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Abstract Y’
Identification of essential proteins plays a significant role in understandiw imal
100s f

requirements for the cellular survival and development. Experimental or the
identification of essential proteins are always costly, t| —consum and’ laborious.
High throughput technologies have resulted in a umber rotein-protein
interaction data, which provided a stepping stone mg protelns using
computational approaches. There have been i€s of tlonal approaches
proposed for predicting essential proteins base netw logies. However, the
network topology-based centrality measures ry sen noise of network. In this
paper, we propose a naive essential protei overy named PMN, based on the
integration of weighted interactome ne and fu modules The performance of
PMN is validated based on the PPI omyces cerevisiae. Experimental
results show that PMN S|gnf tperfo%j classical centrality measures. The
results also uncover relatlon etween th larity and essentiality of proteins.

Keywords: Interacto ork; %@protem Functional modules

1. Introductio \\

Proteins c@ the stru ﬂ cells and tissues of all essential ingredients that are
m

the most i nt ac of life material base. However, different proteins on the
importance of life activ are not the same. Usually those who have been excluded for
protein complexes ing from loss of function and causing the organism can not

survive are calkﬁ»ential proteins [1]. Essential protein is not only necessary for the
organism to sur and reproduce, but also plays an important role in life activities.
Therefore,%ﬁfication of essential proteins from the system level helps to understand
the inter ganization of life activities and processes. Meanwhile, a large number of
studi @/e shown that an essential protein (gene) is often the disease gene [2]. It can be

at the identification of essential provides valuable information both for proteins
biology, medicine and other related disciplines, especially with important applications in
disease diagnosis and drug design.

In biology, the essential proteins and disease genes are mainly identified by biomedical
experiments [3]. The biological methods of essential proteins identification are clear and
effective. However, the cost of these methods is quite high, the efficiency is very low, and
suitable species are limited. In recent years, with the rapid development of bioinformatics,
prediction of essential proteins based on computer science and mathematical theory
become the new direction of development. Especially the development of the yeast two-
hybrid [4], tandem affinity purification [5], mass spectrometry [6] high-throughput
proteomic techniques supply a large number of protein-protein interaction data.
These large amounts of protein interaction data makes it possible to predict
essential proteins through a computer method. Recently more attention has been
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paid to computational methods based on network topological characteristics.
Many researchers have explored the correlations between network topological
features and protein essentiality. Proteins in the network highly connecting with
other proteins are more likely to be essential than those selected by chance. This is
called the centrality-lethality rule [7].

Computational methods could be seen as useful preprocessing techniques which
could help experimental methods to quickly find essential proteins. Many
centrality measures have been proposed to capture the correlation between
network topological properties and protein essentiality. Local network features
based centrality measures include Degree Centrality (DC) [8], Betweenness
Centrality (BC) [9], Closeness Centrality (CC) [10], Subgraph Centrality(SC) [11],
Information Centrality(1C) [12] and Normalized a-Centrality (NC) [13]. Mtc.
[14] proposed measurement methods combined with the existing ce %?ésures
to identify essential proteins (including, edge clusterlngzcoefflme d ND).

Del etc., [15] analyzed 18 different reconstruct tabol orks of 16
different center measures and found that a rs¥’measure, any
combination two of them can improve t' icti G%o)rmance, but the
combination of three or over three did not im the pﬁ%&

Though a great progress has been ma the_co tlonal methods for the
identification of essential proteins base netwo ologies the identification
of essential proteins based on topol@m rORer, t|II very challenging. One of
the most important factors is proportlon of PPI networks
obtained from high- throug p ogloal iments have been found to contain
false positives and false neQative. Foralse positives, a general approach is to
evaluate the interactionghy usmg\@nt weighting methods. More recently,
there is a new trend impro e precision of essential protein discovery
method by |ntegr f netw topology and other biological information. Hart
et al., [16] shg tth allty is a property of the protein complexes, and
the experl I data hat a large number of essential proteins tend to
concentrate cert @otem complexes. Inspired by the researches and
discoveries mentio ove, we propose a hew method for predicting essential
proteins in the nteractome network by integrating functional modules and
weighted PPI @ks. The performance of PMN was tested on the well studied
species o%apc aromyces cerevisiae. Compared to other previous centrality
measure@ [8], BC [9], CC [10], SC [11], IC [12], NC [13], PMN achieves the
h%@recmon for the identification of essential proteins. The experimental
r show that the integration of network topology and functional modules
incréased the predictability of essential proteins in comparison with those
centrality measures only based on network topological features.

2. Method

In this paper, a new essential proteins discovery method, PMN is proposed
based on the integration of weighted PPI networks and functional modules. The
basic ideas behind PMN are as follows: (1) A highly connected protein is more
likely to be essential than a low connected one; (2) Essential proteins tend to form
densely connected clusters; (3) Essential Proteins in the same cluster have a more
chance to be co-expressed; (4) Essentiality is tied not to the protein or gene itself,
but to the molecular module to which that protein belongs (5) Essential proteins
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have a higher frequency to be in different functional modules than non-essential
proteins. In PMN, a protein’s essentiality is determined by the frequencies and
weighted degrees of the protein in functional modules.

To describe PMN simply and clearly, we provide the following definitions and
descriptions. A PPI network can be modeled as a simple graph G = (V, E), in
which a vertex in vertex set V represents a protein and an edge in edge set E
represents an interaction between two distinct proteins. As we all known, PPI
networks obtained from high-throughput biological experiments have been found
to contain false positives. To reduce the negative impact of noise on the prediction
of essential proteins, we construct a weighted PPI network using FS-Weight [17]
to calculate the score of protein pairs. .

Definition 1 FS-Weight Given a pair of proteins u and v, FS-Weight of e@yﬁ is

defined as follows:

. 2IN, NN | :3 . 6
FS -Weight(u,v) =
IN, - N, [+2|N, TN, | @ M
2, 0T N
|N - N |+2|NW|+/IXV

where N, and N, are sets consisting of ghbors Q@x nd v, respectively, A, and A,
are used to penalize proteins with very ghbor@l ey are defined as follows:

4@‘ S|
v J

% @
& =ma -|N, |1
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Based on ﬁegree of a vertex u is below the average degree,

then it is ad to t rage degree.
For a protein pair ighted PPI network, the higher the weight is, the more
likely the two p@, teract with each other. The intuition behind the weighting

method is simp the weight of an interaction reflects its reliability, then the
weighted interactions should better represent the actual interaction network than
the initial Di ones.

Defimi

n 2 Weighted degree (WD) Given a weighted PPI network G= (V, E,
vertex U, ue V. V. = {vi, Vo, ..., Vn}, E = {e1, €2,... , em}, W = {w(ey),
w(e , W(em)}, w(ej) is the weight of an edge e. WD (u, G) denotes the
weighted degree of u within G and is defined as:
WD (u,G) =3 w(u,v,),(u,v,)eE 3
It has been proved that there exist a number of functional modules, which play a
key role in carrying out biological functionality, and the essentiality tends to be a
product of a functional module rather than an individual protein. Inspired by the
researches and discoveries, we propose a new method to predict essential proteins,
named PMN. The PMN calculates scores of all proteins by integrating weighted
PPI netwok and benchmark functional modules. The score of a protein is used to
judge whether the protein is essential. For a protein v, its score S (v) is defined as
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the sum of weighted degree (WD) of v in all benchmark functional modules. Not
all the proteins are contained in benchmark functional modules. So, if a vertex v is
not contained in any functional module, v is identified as a non-essential protein
and S(v) is assigned to zero. Let FM= {fmy, fm; ,..., fmy} is a set of benchmark
functional modules predicted by experimental methods. Generally, S (v) can be
calculated by the follow formula:

JZWD(V fm) , 3fm,ve fm,

S(v) = (iel,m]) (4)

L 0 , Vim,ve fm,

3. Results and Discussion

3.1. Experimental Data ‘% 6
0

To evaluate the performance of the propose d, th‘e%l?\ network of
Saccharomyces cerevisiae was used, as it has@ araxy}zed by knockout
experiments and widely used in the evaluati &) essential proteins
discovery. The test data used in this paper ake as followm

The PPI data of Saccharomyces cerew was do%loaded from DIP database
[18]. There are 24,743 mteractlon g 5093 p?bt ins in total after the self-
interactions and the repeated inte red. The PPI network consists
of 21 components. The large c@ nent i%s of 5052 proteins.

Essential proteins of sdcl myces. cerevisiae were collected from several
databases, such as MIPS GD [QQ@EG [21] and SGDP [22]. Out of all the
5093 proteins in the P, twork proteins are essential among which 1165
proteins are in th a‘&comp nent.of the PPI network.

A benchmark ion les set is adopted from CYC2008 [23], which
consist of 4 |0nal There are 1627 distinct proteins in CYC2008.

3.2. Compare PMN other Methods

To validate th rmance of the proposed new method PMN, we carry out a
comparison be«@ it and six other previously proposed centrallty measures:
Degree C l@yty (DC), Betweenness Centrality (BC), Closeness Centrality (CC),
Subgrap trality(SC), Information Centrality (IC) and Normalized a-Centrality
(NQ). ins are ranked according to their values calculated by each method. A
c% number of top proteins are selected as candidates for essential proteins.
Thel'we determine how many of them are true essential proteins. The number of
essential proteins detected by PMN and six other centrality measures (DC, BC,
CC, SC, IC and NC) from the yeast protein-protein interaction network is shown
in Figure 1.

From Figure 1 we can see that PMN performs significantly better than all the
six previous aforementioned methods for predicting essential proteins from the
yeast protein interaction network. Especially, the improvement of PMN over the
classic centrality measures (DC, BC, IC, SC) is more than 50%.

A more general comparison between the proposed new method PMN and the
six previously proposed methods (DC, BC, CC, SC, IC and NC) is tested by using
a jackknife methodology [24]. The comparison results are shown in Figure 2. In
Figure 2, the X-axis from left to right represents the proteins in PPl networks
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ranked in the descending order according to their ranking scores computed by
corresponding methods, while the Y-axis is the cumulative count of essential
proteins with respect to ranked proteins moving left to right. The areas under the
curve for PMN and the six other methods are used to compare their prediction
performance. As shown in Figure 2, it is clear that the sorted curve of PMN
appears to be much better than that of the six previously proposed centrality
measures: DC, BC, CC, SC, IC and NC. The comparison results indicate that the
integration of weighted protein-protein interaction and functional modules can
help improve the predicted precision of identifying essential proteins.
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3.3. Analysis of the Differences between PMN and other Methods

To further analyze why and how PMN performs well on the identification of essential
proteins, we study the relationship and difference between it and six other methods by
predicting a small fraction of proteins. For each method, the top 100 proteins are selected.

Firstly, we compare PMN with DC, BC, CC, SC, IC and NC by investigating how
many proteins are both predicted by PMN and by anyone of the other methods. The
number of overlaps between PMN and one of the other methods is shown in Table 1. In
Table 1, PMN N Mi| denotes the number of common proteins detected by PMN and by a
method Mi. {M; — PMN} (or {PMN — M;}) represents the set of proteins detected by M;
(or PMN), but not by PMN (or M;). |[M; —PMN]| is the number of proteins in set {M; —
PMN}. .

From Table 1, we can see that the common proteins identified by PMN and DC, C,
BC and CC are all less than 10%, and that common proteins both predicted b and
NC is less 30%. Such a small overlap between the predicted proteins of P% DC, IC,

ngity meas h is much

The fourth column in Table 1 refers to the number '8 non-ew proteins among
different proteins identified by Mi but not by PM ordingéo theXfurther investigation
about these non-essential proteins predicted by ot methoﬁ}r have found that more
than three-quarter of these non-essential prot%detect.ed%o er methods (DC, IC, SC,

BC, CC and NC) have very low scores ﬁ@ less tha

Table 1. Overlap and Differ rotei Q%hicted by PMN and other
Methoe% ed in%l 0 Proteins
A&

SC, BC, CC and NC shows that PMN is a special ce
different from others.

. -y Percentage of non-essential
M, [PMNAM, |Mipm1°{”'esf E?E“’te'”s proteins in {M; —~PMN}

o AN\ with low PMN
DC 3 \Qﬁ*’ % v 51 78.43%
IC 3 97 54 83.33%
SC Q 98 \Q 63 82.54%
BC 3 56 80.36%
ccC 6 53 79.25%
NC 27 ‘(\(b?s 33 75.76%

Yy

Second e evaluate the different proteins identified by PMN and those by other
methods.

. Comparison of the Percentage of Essential Proteins out of all the
Different Proteins between PMN and other Methods

M; |M~PMN| Percentage of essential proteins in PMN Percentage of essential proteins in M;

DC 97 82.47% 47.42%
IC 97 82.47% 44.33%
SC 98 82.65% 35.71%
BC 97 82.47% 42.27%
cC 94 81.91% 43.62%
NC 73 83.56% 54.79%

Table 2 shows how many essential proteins are predicted out of all the different
proteins identify by PMN and those identified by DC, BC, CC, SC, IC and NC. As
expected, the results shown in Table 2 illustrates that the percentage of essential proteins
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identified by PMN is consistently higher than that explored by six other methods for the
different proteins between them. Take SC as an example, out of all the top 100 proteins,
there are 98 different proteins detected by PMN. About 82.65% of these proteins are
essential, while there are only 35.71% of different proteins detected by SC but not by
PMN are essential proteins.

4. Conclusions

Essential proteins play a key role in the life activities of cells. In this work we propose
a new method, named PMN, for predicting essential proteins based on functional modules
and weighted PPl networks. PMN is applied to the PPl network of Saccharomyces
cerevisiae. The experimental results show that the predicted precision of PMN ig clearly
higher than those of the six other topology-based centrality measures: DC, IC, C,
CC and NC. Although PMN performs well on the discovery of essential pro < "there
should be still a space to improve the prediction precision. besides the functiegal modules
data, some other protein related data, such as gene e ssion d Id be also
integrated into PPI networks for identifying essential prog'ns. The int on of multiple

protein related data may contribute a good deal t ti icaw ssential proteins
with further research efforts. V
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