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Abstract 

Principal Component Analysis (PCA) is a classical method for dimensionality 

reduction, data pre-processing, compression and visualization of multivariate data for 

different applications in biology, social science and engineering. The limitation of PCA is 

lacking of interpretation due to the non-zero loadings and the inconsistence for high-

dimensional data. Sparse principal component analysis (sparse PCA) is proposed mainly 

for the challenges of PCA above. For the past decades, many works of the development 

methods and theoretical analysis for sparse PCA have been presented. The goal of this 

paper is to give a comprehensive literatures review to recent progress in high-

dimensional sparse PCA from algorithm and statistical theory. Firstly we give the 

overview for PCA and sparse PCA. Secondly the algorithms of sparse PCA are 

categorized into different classes and provide detailed descriptions for typical 

formulations and methods in each category, and the typical packages of sparse PCA are 

also given. Considering that statistical analysis in high dimension becomes more involved 

in sparse PCA, and then the survey of theoretical analysis of sparse PCA is also 

presented. Finally the future trends as well as challenges are given. 

 

Keywords: sparse principal component analysis; PCA; spiked-covariance model; 
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1. Introduction 

Principal component analysis (PCA) has become a popular technique for dimension 

reduction and feature extraction and it is one of the most important techniques applied for 

multivariate analysis. From the observations of random variables, the objective of PCA is 

to estimate the leading eigenvectors of its covariance matrix  and form new variables, 

called principal components (PCs), which are linear combinations of the original variables 

and the PCs are uncorrelated, the vector of coefficients (or loadings) are orthogonal. PCA 

has been used in widely areas such as biomedical problems, biology, social science and 

engineering. 

PCA suffers from two major weaknesses. One weakness is that each PC is obtained by 

a linear combination of original variables and loadings are normally non-zero which 

makes the results in difficult to interpret. Such as in gene expression data which needs to 

obtain a small set of genes which contribute to the final results, the loadings is hoped to 

sparse. The other weakness is for high dimensional data with d n , PCA may be 

inconsistent in estimating the loadings 
*

1u [1-5]. In order to make the estimation of high-

dimensional PCA feasibly and improve the interpretability of results, sparsity is 

introduced to PCA which assumed that 
*

1u is sparse, we call it sparse principal component 

analysis (sparse PCA). Moreover, besides the interpretability and high-dimensional 

estimation consistency would not be the only advantage of sparse PCA, we can discard 
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the variables with zero loadings in all of the PCs, so it will lead an automatic feature 

selection. 

Sparse PCA has been paid a more attention over last several years, considerable work 

has been done to development of various algorithm [6-35] and theoretical analysis [1-2, 4, 

36-61]. Moreover, sparse PCA has a widely applications in various fields which include 

bioinformatics [62-64], clustering and feature selection [49], multivariate time series 

analysis [65-66], large text data analysis [67], finance data analysis [68] and so on.  But to 

the best of our knowledge, the survey of sparse PCA is very few, we observed that three 

most influential surveys on the sparse PCA published in the year of 2012 [69] and 2014 

[70-71] respectively. Richtárik [69] unified 8-formulations of sparse PCA solving by an 

alternating maximization method. Considering the applications in in cancer research, Hsu 

[70] reviewed several popular approaches of sparse PCA, but only several typical 

methods are included. Trendafilov [71] reviewed the most popular methods and their 

performance, the theoretical analysis work of sparse PCA is omitted. Above reviews 

motivate our works because high-dimensional sparse PCA not only include the 

computational methods, but also the high-dimensional statistical consistency. Our paper 

thus aims to fill this gap, we will make a general and large survey of the most 

representative algorithms and theoretical analysis, but our paper avoids the challenges 

topics in optimization theory used in sparse PCA.  

The remainder of this paper is organized as follows: firstly, the mathematic formulation 

of PCA and sparse PCA is presented. Then the details of algorithmic and statistical 

guarantees of foregoing categories of sparse PCA are elaborated. Finally, some open 

issues remained to be solved are discussed. 

 

2. Overview of PCA and Sparse PCA 
 

2.1. Notation 

For convenience to the readers, some of the notations are introduced firstly in our 

paper. Given a vector kx R whose thj coordinate is denoted as
jx .

1 2, ,... nu u u is a sequence 

of vectors. 1 2

2, ,|| || , || || , , n

i i ix y x y x x x x x y R      , || ||qx is the usual ql norm with 

0|| ||x defined the number of nonzero entries of x  (
0l norm), 

1|| || | |i ix x  (
1l norm). 

1
2, ,|| || , || || , ,T n d

FX Y TrX Y X X X X X Y R        , || ||FX is the squared Frobenius 

norm, the symbol Tr denotes the trace of its argument. The notation 0X ± means that 

X is positive semi-definite, | |X is the matrix whose elements are the absolute values of 

the element of  , and 11 22( ) : ... nnTr X X X X    ,which is the sum of diagonal entries. 

 

2.2. Formulations of PCA  

Suppose the input data matrix as 1 2[ , ,..., ]T n d

nX x x x R   , where n  and d  are the size 

and the dimensionality of the given data, respectively. Assumes all the data are centered 

0i ix  and 1 T d d

n
X X R     be the data covariance matrix. PCA seeks to find a number 

of p d  linear combinations of the n  variables in the projected linear space 

as 1 ,

T d
ik k k i iz X u u x   , where

kz is the k -th principal component (PC) and 
ku is the unit-

length loadings vector. PCA can be performed by either an eigenvalue decomposition of 

the covariance matrix or by singular value decomposition (SVD). The formulations of 

PCA can be derived from three viewpoints: 

(1) One way of looking at PCA is from the data-variance-maximization viewpoint. 

The goal is to find u where the input data variance X is maximized [26]. This leads to the 

following optimization model: 
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                                                max . .|| || 1T

u
u u s t u                                           (1) 

(2) Another way of looking at PCA is from reconstruction-error minimization 

viewpoint which can be viewed as a projection from a high dimensional space to a low 

dimensional subspace that minimizes the total squared reconstruction error 
2min || ||FX X where X is the original data set, X is the new dataset obtained. The 

reconstruction error can be computed using two different methods as bellows. 

a) Factor loadings model. First, Computes the principal component using T

j jz u x , and 

then reconstruct X using 1
k
j j jX Uz z u   .The new formulation of PCA can be derived 

as: 

                                  2

1

min || || . .|| || 1
n

T

i i

i

X UU X s t u


                               (2) 

b) Low-rank approximation. X can also be computed using rank- k  approximation, the 

result of 2min || ||FX X is the top- k  singular vectors of X minimizes the Frobenious norm 

of the difference with the matrix X . The SVD of X  is TX UDV where U is an 

n r orthogonal matrix and the column vectors 
ku are the PCs scaled to unit length. V is 

p r orthogonal matrix which columns ku are the loadings vectors, D is a diagonal matrix 

and the diagonal entries 
1,..., kd d are the singular values, where 

k k kd u u is the k -th PC 

with the variance is 2

kd . The new PCA formulation using the low-rank approximation can 

be derived as: 

                        2

, ,

( , , ) arg min || || . .|| || 1T

F
d u v

d u v X duv s t u                              (3) 

 

(3) The third way of looking PCA is from Probabilistic [82] viewpoint. It is most 

naturally expressed as a mapping from the latent space into the data space via 

x Uz      finding a lower-dimensional probabilistic description of the data. First, 

generates an independent, standard Gaussian random latent variable in an high 

dimensional space ( ) ( | 0, )p z N z I , then generates the observed variable x in a low 

dimensional space from 2( | ) ( | , )p x z N x Uz I   , where ,D M DW R R  , (0,1)N  is 

a Gaussian random noise , the columns of U span a linear subspace corresponding to the 

principal subspace. Based on this model, we have 2( ) ( | , )Tp x N x WW I   , the 

probabilistic PCA parameter estimation is to estimate the parameter of ,U and 2 . 

 

2.3. Basic Formulations of Sparse PCA 

The objective of sparse PCA is to force a number of n to be zero which derives the 

eigenvector to be sparse. In order to obtain the sparsity on the extracted components, most 

of methods find the PC’s of the covariance matrix through adding a constraint or penalty 

term from the PCA formulations (1) and (2), A constrained 0l -norm minimization 

problem is usually firstly considered as the basic sparse PCA problem as: 

2 0argmax . . || || 1,|| ||T

uu u u s t u u k                (4) 

Where k  is the nonzero number of loadings. Sparse PCA problem is non-convex and 

NP-hard. All of the formulations and algorithms can be categorized into three classes [36] 

from the viewpoint of data-variance-maximization, minimal-reconstruction-error and 

probabilistic modeling. So we can classify the sparse PCA problems in two three classes 

as shown in Figure1.  



International Journal of Database Theory and Application 

Vol.8, No.6 (2015) 

 

 

60   Copyright ⓒ 2015 SERSC 
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Figure 1. The Categorization of Sparse PCA Algorithms 

 

3. Sparse PCA: Formulations and Algorithms 

 
3.1. Sparse PCA from Data-Variance-Maximization View 

From data-variance-maximization view, a direction with at most k non-zero number of 

coefficients and with maximal variance is needed to search. The 0l -sparse PCA problem 

is defined as (4). Some papers use ( )card u k  substitute for 0|| ||u k  Where ( )card u  

denotes the cardinality of u , that is the number of non-zero coefficients. They are 

equivalent. Given a covariance matrix , most current approaches to sparse PCA can be 

categorized as solving one of the modified optimization problem based on constraint, 

penalization and relaxation.  

According to the constraint, penalization and relaxation adding to the modified 

optimization problem, the sparse PCA has several following formulations from data-

variance-maximization viewpoint. The first one is 
0l -norm sparse PCA which includes 0l -

constrained and 0l -penalized problem. 0l -constrained sparse PCA as (4). 0l -penalized 

sparse PCA is:          

                            0 0 2( ) argmax { || || : || || 1}T

uL u u u u                             (5) 

The second one is 1l -constrained and 1l -penalized sparse PCA. The formulas are as (6) 

and (7): 

1 2 1( ) argmax { : || || 1,|| || }T

uL u u u u k                        (6) 

1 1 2( ) argmax { || || : || || 1}T

uL u u u u                           (7)  

The last one is a kind of mixed-norm sparse PCA  

2( ) argmax { : || || 1,|| || 1}T

uL u u u u                          (8) 

We call (4) and (5) are 0l -norm sparse PCA, and (6) and (7) are 1l -norm sparse PCA. 
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These formulations always focused on the deriving of the first principal component and 

the additional components can be obtained by the iterative deflating technique [73], the 

shortcoming of this technique always lead the sparse PCA lacking of non-orthogonality, 

sub-optimality, and multiple parameters needed to be tuned[21]. 

A. 
0l -norm sparse PCA 

(1)
0l -constrained sparse PCA. 

0l -constrained sparse PCA is the fundamental 

formulation of sparse PCA, it needs the algorithm tackling (4) directly, not need any 

reformulation. 

(a) Rotation. Sparsity can be obtained through rotating the loading matrix such 

as
unrotated rotatedU U  . The oldest rotation approach is varimax [18] which is proposed in 

1958. After varimax’s rotation, some coefficients of loading vectors could have bigger 

values than others, but it is very hard to quantify the distinction between small and large 

coefficients. 

(b) Thresholding. Jeffer [74] proposed a simple thresholding method through setting 

the coefficients less than 70% of the greatest one are zero, no matter their signs. Vienes 

[75] proposed the simple principal component by restricting the loadings coefficients to 

have integer values as -1, 0 and 1. Cadima et al. noted that simple thresholding, even after 

a rotation, can be misleading and in general it does not produce an optimal solution [76]. 

Johnstone et al. [2] proposed a two-step method, using an pre-processing step to select 

relevant variables by thresholding the diagonal of the sample covariance matrix followed 

by ordinary PCA in the reduced space. They considered the case of a signal u that is 

sparse in a suitable basis. Motivated by the work of [55,50] proposed a covariance 

thresholding algorithm for this kind of sparse PCA which computed the leading 

eigenvector from the thresholding covariance matrix by:                     

  
| |

ˆ

0

ij ij

ij

if t

otherwise

  
  


                                     (9) 

Ma et al. [15] proposed an iterative thresholding method is known as ITSPCA which is 

based on subspace iteration which is a straightforward block generalization of the iterative 

power method as 
1 1,k k k k kU AQ U Q R   ,where 0,1,....k  until the convergence. They 

added a thresholding step between the Multiplication and QR factorization steps to derive 

the sparse principal subspaces. Moreover this method makes the orthogonal iteration 

adapts to the high-dimensional problem. Similar to thresholding method above, there also 

have similar works reducing the feature space. Yuan et al. [14] proposed Truncated Power 

method for 
0l  -sparse PCA problem which is based on the power method [73]. TPower 

method added a truncation step before the normalization step. Wang et al. [32] proposed a 

new sparse PCA method removing the variable using the approximated minimal variance 

loss (AMVL) criterion with smallest loading and reconsidered the sparse PCA in the 

reduced space.  

(c) Exact and greedy method. Moghaddam et al. [25] proposed a spectral bounds 

framework for sparse PCA which obtains good numerical results using a combinatorial 

greedy method. The exact method was to search over all possible support sets S  

. . | |s t S k and pick the S with the maximum value. They continued to propose the greedy 

strategy for this problem. At each iteration, repeat choosing a new variable which 

maximizes the eigenvalue of the sub-matrix until the | |S  is k , other PCs can be obtained 

using power-iteration. The main shortcoming of their method can be slow on large 

covariance matrices. Farcomeni [17] also proposed an exact approach based on branch 

and bound algorithm for (4). They enumerated the possible solutions using branch and 

bound algorithms. Then splitted the possible solutions set into subsets using branching 

and bound the solutions into each branch using some criterion. Only branches bigger than 

the current maximum are continue explored. Experimental results showed that their 
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method can work on a higher-dimensional problems. 

(d) Constrained convex optimization method. If formula (4) is reformulated, sparse 

PCA can be solved by first-order gradient based algorithm [13, 31]. In contrast, Luss [22] 

directly tackled 
0l -constrained sparse PCA called ConGradU (Conditional gradient 

algorithm with unit step size) using an efficient conditional gradient method, also known 

as Frank-Wolf algorithm. They pointed out the first-order gradient methods in [13] and 

[31] are identical to ConGradU. Motivated by the work of ConGradU, [35] proposed the 

method based on gradient projection algorithm and an approximate Newton algorithm for 

(4) where the constraint set may be non-convex. 

(2)
0l -penalized sparse PCA  

(a) PathPCA. d'Aspremont [7, 9] proposed a PathSPCA algorithm that computed a full 

set of solutions for all target numbers of nonzero coefficients which formulated (4) to (5). 

They continue to consider the formula:  

                                             
2

2

|| || 1
1

( ) max (( ) )
p

T

i
u

i

x u   




                            (10) 

Where ( ) : max{ ,0}, TX X     and ix is the i -th column of p pX R  . (10) can be 

relaxed to: 

              
1

( ) max. ( ) . . ( ) 1, ( ) 1, 0
n T

i ii
x Ux s t Tr U Rank U U   

    ±             (11) 

Where TU uu , . operator denoted max{0, } . (11) can be rewritten as a semi-definite 

program in the variables Z and iP :    

1

( ) max ( ) . . ( ) 1, 0, 0
p

i i i

i

Tr PB s t Tr U U U P 


  굇 ?        (12) 

With T

i i iB u u I  . They derived a greedy algorithm as in [61] to compute a full set of 

solutions of (12).  

(b) GPower0. Journee et al. [13]designed a series of algorithms respectively for sparse 

PCA by formulating the sparse PCA problem as maximization of a convex function or a 

compact set with 
0l -or 

1l -norm sparsity-inducing penalties and extracting single unit 

sparse PC sequentially or block units ones simultaneously. They first reformulated (4) as 

single-unit 
0l -penalization sparse PCA: 

                                              
1 0

, 1

( ) max || ||
p T

T

l
x R u u

u u u  
 

                                (13) 

Then it is continued to formulated as 
0

2

, 1 1

( ) max [( ) ]
p T

n
T

l i
x R x x i

a x   
  

         (14) then set                                 

2 *

2[ (( ) ] , / || ||T T

i i iu sign a x a x u u u                     (15) 

Similarly, block 0GPower l considered the following formulation: 

0

2

,
1 1

( ) max [( ) ]
p

m n
T

l m j i j j
X R j j

a x    
  

   , where j is the positive entries on the diagonal. They 

continually proposed the simple gradient method which is actually a generalized power 

method to solve it. Based on GPower method, Kuleshov [77] presented a fast algorithm 

based on Rayeleigh quotient iteration which modified the power method by Rayleigh 

quotient iteration. 

(c) DC-SPCA. Considering the penalized formulation (5), Srperumbudur et al. [30-31] 

approximated 0|| ||u by 
1
log( | |)

n

ii
u


 , Since 

0
0

1 1{| | 0}

log(1 | | / )
|| || 1 lim

log(1 1/ )
i

n n
i

i ix

u
u






 


 


   , this 

program is approximated by neglecting the limit and choosing 0  , (5) is formulated as: 
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1

max log(| | : 1
n

T T

i
x

i

x Ax x x x 


 
   

 
                                 (16) 

Where 1: / log(1 )     . 0|| ||u , they used majorization-minimization approach to 

solve it. 

B. 
1l -norm sparse PCA 

(a) SCoTLASS. Jolliffe et al. [6] proposed a method is known as Simplified 

Component Technique for Least Absolute Shrinkage and Selection (SCoTLASS) to solve 

sparse PCA problem (6). It is the first true algorithmic method to achieve the sparse 

loading since rotation and simple thresholding and it is also non-convex. They suggested 

a simple projected gradient descent approach to solve it. But the computational cost is 

often high, even if Trendafilov et al. [78] proposed a globally convergent algorithm to 

solve the optimization problem. It remains high computational cost. Recently, Witten et 

al. [12] proposed an efficient algorithm can be used for SCoTLASS to obtain the first PC.  

(b) DSPCA and its variants. D'Aspremont et al. [8] proposed a convex relaxation 

method, called Direct sparse PCA (DSPCA) to (6) solving a sequence of semi-definite 

programming (SDP) relaxations of sparse PCA to search for the  sparse PCs. Let TX uu . 

It is rank-one. The equivalent formula of (6) is considered as follows: 

2argmax ( ) . . ( ) 1, ( ) , 0, ( ) 1
X R

Tr X s t Tr X Card X k X rank X


   ±     (17) 

Since 2( )Card X k  and 2|| || 1u   is still non-convex, they continued to relax the non-

convex constraint by replacing 2( )card U k using 1 | |1T U k  and dropped the rank 

constraint. (17) can be rewritten in:  

arg max ( ) . . ( ) 1,1 | |1 , 0
p

T

X S

Tr X s t Tr X X k X


   ±          (18) 

Due to IP (Interior Point) [79] solvers only be useful for small problems. They 

continued to use a penalized version of the relaxed scheme as:  

max ( ) 1 | |1: 0, 1T

X
Tr X X X TrX  ±                   (19) 

Then the optimal first-order minimization algorithm [80] is proposed to minimize the 

smooth approximation. DSPCA is computationally expensive. Zhang et al. [67] proposed 

a safe feature elimination method as a preprocessing step to reduce the problem space and 

proposed a block coordinate ascent algorithm to solve DSPCA. Moreover, because (19) is 

a non-smooth semi-definite programming problem, Ma et al. [23] proposed an alternating 

direction method to solve it. Different from above methods, Vu et al. [16] extended the 

DSPCA formulation from rank-1 to rank- k  case, considering a new formulation of sparse 

principal subspace problem as a novel semi-definite programming with a Fantope 

constraint as: 

max ( ) | | . . 0 , ( )ij
U ij

Tr X X s t X I Tr X k   같                     (20) 

The constraint set is called Fantope which is solved by an efficient ADMM algorithm 

[81]. 

(c) ALSPCA. Lu et al. [21] developed an augmented Lagrangian method (ALSPCA) for 

sparse PCA by solving a class of non-smooth constrained optimization problems .They 

considered the next formulation: 

1max ( ) || || | | , ,
p r

T T T

i j ij
V R

Tr u u u subject to u u i j u u I


             (21) 

Where each column of u corresponds to a loading vector of the sample covariance 

matrix  and 0( )ij i j   are the parameters that control the correlation of the PCs. It is 

solved by an augmented Lagrangian approach. This method can obtain near orthogonality 

of PCs. 
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(d) GPower1. As the introduction of GPower0 above, single-unit GPower
1l reformulated 

(4) as single-unit 
1l -penalization sparse PCA: 

                                           
1 1

, 1

( ) max || ||
p T

T

l
x R u u

u u u  
 

                             (22) 

And reformulated it as: 

1

2 2

, 1
1

( ) max [| | ]
p T

n
T

l i
u R x x

i

a x   
 



                        (23) 

Similarly, the block 
1l

GPower considered the following reformulation 

1,

2 2

1 1

( ) max [ | | ]
m p

m n
T

l j i j j
x R j i

a x    
  

  , where 
j is the positive entries on the diagonal. The 

leading PC can be obtained as GPower
0l .The shortcoming of GPower is that their 

formulation and algorithm does not directly related to the given cardinality, so must 

require several runs. 

C. Mixed-norm sparse PCA 

Qi et al. [27] proposed a new convex combination of 
1l and 

2l norms, which can 

efficiently obtain the uncorrelated principal components. They replaced the 
2l -norm of u  

with a mixed norm || ||  by 2 2

2 1|| || [(1 ) || || || || ], pu u u u R       , [0,1] , 

1 1
|| || | |

p

ii
u u


  be the 

1l -norm of u . If  =0, this norm is the 2l norm, if 1  , it is the 
1l  

norm. Using this norm, the optimization problem solving the coefficient vector u  of the 

first and the higher order sparse PCs as follows: 

2 2
1

2 2 2
,|| || 1 ,|| || 1

1 2 1 1

max max
(1 ) || || || || || ||p p

T T

v R v u R u

u u u u

u u u     

 


 
             (24) 

Where 10 1  is the tuning parameter for the first principal component. This 

formulation maked the optimization problem convex and had a unique solution. 

 

3.2. Sparse PCA from Data-Variance-Maximization View 

(a) SPCA. Zou et al. [10] formulated the sparse PCA problem as a regression-type 

optimization as: 

2 2

2 2 1, 1
, 1 1

ˆ ˆ( , ) arg min || || || || || || . .
q q

T T

j j j k
U W j j

U W X XWU w w s t U U I 
 

          (25) 

Where / || ||j j ju w w , w is the lasso estimates. 1, ' ( 1,..., )j s j q  regularization 

parameters with positive value and 1|| || is the 
1l  norm of w . All q components share the 

same  and different
1, j ’s are allowed for penalizing the loadings of different principal 

components. They proposed a framework of 
1l -penalized regression on regular principal 

components using Elastic Net [82], solved by least angle regression (LARS). The main 

drawback of SPCA is that the orthogonality of loadings is not guaranteed. 

(b) rSVD-sPCA. Shen et al. [11] proposed sequential methods known as sPCA-rSVD 

which searched for the sparse PCs by solving a regularized low rank matrix 

approximation problem under multiple sparsity-including penalties. They considered the 

singular value decomposition from low-rank viewpoint. From the low rank approximation 

of SVD, (3) can be formulated as 

         
2

2

, ,|| || 1
min || || ( )T

F
a b b

X vu P u


                                        (26) 

Where pu R and nv R , ( )P u can be Lasso penalty, hard thresholding penalty and 

SCAD. Finally, they derived the sparse loadings using the iterative procedure alternating 

u and v  is fixed.  

(c) PMD. Witten et al. [12] proposed penalized matrix decomposition (PMD), which 
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was a framework for computing a rank- k approximation of a matrix. The PMD 

generalizes this decomposition by additional constraints on U and V . The rank-1 PMD 

can be formulated as the following optimization problem: 

2 2 2

2 2 1 1 2 2
, ,

1
min || || . . || || 1,|| || 1, ( ) , ( ) , 0

2

T

F
d u v
imize X duv s t u v P u P v d           (27) 

Where u is a column of U , v is a column of V , d  is a diagonal element of D , 1P and 

2P are convex penalty functions that can take various form. This optimization problem can 

be formulated to the following optimization problem: 
2 2

2 2 1 1 2 2
,

max . . || || 1,|| || 1, ( ) , ( )T

u v
imize u Xv s t u v P u P v        (28) 

Where 
1 and 

2 are constants, 
1()P and 2 ()P are penalty functions. A simple 

maximization strategy of iteratively maximizing with respect to u  and v  is developed. 

They also have extended their works to Fisher’s linear discrimination [83]. 

 

3.3. Sparse PCA from Data-Variance-Maximization View 

A probabilistic interpretation of PCA called PPCA has been introduced [72], In order to 

perform sparsity on loading coefficients of probabilistic PCA modeling, Guan et al. [34] 

assigned Laplacian prior to each element of loadings based on this framework due to the 

Laplacian prior is equivalent to 
1l  regularization in the sparse modeling. The object of the 

sparse probabilistic PCA is to estimate the parameters. Variational expectation-

maximization (EM) algorithm or Markov Chain Monte Carlo algorithm can be used to 

estimate the parameters. Based on expectation-maximization for PPCA, Sigg and 

Buhmann [11] derived EMPCA for sparse and non-negative principal component analysis. 

Since MCMC procedures are too slow for a very high-dimensional application Sharp [58] 

presented a dense message passing algorithm for more efficient approximate inference in 

sparse probabilistic PCA. 

 

4. Sparse PCA Software Package 

Most of the developed method of sparse PCA has released their software package, in 

order to compare the performance of difference sparse PCA for readers (you can reference 

[84] to review the algorithm performance of typical sparse PCA).Table 1 summarizes 

some sparse PCA which have been published on the internet. From this table, we notice 

most packages are based on Matlab/R language and become more and more since recent 

years.  

Table 1. Summary of Available Codes of Sparse PCA 

No Name Author           Language  Year Source 

1 DSPCA d’Aspreomot[8] Matlab   2004 
http://www.di.ens.fr/~aspremon/ZIP/DSPCA.

zip 

2 PathPCA d’Aspremont[9] Matlab   2007 
http://www.di.ens.fr/~aspremon/ZIP/PathSPC

A.zip 

3 Fantop Vu[16]                    R       2013 https://github.com/vqv/fps 

4 GPower Journee[13]        Matlab   2008 
http://www.montefiore.ulg.ac.be/~journee/GP

ower.zip 

6 24am Richtárik[69]       C++     2012 
https://24am.googlecode.com/files/24am-

v1_0.zip 

6 TPower Yuan[14]           Matlab    2011 
https://sites.google.com/site/xtyuan1980/TPo

wer_1.0.zip?attredirects=0 

7 GRQI Kuleshov[77]     Matlab   2013 
https://github.com/kuleshov/generalized-

rayleigh-quotient 

8 ALSPCA Lu[21]                Matlab   2012 
http://www.sfu.ca/~yza30/homepage/codes/A

LSPCA1.0.tar.gz 
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9 ITSPCA Ma[15]               Matlab   2013 

http://www-

stat.wharton.upenn.edu/~zongming/software/

SPCALab/SPCALab.zip 

10 SPCA Zou[10]                   R      2006 
http://cran.r-

project.org/web/packages/elasticnet/ 

11 
rSVD-

sPCA 
Shen[41]                  R      2008 

http://www.unc.edu/~haipeng/publication/rsv

d.spca.Rfun.R 

12 PMA Witten[83]              R      2009 http://cran.r-project.org/web/packages/PMA/ 

13 
Nsprcom

p 
Sigg[29]                 R       2008 

http://cran.r-

project.org/web/packages/nsprcomp/index.ht

ml 

14 DMP Sharp[28]         Matlab     2010 
http://www.cs.man.ac.uk/~sharpk/Code/DMP

_v_1_0_Code_Only.zip 

15 
SPCA-

ALM 
Naikal[4]          Matlab     2011 

http://www.eecs.berkeley.edu/~yang/software

/SPCA/SPCA_ALM.zip 

16 
SPCA-

bioin 
Bonner[62]             R       2014 

http://beyene-sigma-

lab.com/code/analyze_DEPCs.R 

17 
Sparse 

logPCA 
Lee[50]                   R       2010 

https://github.com/andland/SparseLogisticPC

A 

18 
Structure 

sPCA 
Jenatton[86]     Matlab     2010 

http://rodolphejenatton.com/software/SparseS

tructuredPCA_MatlabToolbox_V1.0_rjenatto

n.tar 

19 
sPCA-

Ran-def 
Asteris[19]       Matlab     2011 

http://megasthenis.github.io/repository/sparse

PC-matlab.zip 

20 
sPCA-

Consrank 
Asteris[20]       Matlab     2014 

http://megasthenis.github.io/repository/sparse

PC-matlab.zip 

 

5. Theoretical Analysis of High-Dimensional Sparse PCA 

Sparsity can not only enhance the interpretability, but also it can yield consistent 

estimates if sparsity is truly presented in the population for high dimensional data. 

Statistical analysis of sparse PCA has been received significant attention recently and how 

to obtain dependable estimates statistically of eigenvectors and eigenspace for PCA on 

high-dimensional data has been the focus of recently literatures. The main questions 

needed to be answered in sparse PCA is whether there has an algorithm not only 

asymptotically consistent but also computationally efficient. Theoretical research from 

statistical guarantees view of sparse PCA includes consistency [2,8,14,38,41,50,53,55], 

minimax risk bounds for estimating eigenvectors [40,42-43,45,61], optimal sparsity level 

detection [4,44,48,59] and principal subspaces estimation [5,15-16,36,9,40,51,57] have 

been established under various statistical models. Because most of the methods based on 

spiked covariance model, so we firstly given an introduction about spiked variance model 

and then give a high dimensional sparse PCA theoretical analysis review from above 

several aspects. 

 

5.1. Spiked-Covariance Model 

Given a sample 1,...,
d

nX X R drawn from a multivariate normal distribution 

~ (0, )iX N   with mean is 0 and the population covariance matrix is . The problem is 

the consistency of the sample covariance matrix 1ˆ '
n

X X   as an estimator of the 

population covariance matrix  when the dimension ,d n  . Because the sample 

covariance matrix is not a good approximation to the population covariance matrix when 

the data dimension is larger than the sample size, Johnstone [2] proposed a spiked 

population model in which all but a fixed finite number of population eigenvalues(the 

spikes) are taken to be 1 as ,n d become large. 

The population covariance matrix can be formulated as ˆ   under the 
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assumption 2I  .where is noise. Using spectral decomposition of Sample covariance 

matrix ˆ TU U   is get, then the covariance matrix of 
iX  is computed 

as 2 2 2
1

ˆ ' 'r
j j j jU U I u u I        , where 2 2

1 ... 0r    are the eigenvalues of 

̂ ,
1( ,..., )rdiag    . Therefore the -thj eigenvalue of  is obtained as: 

2 2 2 2 2 2 2 2

1 2( , ,..., , ,..., )rdiag             , if 1r   , It is a single-spiked model.  

 

5.2. Statistical Properties of High-Dimensional Sparse PCA 

(a) Consistency. Johnstone et al. [2] presented a two-step method based on variable 

selection by largest entries in the diagonal of the sample covariance matrix, They proved 

that the conventional PCA performed on a selected subset of variables with the largest 

sample variances leads to a consistent estimator of 1u . They also proved that if the support 

of / logk n p , Their method would be succeed with high probability and if 

/ logk n p , their method would be failed with high probability. Shen et al. [41] 

established conditions for consistency of a sparse PCA method in [11] when p  and 

n is fixed. Yuan [98] also derived the convergence rate of TPower methods. 

Under the single spike population model, Amin et al. [38] considered the variable 

selection property and developed conditions for recovering the non-zero entries of 

eigenvectors by the methods of diagonal thresholding [2] and DSPCA based on semi-

definite programming relaxation[8] where both sample size and dimension tend to infinity. 

They proved that the information-theoretic critical rate is / logk n p . If / logk n p , no 

method can succeed in variable selection. In contrast, if / logk n p , diagonal 

thresholding is consistent. Continue to the work of [38], Krauthgamer et al. [50] proved 

that no computationally-efficient algorithm can recover the support if k n . They 

proposed covariance thresholding (CT) method and proved that if the sparsity levels 

( )k O n , recovery is possible. They also showed that the rank-one condition assumed 

by [38] does not hold if ( / log )n k n p  . Deshpande [55] considered another question 

whether covariance thresholding be a polynomial time algorithm that is guaranteed to 

solve the sparse PCA problem for / logn p k n  . 

(b) Minmax rates of convergence. Birnbaum et al. [42] considered the minimax rates of 

convergence and adaptive estimation of the individual leading vector as the ordered 

coefficients of each eigenvector have rapid decay. Vu et al. [39] studied the rates of 

convergence of estimation under various sparsity assumption on the leading vector. They 

established minimax rates for estimation under 
2l loss with 

ql -penalized estimators with 

suitably model parameters. Wang et al. [59] considered the question of whether it is 

possible to find an estimator of 
1u  that is computable in polynomial time, and it attained 

the minimax optimal rate of convergence 
1u . They showed that no randomized 

polynomial time algorithm can achieve the minimax optimal rate.  

(c) Optimal sparisty levels detection. Sparse detection method wants to detect the 

presence of a sparse structure in high dimensional data. [2,15] suggested heuristics when 

the detection levels are unknown, but they are not proven to achieve the optimal detection 

levels. Berthet et al. [47,53] proved whether there exists a polynomial-time computable 

statistic for reliably detecting the presence of a single spike of 0l -sparsity. They proved 

that no polynomial algorithm will reconstruct the support unless k n . An interesting 

work should be addressed here, [47-48] established computational lower bounds in sparse 

principal component detection by the same difficult problem — the Planted Clique 

problem [84]. 

(d) Principal subspaces estimation. Most of researches above focused on estimating the 
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leading eigenvector
1u , but if some leading eigenvalues are identical or close to each other, 

individual eigenvectors are not identifiable. Moreover, if PCA is considered as a 

dimension reduction technique, the low-dimensional subspace onto which we project data 

should be of the interest [15]. So recently most works are presented on principal 

subspaces estimation which focused primarily on finding principal subspaces of 

 spanned by sparse leading eigenvectors. Paul and Johnstone [5,36] studied multiple-

spike model and proposed an augmented sparse PCA method to estimate each of the 

leading eigenvectors attaining near optimal rate of convergence of their procedure in the 

high dimensional setting. Their work provided asymptotic lower bounds for the minimax 

rate of convergence over 
ql balls for (0,2]q .They also analyzed the performance of an 

estimator based on the multistage theresholding procedure and show that it can nearly 

attain the optimal rate of convergence. In contrast, Vu et al. [39] presented a model 

allowing a more general class of covariance matrices. Ma et al. [15] presented a iterative 

thresholding method and proved its consistency and achieved a near optimal statistical 

convergence rates when estimating several individual leading vectors under the spiked 

covariance model with the similar condition in [42]. Cai et al. [43,45] attained an optimal 

principal subspace estimator based on a regression-type method, and the minimax rates of 

convergence are derived and a computationally efficient adaptive estimator is constructed. 

Vu et al. [16] proposed a new method called FPS which generalized DSPCA to estimate 

the principal subspace spanned by the top k leading eigenvectors. Nevertheless, 

[16,40]established a near-optimal Frobenius norm error bound for the FPS estimator 

under general conditions and showed that the obtained estimator only attained the 

suboptimal log /s d n statistical rate of convergence. Lei et al. [51] considered the 

variable selection consistency and agnostic inference properties of Fantope projection and 

selection (FPS) method which didn’t need spiked-covariance model anymore. When the 

eigenvalues of  are fixed, a sufficient condition for consistent variable selection using 

FPS is / logs n p while being computationally tractable. Similar but different with [51], 

Gu [57] proposed a family of estimators for subspace of a population matrix based on the 

semi-definite relaxation of sparse PCA with novel regularizations which didn’t rely on the 

spiked covariance model. One is convex sparse PCA which had oracle property and the 

same convergence rate as standard PCA. The second estimator is non-convex sparse PCA 

which can also attained faster rate than [51]. Wang [61] also proposed a two-stage sparse 

PCA procedure employed sparse orthogonal iteration pursuit that attained the optimal 

principal subspace estimator in polynomial time which converged at the rate of 

1/ t within the initialization stage, and at a geometric rate within the main stage.  

 

6. Discussions and Challenges 

In our paper, a literature survey of current sparse PCA in sparse PCA has been given. 

Two important issues have been studies: the summarization of sparse PCA’s various 

formulations and algorithms and the survey of the theoretical analysis for sparse PCA in 

previous research. Based on this review, we now take on the challenge of discussing some 

perspective research directions. 

 

6.1. Performance Improvements of Algorithms (Sparse PCA) 

Although we categorized the sparse PCA algorithm from the optimization formulation 

added by the different constraint and penalty form as 
0l or 

1l -norm sparse PCA in Figure1 

in our paper, but the algorithms for sparse PCA can be categorized from different aspects. 

In order to evaluation the performance of the algorithm, the sparse PCA algorithm can 

derive a new kind of category of sparse PCA algorithms as shown in Figure 2. Seen from 

this Figure, we noticed that most of the nowadays sparse PCA algorithms are deflation-
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based method which focused on the first leading principal component, iterative deflation 

technique can be used to obtain the additional components from the input matrix. The 

weakness of most of the listed methods is that they produced sparse loadings that are not 

completely orthogonal and the components are correlated [16, 21]. How to improve the 

orthogonality of eigenvectors and decrease the correlation of PCs is an open problem in 

the development of sparse PCA algorithms. The first answer is the principal subspace 

estimation, the theoretical analysis for principal subspace estimation of sparse PCA has 

been paid more attention since 2013 as described in section 5 which will improve the 

performance of sparse PCA, but the work for estimating the principal subspace or even 

multiple eigenvectors simultaneously is very little [16]. To our best knowledge, only FPS 

[16] and ITSPCS [15] are principal subspace estimation based methods. We believe that 

the development of principal subspace estimation methods for sparse PCA will be 

developed in the next few years.  
 

high-dimensional sparse PCA algorithms

deflation-based methods

§ DSPCA[8]

§ PathPCA[7][9]

§ SingleUnitGPower0&1[46]

§ rSVD-sPCA[11]

§ PMD[12]

§ DC-PCA[30][31]

§ Guan[34]

§ Sig[29]

§ Sharp[28]

§ ...

others

§ …..

nondeflation-based methods

multiple eigenvectors esimation

· SPCA[10]

§ ALSPCA[21]

§ Block GPower0&1[31]

principal subspace estimation

§ Fantope[16]

§ Iterative Thresholding[15]

multiple eigenvectors estimation

 

Figure 2. A New Kind of Category of Sparse PCA Algorithm Based on 
Deflation 

Secondly, how to derive a new formulation for Sparse PCA like [21, 27]to obtain the 

sparse and orthogonal loading vectors, the components are uncorrelated while capturing 

as much variance as possible is also an important directions . 

In most of algorithms of sparse PCA, the degree of sparsity is controlled via a 

penalization parameter in the sparse PCA algorithms, then how to tuning such parameter 

corresponding is another open problem. A similar problem is that the user does not know 

in advance if and how sparse the loadings will be, but tuning the penalty parameters in the 

methods is time consuming for high dimensional data[11,85], an efficient tuning 

algorithm of the parameters trying to avoid them is preferred.  

Besides the typical sparse PCA, there also exists many research on the extensible 

sparse PCA which doesn’t included in our paper, such as structured sparse PCA [86], 

Robust sparse PCA [87], sparse PCA for Rank-deficient matrix [19] or constant-rank 

matrix[20], a sparse logistic principal component analysis for binary data [88], sparse 

principal components via semi-partition clustering [89], interpretable principal 

components using clustering [90], principal component analysis with sparse fused 

loadings [85] and so on. So how to extend the typical sparse PCA suitable for special 

circumstance is also important and interesting problem. 
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6.2. Trade-Off Theoretical and Computational Sparse PCA 

Despite this comprehensive literature review, although the consistency and 

convergence has established for sparse PCA in high dimensional data, most of existing 

statistical guarantees are known hold under on the spiked covariance models. However 

the real application is not as this, theoretical analysis of sparse PCA on the general model 

is an open problem. Moreover, although there are various kinds of algorithm to solve 

sparse PCA, but only the Thresholding methods and Semi-definite Programming based 

method has been statistically analyzed, Most of existing methods lack statistical 

guarantees. How to expand the theoretical analysis of other methods for sparse PCA is 

also a hard problem. From our review process, we also noticed that there remains a big 

gap between the computational and statistical aspects of sparse PCA. There is no tractable 

algorithm is known to attain the statistical optimal sparse PCA estimator provably without 

relying on the spiked covariance assumption. Is there a polynomial time method with 

strong statistical guarantees for the general model? Is there a polynomial time method 

with principal subspace estimation in high dimension circumstances is still need us to 

make a deeply exploration. 

 

6.3. Extending the Application of Sparse PCA 

In the past several years, Sparse PCA has been successfully applied in diverse areas as 

bioinformatics, natural language processing and machine vision. Because automatically 

learning the features from high dimensional data has been a major research topic in 

machine learning and pattern recognition, and sparse PCA can be used as an unsupervised 

feature extraction step which can derive new feature learning algorithm. It is an important 

direction to derive a new sparse PCA for special application, and the fast and simple 

sparse PCA must be also considered firstly to extend the practical application of sparse 

PCA. 
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