, and may lead to severe 

performance degradation. 

 

From Networked Robotics to Cloud Robotics  
Networked robotics can be considered as an evolutionary step towards 

cloud robotics, i.e., cloud-enabled networked robotics, which 

leverages emerging cloud computing technologies to 

 

 
transform networked robotics. The design objective is to over-come 

the limitations of networked robotics with elastic resources offered 
by a ubiquitous cloud infrastructure.  

Cloud computing provides a natural venue to extend the 

capabilities of networked robotics. NIST [5] defines cloud 

computing as “a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing 

resources (e.g., networks, servers, storage, applica-tions and 

services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction.” Through its 

three service models (i.e., software, platform and infrastructure), it 

enables tremendous flexibility in designing and implementing new 

applications for net-worked robotics. 
 

Several research groups have started to explore the use of cloud 

technologies in robotic applications. For example, research groups 

at Google have developed smart-phone driv-en robots that can learn 

from each other via the cloud [6]. A research group at Singapore’s 

ASORO laboratory has built a cloud computing infrastructure to 

generate 3-D models of environments, allowing robots to perform 

simultaneous local-ization and mapping (SLAM) much faster than 

by relying on their onboard computers [7]. 

 

Cloud Robotics 
 
In this section, we first describe a system architecture for cloud 
robotics, and then focus on the two key enabling subsys-tems: the 
M2M/M2C communication framework and the elas-tic computing 
architecture. Our cloud robotics differentiates from existing 
solutions in that it leverages two complementary clouds (i.e., an ad-
hoc cloud and an infrastructure cloud). 
 
System Architecture  
In Fig. 2, we illustrate the system architecture for our pro-posed 
cloud robotics. The architecture is organized into two 
complementary tiers: a machine-to-machine (M2M) level and a 
machine-to-cloud (M2C) level. 

On the M2M level, a group of robots communicate via 
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Figure 2. Cloud Robotics: robots are interconnected via M2M/M2C communications, sharing their resources 

and accessing to remote cloud resources. 
 

 
wireless links to form a collaborative computing fabric (i.e., an ad-

hoc cloud). The benefits of forming a collaborative com-puting 

fabric are multi-fold. First, the computing capability from individual 

robots can be pooled together to form a virtu-al ad-hoc cloud 

infrastructure. Second, among the collabora-tive computing units, 

information can be exchanged for collaborative decision making in 

various robot-related applica-tions. Finally, it allows robots that are 

not within communica-tion range of a cloud access point to access 

information stored in the cloud infrastructure or send computational 

requests to the cloud. 
 

On the M2C level, the infrastructure cloud provides a pool of 

shared computation and storage resources that can be allo-cated 

elastically for real-time demand. This elastic computing model 

allows the group of networked robots to offload com-putation-

intensive tasks for remote execution, resulting in “remote-brain” 

robots. Moreover, the benefits of a large vol-ume of storage 

provided by the centralized cloud are two-fold. First, it can unify a 

large volume of information about the environment, which can be 

organized in a format usable by robots. Second, it can provide an 

extensive library of skills or behaviors that are related to task 

requirements and situational complexities, making it feasible to 

learn from the history of all cloud-enabled robots. 

 

M2M/M2C Communication Architecture  
Robots in a network can communicate if they are within com-
munication range of each other, and with the cloud servers if the 
robots are close to access points of the cloud infrastruc-ture. A 
wireless M2M communication network can be formed by robots 
working cooperatively with each other to route and relay 
information. We call either a robot or an access point a node in the 
M2M/M2C network.  

Several standards like Zigbee, Bluetooth, and WiFi Direct have 

been developed for short range wireless communications between 

robots. For long range communications, radio fre-quency and 

microwave communication technologies may be used. 
 

A network of robots is often formed dynamically and in an ad-
hoc manner. There is no central controller to coordinate 

 

 
the communication flow in the network. Robots may leave and join 

the network, or may become unavailable because of unpredictable 

failures or obstructions in the environment. Furthermore, the 

network is highly dynamic if robots are mobile. All these 

considerations make the design of effective routing protocols 

difficult and impractical in some scenarios. Gossip algorithms [8] 

are randomized methods designed to transmit a message from a 

source to a destination without any explicit route discovery 

mechanisms. If two nodes are within communication range, we say 

that they are neighbors. When a robot wants to send a message to a 

destination node (either another robot or a cloud access point), it 

randomly chooses one of its neighbors and transmits the message 

together with a header that contains the identifier of the destination 

and itself, and a time value indicating the validity period of the 

message. In another variant of the protocol, the message is simply 

broadcast to all neighbors, but depending on the appli-cation, this 

may incur high communication load in the net-work. We will focus 

on the protocol that chooses a random neighbor in this article. At 

every time step, each node ran-domly chooses a neighbor to 

retransmit messages that are not intended for itself and are still 

valid. After a sufficient number of time steps, all the messages will 

be relayed to their destina-tions with high probability. 

 
We propose the use of gossip protocols for M2M/M2C 

communications in cloud robotics. Gossip protocols do not require 

route discoveries and maintenance, and are thus suit-ed for highly 

dynamic mobile robotic networks. These proto-cols are also very 

simple to implement, and require minimal additional computation 

and memory resources. However, the trade-off is that gossiping may 

result in a high message latency if the network conductance [8] is 

low. In cloud robotics, how-ever, this problem is significantly 

mitigated as the cloud back-end infrastructure serves as a central 

super node for the M2M/M2C communication network. As we will 

see, the time required for a message to be disseminated in a network 

is greatly reduced by the existence of a super node. Alternative-ly, a 

hybrid gossip algorithm can be used in which routes to frequently 

accessed nodes like the group leader in the proxy-based cloud 

computing model, can be maintained. 
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Elastic Cloud Computing Architecture 
 
Our proposed cloud robotics is built on the combination of an ad-
hoc cloud formed by a group of networked robots and an 
infrastructure cloud. This unique combination offers us great 
flexibilities in designing computing models tailored for specific 
applications. We focus on the following three elastic comput-ing 
models (Fig. 3):  
• Peer-Based Model: each robot or virtual machine (VM) in the 

ubiquitous cloud is considered as a computing unit. These robots 
and VMs form a fully distributed computing mesh. A task can be 
divided into smaller modules for exe-cution over a subset of the 
nodes in the computing mesh.  

• Proxy-Based Model: in the group of networked robots, one unit 
functions as a group leader, communicating with a proxy VM in 
the cloud infrastructure, to bridge the interac-tion between the 
robotic network and the cloud. The set of computing units are 
organized into a two-tier hierarchy.  

• Clone-Based Model: each robot has a corresponding system-
level clone in the cloud. A task can be executed in the robot or in 
its clone. The set of robotic clones also form a peer-to-peer 
network with better connectivity than the physical ad-hoc M2M 
network. Moreover, this model allows 
for sporadic outage in the physical M2M network. 

Each of these elastic computing models exhibits different 

robustness in network connections, interoperability, and mobility 

flexibility (Table 1). Robustness refers to the network connectivity 

between the set of networked robots and the infrastructure cloud . 

The clone-based model has the maxi-mum number of linkages from 

robots to the infrastructure cloud, and is thus the most robust; the 

proxy-based model is the least robust in terms of network 

connectivity; and the peer-based model falls between these two 

extreme cases. Interoperability refers to the additional complexity 

required in operating a cloud robotics infrastructure with an existing 

robotic network. The proxy-based model is the most interop-erable 

model, because of its hierarchical structure; while the clone-based 

model is the least interoperable. Mobility flexibili-ty refers to the 

network’s ability to support mobile robots. The peer-based model 

has the most flexibility for mobility, because VMs can be 

instantiated anywhere in the cloud infrastructure; while the clone-

based model is the least flexible, because com-plicated VM 

migration mechanisms are required to support robot mobility. 
 

The choice of a specific elastic computing model depends mainly 

on three factors, including network conditions, applica-tion 

requirements and resource availability. We aim to devel-op a unified 

framework to determine an optimal or near-optimal model for a 

given set of conditions, as elaborat-ed later. 

 

Technical Challenges 
 
In this section, we discuss some specific challenges and research 

considerations in the elastic computation model and the M2M/M2C 
communication network. 
 
Computation Challenges  
One of the key benefits of cloud robotics is the capability of 
offloading computationally intensive tasks to the cloud for 
execution. However, the decision to offload a specific task requires 
a unified framework that can handle a list of complex issues. First, 
the offloading strategy should consider various factors, including 
the amount of data exchanged, and the delay deadline to complete 
the task. Second, the decision should also consider whether it is 
more advantageous to exe-cute the task within the group of 
networked robots, given the 
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Figure 3. Elastic computing models for cloud robotics: a) peer-

based model; b) proxy-based model; c) clone-based model. 

 

 
presence of cloud resources. Finally, given a pool of cloud resources 
spread across different data centers, it is a challenge to allocate 
virtual machines optimally to execute the offloaded task and to 
manage live VM migrations. 

We advocate an unified optimization framework to deter-mine 

the optimal task execution strategies. Specifically, our objective is 

to minimize the amount of energy consumed by the robot, under the 

constraint that the task should be com-pleted within a specified 

deadline. The fundamental trade-off lies between the energy 

consumed for executing the task by the on-board CPU within the 

robot and the energy consumed transmitting the amount of data to 

the cloud for remote exe-cution. 
 

In our initial investigation, we have considered two alterna-tive 
choices of a standalone execution by the robot and a cloud 
execution. We adopt the following energy consumption model. For 
the standalone execution, Dynamic Voltage Scal-ing (DVS) [9] is 
assumed to minimize the total energy usage for the computing task; 
for the cloud execution, we assume a polynomial energy 
consumption model in which the amount of energy consumed to 
transmit s bits across a wireless chan-nel with fading coefficient g 

is proportional to s
n

/g, where n depends on the coding scheme. It 
can be shown that, for a given task profile of L bits of data and a 
delay deadline of T, the minimum energy consumed for the 

standalone execution is ε*r ~ L(L/T)
2

, and the minimum 
transmission energy for the 
cloud execution is ε* ~ L(L/T)(n–1). 

c  
Using the above results, we can determine the optimal 

operational region for either task execution model by simply 
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Model Robustness Interoperability Mobility 
    

Peer-based Medium Medium High 
    

Proxy-based Low High Medium 
    

Clone-based High Low Low 
     
Table 1. Comparisons of different computing models. 
 

 
comparing the energy usage for a specific task. For example, the 

optimal task execution region is illustrated in Fig. 4 for n = 2.5. The 

boundary between the two optimal operational regions is a line (i.e., 

L/T = const), where Re = L/T can be interpreted as an effective 

data consumption rate. It corre-sponds to a threshold policy. In this 

case, when the effective data consumption rate is larger than the 

threshold, cloud exe-cution is more energy efficient; otherwise, 

standalone execu-tion is more energy efficient. In-depth theoretical 

and numerical analysis for this simple task offloading scheme can 

be found in our previous work [10], and is omitted here due to 

limited space. 
 

Communication Challenges  
As discussed in the previous section, the choice of standalone or 

cloud execution depends on the delay sensitivity of the task. The 

communication delay introduced in sending the computation request 

to the cloud has to be factored into the decision. In this section, we 

provide upper bounds for the time required for a message to be 

delivered with high proba-bility. Packet delivery failures and 

communication outage are inherent in any wireless communication 

systems. A communi-cation network based on gossip protocols can 

thus be regard-ed as a system with higher failure rates, but 

significantly lower overheads. Furthermore, the additional 

increment in the fail-ure rate depends on the network topology, and 

the use of the infrastructure cloud as a super node in the network 

effectively controls this rate. 
 

In the gossip protocol, each node chooses a neighbor ran-domly 

to transmit a message. Suppose that node i chooses node j with 

probability Pij, where a zero probability implies that the two nodes 

are not within communication range, and are therefore not 

neighbors. It can be shown [8] that the com-munication delay of 

disseminating a message from a single node in the M2M network to 

all N nodes in the network is O(log N/Φ), where Φ is the 

conductance of the network, given by  

     i ∈ S , j ∈Sc 

P
ij 

Φ = min    . 
 

S 
 

S : 
 

S 
 

N /2 
   

  
     
         

 
In general, the worst case communication delay is O(N log N). 

However, in our cloud robotics architecture, M2M links are 

expected to be short range, so that we can partition the M2M 

network into connected components of robots with some maximum 

size M, with each component having at least one link to the cloud 

super node. For example, in the clone-based model where all robots 

have communication links to the cloud, the size M = 1. Typically M 

is either constant or grows slowly with the size N of the network, 

and is much smaller than N/2. We see that the conductance of such a 

net-work is of order at least 1/M, so that the delay is bounded by 

O(M log N). In addition, task offloading is typically to imme-diate 

neighbors or to the cloud. Therefore, in the worst case, the time 

required for M2C communications is O(M log M). See Table 2 for 

the worst-case delays for each computing model. For the peer-based 

model, the communication delay 
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Figure 4. The optimal operational regions are separated by a 

line. Its slope corresponds to the effective data 
consumption rate. In this graph, n = 2.5. 

 

 
depends on the particular network topology. We assume that for any 
subset of nodes in the network, there exists at least a fraction a with 
communication links to the cloud. Such a net-work belongs to the 
class of expander graphs. 

The above analysis applies for a static network. We have shown 
that it generalizes to similar results for mobile net-works with 
switching topologies [11]. 
 
Optimization Framework  
We have considered the simple scenario of standalone versus cloud 

execution of a task. In general, the task offloading deci-sion should 
made among three execution strategies, including: 
• The standalone execution by the individual robot, 
• The collaborative execution by the group of networked robots, 

and  
• The cloud execution.  

In some cases, a hybrid model including partial execution with 

all these strategies is possible. We aim to develop an optimization 

framework involving all execution modes with communication and 

execution costs included, to find the opti-mal execution strategy. In 

particular, the optimal strategy should take into consideration the 

time-varying nature of the wireless M2M/M2C communication 

network and the latency introduced by the gossiping protocol. In 

addition, only the minimal required set of information should be 

communicated, and this depends on the particular application. It is 

also of interest to investigate what information should be stored 

locally versus on the cloud. 

 

Security Challenges  
Trust and security issues are major considerations in cloud robotics. 

Specifically, our solution faces two major security challenges due to 
its cloud implementation.  

First, we need the VM environment to be trust-worthy. A 

malicious VM can subtly sabotage an important task without the 

robot being aware of the damage. In military applications, the robot 

has to identify a trust-worthy VM infrastructure to connect and to 

avoid malicious infrastructures (e.g., battle-field communication 

vehicles from an enemy). In general, three approaches can be 

adopted to cope with this problem, including: 
 
• Trust Establishment: the user performs some pre-use actions to 

check a VM’s host environment.  
• Trust Measurement: some root-of-trust components that do 
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Model M2M M2C 
   

Peer-based (expander) O(1/α log N) O(1/α log N) 
   

Proxy-based O(M log N) O(M log M) 
   

Clone-based O(log N) O(1) 
    
Table 2. Comparisons of worst-case communication delays 

for dif-ferent elastic computing models. 
 

 
not belong to the cloud platform provider (e.g., from hard-ware 

vendors or virtualization software providers) monitor the VM, 

and securely report trust measurements to a user or a third party. 
 
• Reputation-Based Trust: the user verifies the VM infrastruc-

ture by the service provider’s identity and then relies on  
legal, business or other external considerations to infer trust. 

 
Second, a robot needs trust to launch task delegation on a public 

cloud, especially when the computation and network traffic incur 
monetary costs. The computing environments in the cloud should be 
verifiable by a user or a trusted party, e.g., to ensure there is no 
hidden or malicious code running besides the delegated tasks. 
Moreover, confidential data may be stored in the public cloud 
storage, while logically private to clone devices. Therefore, strong 
integrity and confidentiality protection are needed to secure 
application data. 

 

Robotic Applications 
 
Future robotic applications will benefit from cloud robotics, which 

provides the following advantages over traditional net-worked 
robots.  
• Ability to offload computation-intensive tasks to the cloud. The 

robots only have to keep necessary sensors, actuators, and basic 

processing power to enable real-time actions (e.g., real-time 

control). The battery life is extended, and the robotic platform 

becomes lighter and less expensive with easier to maintain 

hardware. The maintenance of software onboard with the robots 

also becomes simpler, with less need for regular updates. As the 

cloud hardware can be upgraded independently from the robotic 

network, the operational life and usefulness of the robotic 

network can be easily extended. 
 
• Access to vast amounts of data. The robots can acquire 

information and knowledge to execute tasks through databases in 
the cloud. They do not have to deal with the creation and 
maintenance of such data.  

• Access to shared knowledge and new skills. The cloud pro-vides a 

medium for the robots to share information and learn new skills 

and knowledge from each other. The cloud can host a database or 

library of skills or behaviors that map to different task 

requirements and environmental com-plexities. The RoboEarth 

project [12] is trying to turn this into a reality. 
 

Due to these advantages, cloud robotics has a wide range of 
potential applications in data-intensive or computation-intensive 
tasks in the areas of intelligent transportation, envi-ronment 
monitoring, health care, smart home, entertainment, education, and 
defense. In this section, we discuss the oppor-tunities and challenges 
that cloud robotics brings to tradition-al robotic applications. 
Specifically, we focus on three robotic applications: SLAM, 
grasping, and navigation. 
 
SLAM  
SLAM [13] refers to a technique for a robot or an autonomous 

vehicle to build a map of the environment without a priori 

 

 

knowledge, and to simultaneously localize itself in the unknown 
environment. SLAM, especially vision-based SLAM and 
cooperative SLAM, are both data intensive and computa-tion 
intensive. The steps such as map fusion and filtering for state 
estimation can be processed in a parallel fashion. Thus, these tasks 
can be offloaded to the cloud. For example, a grid based FastSLAM 
is implemented in a cloud computing frame-work as reported in [7]. 
As demonstrated in [7], the cloud can substantially improve the 
implementation speed of SLAM. 
 

Grasping  
Robotic grasping has been an active research topic over a few 

decades. If the full 3-D model of the object is precisely known, then 

various methods can be applied to synthesize the grasp. If the object 

is unknown or not precisely known, the problem is much more 

challenging, and involves the access and preprocessing of vast 

amounts of data and can be compu-tationally intensive. Recently, 

information-based or data-driv-en grasping methods [14] have been 

developed to enable robotic grasping for any hand and any object. 

These methods requires access to large databases. By 

offloading this task to the cloud, grasping can be facilitated without 

requiring vast amounts of computing power, data, and storage space 

on the robotic platform. In addition, model knowledge of new 

objects learned by different robots can be shared in the cloud for 

future usage by other robots. 

 

Navigation  
Robotic navigation refers to a robot’s activity to determine its own 

position with respect to a certain reference and then plan a path to 

reach a desired location. It can involve a combina-tion of tasks such 

as localization, path planning, and mapping. Basically, there are two 

types of approaches: map-less approaches and map-based 

approaches [15]. Map-less approaches rely on the observations of 

the perception sensors for navigation. Due to the limited onboard 

resources, these approaches usually suffer from reliability issues. 

Map-based robotic navigation is relatively reliable if a precise map 

is available. It can either use a known map or build a map dur-ing 

the navigation. However, the process of building the map requires 

large amounts of storage space and is computational-ly intensive. 

On the other hand, the process of searching a map requires access to 

large amounts of data, which is chal-lenging if the navigation area is 

large. Cloud robotics provides a very promising solution for future 

cloud-enabled navigation that avoids these two challenges. The 

cloud can not only pro-vide storage space to store the large amount 

of map data, but also provide processing power to facilitate the 

building and searching of the map quickly. Through the cloud, 

commercial-ly available maps (e.g., Google maps) can also be 

leveraged to develop reliable, agile, and long-range autonomous 

navigation solutions. 

 

 

Conclusions 
 
We have proposed a cloud robotics architecture to address the 
constraints faced by current networked robots. Cloud robotics 
allows robots to share computation resources, infor-mation and data 
with each other, and to access new knowl-edge and skills not 
learned by themselves. This opens a new paradigm in robotics that 
we believe leads to exciting future developments. It allows the 
deployment of inexpensive robots with low computation power and 
memory requirements by leveraging on the communications 
network and the elastic computing resources offered by the cloud 
infrastructure. Applications that can benefit from the cloud robotics 
approach are myriad and includes SLAM, grasping, navigation.
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