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ABSTRACT

Wireless Physical Layer Security with CSIT Uncertainty

Amal Hyadi

Recent years have been marked by an enormous growth of wireless communication

networks and an extensive use of wireless applications. In return, this phenomenal

expansion induced more concerns about the privacy and the security of the users.

Physical layer security is one of the most promising solutions that were proposed to

enhance the security of next generation wireless systems. The fundamental idea be-

hind this technique is to exploit the randomness and the fluctuations of the wireless

channel to achieve security without conditional assumptions on the computational

capabilities of the eavesdropper. In fact, while these elements have traditionally been

associated with signal deterioration, physical layer security uses them to ensure the

confidentiality of the users. Nevertheless, these technical virtues rely heavily on per-

haps idealistic channel state information assumptions. In that regard, the aim of this

thesis is to look at the physical layer security paradigm from the channel uncertainty

perspective. In particular, we discuss the ergodic secrecy capacity of different wiretap

channels when the transmitter is hampered by the imperfect knowledge of the channel

state information (CSI). We consider two prevalent causes of uncertainty for the CSI

at transmitter (CSIT); either an error of estimation occurs at the transmitter and he

can only base his coding and the transmission strategies on a noisy version of the CSI,

or the CSI feedback link has a limited capacity and the legitimate receivers can only

inform the transmitter about the quantized CSI. We investigate both the single-user

multiple-input multiple-output (MIMO) wiretap channel and the multi-user broad-

cast wiretap channel. In the latter scenario, we distinguish between two situations:
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multiple messages transmission and common message transmission. We also discuss

the broadcast channel with confidential messages (BCCM) where the transmitter has

one common message to be transmitted to two users and one secret message intended

to only one of them. In all cases, we show that by appropriately designing the coding

and the transmission schemes, a secure communication can still be achieved even with

an imperfect knowledge of the CSIT.
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Chapter 1

Introduction

1.1 Physical Layer Security

The broadcast nature of the wireless channel makes radio transmissions vulnerable

to eavesdropping attacks. To date, the security of wireless communications is mainly

performed at the application layer using cryptographic techniques. However, with the

emergence of ad-hoc and decentralized networks, these high-level techniques turn out

to be complex and challenging to implement. Therefore, there has been a significant

recent interest in studying the inherent ability of the physical layer to provide secure

communications. This paradigm is known as wireless physical layer security. What

distinguishes physical layer security compared to other high layers cryptographic tech-

niques is that it exploits the randomness and the fluctuations of the wireless channel

to achieve security at a remarkably reduced computational complexity. Information

theoretic security dates back to 1949 when Shannon introduced his pioneer work on

cipher systems [1]. Shannon’s work considers the secure transmission of confidential

information when a random secret key is shared between the legitimate parties, and

a passive eavesdropper is intercepting the communication. To guarantee perfect se-

crecy, Shannon showed that the entropy of the shared secret key should exceed the

entropy of the message, or in other words, this requires the key to be at least as long

as the confidential message itself. Many years later, Wyner’s work [2] came to shed

some positive light on information theoretic security. Wyner’s model, called a wiretap
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channel, takes advantage of the channel’s imperfections to secure a transmission at

the physical layer without the need of a shared secret key. Since then, studies of the

wiretap channel have multiplied and have extended to more general communication

systems including broadcast channels, fading channels, multiuser networks, and many

other wireless communication models.

In particular, securing fading channels from potential wiretapping attacks is of

crucial interest, especially in regard to the unprecedented growth of wireless com-

munication applications and devices. The fading wiretap channel has opened new

research directions for information theoretic security. What is unique about the fad-

ing model is that it takes advantage of the randomness of the channel gain fluctua-

tions to secure the transmission against potential eavesdroppers, at the physical layer

itself. As a result, even if the eavesdropper has a better average signal-to-noise ra-

tio (SNR) than the legitimate receiver, physical layer security can still be achieved

over fading channels without requiring the sharing of a secret key. To make the most

of what fading has to offer, the knowledge of the channel state information (CSI) at

the transmitter (CSIT) is of primordial importance.

The number of research works on physical layer security has increased exponen-

tially over the last few years. This number is certainly to continue growing with the

deployment of 5G and beyond wireless communication systems. To capture the enor-

mous growth of research works on physical layer security, multiple surveys, overview

papers, and books have been published in recent years. A general detailed review

of the theoretical foundations, coding techniques, practical implementations, chal-

lenges and opportunities of physical layer security is presented in [3–7]. The work

in [8] provides a comprehensive survey describing the evolution of information the-

oretic security from point-to-point communication systems to multiple antenna and

multiuser networks. A brief summary of challenges facing physical layer security is

presented in [9] and in [10] for next generation networks. An overview of physical
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layer security is also considered in [11–13] for cooperative systems, in [14] for mas-

sive multiple-input-multiple-output (MIMO) systems, and in [15] for cognitive radio

networks. The authors, in [16], present an earlier survey on physical layer security

under the imperfect channel state information assumption, with a particular focus on

relay channels, cognitive system, and large-scale decentralized networks. The effect of

having an outdated channel knowledge at the transmitter, on information theoretic

security, is highlighted in [17], and a synopsis of how different levels of CSIT impact

the system’s security is provided in [18].

1.2 Motivation and Thesis Contributions

The vast majority of research works on physical layer security assume that the trans-

mitter has a perfect knowledge of the legitimate receiver’s CSI, usually referred to

as the main CSI, or even of both the main and the eavesdropper’s CSI. Although

this assumption makes the analysis more tractable and allows the characterization

of the full potential of the fading wiretap channel, it does not capture the practical

aspect of the transmission model. In a wireless communication system, acquiring the

CSIT requires the receiver to feed back its CSI constantly to the transmitter. This

feedback process is typically accompanied by the introduction of uncertainty into the

CSIT. Different phenomena can cause the CSIT to be imperfect. Most commonly,

the uncertainty comes from an error of estimation at the transmitter who ends up

with a noisy version of the CSI, or from a feedback link with a limited capacity which

requires the transmission of quantized CSI, or also from a delayed feedback causing

outdated CSIT. The aim of this thesis is to consider the more realistic scenario where

only partial main CSI is available at the transmitter. In particular, we investigate

the ergodic secrecy capacity of different wireless communication systems under the

assumption of CSIT uncertainty.
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The main contributions of this thesis can be summarized in the following points:

• We characterize the ergodic secrecy capacity of multi-user broadcast wiretap

channels over fast fading channels with imperfect main CSIT. In particular,

we analyze the effect of the noisy estimation of the CSI on the throughput of a

broadcast channel where the transmission is intended for multiple legitimate re-

ceivers in the presence of an eavesdropper and we prove that a non-zero secrecy

rate can still be achieved even when the CSI at the transmitter is noisy. The ob-

tained results show that the secrecy rate when broadcasting a common message

is limited by the legitimate receiver having, on average, the worst main channel

link, i.e., the legitimate receiver with the lowest average SNR. For the indepen-

dent messages case, we prove that the achievable secrecy sum-rate scales with

the number of users K according to the scaling law log((1−α) log(K)), where α

is the estimation error variance of the CSIT. Asymptotic analysis at high-SNR,

perfect and no-main CSI are addressed and the results are illustrated for the

case of Rayleigh fading channels.

• We examine the impact of having finite CSI feedback on the secrecy through-

put of multi-user block-fading broadcast channels. More specifically, we con-

sider that the transmitter is unaware of the channel gains to the legitimate

receivers and to the eavesdropper and that the main CSI feedback links are lim-

ited to b bits per fading block. These feedback bits are provided to the trans-

mitter by each legitimate receiver, at the beginning of each coherence block,

through error-free public links with limited capacity. Both the common mes-

sage transmission, where the same message is broadcasted to all the legitimate

receivers, and the independent messages transmission, where the source broad-

casts multiple independent messages, are considered. Assuming an average

power constraint at the transmitter, we provide an upper and a lower bounds

on the ergodic secrecy capacity for the common message case, and an upper
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and a lower bound on the secrecy sum-rate for independent messages. For the

particular case of infinite feedback, we prove that our bounds coincide.

• We establish the secrecy capacity region of the block-fading broadcast channel

with confidential messages (BCCM) when the transmitter has limited knowl-

edge of the CSI. In particular, we consider a two-user communication system

where the transmitter has one common message to be transmitted to both users

and one confidential message intended to only one of them. The confidential

message has to be kept secret from the other user to whom the information is

not intended. The transmitter is not aware of the CSI of neither channel and

is only provided by limited CSI feedback sent at the beginning of each fading

block. Assuming an error-free feedback link, we characterize the secrecy ca-

pacity region of this channel and show that even with a 1-bit CSI feedback, a

positive secrecy rate can still be achieved. Then, we look at the case where the

feedback link is not error-free and is rather a binary erasure channel (BEC). In

the latter case, we provide an achievable secrecy rate region and show that as

long as the erasure event is not a probability one event, the transmitter can still

transmit the confidential information with a positive secrecy rate.

• We investigate the ergodic secrecy capacity of multi-antenna block-fading wire-

tap channels with limited CSI feedback. We consider that the transmitter is

unaware of the channel matrices of neither the main nor the eavesdropper chan-

nels, and is only provided by a finite CSI feedback sent by the legitimate receiver

through a public, error-free, link with limited capacity. Assuming an average

power constraint at the transmitter, we provide two achievable secrecy rates

and an upper bound on the ergodic secrecy capacity. The first secrecy rate is

achieved by using the feedback information not only to adapt the power but

also to adjust the transmission rate during each fading block. For the second
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achievable secrecy rate, the feedback is mainly employed for the power adap-

tation purpose. Besides, in order to maximize the secrecy rate, we present a

framework to design the used codebooks for feedback and transmission. The

presented framework is based on the iterative Lloyd’s algorithm [19]. For the

particular case of infinite feedback, we prove that the first achievable secrecy

rate and the presented upper bound on the ergodic secrecy capacity coincide,

hence, fully characterizing the ergodic secrecy capacity in this case. The high-

SNR regime and the secrecy degrees of freedom (SDoF) of the system are also

investigated.

1.3 Thesis Outline

The rest of this dissertation is organized as follows. Chapter 2 provides the reader

with some fundamental concepts associated with the wiretap channel. In addition,

it presents a comprehensive review of recent and ongoing research works on physical

layer security. Chapter 3 analyzes the ergodic secrecy capacity of the broadcast

wiretap channel when the transmitter is provided with a noisy estimation of the

main CSI. The impact of having a finite CSI feedback on the secrecy throughput is

examined in Chapter 4 for the multi-user broadcast wiretap channel, and in Chapter 5

for the two-user BCCM, considering both cases when the feedback link is error-free

and when it is subject to erasure. Chapter 6 investigates the multi-antenna block-

fading wiretap channel with limited CSI feedback. Finally, Chapter 7 offers some

concluding remarks and briefly outlines some possible future directions.
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Chapter 2

Background and Literature Review

2.1 Introduction

As mentioned earlier in the introductory chapter, information theoretic security was

firstly introduced by Shannon in [1]. Shannon’s model, called a cipher system, consid-

ers the transmission of confidential information to a legitimate receiver in the presence

of a passive eavesdropper intercepting the communication, cf. Figure 2.1. The model

also assumes that a random secret key is shared between the transmitter and the

legitimate receiver and that the key is unknown to the eavesdropper. To guarantee

perfect secrecy, the entropy of the shared secret key should exceed the entropy of the

message. In other words, this requires the key to be at least as long as the confidential

message itself. Three decades later, Wyner’s work [2] came to shed some positive light

on information theoretic security. Wyner’s new secrecy model exploits the structure

of the channel to transmit a message reliably and securely, to the intended receiver,

without the need of a shared secret key.

The rest of this chapter is organized as follows. Section 2.2 briefly discusses possi-

ble countering measures for security threats. Section 2.3 provides a summary of some

of the fundamental concepts associated with Wyner’s wiretap channel. Section 2.4

addresses three different phenomena that can cause CSIT uncertainty. A detailed

state-of-the-art review of physical layer security with perfect CSIT, and with CSIT

uncertainty is presented in Section 2.5. Finally, Section 2.6 concludes the chapter.
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Figure 2.1: Shannon’s cipher system.

2.2 Countering Security Threats

The open nature of the wireless channel makes it vulnerable to different types of se-

curity attacks. Generally speaking, we can distinguish between two types of attacks:

passive attacks and active attacks. In a passive attack, the malicious node is solely

interested in intercepting the communication between the legitimate entities. There-

fore, the confidentiality of the transmitted information is the main issue in such a

case. On the other hand, in an active attack, the malicious node aims to disrupt the

system. Possible active attacks include jamming, denial-of-service (DOS), message

modification, and localization through traffic analysis.

In this work, we consider the passive kind of attacks where the confidentiality of

the transmitted information is the main focus. To date, countering the confidentiality

threat is mainly addressed using cryptographic techniques. Accordingly, the confi-

dential information is encrypted using a shared secret key that is only known to the

legitimate parties. The generation and the sharing of this secret key represent a real

challenge. Besides, it depends highly on the assumption of having limited time and

limited computational resources at the wiretapper. The private key distribution and

management are even more challenging in decentralized wireless systems and mobile

networks with dynamic topologies. Indeed, this is one of the big issues facing the next

wave of wireless systems known as the Internet-of-Things (IoT). Exploiting the ability
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of the physical layer to achieve a confidential transmission is one of the promising ap-

proaches that are being studied to tackle this problem. It should be noted, however,

that physical layer security is there to complement the existing security mechanisms,

including encryption, ID and Passwords, denial of internet access, firewalls, backups,

etc, rather than to compete with them.

2.3 The Wiretap Channel

This section provides the reader with an objective description of some fundamental

concepts associated with the wiretap channel. First, we present the basic information

theoretic model introduced by Wyner, which is colloquially known as the wiretap

channel. We shed light on how Wyner’s model take advantage of the channel’s nois-

iness to secure a transmission, and we briefly explain the structure of the wiretap

code. Then, we consider and discuss the usefulness of cooperative jamming to en-

sure or enhance the security of a wireless transmission. The last part of this section

presents two key secrecy metrics used to evaluate and measure the performance of a

system under confidentiality constraints, namely the secrecy capacity and the secrecy

outage probability.

2.3.1 Wyner’s Wiretap Channel

Wyner’s channel model, also known as the wiretap channel, represents a generaliza-

tion of Shannon’s cipher system. The originality of Wyner’s work comes straight

from his pivotal idea to take advantage of the imperfection of the communication

medium to secure a transmission at the physical layer. In Wyner’s model, illustrated

in Figure 2.2, the transmitter (Alice) tries to communicate a confidential message W

to a legitimate receiver (Bob) in the presence of an eavesdropper (Eve) over a noisy

memoryless link. Wyner’s model assumes that Eve observes a degraded version of

the signal obtained by Bob. The channel between Alice and Bob is usually referred
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Figure 2.2: Wyner’s wiretap channel.

to as the main channel or the legitimate channel while the channel between Alice and

Eve is known as the wiretap channel or the eavesdropper’s channel. The message W

is encoded into a codeword Xn of length n and transmitted at a rate Rs. A (2nRs, n)

code consists of the following elements:

• A message set W =
{
1, 2, · · ·, 2nRs

}
with the messages W ∈ W independent

and uniformly distributed over W;

• A stochastic encoder f : W → X n that maps each message w to a codeword

xn ∈ X n;

• A decoder at the legitimate receiver g : Yn → W that maps a received sequence

ynR ∈ Yn to a message ŵ ∈ W.

A rate Rs is an achievable secrecy rate if there exists a sequence of (2nRs, n) code

such that the reliability condition

lim
n→∞

1

2nRs

2nRs∑

w=1

Pr
[
W 6= Ŵ

∣∣W = w
]
= 0, (2.1)

and the secrecy condition

lim
n→∞

1

n
I (W ; Y n

E ) = 0, (2.2)

with YE representing the received signal at the eavesdropper, are both satisfied.
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2.3.1.1 The Weak Secrecy Constraint

The secrecy constraint in (2.2) is called the weak secrecy condition. At the differ-

ence of Shannon’s perfect secrecy, which requires the exact information leakage to be

zero, i.e., I (W ; Y n
E ) = 0, where W is the confidential information, and Y n

E is the n-

length received signal at the eavesdropper, the weak secrecy constraint only requires

the rate of the information leaked to the eavesdropper to asymptotically vanish, i.e.,

limn→∞
1
n
I (W ; Y n

E ) = 0, where n is the length of the transmitted codeword. The weak

secrecy condition can be further straightened to the strong secrecy constraint which

reqires the absolute amount of secrecy leaked to the eavesdropper to go to zero as the

length of the transmitted codeword becomes very large, i.e., limn→∞ I (W ; Y n
E ) = 0.

Generally, a specific code achieving a secure communication under the weak secrecy

constraint does not necessarily achieve strong secrecy [20–23]. Yet, in all known in-

stances to date, both weak and strong secrecy constraints result in the same secrecy

capacity. Another interesting secrecy condition is the semantic security constraint

that was firstly introduced in cryptography and was lately extended to the wiretap

channel context [24]. This secrecy condition alleviates the assumptions on the trans-

mitted confidential message, i.e., it does not assume that the message is random and

uniformly distributed. This is a new challenging and promising direction for research

on information theoretic security.

2.3.1.2 Wiretap Coding

The achieving secrecy code that guarantees both the reliability and the security of

the transmitted information is called a wiretap code. It is a stochastic code having

a nested structure. As a matter of fact, instead of fixing the codeword associated

with each message W , the codeword is chosen at random according to a local ran-

dom number generator W ′ ∈
{
1, · · ·, 2nRe

}
, with Re denoting the equivocation rate,
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i.e., Re=I (W ; Y n
E ). The set of 2nRe codewords, corresponding to each secret mes-

sage, forms what we call a bin or a subcode of the wiretap code. To date, practical

constructions of wiretap codes are only possible for some particular channels.

Although Wyner’s model builds on the assumption of a degraded wiretap channel,

where the signal at the eavesdropper is a degraded version of the legitimate receiver’s

signal, it provides the essential elements required to understand information theoretic

security without the complexity of a more general setup. Ulterior works generalized

Wyner’s work to the case of non-degraded channels [25], Gaussian channels [26], and

fading channels [27–31], to cite only few. For more details about the wiretap channel,

wiretap coding or alternative coding techniques for secret communications, we invite

the reader to consider the following references [3, 5, 6, 32].

2.3.2 Cooperative Jamming

One of the effective approaches proposed to improve security at the physical layer

is to exploit some of the resources of the legitimate system for the transmission of

jamming signals. This technique, called cooperative jamming, was originally proposed

by Tekin and Yener in [33], and was further studied in [34], and [35]. The main

idea of the work comes from the observation that causing interference in a wiretap

setup can potentially increase the secrecy rate between the legitimate pairs. In fact,

the injected interference would eventually introduce additional randomness in the

channel. Cooperative jamming can be either achieved using Gaussian noise [33–35],

random codebooks [36–38], or structured random codebooks [39–41]. For a detailed

review of the aforementioned three forms of cooperative jamming, we kindly invite

the reader to consider the following two references [42] and [12].

The collaborative approach, presented in [33–35], was analyzed when using Gaus-

sian signals over a multiple access channel. Nonetheless, the concept of cooperative

jamming is much more widely applicable and can be captured in different multi-user
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and multiple-antenna wiretap channels. Different variants of the cooperative jamming

technique are considered in the literature. In particular, the transmission of artificial

noise, the noise forwarding technique, and the interference assisted secret communica-

tion approach. Despite this difference in the naming conventions, all these techniques

are a special case of cooperative jamming [33], and they all involve the introduction

of interference into the channel in the sole interest to improve the secrecy throughput.

2.3.3 Secrecy Performance Measure

To evaluate the performance of a communication system with a security constraint,

the most commonly used metric is the secrecy capacity. The secrecy capacity Cs is

defined as the maximum achievable secrecy rate, i.e.,

Cs , supRs, (2.3)

where the supremum is over all achievable secrecy rates. It could be seen as the

homologue of the traditional channel capacity with a secrecy constraint. We note

that the secrecy capacity is said to be ergodic when it is averaged over a sufficiently

long time period.

For Wyner’s wiretap channel, the secrecy capacity is given as the difference be-

tween a rate of reliable communication and a rate of information leaked to the eaves-

dropper, i.e.,

Cs = max
U→X→YR→YE

(I (U ; YR)− I (U ; YE)) , (2.4)

where U is an auxiliary random variable and U→X→YR→YE forms a Markov chain.

From (2.4), it is clear that the secrecy capacity is positive as long as the transmitter

and the legitimate receiver have an advantage over the eavesdropper at the physical

layer. This is the case for Wyner’s model since YR is a degraded version of YE. For

a general fading channel, this could be viewed as transmitting only over the channel
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instants where the main channel is better than the eavesdropper’s channel. This

brings us back to the issue of having CSIT. We should note that the non-degraded

channel case was considered by Csiszár and Körner [25], and that their model is the

one used for continuous channels. Another interesting work that has rejuvenated the

wiretap channel approaches could be found in [43].

The secrecy performance is sometimes analyzed using the secrecy outage proba-

bility, which is defined as the probability that a target secrecy rate is unachievable.

Yet, the operational meaning of this metric is still unclear to many members of the

research community.

2.4 Sources of CSIT Uncertainty

In a wireless communication system, the knowledge of the CSI at the receiver (CSIR)

is usually possible through training signals sent by the transmitter. For wiretap chan-

nels, these training signals can also be used by the eavesdropper who gets to estimate

its channel gain too. The estimation of the CSI at the receiving nodes is generally

very accurate thanks to the receivers’ capability to deploy rapid channel tracking.

As for acquiring the CSIT, the receiver should feed back its CSI to the transmitter

constantly. This feedback process is typically accompanied by the introduction of

uncertainty into the CSIT. Different phenomena can cause the CSIT to be imperfect.

Most commonly, the uncertainty comes from an error of estimation at the transmitter

who ends up with a noisy version of the CSI, or from a feedback link with a limited

capacity which requires the transmission of quantized CSI, or also from a delayed

feedback causing outdated CSIT.

2.4.1 Estimation Error of the CSIT

Estimation error is one of the most common reasons behind CSIT uncertainty. Re-

search on physical layer security, with an estimation error of the main CSIT, generally
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Figure 2.3: Fading wiretap channel with perfect CSIR and noisy estimation of the
main CSIT.

assumes that the legitimate receiver sends its CSI to the transmitter through a feed-

back link with infinite capacity, cf. Figure 2.3.

The main channel gain estimation model can be formulated as

hR(t) =
√
1− α ĥR(t) +

√
α h̃R(t), (2.5)

where hR(t) is the actual main CSI at time instant t, ĥR(t) is the noisy version of

the CSI available at the transmitter, h̃R(t) is the channel estimation error, and α is

the estimation error variance (α ∈ [0, 1]). The case α=0 corresponds to the perfect

main CSIT scenario while α=1 corresponds to the no main CSIT case. It is usually

assumed that Bob can perfectly estimate its CSI and that Alice is only aware of the

fading distribution of the wiretap channel. Besides, most research works consider the

worst case scenario where the eavesdropper has a perfect knowledge of all channel

gains.

2.4.2 CSI Feedback Link with Finite Capacity

Another cause of CSIT uncertainty is the transmission of the feedback information

over finite-rate links. As a matter of fact, the process of procuring CSI is resource

consuming in time-varying fading channels, and the accuracy of the obtained CSIT
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is highly correlated with the size of the feedback overhead and the allocated power

for feedback transmission. In block-fading channels, the acquisition of the CSIT

during each coherence time takes place in three stages: transmission of a pilot signal

destined for the receiver to estimates its channel gain, followed by CSI feedback to

the transmitter, then data transmission, cf. Figure 2.4.

P
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er
en
ce

B
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ck

Pilot Transmission
Alice transmits pilot signals

to Bob to estimate its channel

CSI Feedback

Bob feeds back its CSI

to the transmitter

Data Transmission

Alice transmits a confidential
message to Bob

Figure 2.4: CSI training and data transmission over one coherence block.

Clearly, when more time is allocated to training, time for data transfer is reduced

and vice versa. The fed back information is used to notify the transmitter about the

forward link condition. A broad look at the field of limited feedback in wireless com-

munication systems is provided in [44]. For works on information theoretic security

with limited feedback, it is usually assumed that the receiver feeds back the index of a

quantized version of the CSI, the index of the channel region in which the CSI lies, or

the index of the quantized channel gain direction. It is also assumed, in most works,

that the quantization codebook is fixed and known to all terminals, that the feedback

link is error-free, and that both Bob and Eve estimate their respective channel gains

perfectly.
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2.4.3 Outdated CSIT

Delay in feedback transmission is one of the common sources of CSIT uncertainty.

It causes the transmitter to base its transmission strategy on a time-delayed chan-

nel coefficient version of the current legitimate receiver’s CSI. Considering a time-

varying wiretap channel, where the main channel remains constant over a time slot

and changes from one slot to another, it is generally assumed that the feedback de-

lay is of the length of a time slot, i.e., at time instant t, Alice is aware of hR(t−1).

This particular scenario straightforwardly generalizes to the case when the delay is

of multiple time slots length.

2.5 Literature Review

In this section, we present a comprehensive review of recent and ongoing research

works on physical layer security. We focus on both information theoretic and signal

processing approaches to the topic under different assumptions on the CSIT. More-

over, we provide a classification of these research works based on each of the three

sources of CSIT uncertainty, presented in the previous section.

2.5.1 Physical Layer Security with Perfect CSIT

In recent years, the fading wiretap channel has opened new research directions for

physical layer security. What is unique about the fading model is that even if the

eavesdropper has a better SNR than the legitimate receiver, physical layer security

can still be achieved without requiring the sharing of a secret key [27–29]. Figure 2.5

illustrates the fading wiretap channel where the respective received signals at the

legitimate receiver and the eavesdropper can be represented as

YR(t) = hR(t)X(t) + zR(t)

YE(t) = hE(t)X(t) + zE(t)

, (2.6)
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Figure 2.5: Fading wiretap channel.

where t denotes the time instant, X(t) is the transmitted signal, hR(t) and hE(t) are

the respective channel gains of Bob and Eve’s channels, and zR(t) and zE(t) represent

the additive white Gaussian noises at the respective receivers. The fading coefficients

hR and hE are usually assumed mutually independent, and an average transmit power

is generally imposed at the transmitter.

To make the most of what the fading channel has to offer to physical layer security,

the knowledge of the CSIT is of primordial importance. A vast majority of works

assume that the transmitter has a perfect knowledge of the CSI of both the main

and the eavesdropper channels or at least of the main channel. In this subsection,

we are interested in these research works where the perfect CSI assumption is made.

We start by considering the case when both the main and the eavesdropper channel

gains are revealed to the transmitter. Then, we look at the case when only the main

CSI is perfectly known at the transmitter.

2.5.1.1 Both the Main and the Eavesdropper CSI are Per-

fectly Known:

When the transmitter is perfectly aware of the legitimate receiver’s and the eavesdrop-

per’s CSI, the optimal transmission scheme is to send the confidential information only
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when the main CSI is better than the eavesdropper’s CSI and adapt the transmitted

power according to the instantaneous values of the channel gains. The block-fading

wiretap channel is considered in [28], where the ergodic secrecy capacity is established

in both cases, when the eavesdropper’s CSI is available at the transmitter and when

it is not. The effect of correlation between the main and the wiretap block-fading

channels is investigated in [45, 46], where the loss engendered by the correlation is

quantified in terms of the secrecy capacity. The authors in [47] examine the case of

frequency-selective fading channels. The model of interest is the broadcast channel

with confidential message, in which the source has a common message to transmit to

two receivers (Receiver 1 and 2) and a confidential message to transmit to only one of

the receivers (Receiver 1) while keeping it secret from the other (Receiver 2). Figure

2.6 highlights the difference between the broadcast channel with confidential infor-

mation, the broadcast wiretap channel with common message transmission, and the

broadcast wiretap channel with independent messages. The work in [47] proposes a

practical Vandermonde precoding to exploits the zeros of Receiver 2’s channel to hide

the secret information in a similar way to spatial beamforming. The ergodic secrecy

capacity region of the BCCM is established in [31]. Further results on the BCCM can

be found in [48–50]. The frequency-selective fading model is also considered in [51],

where the secure degrees of freedom of a K user interference channel are analyzed.

In the last few years, multiple antenna wiretap channels have become a compelling

research topic. In [52] and [53], the authors investigate the secrecy capacity of a

multi-antenna quasi-static fading wiretap channel and highlight the positive impact

of deploying multiple antennas on the confidentiality of the system. The work in [54]

considers the case of a degraded single-input-multiple-output (SIMO) wiretap channel

and shows that the secrecy diversity gain is proportional to the number of receive

antennas. The multiple-input-single-output (MISO) case is studied in [36,55,56]. The

secrecy capacity of the MIMO wiretap channel with a single antenna eavesdropper
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Figure 2.6: Two-user broadcast channel with secrecy constraints.
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is examined in [57], and the case of MIMO transmission with a multiple-antenna

eavesdropper is considered in [37, 58–62] when the channel gain matrices are fixed

and known to all terminals. Analysis on the secure degrees of freedom, the secrecy

diversity gain, and the secrecy multiplexing gain can be found in [63] and references

therein.

Other works on physical layer security with full CSIT include [38, 64–70] where

the security of cooperative systems is investigated, [71–75] where cognitive systems

with confidentiality constraints are considered, and [76–78] for secure massive MIMO.

2.5.1.2 Only the Main CSI is Perfectly Known at the Trans-

mitter:

In this case, it is generally assumed that the transmitter is aware of the fading distri-

bution of the eavesdropper’s CSI but not of its instantaneous realizations. Baros and

Rodrigues, [27], were one of the first to emphasize the key role fading channels play

in enhancing the information theoretical security of wireless communication systems.

Their model consists of a quasi-static Rayleigh fading channel where the channel gains

remain constant over all channel uses, and only the main CSI is perfectly known to

the transmitter. The work characterizes the outage secrecy capacity of the system

and interestingly shows that secure transmission is possible even when the average

SNR of the eavesdropper is better than that of the legitimate receiver. An extension

of their work, considering the case when an imperfect estimation of the eavesdrop-

per’s CSI is also available at the transmitter, is presented in [29]. The authors in [79]

investigate the achievable secrecy rate of a wiretap channel with a constant AWGN

main channel and a time varying Rayleigh fading eavesdropper’s channel. The ergodic

secrecy capacity and the optimal transmission power for block-fading channels are ex-

amined in [28]. Block-fading channels are also considered in [80], where the secrecy

outage probability of the system is evaluated under different secure hybrid auto-
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matic re-transmission request (HARQ) protocols. The work in [81] and [30] analyses

the ergodic secrecy capacity of parallel channels and fast fading broadcast channels.

Both cases, when a common information is transmitted to all the legitimate receivers,

and when each receiver is interested in an independent information, are considered.

Research on multiple antenna wiretap channels assuming perfect main CSI and no

eavesdropper’s CSI at the transmitter may be found in [82–86] and in [87–99] for

cooperative jamming. Another work, [100], study the optimal beamforming design

for a MISO system with perfect main CSI and a noisy version of the eavesdropper’s

CSI available at the transmitter. Other works include [101–103].

2.5.1.3 Arbitrarily Varying Eavesdropper Channel

A particularly interesting case where the transmitter does not have any knowledge

about the eavesdropper’s channel, not even the statistical knowledge or the distribu-

tion of the wiretapper gain, is found in the framework of arbitrary varying eavesdrop-

per channel [104]. Under such an assumption on the eavesdropper’s channel state

and assuming that the number of antennas of the eavesdropper is limited, the au-

thors in [104] derived the SDoF of the MIMO wiretap channel. This work was later

on extended to the multi-user setup in [105], [106], and [107].

Although the assumption of perfect main CSIT makes the secrecy analysis more

tractable and allows the characterization of the full potential of the fading wiretap

channel, it does not capture the practicality of the transmission system. On one hand,

the knowledge of the eavesdropper’s CSIT is far from possible in a real scenario as

Eve is a passive node who does not transmit and whose sole interest is to intercept

the communication between Alice and Bob. That is, the eavesdropper has no interest

in giving Alice its CSI. This assumption is usually justified by considering that Eve

belongs to the same communication network as Alice and Bob and that all users
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provide the transmitter with their CSI prior to data transmission. However, as Eve is

a malicious node, nothing guarantees that it will give Alice its actual CSI. On the other

hand, in a practical communication system, only partial main CSI can be obtained

at the transmitter. We will discuss this latter case in the following subsection.

2.5.2 Physical Layer Security with Main CSIT Uncertainty

Considering the three main causes of CSIT imperfection, presented earlier, we provide

in what follows an exhaustive list of research works on physical layer security with

main channel gain uncertainty. This list also takes into account the research work

presented in the remaining of this thesis.

2.5.2.1 PLS with Noisy Main CSIT

One of the first works in this research area is [108] and its journal version [109],

where the ergodic secrecy capacity, of a single-antenna single-user fast fading wiretap

channel with a noisy CSIT, is characterized by a lower and an upper bound. The

proposed achievable secrecy rate is based on a standard wiretap code with a Gaus-

sian input and a simple on-off power transmission scheme while the upper bound is

obtained using an appropriate correlation between the main and the wiretap chan-

nels. The authors show that even with a high estimation error, the transmitter can

still achieve a positive secrecy rate, and that a simple constant rate on-off power

scheme is enough to establish a secure communication. A concurrent work, presented

in [110], investigates the achievable secrecy rate of ergodic and block-ergodic fading

channels in the presence of imperfect CSIT about both the main channel and the

eavesdropper’s channel. The presented results suggest that CSIT uncertainty does

not necessarily preclude security and that relatively little CSIT is required to take

advantage of fading. The problem of secure multiuser broadcasting over fast fading

channels with noisy CSIT is considered in Chapter 3 of this thesis, and was published
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in [111] and [112]. The work derives bounds on the ergodic secrecy capacity when a

common message is broadcasted to all legitimate receivers and bounds on the ergodic

secrecy sum-capacity when multiple independent messages are broadcasted. In both

scenarios, common message and independent messages, the transmitted information

has to be kept secret from the eavesdropper. The scaling law of the system, when

transmitting to a large number of legitimate receivers, is also analyzed.

Multiple antenna wiretap channels with an estimation error of the main CSIT have

raised considerable research interset. The performance analyses of a multi-cell MISO

downlink system, where a multi-antenna base station transmits confidential messages

to its legitimate users with a passive eavesdropper present in each cell, are approached

in [113] from a signal processing perspective. It is assumed that the receivers only feed

back the channel gain directions, required to cancel out the inter-cell interference, and

that an error of estimation occurs at the base station. Closed-form expression for the

ergodic secrecy rate, the secrecy outage probability, and the interception probability

are presented for Rayleigh fading channels. The ergodic secrecy capacity of MISO

wiretap communication systems is characterized in [114] and the achievable secrecy

rate is evaluated in [115] and [116] using transmit beamforming. The case when a

noisy estimate of the eavesdroppers channel is also available at the transmitter is

addressed in [116] and in [117] where different secrecy rate optimization techniques

are proposed for MISO channels. An earlier work on MIMO wiretap channels with

artificial noise transmission is conducted in [118]. The focus of this study is twofold.

First, to maximize the amount of power available to broadcast a jamming signal while

maintaining a predefined SINR at the desired receiver. Second, to assess the resulting

performance degradation due to the presence of imperfect CSIT. Noisy estimation of

the main CSIT is also considered in [119] for massive MIMO system, in [120] for

cooperative wiretap channels, and in [121] for cognitive radio networks.
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2.5.2.2 PLS with Limited Main CSI Feedback

In [122] and [123], the ergodic secrecy capacity of block-fading wiretap channels with

limited-rate feedback is investigated. The study establishes lower and upper bounds

on the secrecy capacity when the feedback information is sent at the beginning of each

coherence block over an error-free public channel with finite capacity. The proposed

bounds coincide as the capacity of the feedback link goes to infinity, hence, fully char-

acterizing the secrecy capacity in this case. It is also shown that a positive secrecy

rate can still be achievable even when only 1-bit ARQ feedback is sent to the trans-

mitter at the end of each coherence block. Multiuser block-fading broadcast channels,

where the transmission is intended for multiple legitimate receivers in the presence of

an eavesdropper, is examined in Chapter 4 of this thesis, and was published in [124].

Here too, the presented lower and upper bounds on the ergodic secrecy capacity for

the common message case and lower and upper bounds on the secrecy sum-rate for

the independent messages case are shown to coincide for the particular case of infinite

feedback. The ergodic secrecy capacity region of the block-fading BCCM in which the

transmitter has common information for two receivers and confidential information

intended for only one of them is tackled in Chapter 5 of this thesis, and was published

in [125]. Both cases when the feedback link is error-free and when it is a BEC are

analyzed. In the latter case, it is demonstrated that as long as the erasure event is

not a probability 1 event, Alice can still transmit the confidential information with a

positive secrecy rate.

The impact of having imperfect CSIT obtained via a limited rate feedback on the

throughput of multiple antenna wiretap channels was elaborated first in [126–128].

The work considers both MISO and MIMO communication systems with artificial

noise transmission and investigates the optimal power allocation strategy that max-

imizes the secrecy rate. The achievable secrecy rate of MIMO wiretap channels is

also addressed in [129], [130], and [131]. In [129], a transmission strategy based on
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cooperative jamming and linear precoding is proposed to overcome CSIT imperfec-

tion in the presence of an adversarial jammer. The main CSI feedback is quantized

using Grassmannian quantization, [132], and sufficient conditions on the feedback bit

rate scaling are derived to guarantee the same SDoF as for the perfect CSIT case.

In [130], artificial noise assisted secure transmission is considered in the context of

frequency-division duplexed MIMO wiretap channels. The work defines the achiev-

able effective ergodic secrecy rate (ESR) and evaluates the optimal power allocation

and training overhead that maximize it when the channel direction information of the

eavesdropper is available at the transmitter. The transmission of jamming signals is

also adopted in [131] with random vector quantization (RVQ). The results show that

a positive secrecy rate can always be achieved when the number of feedback bits is

large, the artificial noise power is high, and a constraint on the number of antennas

at the eavesdropper is satisfied. A characterization of the ergodic secrecy capacity in

terms of lower and upper bounds is presented in Chapter 6 of this thesis, and was

published in [133]. The work also proposes an optimal framework for feedback and

transmission which is based on the iterative Lloyd algorithm [19]. The ergodic secrecy

sum-rate of multiuser multi-antenna downlink systems with limited main channel di-

rection feedback is discussed in [134] and [128]. On another note, the authors in [135]

assume that in addition to having a limited rate feedback, a CSI estimation error

occurs at the legitimate receiver. Under this assumption, an upper bound on the

secrecy rate loss is derived and used to design an optimal CSI feedback strategy that

maintains a predefined secrecy service quality (QoS).

2.5.2.3 PLS with Outdated Main CSIT

The impact of outdated CSIT on the secrecy outage performance of MISO wiretap

channels with transmit antenna selection (TAS) is evaluated in [136]. The authors

present a closed-form expression for the secrecy outage probability when the trans-
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mission is conveyed over Nakagami-m fading channels, and show that a significant

diversity loss results from making use of the delayed CSI version to select the optimal

transmit antenna. The secrecy outage performance with CSI feedback delay and TAS

is also addressed in [137] and [138], for MIMO wiretap channels. The work in [137]

proposes a new secure transmission scheme intended to defeat the detrimental effect

the outdated CSI have on transmit antenna selection. The presented strategy re-

quires two feedback phases sent in different time slots, take spatial correlation at the

legitimate receiver into consideration, and guarantees a better outage performance.

The probability of non-zero secrecy capacity is also investigated, and the loss in terms

of the secrecy diversity is assessed. In [138], a general order TAS scheme is proposed

to enhance the secrecy performance of Nakagami-m MIMO fading wiretap channels

with outdated CSI. The work considers both cases when Alice is aware of Eve’s in-

stantaneous CSI and when it is not. In the first scenario, the average secrecy capacity

of the system is analyzed while in the second scenario, the secrecy outage probability

and the probability of non-zero secrecy capacity are derived.

Other research works on physical layer security with outdated main CSI analyze

the repercussion of CSIT imperfection on the system’s secure degrees of freedom.

In [139], the SDoF of a two-user MIMO broadcast wiretap channel with outdated CSI

is characterized. The achieving scheme is based on an aligned transmission of artificial

noise along with the confidential information. The case when the transmitter has also

access to a delayed version of the eavesdropper’s CSI is also studied. Obviously, the

secure performances in the latter case are better compared to when Alice is only aware

of the outdated main CSI. The authors in [140] investigate the sum SDoF region of

a two-user MIMO X-channel under secrecy constraints with a delayed CSIT sent

over an asymmetric feedback link. The work highlights the importance of sending

an asymmetric output feedback in conjunction with the outdated CSI to improve the

secrecy performance of the system. Moreover, it shows that the sum SDoF region of
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the adopted model is the same as the SDoF region of a two-user MIMO broadcast

channel with feedback delay. Another work, presented in [141], examines the SDoF of

a single antenna wiretap channel with a cooperative jammer and an arbitrary number

of eavesdroppers. Assuming that both the transmitter and the jammer have access

to outdated main CSI and that linear coding transmission strategies are employed,

it is proven that a strictly positive SDoF is achievable irrespective of the number of

eavesdroppers.

The effect of delayed feedback coupled with an estimation error of the CSI at the

transmitter is discussed in [142]. The work investigates an optimal masked beamform-

ing scheme to enhance the secure performance of a multiuser MIMO downlink wiretap

channel with noisy and outdated CSIT. The presented technique aims to maximize

the transmission power allocated to artificial noise while meeting individual minimum

mean square error (MMSE) constraints of the legitimate users. The obtained results

show that the adopted approach can significantly reduce the sensitivity of the system

to CSIT imperfections.

2.6 Conclusion

In the last few years, research on physical layer security tends to consider practical

communication scenarios. Indeed, there has been more and more interest is studying

the impact of having imperfect CSIT on the secrecy performances of wireless commu-

nication systems with security constraints. The work presented in this thesis is one

of the earliest research works on physical layer security with CSIT uncertainty.
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Chapter 3

Secure Multi-User Broadcasting with Noisy CSIT

3.1 Introduction

In this chapter, we investigate the problem of secure broadcasting over fast fading

channels with imperfect main CSIT. In particular, we analyze the effect of having

an estimation error of the main CSIT on the secrecy throughput of a multi-user

broadcast wiretap channel. First, we discuss the independent messages case where

the transmitter broadcasts multiple confidential messages to the receivers. For this

case, we present an expression for the achievable secrecy sum-rate and an upper

bound on the secrecy sum-capacity and we show that, in the limit of large number

of legitimate receivers K, our achievable secrecy sum-rate follows the scaling law

log((1−α) log(K)), where α is the estimation error variance of the main CSI. Then,

we look at the common message transmission case where the source broadcasts the

same secret information to all the legitimate receivers. For this case, we characterize

the ergodic secrecy capacity of the system and we show that the secrecy rate is limited

by the legitimate user having, on average, the worst main channel link. Also, we prove

that a non-zero secrecy rate can still be achieved even with a noisy CSIT.

This chapter is organized as follows. Section 3.2 describes the system model.

The main results along with the corresponding proofs are introduced in section 3.3

for the independent messages case and in section 3.4 for the common message case.

Section 3.5 considers the illustrative example of Rayleigh fading. Finally, selected

numerical results are presented in section 3.6 while section 3.7 concludes the chapter.
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3.2 System Model

We consider a multi-user broadcast wiretap channel where a transmitter T communi-

cates with K legitimate receivers (R1, · · · ,RK), in the presence of an eavesdropper E,

as depicted in Figure 3.1.
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Figure 3.1: Multi-user broadcast wiretap channel.

Each terminal is equipped with a single antenna for transmission and recep-

tion. During each coherence interval i ∈ {1, · · · , n}, the received signals by the

k-th legitimate receiver Rk, k ∈ {1, · · · , K}, and the eavesdropper are respectively

given by 




Yk(i) = hk(i)X(i) + vk(i)

Z(i) = g(i)X(i) + w(i),

(3.1)

where hk(i)∈C and g(i)∈C are zero-mean, unit-variance, complex Gaussian channel

gains corresponding to the k-th legitimate channel and the eavesdropper’s channel,

respectively, vk(i)∈C and w(i)∈C represent the zero-mean, unit-variance, circularly

symmetric white Gaussian noise at Rk and E, respectively, andX(i) is the transmitted

codeword to all the receivers. An average transmit power constraint is imposed at
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the transmitter such that

1

n

n∑

i=1

E[|X(i)|2] ≤ Pavg, (3.2)

where the expectation is over the input distribution.

The channel gains hk and g are independent, ergodic, and stationary with bounded1

probability density functions (PDFs). We consider that the transmitter is only aware

of the distribution of the eavesdropper’s CSI and not of its instantaneous channel

realizations g(i). Also, we assume that the transmitter is only provided with a noisy

version of each hk(i), say ĥk(i), such that the main channel estimation model can be

written as

hk(i) =
√
1− αĥk(i) +

√
αh̃k(i), (3.3)

where α is the estimation error variance, α∈ [0, 1], and h̃k(i) is the channel estimation

error. We assume that ĥk(i) and h̃k(i) are uncorrelated and hence independent, and

that hk, ĥk(i), h̃k(i), and g are all identically distributed2. To ensure correct decoding

with high probability at the legitimate receivers’ side, we assume that each receiver

Rk has a perfect knowledge of its channel gain hk(i). Also, we assume that the

eavesdropper is aware of its channel gain g(i), and of all the legitimate receivers’

channel gains hk(i), k ∈ {1, · · · , K}. Giving that the channel gains are ergodic and

1The bounded distributions’ assumption means that the channel gains vary according to distri-
butions with finite probabilistic measures, notably, finite means and variances. This ensures that
the presented results are meaningful. Also, this is used in the derivations as the Jensens inequality
fails in the infinite setting. We should note, though, that the probability distributions describing
the fluctuations of fading channels are generally bounded. For peculiar fading channels, we believe
the results still conceptually hold true but may require different mathematical formulations.

2We particularly need the assumption that h̃k and g are identically distributed for the proofs of
the upper bounds. Besides, the reason why we opted for the same distribution for g and hk is to
ensure a fair comparison. It goes without saying that when, in average, the main channel is better
than the eavesdropper channel, the secrecy capacity increases, while in the opposite case it decreases.
As for ĥk and h̃k, we recall that they are related to hk through the relation hk =

√
1− αĥk +

√
αh̃k.

That is, in the case when ĥk and h̃k are CN (0, 1), channel gain hk is, as a matter of fact, CN (0, 1)
(using the fact that if X1 ∼ CN (µ1, σ

2

1
) and X2 ∼ CN (µ2, σ

2

2
), then X1+X2 ∼ CN (µ1+µ2, σ

2

1
+σ2

2
)

and Y=aX1+b∼CN (aµ1+b, a2σ2

1
), with a, b∈R). In the other way round, if hk is CN (0, 1), then

ĥk and h̃k should also be CN (0, 1). Indeed, if we suppose that ĥk is CN (µ̂, σ̂) and h̃k is CN (µ̃, σ̃),
then hk should be CN (

√
1−αµ̂+

√
αµ̃, (1−α)σ̂+ασ̃) for all values of α. Since hk is CN (0, 1), then

for α=1 we get µ̃=0 and σ̃=1, and for α=0 we get µ̂=0 and σ̂=1.
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stationary, the index time i can be omitted. In the remainder of this chapter, we

denote |hk|2, |ĥk|2, |h̃k|2 and |g|2 by γk, γ̂k, γ̃k and γe, respectively.

We are interested in the broadcast secrecy capacity of such a channel when the

transmitted codeword is large, i.e., n→∞. In accordance with Wyner’s definition for

weak secrecy, we consider that a secret transmission is achieved when the normalized

leakage of information that the eavesdropper gets about the broadcasted message, by

observing its channel output, vanishes in the limit of long block lengths.

3.3 Broadcasting Independent Messages

In this section, we consider the independent messages case when multiple confidential

messages are transmitted to the legitimate receivers while being kept secret from the

eavesdropper. Taking into account the adopted system model, we characterize the

ergodic secrecy sum-capacity in the general case, then, we investigate the special cases

of high-SNR and perfect main CSIT.

3.3.1 Secrecy Sum-Capacity Characterization

Here, we present the main results obtained for the ergodic secrecy sum-capacity with

a noisy estimation of the CSIT. The proofs of the presented results are provided in

the following subsection.

3.3.1.1 Lower and Upper Bounds

Theorem 3.1. The ergodic secrecy sum-capacity of the multi-user fading broadcast

wiretap channel with noisy main CSIT is characterized as

C̃−
s ≤ C̃s ≤ C̃+

s , (3.4)
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where C̃−
s and C̃+

s are given by

C̃−
s = max

P (τ)
E

γe,γest
max,

γ̂max≥τ

[
log

(
1 + γest

maxP (τ)

1 + γeP (τ)

)]
, (3.5)

C̃+
s =min

{
max
P (Γ̂)

E
γmax,Γ̂,γ̃

[{
log

(
1+γmaxP (Γ̂)

1+γ̃P (Γ̂)

)}+]
, Kmax

P (γ̂)
E

γ,γ̂,γ̃

[{
log

(
1+γP (γ̂)

1+γ̃P (γ̂)

)}+
]}

,

(3.6)

with P (τ)=Pavg/ (1−Fγ̂max(τ)) , γest
max=|

√
1−αĥmax+

√
αh̃|2 , γ̂max = max1≤k≤K γ̂k,

Γ̂=(γ̂1, γ̂2, · · · , γ̂K) , γmax = max1≤k≤K γk, E[P (Γ̂)] ≤ Pavg and E[P (γ̂)] ≤ Pavg.

Proof. A detailed proof of Theorem 3.1 is provided in the following subsection.

From the obtained results, we can see that the upper bound on the secrecy sum-

capacity is given as the minimum between two upper bounds. The reason behind

choosing this particular representation was to ensure having the tightest possible

upper bound for all the values of the error variance α. We would note that the

second bound is a loose upper bound for the secrecy sum-rate for most values of α,

especially when the number of users K is large. However, when the CSIT gets very

noisy, i.e., α → 1, this bound becomes tighter.

3.3.1.2 High-SNR Regime

Corollary 3.1. At high SNR, the ergodic secrecy sum-capacity of the multi-user

fading broadcast wiretap channel with noisy main CSIT is bounded as

C̃−
H-SNR ≤ C̃s ≤ C̃+

H-SNR, (3.7)

where C̃−
H-SNR and C̃+

H-SNR are given by

C̃−
H-SNR= E

γe,γest
max,

γ̂max≥τ

[
log

(
γest
max

γe

)]
, (3.8)

C̃+
H-SNR=min

{
E

γmax,γ̃

[{
log

(
γmax

γ̃

)}+
]
, K E

γ,γ̃

[{
log

(
γ

γ̃

)}+
]}

, (3.9)

with the transmission threshold τ satisfying E
γest
max|γ̂max

[
log(γest

max)
∣∣γ̂max=τ

]
−E

γe

[
log(γe)

]
=0.
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Proof. The proof of Corollary 3.1 is provided in the following subsection.

From the obtained high-SNR results, we can see that the asymptotic bounds de-

pend on the number of legitimate receivers K. By considering a very large number

of legitimate users, i.e., letting K go to ∞ in these asymptotic expressions, we char-

acterize the scaling law of the system in Section 3.5.

3.3.1.3 Perfect Main CSI case

Corollary 3.2. When the transmitter has perfect knowledge of the legitimate re-

ceivers’ CSI, the secrecy sum-capacity is bounded as

C̃−
P-CSI ≤ C̃s ≤ C̃+

P-CSI, (3.10)

where C̃−
P-CSI and C̃+

P-CSI are given by

C̃−
P-CSI=max

P (τ)
E

γe,γmax≥τ

[
log

(
1+γmaxP (τ)

1+γeP (τ)

)]
, (3.11)

C̃+
P-CSI= max

P (γmax)
E

γmax,γe

[{
log

(
1+γmaxP (γmax)

1+γeP (γmax)

)}+
]
, (3.12)

with P (τ)=Pavg/ (1−Fγmax(τ)) and E[P (γmax)] ≤ Pavg.

Proof. The proof of Corollary 3.2 is provided in the following subsection.

Remark: When no main CSI is available at the transmitter, the secrecy sum-

capacity of the system is equal to zero, i.e., C̃s=0.

3.3.2 Secrecy Sum-Capacity Analysis

In this subsection, we establish the obtained results for the ergodic secrecy sum-

capacity presented in Theorem 3.1 and Corollaries 3.1 and 3.2.
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3.3.2.1 Achievability Scheme in Theorem 3.1

The lower bound on the secrecy sum-capacity is achieved using a time division mul-

tiplexing scheme that selects instantaneously one receiver to transmit to. That is,

at each time, the source only transmits to the user with the best estimated channel

gain ĥmax. Since we are transmitting to only one legitimate receiver at a time, the

achieving coding scheme consists on using independent standard single user wiretap

codebooks with power P (γ̂max) satisfying the constraint E[P (γ̂max)]≤Pavg. We con-

sider an on-off power scheme that instantaneously adapts the power according to the

value of γ̂max with regards to a prefixed threshold τ , i.e.,

P (γ̂max)=





P (τ)=
Pavg

1−Fγ̂max(τ)
γ̂max ≥ τ

0 otherwise.

(3.13)

The achievable sum-rate is then given by

R̃− = E
γe,γest

max,
γ̂max≥τ

[
log

(
1 + γest

maxP (τ)

1 + γeP (τ)

)]
. (3.14)

To finish the proof, we maximize R̃− over P (τ) yielding the lower bound presented

in Theorem 3.1. �

3.3.2.2 Proof of the Upper Bound in Theorem 3.1

We represent the upper bound on the secrecy sum-capacity as the minimum between

two upper bounds, i.e.,

C̃+
s =min

{
C̃+
1 , C̃+

2

}
, (3.15)

where C̃+
1 and C̃+

2 are respectively given by

C̃+
1 =max

P (Γ̂)
E

γmax,Γ̂,γ̃

[{
log

(
1+γmaxP (Γ̂)

1+γ̃P (Γ̂)

)}+]
and C̃+

2 =Kmax
P (γ̂)

E
γ,γ̂,γ̃

[{
log

(
1+γP (γ̂)

1+γ̃P (γ̂)

)}+
]
.
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The reason behind choosing this particular representation was to ensure having the

tightest possible upper bound for all the values of the error variance α. We would

note that C̃+
2 is a loose upper bound for the secrecy sum-rate for most values of α,

especially when the number of users K is large. However, when the CSI available at

the transmitter gets very noisy, i.e., α→1, C̃+
2 becomes tighter then C̃+

1 . Moreover,

for α=1, C̃+
2 vanishes, reflecting the fact that the secrecy capacity is zero for the no

CSI case, while C̃+
1 does not. To prove that C̃+

s is an upper bound, we need then to

prove that both C̃+
1 and C̃+

2 upper bound the secrecy sum-capacity of the system.

Using the result in (3.63), the secrecy capacity of each legitimate receiver is upper

bounded by

UBk=max
P (γ̂k)

E
γk ,γ̂k,γ̃k

[{
log

(
1+γkP (γ̂k)

1+γ̃kP (γ̂k)

)}+
]
, (3.16)

with k∈{1, · · · , K}. Thus,∑K
k=1 UBk is a straightforward upper bound on the secrecy

sum-capacity for the independent messages case. Since all the channel gains are

identically distributed, we can directly deduce that C̃+
2 upper bounds the secrecy

sum-capacity of the system.

Now, we need to prove that C̃+
1 is also an upper bound on the secrecy sum-capacity.

For that, we consider a new channel whose capacity upper bounds the capacity of the

K-receivers channel with imperfect CSI at the transmitter. In order to design this

new genie aided channel, we need to take two facts into consideration:

- On one hand, the receiver in the new channel needs to instantaneously get the

signal transmitted over the strongest channel.

- On the other hand, the transmitter has to know the estimated gains of all K

channels of the original K-receivers channel.

In point of fact, if we only consider that the transmission is intended for the

strongest receiver at each time, the capacity of this channel cannot be proven to

upper bound the capacity of our K-receivers channel as the transmitter will have

the estimated gain of only the strong channel. That is, the new channel needs to
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observe all the K channels and to account for the strongest one at each time. This

is what explain the idea behind considering a genie aided channel with a selection

combining receiver equipped with a number of antennas equivalent to the number

of legitimate receivers in the K-receivers channel. The selection combiner chooses

the signal with the highest instantaneous gain and uses it for decoding. Picking the

signal is equivalent to choosing the corresponding antenna among all receive antennas.

The output signal of the genie aided receiver after selecting the strongest signal is

Y (i) = hmax(i)X(i) + v(i), at time instant i, with hmax being the channel gain of the

best legitimate channel, i.e., |hmax|2=γmax and γmax=max1≤k≤K γk. The new channel

can then be modeled as





Y (i) = hmax(i)X(i) + v(i)

Z(i) = g(i)X(i) + w(i).

(3.17)

We assume that the genie-aided receiver is aware of all the channel gains h1, h2, · · · , hK

as well as of the transmitter’s estimated gains ĥ1, ĥ2, · · · , ĥk. The proof is conducted

in two steps. First, we prove that the secrecy capacity of this new channel up-

per bounds the secrecy sum-capacity of the K-receivers channel with imperfect CSI

(Step 1). Then, we prove that C̃+
1 in (3.15) upper bounds the secrecy capacity of the

genie-aided channel (Step 2).

Step 1: To prove this first step, it is sufficient to show that if a secrecy rate point

(R1,R2, · · · ,RK) is achievable on the K-receivers channel with imperfect CSI then

a secrecy sum-rate
∑K

k=1Rk is achievable on the new channel.

Let (W1,W2,· · ·,WK) be the independent messages corresponding to the rates

(R1,R2,· · ·,RK), and (Ŵ1, Ŵ2, · · ·, ŴK) the decoded messages. Thus, for any ǫ>0

and n large enough, there exists a code of length n such that Pr[Ŵk 6=Wk]≤ǫ at each
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of the K receivers, and

H(Wk|W1,· · ·,Wk−1,Wk+1,· · ·,WK,Z
n,gn,Hn,Ĥn)/n≥Rk−ǫ, (3.18)

with Hn={h1(1), · · · , h1(n), h2(1), · · · , h2(n), · · · , hK(1), · · · , hK(n)} and Ĥn defined

similarly by taking ĥ instead of h. Now, we consider the transmission of message

W=(W1,W2, · · · ,WK) to the genie-aided receiver using the same encoding scheme as

for the K-receivers case. Adopting a decoding scheme similar to the one used at each

of the K receivers, the genie-aided receiver can decode message W with a negligible

probability of error, i.e., Pr(Ŵ 6=W )≤ǫ. For the secrecy condition, we have

H(W |Zn, gn, Hn, Ĥn)/n = H(W1,W2, · · · ,WK |Zn, , gn, Hn, Ĥn)/n (3.19)

≥
K∑

k=1

H(Wk|W1,· · ·,Wk−1,Wk+1,· · ·,WK,Z
n,gn,Hn,Ĥn)/n (3.20)

≥
K∑

k=1

Rk−Kǫ, (3.21)

which completes the first step of the proof.

Step 2: We have to prove that C̃+
1 upper bounds the secrecy capacity of the genie-

aided channel. Let R̃e be the equivocation rate in the new channel. An upper bound

on this rate can be derived as follows

nR̃e = H(W |Zn, gn, Hn, Ĥn) (3.22)

= I(W ; Y n|Zn, gn, Hn, Ĥn)+H(W |Y n, Zn, gn, Hn, Ĥn) (3.23)

≤ I(W ; Y n|Zn, gn, Hn, Ĥn)+nǫ (3.24)

=

n∑

i=1

I(W ; Y (i)|Zn, gn, Hn, Ĥn, Y i−1)+nǫ (3.25)

=
n∑

i=1

H(Y (i)|Zn, gn, Hn, Ĥn, Y i−1)−H(Y (i)|W,Zn, gn, Hn, Ĥn, Y i−1)+nǫ (3.26)
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≤
n∑

i=1

H(Y (i)|Z(i), g(i),hmax(i),Ĥ
i)−H(Y (i)|W,X(i),Zn,gn,Hn,Ĥn,Y i−1)+nǫ (3.27)

=
n∑

i=1

H(Y (i)|Z(i), g(i), hmax(i), Ĥ
i)−H(Y (i)|X(i),Z(i),g(i),hmax(i),Ĥ

i)+nǫ (3.28)

=

n∑

i=1

I(X(i); Y (i)|Z(i), g(i), hmax(i), Ĥ
i)+nǫ (3.29)

=

n∑

i=1

{
I(X(i); Y (i)|hmax(i), Ĥ

i)−I(X(i), Z(i)|g(i), Ĥ i)
}+

+nǫ (3.30)

where inequality (3.24) follows from H(W |Y n, Zn, gn, Hn, Ĥn)≤H(W |Y n, Hn, Ĥn)

and Fano’s inequality: H(W |Y n, Hn, Ĥn)≤nǫ, and (3.30) is obtained by selecting the

appropriate value for the noise correlation to form the Markov chainX(i)→Y (i)→Z(i)

if |hmax(i)|>|g(i)| or X(i)→Z(i)→Y (i) if |hmax(i)|≤|g(i)|, as explained in [31].

We know that the right-hand side of (3.30) is maximized by a Gaussian input,

then taking X(i) ∼ CN
(
0,

√
ρi(Γ̂i)

)
with

1

n

n∑

i=1

E

[
ρi(Γ̂

i)
]
≤Pavg, we can write

nR̃e ≤
n∑

i=1

E
γe(i),Γ̂i,

γmax(i)

[{
log

(
1 + γmax(i) ρi(Γ̂

i)

1 + γe(i) ρi(Γ̂i)

)}+]
+nǫ (3.31)

=

n∑

i=1

E
γe(i),Γ̂(i),

γmax(i)

[
E

Γ̂i−1

[{
log

(
1 + γmax(i) ρi(Γ̂

i)

1 + γe(i) ρi(Γ̂i)

)}+ ∣∣∣∣∣Γ̂(i)
]]

+nǫ (3.32)

≤
n∑

i=1

E
γe(i),Γ̂(i),

γmax(i)








log



1 + γmax(i) E

Γ̂i−1

[
ρi(Γ̂

i)
∣∣Γ̂(i)

]

1 + γe(i) E
Γ̂i−1

[
ρi(Γ̂i)

∣∣Γ̂(i)
]









+

+nǫ, (3.33)

≤ n E
γe,Γ̂,
γmax

[{
log

(
1 + γmax P (Γ̂)

1 + γe P (Γ̂)

)}+]
+nǫ, (3.34)

where (3.33) and (3.34) are obtained using Jensen’s inequality. The i.i.d. assumption

is also used to get (3.34) with P (Γ̂)=
1

n

n∑

i=1

E
Γ̂i−1

[
ρi(Γ̂

i)
∣∣Γ̂(i)

]
.

Finally, since γmax=max
k

|
√
1−αĥk+

√
αh̃k|2 with h̃k independent and identically

distributed as g, and since the transmitter only knows ĥk, the channel estimation error
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h̃k is independent of X and we can substitute g by h̃k, i.e., g=h̃k. The justification

for this substitution follows along similar lines as in [109]. Therefore, C̃+
1 in (3.15) is

an upper bound on the secrecy sum-capacity. This completes the proof. �

3.3.2.3 Proof of the High-SNR Results in Corollary 3.1

• Asymptotic Lower Bound: From Theorem 3.1, the secrecy rate

R̃s(τ)= E
γe,γest

max,
γ̂max≥τ

[
log

(
1 + γest

maxP (τ)

1 + γeP (τ)

)]
(3.35)

is achievable for any τ ≥ 0. At high SNR, i.e., when Pavg→∞, we have

lim
Pavg→∞

R̃s(τ) = lim
Pavg→∞

E
γe,γest

max,
γ̂max≥τ

[
log

(
1 + γest

maxP (τ)

1 + γeP (τ)

)]
(3.36)

since fγe is continuous and bounded, E
γ̂max≥τ,

γestmax

[γe] ≤ E
γ̂max,
γestmax

[γe] < ∞,

∣∣∣∣log
(
1+γest

maxP (τ)

1+γeP (τ)

)∣∣∣∣≤
∣∣∣∣log

(
γest
max

γe

)∣∣∣∣,

and

∣∣∣∣log
(
γest
max

γe

) ∣∣∣∣ < ∞ then, using the Dominant Convergence Theorem, we can in-

terchange the order of the limit and the expectation. We can then write

lim
Pavg→∞

R̃s(τ) = E
γe,γest

max,
γ̂max≥τ

lim
Pavg→∞

[
log

(
1 + γest

maxP (τ)

1 + γeP (τ)

)]
(3.37)

= E
γe,γest

max,
γ̂max≥τ

[
log

(
γest
max

γe

)]
. (3.38)

To complete the proof, we choose τ that maximizes (3.38). �

• Asymptotic Upper Bound: On one hand, we have
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lim
Pavg→∞

C̃+
H-SNR

= lim
Pavg→∞

min



max

P (Γ̂)
E
Γ̂,γ̃
γmax

[{
log

(
1+γmaxP (Γ̂)

1+γ̃P (Γ̂)

)}+]
, Kmax

P (γ̂)
E

γ,γ̂,γ̃

[{
log

(
1+γP (γ̂)

1+γ̃P (γ̂)

)}+]




(3.39)

≥ lim
Pavg→∞

min




 E
γ̃

γmax

[{
log

(
1+γmaxPavg

1+γ̃Pavg

)}+]
, K E

γ,γ̃

[{
log

(
1+γPavg

1+γ̃Pavg

)}+]



 (3.40)

= min



 E

γ̃
γmax

[{
lim

Pavg→∞
log

(
1+γmaxPavg

1+γ̃Pavg

)}+]
, K E

γ,γ̃

[{
lim

Pavg→∞
log

(
1+γPavg

1+γ̃Pavg

)}+]


 (3.41)

= min



 E

γ̃
γmax

[{
log

(
γmax

γ̃

)}+]
, K E

γ,γ̃

[{
log

(
γ

γ̃

)}+]


 , (3.42)

where (3.41) is obtained using a similar reasoning as for the asymptotic lower bound

case. On the other hand, for any P (Γ̂) ≥ 0 and P (γ̂) ≥ 0, we have

C̃+
H-SNR ≤min



max

P (Γ̂)
E
Γ̂,γ̃
γmax

[{
log

(
γmax

γ̃

)}+]
, Kmax

P (γ̂)
E

γ,γ̂,γ̃

[{
log

(
γ

γ̃

)}+]


 (3.43)

= min




 E
γ̃

γmax

[{
log

(
γmax

γ̃

)}+]
, K E

γ,γ̃

[{
log

(
γ

γ̃

)}+]



 . (3.44)

Taking the limit on both sides of (3.44) completes the proof. �

3.3.2.4 Proof of the Perfect CSI Results in Corollary 3.2

Note that for the case of perfect main CSI at the transmitter, i.e., α=0, we have

C̃+
s =C̃+

1 , with C̃+
1 and C̃+

2 as defined in (3.15). Also, when α=0, we have γ̂k=γk, for

all k ∈ {1, · · · , K}. Using this substitution in Theorem 3.1, we obtain the result

in Corollary 3.2.
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3.4 Broadcasting a Common Message

In this section, we examine the impact of CSIT uncertainty on the secrecy throughput

of multi-user broadcast wiretap channels when common confidential information is

broadcasted to all the legitimate receivers. Taking into account the adopted system

model, we characterize the ergodic secrecy capacity in the general case, then, we

investigate the special cases of high-SNR and perfect main CSIT.

3.4.1 Secrecy Capacity Characterization

Here, we present the main results obtained for the ergodic common message secrecy

capacity with a noisy estimation of the CSIT. The proofs of the presented results are

provided in the following subsection.

3.4.1.1 Lower and Upper Bounds

Theorem 3.2. The ergodic common message secrecy capacity of the multi-user fad-

ing broadcast wiretap channel with noisy main CSIT is characterized as

C−
s ≤ Cs ≤ C+

s , (3.45)

where C−
s and C+

s are given by

C−
s = max

P (τ)
min

1≤k≤K
E

γe,γk,
γ̂k≥τ

[
log

(
1+γkP (τ)

1+γeP (τ)

)]
, (3.46)

C+
s = min

1≤k≤K
max
P (ĥk)

E
ĥk,h̃k

[{
log

(
1+|

√
1−αĥk+

√
αh̃k|2P (ĥk)

1+|h̃k|2P (ĥk)

)}+]
, (3.47)

with P (τ) = Pavg/(1−F|ĥk|2
(τ)) and E[P (ĥk)] ≤ Pavg.

Proof. A detailed proof of Theorem 3.2 is provided in the following subsection.

On one hand, we note that the achievability of the lower bound C−
s follows by using

wiretap coding along with a probabilistic transmission model where the communica-

tion is constrained by the estimated channel gains. The adopted transmission scheme
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guarantees that all the legitimate receivers can decode the secret message while no

extra information is leaked to the eavesdropper. We opted here for an on-off power

scheme. Obviously, the achievable secrecy rate can be directly improved by optimiz-

ing over all power policies satisfying the average power constraint. On the other hand,

the upper bound C+
s follows by properly correlating the main and the eavesdropper’s

channel gains. Indeed, since the estimation error h̃k is identically distributed as g,

and since the transmitter is only aware of ĥk, which means that h̃k is independent of

the transmitted signal X , then substituting g by h̃k is a valid choice that provides a

tight upper bound.

Although the lower and the upper bounds in Theorem 3.2 do not generally coin-

cide, they provide the best available characterization of the ergodic common message

secrecy capacity with noisy CSIT. Also, from the obtained results, we can see that a

nonzero secrecy rate can still be achieved even with a poor main channel estimator at

the transmitter. Furthermore, a simple constant rate on-off power scheme is enough

to achieve a positive secrecy rate.

3.4.1.2 High-SNR Regime

Corollary 3.3. At high SNR, the ergodic common message secrecy capacity of the

multi-user fading broadcast wiretap channel with noisy main CSIT is bounded as

C−
H-SNR ≤ Cs ≤ C+

H-SNR, (3.48)

where C−
H-SNR and C+

H-SNR are given by

C−
H-SNR= min

1≤k≤K
E

γe,γk,
γ̂k≥τ

[
log

(
γk
γe

)]
, (3.49)

C+
H-SNR = min

1≤k≤K
E

ĥk,h̃k

[{
log

(
|
√
1−αĥk+

√
αh̃k|2

|h̃k|2

)}+]
, (3.50)

with the transmission threshold τ satisfying E
γk|γ̂k

[
log(γk)

∣∣γ̂k=τ
]
−E

γe

[
log(γe)

]
= 0.

Proof. The asymptotic high-SNR expressions in Corollary 3.3 can be deduced
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from Theorem 3.2 by conducting a similar approach as the one used for the indepen-

dent messages case. Clearly, the obtained asymptotic results states that the ergodic

common message secrecy capacity is bounded at high SNR confirming that the se-

crecy multiplexing gain is equal to zero, regardless of the main channel estimation

quality.

Remark: While the high-SNR analysis provide somehow a negative result in the

sense that the capacity is bounded no matter how Pavg increases, at low SNR, the

ergodic secrecy capacity is asymptotically equal to the capacity of the main channel

as if there is no secrecy constraint [123]. Hence, the low-SNR analysis reveals the

potential capacity gain provided by partial CSIT for any non-null channel estimation

quality, i.e., α 6= 1.

3.4.1.3 Perfect Main CSI Case

Corollary 3.4. When the transmitter has perfect knowledge of the legitimate re-

ceivers’ CSI, the common message secrecy capacity is bounded as

C−
P-CSI ≤ Cs ≤ C+

P-CSI, (3.51)

where C−
P-CSI and C+

P-CSI are given by

C−
P-CSI = max

P (τ)
min

1≤k≤K
E

γe,γk≥τ

[
log

(
1 + γkP (τ)

1 + γeP (τ)

)]
, (3.52)

C+
P-CSI= min

1≤k≤K
max
P (γk)

E
γk,γe

[{
log

(
1 + γkP (γk)

1 + γeP (γk)

)}+
]
, (3.53)

with P (τ) = Pavg/ (1−Fγk(τ)) and E[P (γk)] ≤ Pavg.

Proof. When the transmitter has perfect knowledge of the legitimate receivers’

CSI, i.e., α=0, we have γ̂k=γk. Using this substitution in Theorem 3.2, we obtain the

result in Corollary 3.4. This case captures the result in [30] with the difference that

in our lower bound, we have chosen an on-off power scheme. �
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Remark: When no main CSI is available at the transmitter, the common message

secrecy capacity is equal to zero, i.e., Cs=0. Indeed, when the transmitter has no

main CSI, i.e., α=1, each legitimate channel is statistically equivalent to h̃, and no

power adaptation can be performed, i.e., P (γ̂k)=Pavg. The eavesdropper channel is,

then, equivalent to the legitimate channels, implying

E
γk ,γe

[log (1 + γkPavg)] = E
γk,γe

[log (1 + γePavg)] . (3.54)

Thus, the upper bound vanishes, yielding Cs = 0.

3.4.2 Secrecy Capacity Analysis

In this subsection, we establish the obtained results for the ergodic common message

secrecy capacity presented in Theorem 3.2.

3.4.2.1 Achievability Scheme in Theorem 3.2

A detailed proof of achievability is provided in Appendix A.1. Here, we outline the

adopted transmission scheme. We consider a probabilistic model where the transmis-

sion is constrained by the quality of the legitimate channels. Considering the case

K=2, we define the following parameters:

• τ is a prefixed transmission threshold,

• Rw=E [log(1+γeP (γ̂k))] , with P (γ̂k) is chosen to satisfy the average power con-

straint,

• Rk=E [log(1+γkP (γ̂k)) |γ̂k ≥ τ ]−Rw,

• pk=Pr [γ̂k ≥ τ ] ,

• n0=pkpjn, and n1=pk(1−pj)n, with k, j∈{1, 2}/k 6=j.
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We use two independent Gaussian codebooks C0 and C1 constructed similarly to

the standard wiretap codes. Codebook C0 is a (n0, 2
n0Rk) code, with 2n0(Rk+Rw) code-

words randomly partitioned into 2n0Rk bins, and codebook C1 is a (n1, 2
n1Rk) code,

with 2n1(Rk+Rw) codewords randomly partitioned into 2n1Rk bins. The transmitted

common message is given in the form W=(W0,W1), where W0 and W1 are uniformly

distributed over the indices
{
1, 2, · · · , 2n0Rk

}
and

{
1, 2, · · · , 2n1Rk

}
, respectively.

Next, we define the following events: S1= {γ̂1≥τ , γ̂2≥τ}, S2= {γ̂1≥τ , γ̂2<τ},

S3= {γ̂1<τ , γ̂2≥τ} and S4= {γ̂1<τ , γ̂2<τ}. That is, the transmitter selects ran-

domly a codeword Un0
0 associated with message W0 and broadcasts it when he expe-

riences event S1. For message W1, the transmitter selects two codewords uniformly

and independently of one another; one codeword Un1
1 to be sent in state S2 and the

other one Un1
2 to be sent in state S3. The source remains idle when experiencing event

S4. The randomness and the independence in the choice of the two codewords for

message W1 ensures that the eavesdropper does not take advantage of this repetition.

Since messageW0 is transmitted over channel state S1 with Pr[S1]=Pr[γ̂1≥τ , γ̂2≥τ ],

S1 occurs n0/n times and the size of codebook C0 is therefore n0. Similarly, message

W1 is transmitted over channel state S2 and S3 with Pr[S2]=Pr[S3]=Pr[γ̂k≥τ , γ̂j<τ ],

k, j ∈ {1, 2}, k 6= j. Thus, state S2 and S3 each occurs n1/n times and the size of

codebook C1 is n1. The transmission stops when we have transmitted exactly n0 sym-

bols of Un0
0 and n1 symbols each of Un1

1 and Un1
2 . Given that the estimated channel

gains are known globally, the receivers know the current state of the system and ac-

cordingly know which codeword the transmitted symbol belongs to. Decoder 1 uses

the observations corresponding to the codewords Un0
0 and Un1

1 to recover message

(W0,W1) while decoder 2 uses the ones corresponding to the codewords Un0
0 and Un1

2

to recover the message (W0,W1). Details on the codebook generation, the coding

and the decoding schemes, and the secrecy analysis of this probabilistic transmission

model are similar to the perfect CSI case presented in [81]. The overall achievable



63

rate can then be written as

R = min
k

{n0

n
Rk +

n1

n
Rk

}
= min

k
pkRk, (3.55)

which reduces to

R = min
k

E
γe,γk,
γ̂k≥τ

[
log

(
1+γkP (γ̂k)

1+γeP (γ̂k)

)]
. (3.56)

The extension to the case K≥2 follows along similar lines as [81].

To finish the proof, we consider a transmission power that is instantaneously

adapted according to the following on-off power scheme

P (γ̂k)=





P (τ)=
Pavg

1−Fγ̂k(τ)
γ̂k ≥ τ

0 otherwise,

(3.57)

then, we maximize the achievable rate R over P (τ) yielding the lower bound on the

secrecy capacity presented in Theorem 3.2. The threshold τ should then be chosen

to satisfy

E
γk ,γ̂k≥τ

[
γkP

′(τ)

1 + γkP (τ)

]
− E

γe

[
γeP

′(τ)

1 + γeP (τ)

]
(1− Fγ̂k(τ)) =

fγ̂k(τ)

(
E

γk|γ̂k

[
log (1+γkP (τ))

∣∣γ̂k=τ
]
−E

γe

[
log (1+γeP (τ))

])
. (3.58)

�

Remark: We opted for the use of the On-Off power scheme, for the achievable

common message secrecy rate, because it is near optimal and less complex. Clearly,

by optimizing over all power policies satisfying the average power constraint, the

achievable secrecy rate can be ameliorated. Indeed, a better rate could be achieved

by solving

C−
s = max

P (γ̂k)
E

γe,γk,γ̂k

[
log

(
1+γkP (γ̂k)

1+γeP (γ̂k)

)]
, k ∈ {1, · · · , K}. (3.59)
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In general, the objective function in (3.59) is not convex. Using the Lagrange

approach, we can obtain the necessary optimality condition via the Karush-Kuhn-

Tucker (KKT) condition. The corresponding Lagrangian, to the optimization problem

in (3.59), with the average power constraint E[P (γ̂k)]≤Pavg, can be written as

L(P (γ̂k), µk) = E
γe,γk|γ̂k

[
log

(
1+γkP (γ̂k)

1+γeP (γ̂k)

)]
−µk (E[P (γ̂k)]−Pavg) , (3.60)

with µk being the Lagrange multiplier. Differentiating L(P (γ̂k), µk) with respect to

P (γ̂k) results in the following necessary condition for optimality

E
γe,γk |γ̂k

[
γk − γe

(1+γkP (γ̂k))(1+γeP (γ̂k))

∣∣∣γ̂k
]
= µk. (3.61)

Now, let us define the function

fγ̂k(P ) = E
γe,γk|γ̂k

[
γk − γe

(1+γkP (γ̂k))(1+γeP (γ̂k))

∣∣∣γ̂k
]
.

Then, following similar lines as [110, Lemma 5], it can be shown that if there exists

γ̂k0, such that E [γk − γe|γ̂k0] > 0, i.e., such that (1− α)(γ̂k0 − 1) > 0, then using the

entire available power is optimal, and the power allocation scheme is given by

P (γ̂k) =





f−1
γ̂k

(µk) if 0 ≤ µk ≤ (1− α)(γ̂k − 1)

0 otherwise,

(3.62)

under the power constraint P (µk) = E
γ̂k
[P (γ̂k)] , i.e. each value of µk corresponds to

an average power constraint Pavg = P (µk).

This optimal procedure, although complex and time-consuming, does not provide

a substantial gain. Indeed, the rate achieved by the proposed On-Off power scheme

and the one resulting from the KKT condition are very close.
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3.4.2.2 Proof of the Upper Bound in Theorem 3.2

To establish the upper bound on the common message secrecy capacity, we start by

supposing that the transmitter sends codeword X to only one legitimate receiver Rk.

Using a similar approach, as in [109], we have

Cs ≤ max
P (ĥk)

E
ĥk,h̃k

[{
log

(
1+|

√
1−αĥk+

√
αh̃k|2P (ĥk)

1+|h̃k|2P (ĥk)

)}+]
. (3.63)

This upper bound follows by properly correlating the main and the eavesdropper’s

channel gains. Indeed, since the estimation error h̃k is identically distributed as g,

and since the transmitter is only aware of ĥk, which means that h̃k is independent of

the transmitted signal X , then substituting g by h̃k is a valid choice that provides a

tight upper bound. The presented upper bound has the following interpretation. In

order to increase the information leakage, the eavesdropper sticks to the component

of the main channel that is unknown to the transmitter.

The choice of the receiver to transmit to is arbitrary. In order to tighten this

upper bound, we can then choose receiver Rk that minimizes this quantity, yielding

the result in Theorem 3.2.

By setting ĥk=ρ̂ke
iθ̂k , h̃k=ρ̃ke

iθ̃k and uk=θ̂k−θ̃k, the upper bound on the secrecy

capacity can be expressed as

C+
s =min

1≤k≤K
max
P (ρ̂k)

E
ρ̂k,̃ρk,uk







log



1+
(
(1−α)ρ̂2k+αρ̃2k+2

√
α(1−α)ρ̂kρ̃k cos(uk)

)
P (ρ̂k)

1+ρ̃2kP (ρ̂k)









+

.

(3.64)

Note that the objective function in (3.64) is convex. The necessary and sufficient op-

timality condition can then be obtained using the KKT condition. The correspond-

ing Lagrangian, with the average power constraint E[P (ρ̂k)]≤Pavg, can be written

as follows
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L(P (ρ̂k), µk) (3.65)

= E






log



1+
(
(1−α)ρ̂2k+αρ̃2k + 2

√
α(1−α)ρ̂kρ̃k cos(uk)

)
P (ρ̂k)

1+ρ̃2kP (ρ̂k)








+

−µk (E[P (ρ̂k)]−Pavg),

with µk being the Lagrange multiplier. The term inside the expectation is positive if

log



1+
(
(1−α)ρ̂2k+αρ̃2k + 2

√
α(1−α)ρ̂kρ̃k cos(uk)

)
P (ρ̂k)

1+ρ̃2kP (ρ̂k)


 > 0, (3.66)

which is equivalent to

(1−α)ρ̂2k+2
√
α(1−α)ρ̂kρ̃k cos(uk)+(α−1)ρ̃2k > 0. (3.67)

Solving the quadratic equation in the LHS of (3.67), we should have ρ̃k ≤ ρ̂k
ρ0(uk)

, with

ρ0(uk)=

√
(1−α)(α cos(uk)2−α + 1)−

√
α(1−α) cos(uk)

1−α
,

to satisfy condition (3.67). Then, taking the derivative of (3.65) with respect to

P (ρ̂k) and equating to zero, the optimal power profile is the solution to the following

optimality condition

E
ρ̃k≤

ρ̂k
ρ0(uk)

[
ξ(̂ρk, ρ̃k, uk)

1+ξ(̂ρk, ρ̃k, uk)P (ρ̂k)
− ρ̃2k
1+ρ̃2kP (ρ̂k)

]
−µk = 0. (3.68)

with ξ(̂ρk, ρ̃k, uk)=(1−α)ρ̂2k+αρ̃2k + 2
√
α(1− α)ρ̂kρ̃k cos(uk). �

3.5 Illustrative Case: Rayleigh Fading Channels

In this section, we examine the obtained expressions for the lower and the upper

bounds on the ergodic secrecy capacity when the channel gains are i.i.d. Rayleigh

distributed. We start with the independent messages case, followed by the common

message transmission case.
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3.5.1 Broadcasting Independent Messages

Here, we analyze the results in Theorem 3.1, Corollary 3.1, and Corollary 3.2 in the

case of Rayleigh fading channels.

3.5.1.1 Achievable Sum-Rate

When broadcasting independent messages toK legitimate receivers over i.i.d. Rayleigh

fading channels with imperfect main CSIT, the lower bound on the secrecy capacity,

presented in Theorem 3.1, is given by

C̃−
s =max

τ

{
exp

(
1

P (τ)

)
Ei

(
− 1

P (τ)

)(
1−
(
1− e−τ

)K)
+K

K−1∑

k=0

(
K−1

k

)
(−1)k

1+αk

×
∫ ∞

0

log(1+γP (τ)) exp

(
−(1+k)γ

1+αk

)
Q

(√
2

1−α

α(1+αk)
γ,

√
2τ

α
(1+αk)

)
dγ

}
, (3.69)

where Ei(.) is the exponential integral function [143, Eq.(8.211.1)], both exp(.) and

e(.) represent the exponential function, Q(., .) stands for the Q-function [144, Eq.(16)],
(
.
.

)
is the binomial coefficient, and P (τ)=Pavg/

(
1− (1− e−τ )

K
)
.

Note that the integral term in (3.69) can be further represented in the form

∫ ∞

0

log(1+γP (τ)) exp

(
−(1+k)γ

1+αk

)
Q

(√
2

1−α

α(1+αk)
γ,

√
2τ

α
(1+αk)

)
dγ

=

∞∑

n=0

∞∑

m=0

(1−α)n+m(1+αk)−nτm

αm−1Γ(1 +m)Γ(1+n+m)
exp

(
−τ(1+αk)

α

)
G1,3

3,2



αP (τ)

∣∣∣∣∣∣
1, 1,−n−m

1, 0



 .

(3.70)

where Γ(.) represents the Gamma function [143, Eq.(8.310.1)], and G.,.
.,.



.

∣∣∣∣∣∣
.

.



 is the

Meijer G-function [143, Eq.(9.301)]. Details of derivation are provided in Appendix A.2.
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• High-SNR Regime:

At high SNR, the lower bound on the independent messages secrecy sum-capacity in

Corollary 3.1 reduces, for i.i.d. Rayleigh fading channels, to

C̃−
H-SNR=max

τ

{
K

K−1∑

k=0

(
K−1

k

)
(−1)k

1+αk

(
−Ei(−(1+k)τ) + Ei

(
−τ(1+αk)

α

)
−e−(1+k)τ

×
(
Ei

(
−1−α

α
τ

)
− log

(
1−α

1+αk
(1+k)τ

)
+ log

(
1+k

1+αk

))
+C

(
1−
(
1−e−τ

)K)
)}

,

(3.71)

where C is Euler’s constant [143, Eq.(8.367)].

• Perfect CSI Case:

When the transmitter has perfect CSI, the lower bound on the independent messages

secrecy sum-capacity in Corollary 3.2 is given for i.i.d. Rayleigh fading channels as

C̃−
P-CSI=max

τ

{
exp

(
1

P (τ)

)
Ei

(
− 1

P (τ)

)(
1−
(
1− e−τ

)K)
+K

K−1∑

k=0

(
K−1

k

)
(−1)k

1+k

×
(
e−(1+k)τ log(1 + τP (τ))− exp

(
1+k

P (τ)

)
Ei

(
−(1+k)

(
1

P (τ)
+τ

)))}
. (3.72)

3.5.1.2 Upper Bound

The upper bound on the independent messages secrecy sum-capacity with noisy main

CSIT, presented in Theorem 3.1, can be expressed as C̃+
s =min

{
C̃+
1 , C̃+

2

}
, with C̃+

1

and C̃+
2 defined in (3.15). When transmitting to K legitimate receivers over Rayleigh

fading channels, we have C̃+
2 =KC+

s , where C+
s is given in (3.91). As for C̃+

1 , we have

C̃+
1 = max

P (Γ̂)

∫ ∞

0

∫ ∞

0

∫ γ

0

log

(
1+γP (Γ̂)

1+γ̃P (Γ̂)

)
fΓ̂|γmax,γ̃

(Γ̂|γ, γ̃)fγmax|γ̃(γ|γ̃)fγ̃(γ̃) dγ̃dγdΓ̂,

(3.73)
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where fγ̃(γ̃) = e−γ̃,

fγmax|γ̃ (γ|γ̃) =
1

1−α
exp

(
−γ+αγ̃

1−α

)
I0

(
2

√
α

(1−α)2
γγ̃

)(
1−e−γ

)K−1

+ (K−1)e−γ
(
1−e−γ

)K−2

(
1−Q

(√
2α

1−α
γ̃,

√
2

1−α
γ

))
, (3.74)

and

fΓ̂|γmax,γ̃
(Γ̂|γ, γ̃) = 1

α
exp

(
−γ+(1−α)γ̂

α

)
I0

(
2

√
1−α

α2
γγ̂

)
e−γ̂

e−γ(1− e−γ)K−1

×
(
1−Q

(√
2(1−α)

α
γ̂,

√
2

α
γ

))K−1

e−γ̂2 · · · e−γ̂K . (3.75)

• High-SNR Regime:

At high SNR, we have C̃+
2 =KC+

H-SNR, where C+
H-SNR is given in (3.92), and

C̃+
1 =

∫ ∞

0

∫ γ

0

log

(
γ

γ̃

)
e−γ̃fγmax|γ̃(γ|γ̃) dγ̃dγ (3.76)

• Perfect CSI Case:

When the transmitter has perfect CSI, the upper bound on the independent messages

secrecy sum-capacity in Corollary 3.2 is given for Rayleigh fading channels as

C̃+
P-CSI = max

P (γ)
K

K−1∑

k=0

(
K−1

k

)
(−1)k

×
∫ ∞

0

e−(k+1)γ

(
log(1+γP (γ))+ exp

(
1

P (γ)

)(
Ei

(
− 1

P (γ)

)
−Ei

(
− 1

P (γ)
−γ

)))
dγ.

(3.77)

3.5.1.3 Scaling Law

In this subsection, we present an asymptotic analysis of the secrecy sum-capacity

when transmitting to a large number of legitimate receivers, in the high-SNR regime,

and over Rayleigh fading channels.
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Corollary 3.5. The secrecy sum-capacity when broadcasting independent messages

to a large number of legitimate receivers, i.e., K→∞, with an infinite average power

constraint, i.e., Pavg→∞, is bounded by

log((1−α) log(K)) ≤ C̃s ≤ log logK, for all α 6=1. (3.78)

Proof. In the high-SNR regime, the secrecy sum-capacity is bounded by

C̃−
H-SNR ≤ C̃s ≤ C̃+

H-SNR, (3.79)

where C̃−
H-SNR and C̃+

H-SNR are given in Corollary 3.1. On one hand, we have,

C̃−
H-SNR = max

τ
E

γe,γest
max,

γ̂max≥τ

[
log

(
γest
max

γe

)]
≥ E

γe,γest
max,

γ̂max

[
log

(
γest
max

γe

)]
. (3.80)

Since the distribution of the maximum fγ̂max(γ̂max) converges toward δ(γ̂max− logK)

as K→∞, with δ(.) is the Dirac-Delta function, it is almost sure that γ̂max= logK as

K→∞. We have then

lim
K→∞

C̃−
H-SNR ≥ lim

K→∞

(
Pr (γ̂max= logK) E

γest
max

[
log
(
γest
max

) ∣∣γ̂max= logK
]
−E

γe
[log (γe)]

)
.

Now, since Pr (γ̂max = logK) = 1 as K → ∞, and the variable γe does not

depend on K; the term E
γe
[log (γe)] is asymptotically dominated by log logK, i.e.,

E
γe
[log (γe)]=o(log logK), then

lim
K→∞

C̃−
H-SNR ≥ lim

K→∞
E

γest
max

[
log
(
γest
max

) ∣∣γ̂max= logK
]
. (3.81)

Furthermore, since γest
max=|

√
1−αĥmax+

√
αh̃|2 and

√
1−α|ĥmax|−

√
α|h̃| ≤ |

√
1−αĥmax+

√
αh̃| ≤

√
1−α|ĥmax|+

√
α|h̃|, (3.82)
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with |ĥmax|=
√
γ̂max→

√
logK, and |h̃|=o(loglogK) as K→∞, then, γest

max→ (1−α)logK

as K→∞. Thus, we have

lim
K→∞

E
γest
max

[
log
(
γest
max

) ∣∣γ̂max= logK
]
−log ((1−α) logK)=0,

yielding

lim
K→∞

C̃−
H-SNR− log ((1−α) logK) ≥ 0. (3.83)

An alternative, more analytical, proof of the lower bound is provided in Appendix A.4.

On the other hand, we have

C̃+
H-SNR = min

{
E

γmax,γ̃

[{
log

(
γmax

γ̃

)}+
]
, K E

γ,γ̃

[{
log

(
γ

γ̃

)}+
]}

(3.84)

≤ E
γmax,γ̃

[{
log

(
γmax

γ̃

)}+
]
. (3.85)

Considering the fact that fγmax(γmax) → δ(γmax− logK) and γ̃=o(log logK) asK→∞,

we get

lim
K→∞

C̃+
H-SNR− log logK ≤ 0. (3.86)

Substituting (3.83) and (3.86) in (3.79) concludes the proof. �

It can be seen that, in the limit of large number of legitimate receivers K, the gap

between the lower and the upper bounds on the secrecy sum-capacity is log(1−α)

for all α 6=1. Besides, we can see that this difference vanishes as the estimation error

variance of the CSI decreases, i.e., α→0.

3.5.2 Broadcasting a Common Message

Here, we analyze the results in Theorem 3.2, Corollary 3.3, and Corollary 3.4 in the

case of Rayleigh fading channels.
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3.5.2.1 Achievable Rate

The achievable common message secrecy rate with noisy main CSIT, presented in

Theorem 3.2, can be expressed for the i.i.d. Rayleigh case as

C−
s =max

τ

{
exp

(
e−τ

Pavg

)
Ei

(
− e−τ

Pavg

)
e−τ+

∫ ∞

0

log(1+γPavge
τ ) e−γQ

(√
2
1−α

α
γ,

√
2τ

α

)
dγ

}
,

(3.87)

Note that the integral term in (3.87) can be further represented in the form

∫ ∞

0

log(1+γPavge
τ ) exp(−γ) Q

(√
2
1−α

α
γ,

√
2τ

α

)
dγ

=
∞∑

n=0

∞∑

m=0

(1−α)n+mτm exp(−τ/α))

αm−1Γ(1 +m)Γ(1+n+m)
G1,3

3,2


αPavge

τ

∣∣∣∣∣∣
1, 1,−n−m

1, 0


 , (3.88)

Details of derivation are provided in Appendix A.3.

• High-SNR Regime:

At high SNR, the lower bound on the common message secrecy capacity in Corol-

lary 3.3 reduces for i.i.d. Rayleigh fading channels to

C−
H-SNR=max

τ

{
−Ei(−τ)+Ei

(
− τ

α

)
−e−τ

(
Ei

(
−1−α

α
τ

)
−log((1−α)τ)−C

)}
. (3.89)

• Perfect CSI Case:

When the transmitter has perfect CSI, the lower bound on the common message

secrecy capacity in Corollary 3.4 is given for i.i.d. Rayleigh fading channels as

C−
P-CSI=max

τ

{
− exp

(
e−τ

Pavg

)
Ei

(
− e−τ

Pavg
−τ

)

+e−τ

(
log(1 + Pavgτe

τ )+ exp

(
e−τ

Pavg

)
Ei

(
− e−τ

Pavg

))}
. (3.90)
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3.5.2.2 Upper Bound

The upper bound on the common message secrecy capacity, presented in Theorem 3.2,

can be expressed for the i.i.d. Rayleigh fading channels’ case as

C+
s =max

P (ρ̂)

∫ π

−π

∫ ∞

0

∫ ρ̂
ρ0(u)

0

log

(
1+ξ(ρ̂, ρ̃, u)P (ρ̂)

1+ρ̃2P (ρ̂)

)
fρ̂(ρ̂)fρ̃(ρ̃)fu(u)dρ̂dρ̃du, (3.91)

where ξ(̂ρk, ρ̃k, uk) =(1−α)ρ̂2k+αρ̃2k + 2
√
α(1− α)ρ̂kρ̃k cos(uk), fρ̂(ρ̂)=fρ̃(ρ̂)=2ρ̂ e−ρ̂2 ,

ρ0(uk)=

√
(1−α)(α cos(uk)2−α + 1)−

√
α(1−α) cos(uk)

1−α
,

and

fu(u) =





(2π + u)/(2π)2 −2π ≤ u < 0

(2π − u)/(2π)2 0 ≤ u < 2π

0 elsewhere

.

• High-SNR Regime:

At high SNR, the upper bound on the common message secrecy capacity in Corol-

lary 3.3 can be written for i.i.d. Rayleigh fading channels as

C+
H-SNR =

1

π

∫ π

−π

∫ ∞

ρ0(u)

log
(
(1−α)ρ2 +

√
α(1−α) cos(u)ρ+ α

) ρ

(1+ρ2)2
dρdu. (3.92)

• Perfect CSI Case:

When the transmitter has perfect CSI, the upper bound on the common message

secrecy capacity in Corollary 3.4 is given for i.i.d. Rayleigh fading channels as

C+
P-CSI=max

P (γ)

∫ ∞

0

e−γ

(
log(1+γP (γ)) + exp

(
1

P (γ)

)(
Ei

(
− 1

P (γ)

)
−Ei

(
− 1

P (γ)
−γ

)))
dγ.

(3.93)
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Figure 3.2: Lower and upper bounds on the common message secrecy capacity in the
case of Rayleigh fading channels for two values of the estimation error variance α,
i.e., α=0.5 and α=0.1.

3.6 Numerical Results

In this section, we provide selected numerical results for the case of i.i.d. Rayleigh

fading channels. We consider that the system’s variables, the main channel gains hk,

k∈{1, · · · , K}, the estimated channel gains ĥk, the channel estimation errors h̃k and

the eavesdropper’s channel gain g, are all drawn from the zero-mean, unit-variance

complex Gaussian distribution.

Figure 3.2 presents the lower and the upper bounds on the secrecy capacity, in

nats per channel use (npcu), when transmitting a common message to two legitimate

receivers with two values of the estimation error variance α=0.5 and α=0.1. The

special cases of high-SNR and perfect main CSI are depicted in Figure 3.3. We can

see that, at high SNR, the lower bound with perfect main CSI at the transmitter

presented in this work coincides with the one provided in [30]. However, at low

SNR, the curves of the two bounds differ. This difference, at the low SNR regime, is
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Figure 3.3: Comparison of the asymptotic results for high SNR and perfect CSI with
the lower and upper bounds on the common message secrecy capacity with α=0.5.

explained by the use of different power transmission schemes.

The effect of changing the estimation error variance on the lower and the upper

bounds on the secrecy capacity when broadcasting a common message to two legiti-

mate receivers is illustrated in Figure 3.4. We consider three different values of the

average power constraint Pavg=10 dB, Pavg=15 dB and Pavg=30 dB. It is clear from

this figure that the secrecy capacity vanishes when no main CSI is available at the

transmitter (α=1). Moreover, we can see that the gap between the achievable secrecy

rate and the upper bound on the secrecy capacity gets narrower as the value of Pavg

decreases.

Figure 3.5 illustrates the lower and the upper bounds on the secrecy capacity when

transmitting independent messages to two legitimate receivers, i.e., K=2, with two

different values of the error variance, α=0.5 and α=0.9. The results for the high-SNR

regime and the perfect CSI case are presented in Figure 3.6 for α=0.5.



76

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

Pavg = 30dB

Pavg = 10dB
Pavg = 15dB

α

S
ec
re
cy

R
at
e(
n
p
cu
)

Upper Bounds

Achievable Rates

Figure 3.4: Lower and upper bounds on the common message secrecy capacity in
function of α.

The variation of the threshold τ , of the On-Off power scheme, is presented in

Figure 3.7 for both the common message and the independent messages cases. We

can see that, for a given channel estimation error α, τ asymptotically converges

towards a fixed value at high SNR. We can also observe that when fixing the value of

the SNR, τ decreases with the channel estimation quality.

The motivation behind choosing the upper bound on the secrecy capacity as the

minimum between C̃+
1 and C̃+

2 , for the independent messages case, is highlighted in

Figure 3.8. Indeed, a comparison between the upper bounds C̃+
s in Theorem 3.1 and

C̃+
1 in (3.15) is presented, in terms of α, for K=1, 2, and 3 with Pavg=30 dB. In

accordance with what was stated in the proof of Theorem 3.1, we can see that C̃+
2 is a

loose upper bound for the secrecy sum-rate for most values of α, especially when the

number of users K is large. That is, C̃+
s =C̃+

1 for most values of α. However, when the

CSI available at the transmitter gets very noisy, i.e., α→1, C̃+
2 becomes tighter then
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Figure 3.5: Lower and upper bounds on the independent messages secrecy sum-
capacity in the case of Rayleigh fading channels with K=2 and two values of the
estimation error variance α, i.e., α=0.5 and α=0.9.
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Figure 3.7: Optimal on-off power parameter τ versus SNR, for Rayleigh fading chan-
nels, with K=2 and various values of α. Subfigure (a) illustrates the common message
case while subfigure (b) represents the independent messages case.

C̃+
1 . Moreover, for α=1, C̃+

2 vanishes, reflecting the fact that the secrecy capacity is

zero for the no CSI case, while C̃+
1 does not.

The upper bound on the secrecy capacity, for the independent messages case,

is presented in Figure 3.9 in function of the number of legitimate receiver K with

Pavg=30 dB. We can observe that, when K→∞, the curves representing C̃+
s converge

toward the perfect CSI curve (α=0) for all α > 1. For the no CSI case (α=1), the

secrecy capacity is zero.

Figure 3.10 considers the case when broadcasting independent messages to K

legitimate receivers with an estimation error variance α=0.5 and two values for

the average power constraint Pavg=10 dB and Pavg=30dB. From this figure, we

can see that both the achievable secrecy sum-rate and the upper bound on the

secrecy sum-rate, scale with the number of users K. That is, and in accordance

with the multiuser diversity aim, the proposed achievable scheme is asymptotically

optimal as the number of legitimate receivers grows. The figure shows also that
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the difference between the lower and the upper bounds on the secrecy sum-rate ap-

proaches log(1−α) as the number of users increases. This supports our claim in Corol-

lary 3.5. Note that all the results presented in this section have been verified through

Monte Carlo simulations.

3.7 Conclusion

In this chapter, we examined the impact of CSIT uncertainty on the secrecy through-

put of multi-user broadcast wiretap channels. We considered both cases when inde-

pendent confidential messages and when a common secret message are broadcasted

to multiple legitimate receivers in the presence of an eavesdropper. The obtained re-

sults show that even with a noisy CSIT, a non-zero secrecy rate can still be achieved.

Asymptotic analysis at high SNR, perfect, and no-main CSIT were addressed and the

results were illustrated for the case of Rayleigh fading channels.
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Chapter 4

Multi-User Broadcast Wiretap Channel with Finite CSI

Feedback

4.1 Introduction

This chapter investigates the problem of secure multi-user broadcasting over block-

fading wiretap channels when the transmitter has limited knowledge about the main

users’ CSI. The CSI knowledge is obtained through finite rate feedback links used by

the legitimate receivers to inform the transmitter about their channel prior to data

transmission. The feedback links are public, which implies that the CSI information

cannot be used as a source of secrecy. Assuming an average transmit power constraint,

we establish upper and lower bounds on the ergodic secrecy capacity. We consider

both the independent messages case, where the transmitter broadcasts multiple inde-

pendent messages to the legitimate receivers, and the common message transmission

case, where the source broadcasts the same information to all the receivers. In both

scenarios, we show that as long as the transmitter has some knowledge about the

main CSI, a positive secrecy rate can still be achieved. Also, the proposed lower

and upper bounds, in both the common and the independent messages cases, are

shown to coincide asymptotically as the capacity of the feedback links become large,

i.e. b → ∞, hence, fully characterizing the secrecy capacity in this first case and the

secrecy sum-capacity in the second one.

The rest of this chapter is organized as follows. Section 4.2 describes the system

model. The main results along with the corresponding proofs are introduced in sec-
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tion 4.3 for the independent messages case and in section 4.4 for the common message

transmission. Finally, selected simulation results are presented in section 4.5, while

section 4.6 concludes the chapter.

4.2 System Model

We consider a block-fading broadcast wiretap channel where a transmitter commu-

nicates with K legitimate receivers in the presence of an eavesdropper, as depicted

in Fig. 4.1. The respective received signals at each legitimate receiver Rk, k∈{1, · · ·, K},

and the eavesdropper, at fading block l, l∈{1, · · ·, L}, are given by

Yk(l, j) = hk(l)X(l, j) + vk(l, j)

Ye(l, j) = he(l)X(l, j) + we(l, j),

(4.1)

where j∈{1, · · · ,κ}, with κ representing the length of each fading block, X(l, j) is

the j-th transmitted codeword in the l-th fading block, hk(l) ∈C, he(l) ∈C are the

complex Gaussian channel gains corresponding to each legitimate channel and the

eavesdropper’s channel, respectively, and vk(l, j)∈C, we(l, j)∈C represent zero-mean,
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Figure 4.1: Multi-User broadcast wiretap channel with finite CSI feedback.
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unit-variance circularly symmetric white Gaussian noises at Rk and E, respectively.

4.2.1 Channel Assumptions

We consider a block-fading channel where the channel gains remain constant within a

fading block. We assume that the channel encoding and decoding frames span a large

number of fading blocks, i.e., L is large, and that the blocks change independently

from a fading block to another. An average transmit power constraint is imposed at

the transmitter such that

1

n

n∑

t=1

E
[
|X(t)|2

]
≤ Pavg, (4.2)

with n=κL, and where the expectation is over the input distribution. The transmitted

codeword can either correspond to a common message intended for all legitimate

receivers or to a combination of independent messages each intended for a particular

user. In both cases, the transmitted information should be kept secret from the

eavesdropper.

The channel gains hk and he are independent, ergodic and stationary with bounded

PDFs. In the rest of this chapter, we denote |hk|2 and |he|2 by γk and γe, respectively.

We assume that each legitimate receiver is instantaneously aware of its channel gain

hk(l), and the eavesdropper knows he(l). The distributions of the main and the eaves-

dropping channels are known to all nodes. Further, we assume that the transmitter

is not aware of the instantaneous channel realizations of neither channel. However,

each legitimate receiver provides the transmitter with a b-bit CSI feedback through

an error-free orthogonal channel with limited capacity. This feedback is transmitted

at the beginning of each fading block and is also tracked by the other legitimate

receivers, i.e., all communicating nodes are aware of each and every feedback infor-

mation. The eavesdropper knows all channels and also track the feedback links so

that they are not sources of secrecy.
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4.2.2 Feedback Strategy

The adopted feedback strategy consists on partitioning the main channel gain sup-

port into Q intervals [τ1, τ2), · · · , [τq, τq+1), · · · , [τQ,∞), where Q=2b. That is, dur-

ing each fading block, each legitimate receiver Rk determines in which interval,

[τq, τq+1) with q=1, · · · , Q, its channel gain γk lies and feeds back the associated

index q to the transmitter. At the transmitter side, each feedback index q cor-

responds to a power transmission strategy Pq satisfying the average power con-

straint. We assume that all nodes are aware of the main channel gain partition

intervals [τ1, τ2), · · · , [τq, τq+1), · · · , [τQ,∞), and of the corresponding power trans-

mission strategies {P1, · · · , PQ}.

4.2.3 Secret Transmission

When transmitting K independent messages to the legitimate receivers, each intended

for a particular user, a (2nR1 , · · · , 2nRK , n) code consists of the following elements:

• K message sets Wk =
{
1, 2, · · ·, 2nRk

}
, k ∈ {1, · · · , K}, with the messages

Wk ∈ Wk independent and uniformly distributed;

• A stochastic encoder at the transmitter f : W1 × · · · × WK → X n that maps

each message tuple (w1, · · · , wK) to a codeword xn ∈ X n;

• K decoders, one at each legitimate receiver, gk : Yn
k → W1 × · · · × WK ,

k ∈ {1, · · · , K}, that maps a received sequence ynk ∈ Yn
k to (ŵ1, · · · , ŵK) ∈

W1 × · · · ×WK .

A rate tuple (R1,R2, · · · ,RK) is said to be achievable if there exists a code such

that the average error probability at each legitimate receiver,

Pek =
1

2nRk

2nRk∑

w=1

Pr
[
Wk 6= Ŵk

∣∣Wk = wk

]
, (4.3)
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and the leakage rate at the eavesdropper

1

n
I(W1, · · · ,WK ; Y

n
e , h

L
e , h

L
1 , · · · , hL

K , F
L
1 , · · · , FL

K), (4.4)

where FL
k is the sequence of feedback information sent by the k-th receiver during L

fading blocks, go to zero as n goes to infinity. The secrecy sum-rate is, then, given by

R̃s =
K∑

k=1

Rk, and the secrecy sum-capacity is defined, in this case, as C̃s , sup R̃s.

4.3 Broadcasting Independent Messages

In this section, we consider the independent messages case when multiple confidential

messages are broadcasted to the legitimate receivers in the presence of an eavesdrop-

per. Taking into account the adopted system model, we present an upper and a lower

bounds on the ergodic secrecy sum-capacity.

4.3.1 Main Results

Theorem 4.1. The ergodic secrecy sum-capacity of the block-fading multi-user broad-

cast wiretap channel with an error free b-bit CSI feedback sent by each legitimate

receiver, at the beginning of each fading block, is characterized as

C̃−
s ≤ C̃s ≤ C̃+

s , (4.5)

where C̃−
s and C̃+

s are given by

C̃−
s = max

{τq ;Pq}
Q
q=1

Q∑

q=1

Pr [τq≤γmax<τq+1]E
γe

[{
log

(
1+τqPq

1+γePq

)}+
]
, (4.6)

C̃+
s = max

{τq ;Pq}
Q
q=0

Q∑

q=0

Pr [τq≤γmax<τq+1] E
γe,γmax

[{
log

(
1+γmaxPq

1+γePq

)}+
∣∣∣∣∣τq≤γmax<τq+1

]
,

(4.7)

with γmax= max
1≤k≤K

γk, Q=2b, {τq |0=τ0<τ1< · · ·<τQ}Qq=1 are the reconstruction points

describing the support of γmax with τQ+1=∞ for convenience, and {Pq}Qq=1 are the

power transmission strategies satisfying the average power constraint.
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Proof. A detailed proof of Theorem 4.1 is provided in the following subsection.

The main difference between the bounds in Theorem 4.1 is that the feedback infor-

mation is used to adapt both the transmission rate and the power for the achievable

secrecy sum-rate and only the power in the upper bound. The secrecy sum-rate is

achieved by transmitting only to the legitimate user with the best quantized CSI, in

a given fading block. Under this strategy, the multi-user broadcast channel reduces

to a point-to-point communication with the channel gain distributed as max1≤k≤K γk.

One can think that encoding only for the strongest receiver is not valid to establish the

secrecy sum-capacity. However, if we look for instance at the two users case, we can

easily show that I(X ; Y1|U)+I(U ; Y2)=I(X ; Y1), and hence that R1+R2≤I(X ; Y1),

with the first receiver being always the strongest one and U→X→Y1→Y2 forming a

Markov chain. The proposed achievability scheme has then a time sharing interpreta-

tion to it and even if the result is given in terms of the secrecy sum-rate, the secrecy

rate Rk of each legitimate receiver, k ∈ {1, · · ·, K}, can also be characterized. Indeed,

we can write Rk ≤ C−
s × Pr[user k is the strongest receiver].

Also, the result in Theorem 4.1 shows that even with a 1-bit CSI feedback, sent

by each legitimate receiver at the beginning of each fading block, a non-zero secrecy

sum-rate can still be achieved. Of course, as the number of feedback bits increases, the

secrecy sum-throughput ameliorates, and when Q → ∞, the bounds on the secrecy

sum-capacity coincide, yielding the expression presented in the following corollary.

Corollary 4.1. The ergodic secrecy sum-capacity of a block fading multi-user

broadcast wiretap channel, with perfect main CSIT, is given by

C̃s = max
P (γmax)

E
γmax,γe

[{
log

(
1+γmaxP (γmax)

1+γeP (γmax)

)}+
]
, (4.8)

with γmax=max1≤k≤K γk, and E[P (γmax)] ≤ Pavg.

Proof. Corollary 4.1 results directly from Theorem 4.1 by letting Q → ∞ and
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following a similar reasoning as for the proof of Corollary 4.3. �

4.3.2 Secrecy Sum-Capacity Analysis

In this subsection, we establish the obtained results for the ergodic secrecy sum-

capacity presented in Theorem 4.1.

4.3.2.1 Achievability Scheme in Theorem 4.1

The lower bound on the secrecy sum-capacity, presented in (4.6), is achieved using a

time division multiplexing scheme that selects periodically one receiver to transmit

to. More specifically, we consider that, during each fading block, the source only

transmits to the legitimate receiver with the highest τq, and if there are more than

one, we choose one of them randomly. Since we are transmitting to only one legitimate

receiver at a time, the achieving coding scheme consists on using independent standard

single user Gaussian wiretap codebooks.

During each fading block, the transmitter receives K feedback information about

the CSI of the legitimate receivers. Since the channel gains of the K receivers are

independent, there are M=QK different states for the received feedback information,

as discussed in the proof of achievability of Theorem 1. Each of these states, Jm;m ∈

{1, · · · ,M}, represents one subchannel. The transmission scheme consists on sending

an independent message, intended for the receiver with the highest τq, on each of

the M subchannels, with a fixed rate. Let τmax
m be the maximum received feedback

information on channel m. The overall achievable secrecy sum-rate can be written as

R̃−
s =

M∑

m=1

Pr[Jm]E
γe

[{
log

(
1+τmax

m P (τmax
m )

1+γeP (τmax
m )

)}+
]

(4.9)

=

Q∑

q=1

Pr[τq≤γmax<τq+1]E
γe

[{
log

(
1+τqPq

1+γePq

)}+
]
, (4.10)

where (4.9) is obtained by using a Gaussian codebook with power P (τmax
m ), satisfying
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the average power constraint, on each subchannel m, and (4.10) follows by using the

fact that τmax
m ∈ {τ1, · · · , τQ} and rewriting the summation over these indices. Also,

we note that the probability of adapting the transmission with τq corresponds to the

probability of having τq≤γmax<τq+1, with γmax = max1≤k≤K γk. Maximizing over the

main channel gain reconstruction points τq and the associated power transmission

strategies Pq, for each q ∈ {1, · · · , Q}, concludes the proof. �

4.3.2.2 Proof of the Upper Bound in Theorem 4.1

To prove that C̃+
s , presented in (4.7), is an upper bound on the secrecy sum-capacity,

we consider a new genie-aided channel whose capacity upper bounds the capacity of

the K-receivers channel with limited CSI feedback. The new channel has only one

receiver that observes the output of the strongest main channel. The output signal

of the genie-aided receiver is given by Ymax(t) = hmax(t)X(t)+ v(t), at time instant t,

with hmax being the channel gain of the best legitimate channel, i.e., |hmax|2=γmax

and γmax=max1≤k≤K γk. The new channel can then be modeled as

Ymax(t) = hmax(t)X(t) + v(t)

Ye(t) = he(t)X(t) + we(t)

, t = 1, · · · , n. (4.11)

Let τq, q∈{1, · · ·, Q}, be the feedback information sent by the new receiver to the

transmitter about its channel gain, i.e., τq is fed back when τq≤γmax<τq+1. First, we

need to prove that the secrecy capacity of this new channel upper bounds the secrecy

sum-capacity of the K-receivers channel with limited CSI. To this end, it is sufficient

to show that if a secrecy rate point (R1,R2, · · ·,RK) is achievable on the K-receivers

channel with limited CSI feedback, then, a secrecy sum-rate
∑K

k=1Rk is achievable

on the new channel.

Let (W1,W2,· · ·,WK) be the independent transmitted messages corresponding to

the rates (R1,R2,· · ·,RK), and (Ŵ1, Ŵ2, · · ·, ŴK) the decoded messages. Thus, for any
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ǫ>0 and n large enough, there exists a code of length n such that Pr[Ŵk 6=Wk]≤ǫ at

each of the K receivers, and

1

n
H(Wk|W1,· · · ,Wk−1,Wk+1,· · · ,WK ,Y

n
e ,γ

L
e ,F

L) ≥ Rk−ǫ, (4.12)

with FL={FL
1 , F

L
2 , · · ·, FL

K}, and Fk(l)∈{τ1, · · ·, τQ} is the feedback information sent

by receiver k in the l-th fading block. Now, we consider the transmission of message

W=(W1,W2,· · ·,WK) to the genie-aided receiver using the same encoding scheme as

for the K-receivers case. Adopting a decoding scheme similar to the one used at

each of the K legitimate receivers, it is clear that the genie-aided receiver can decode

message W with a negligible probability of error, i.e., Pr(Ŵ 6=W )≤ǫ. For the secrecy

condition, we have

1

n
H(W |Y n

e , γ
L
e , γ

L
max, F

L
max) =

1

n
H(W1,W2,· · ·,WK |Y n

e ,γ
L
e ,γ

L
max,F

L
max) (4.13)

≥
K∑

k=1

1

n
H(Wk|W1,· · ·,Wk−1,Wk+1,· · ·,WK,Y

n
e ,γ

L
e ,γ

L
max,F

L
max) (4.14)

≥
K∑

k=1

1

n
H(Wk|W1,· · ·,Wk−1,Wk+1,· · ·,WK,Y

n
e ,γ

L
e ,γ

L
max,F

L) (4.15)

≥
K∑

k=1

Rk−Kǫ, (4.16)

where FL
max={Fmax(1), · · ·, Fmax(L)} and Fmax(l) is the feedback information sent by

the genie-aided receiver in the l-th fading block, (4.15) follows from the fact that

Fmax∈{F1, · · ·, FK} and that conditioning reduces the entropy, and where (4.16) fol-

lows from the secrecy constraint (4.12).

Now, we need to prove that C̃+
s upper bounds the secrecy capacity of the genie-

aided channel. Let R̃e be the equivocation rate of the new channel. We have

nR̃e = H(W |Y n
e , γ

L
e , γ

L
max, F

L
max) (4.17)

= I(W;Y n
max|Y n

e ,γ
L
e ,γ

L
max,F

L
max)+H(W |Y n

max,Y
n
e ,γ

L
e ,γ

L
max,F

L
max) (4.18)

≤ I(W ; Y n
max|Y n

e , γ
L
e , γ

L
max, F

L
max)+nǫ (4.19)
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=

L∑

l=1

κ∑

k=1

I(W;Ymax(l, k)|Y n
e ,γ

L
e ,γ

L
max, F

L
max, Y

κ(l−1)+(k−1)
max )+nǫ (4.20)

=
L∑

l=1

κ∑

k=1

H(Ymax(l, k)|Y n
e , γ

L
e , γ

L
max, F

L
max, Y

κ(l−1)+(k−1)
max )

−H(Ymax(l, k)|W,Y n
e ,γ

L
e ,γ

L
max,F

L
max,Y

κ(l−1)+(k−1)
max )+nǫ (4.21)

≤
L∑

l=1

κ∑

k=1

H(Ymax(l, k)|Ye(l, k), γe(l), γmax(l), F
l
max) (4.22)

−H(Ymax(l, k)|W,X(l, k),Y n
e , γ

L
e ,γ

L
max,F

L
max,Y

κ(l−1)+(k−1)
max )+nǫ

=
L∑

l=1

κ∑

k=1

H(Ymax(l, k)|Ye(l, k), γe(l), γmax(l), F
l
max) (4.23)

−H(Ymax(l, k)|X(l, k), Ye(l, k), γe(l), γmax(l), F
l
max)+nǫ

=
L∑

l=1

κ∑

k=1

I(X(l,k);Ymax(l,k)|Ye(l, k),γe(l),γmax(l),F
l
max)+nǫ (4.24)

≤
L∑

l=1

κ∑

k=1

{
I(X(l, k); Ymax(l, k)|γmax(l), F

l
max)

−I(X(l, k); Ye(l, k)|γe(l), F l
max)

}+
+nǫ (4.25)

=

L∑

l=1

κ
{
I(X(l);Ymax(l)|γmax(l),F

l
max)−I(X(l);Ye(l)|γe(l),F l

max)
}+
+nǫ, (4.26)

where inequality (4.19) follows from the fact that

H(W |Y n
max, Y

n
e , γ

L
e , γ

L
max, F

L
max) ≤ H(W |Y n

max, γ
L
max, F

L
max),

and Fano’s inequality

H(W |Y n
max, γ

L
max, F

L
max) ≤ nǫ,

and (4.25) holds true by selecting the appropriate value for the noise correlation to

form the Markov chain X(l)→Ymax(l)→Ye(l) if γmax(l)>γe(l) or X(l)→Ye(l)→Ymax(l)

if γmax(l)≤γe(l), as explained in [31].

The right-hand side of (4.26) is maximized by a Gaussian input. That is, taking

X(l) ∼ CN
(
0, ω

1/2
l (F l

max)
)
, with the power policy ωl(F

l
max) satisfying the average
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power constraint, we can write

nR̃e ≤ κ

L∑

l=1

E

[{
log

(
1+γmax(l)ωl(F

l
max)

1+γe(l)ωl(F l
max)

)}+
]
+nǫ (4.27)

= κ

L∑

l=1

E

[
E

[{
log

(
1+γmax(l)ωl(F

l
max)

1+γe(l)ωl(F l
max)

)}+∣∣∣∣Fmax(l), γmax(l), γe(l)

]]
+nǫ (4.28)

≤ κ

L∑

l=1

E

[{
log

(
1+γmax(l)E[ωl(F

l
max)|Fmax(l),γmax(l),γe(l)]

1+γe(l)E[ωl(F
l
max)|Fmax(l),γmax(l),γe(l)]

)}+]
+nǫ (4.29)

= κ

L∑

l=1

E

[{
log

(
1+γmax(l)Ωl(Fmax(l))

1+γe(l)Ωl(Fmax(l))

)}+]
+nǫ (4.30)

= κ

L∑

l=1

E

[{
log

(
1+γmaxΩl(Fmax)

1+γeΩl(Fmax)

)}+
]
+nǫ, (4.31)

where (4.29) is obtained using Jensen’s inequality, Ωl(Fmax(l)) in (4.30) is defined as

Ωl(Fmax(l))=E
[
ωl(F

l
max)|Fmax(l), γmax(l), γe(l)

]
,

and where (4.31) follows from the ergodicity and the stationarity of the channel gains.

Thus, we have

R̃e ≤
1

L

L∑

l=1

E

[{
log

(
1+γmaxΩl(Fmax)

1+γeΩl(Fmax)

)}+
]
+ǫ (4.32)

≤ E

[{
log

(
1+γmaxΩ(Fmax)

1+γeΩ(Fmax)

)}+
]
+ ǫ, (4.33)

where (4.33) comes from applying Jensen’s inequality once again, with

Ω(Fmax)=
1

L

L∑

l=1

Ωl(Fmax).

Maximizing over the main channel gain reconstruction points τq and the associated

power transmission strategies Pq, for each q ∈ {1, · · · , Q}, concludes the proof. �
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4.3.3 Asymptotic Analysis at High-SNR

Corollary 4.2. In the high-SNR regime, the ergodic secrecy sum-capacity of the

block-fading multi-user broadcast wiretap channel with an error free b-bit CSI feed-

back sent by each legitimate receiver, at the beginning of each fading block, is char-

acterized as

C̃−
H-SNR ≤ C̃s-HSNR ≤ C̃+

H-SNR, (4.34)

where C̃−
H-SNR and C̃+

H-SNR are given by

C̃−
H-SNR= max

{τq}
Q
q=1

Q∑

q=1

Pr [τq≤γmax<τq+1]E
γe

[{
log

(
τq
γe

)}+]
, (4.35)

C̃+
H-SNR= E

γe,γmax

[{
log

(
γmax

γe

)}+]
, (4.36)

with γmax= max
1≤k≤K

γk, Q=2b, and {τq | 0=τ0<τ1< · · ·<τQ}Qq=1 are the reconstruction

points describing the support of γmax with τQ+1=∞ for convenience.

Proof: The result in Corollary 4.2 can be deduced directly from Theorem 4.1 by

taking the limits of C̃−
s and C̃+

s when Pavg → ∞.

We can see that the secrecy sum-capacity does not depend on Pavg at the high-

SNR regime. However, since the obtained expressions are in terms of γmax, the secrecy

performance scales with the number of legitimate receivers K.

4.4 Broadcasting a Common Message

In this section, we examine the case when a unique confidential information is broad-

casted to all the legitimate receivers in the presence of an eavesdropper.
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4.4.1 Main Results

Theorem 4.2. The ergodic common message secrecy capacity of the block-fading

multi-user broadcast wiretap channel with an error free b-bit CSI feedback sent by

each legitimate receiver, at the beginning of each fading block, is characterized as

C−
s ≤ Cs ≤ C+

s , (4.37)

where C−
s and C+

s are given by

C−
s =min

1≤k≤K
max

{τq;Pq}
Q
q=1

Q∑

q=1

Pr [τq≤γk<τq+1]E
γe

[{
log

(
1+τqPq

1+γePq

)}+]
, (4.38)

C+
s = min

1≤k≤K
max

{τq ;Pq}
Q
q=0

Q∑

q=0

Pr [τq≤γk<τq+1] E
γe,γk

[{
log

(
1+γkPq

1+γePq

)}+
∣∣∣∣∣τq≤γk<τq+1

]
,

(4.39)

with Q=2b, {τq | 0=τ0<τ1< · · ·<τQ}Qq=1 are the reconstruction points describing the

support of γk with τQ+1=∞ for convenience, and {Pq}Qq=1 are the power transmission

strategies satisfying the average power constraint.

Proof. A detailed proof of Theorem 4.2 is provided in the following subsection.

The main difference between the lower and the upper bounds in Theorem 4.2 is

that the feedback information is used to adapt both the transmission rate and the

power for the achievable secrecy rate while it is only used to adjust the transmis-

sion power for the upper bound. As a matter of fact, the key point in the proof of

achievability of (4.38) is that the feedback information is exploited to fix the trans-

mission rate during each coherence block. That is, if the legitimate receiver with

the weakest average SNR informs the transmitter that its channel gain falls within

the interval [τq, τq+1), q ∈ {1, · · ·, Q}, the transmitter conveys the codewords at rate

Rq = log (1+τqPq) . Rate Rq changes only periodically and is held constant over the

duration interval of a fading block. It may seem optimal to let the transmission rate

vary with the actual value of the weakest channel gain instead of fixing it with regards
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to the lower bound of the interval in which it lies. However, in this case, we will lose

the {.}+ inside the expectation, i.e., the eavesdropper can have a better rate than

the legitimate receivers in some fading blocks. The considered setup guarantees that

when γe>τq, the mutual information between the transmitter and the eavesdropper is

upper bounded by Rq. Otherwise, this mutual information is equal to log (1+γePq).

It is also worth mentioning that, similarly to the case of multi-user common mes-

sage transmission with no secrecy constraints, the obtained secrecy bounds are limited

by the legitimate receiver with the lowest average SNR. It goes without saying that

this limitation ensures that all legitimate receivers are able to recover the transmitted

message reliably. We can also see from Theorem 4.2 that even with a 1-bit CSI feed-

back, sent by each legitimate receiver at the beginning of each fading block, a positive

secrecy rate can still be achieved. Of course, as the number of feedback bits increases,

the secrecy throughput ameliorates, and when Q → ∞, our bounds coincide, yielding

the result presented in the following corollary.

Corollary 4.3. The ergodic common message secrecy capacity of the block fading

multi-user broadcast wiretap channel with perfect main CSIT is given by

Cs = min
1≤k≤K

max
P (γk)

E
γk ,γe

[{
log

(
1+γkP (γk)

1+γeP (γk)

)}+
]
, (4.40)

with E[P (γk)] ≤ Pavg.

Proof. Corollary 4.3 results directly from the expressions of the achievable rate

in (4.38) and the upper bound in (4.39), by letting Pr [τq≤γk<τq+1] = 1/Q and

taking into consideration that as Q→∞, the set of reconstruction points, {τ1, · · ·, τQ},

becomes infinite and each legitimate receiver Rk is basically forwarding γk to the

transmitter. �

To the best of our knowledge, this result has not been reported in earlier works.

For the special case of single user transmission, the secrecy capacity in Corollary 4.3
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coincides with the result in Theorem 2 from reference [28].

The presented results for common message and independent messages transmis-

sions, are also valid when multiple non-colluding eavesdroppers conduct the attack.

In such a scenario, the transmitter has to limit its transmission with regards to the

eavesdropper with the strongest wiretapping channel. Whereas, in the case of col-

luding eavesdroppers, the results can be extended by replacing the term γe with

the squared norm of the vector of channel gains of the colluding eavesdroppers, i.e,

this case could be seen as if the wiretapping attack is fulfilled by one eavesdropper

equipped with multiple antennas and deploying maximum ratio combining (MRC). It

is not hard to guess that the strongest the eavesdropper gets, the little is the secrecy

we can achieve. Besides, in the analyzed system, we assumed unit variance Gaussian

noises at all receiving nodes. The results can be easily extended to a general setup

where the noise variances are different.

4.4.2 Secrecy Capacity Analysis

In this subsection, we establish the obtained results for the ergodic common message

secrecy capacity presented in Theorem 4.2.

4.4.2.1 Achievability Scheme in Theorem 4.2

Since the transmission is controlled by the fed back information, we consider that,

during each fading block, if the main channel gain of the receiver with the weakest

channel gain falls within the interval [τq, τq+1), q ∈ {1, · · ·, Q}, the transmitter conveys

the codewords at rate Rq = log (1+τqPq) . Rate Rq changes only periodically and is

held constant over the duration interval of a fading block. This setup guarantees that

when γe>τq, the mutual information between the transmitter and the eavesdropper

is upper bounded by Rq. Otherwise, this mutual information will be log (1+γePq).

Besides, we adopt a probabilistic transmission model where the communication is
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constrained by the quality of the legitimate channels. Given the reconstruction points,

τ1<τ2< · · ·<τQ<τQ+1=∞, describing the support of each channel gain γk, and since

the channel gains of all K receivers are independent, there are M=QK different states

for the received feedback information. Each of these states, Jm, m ∈ {1, · · · ,M},

represents one subchannel. The transmission scheme consists on transmitting an

independent codeword, on each of the M subchannels, with a fixed rate. We define

the following rates, Re,m = E
γe
[log (1+γePm)] , and

R−
s =

M∑

m=1

Pr [Jm]E
γe

[{
log

(
1+τmin

m Pm

1+γePm

)}+
]
, (4.41)

where τmin
m is the quantized channel gain corresponding to the weakest receiver in state

Jm and Pm is the associated power policy satisfying the average power constraint.

Codebook Generation: We construct M independent codebooks C1, · · · , CM , one

for each subchannel, constructed similarly to the standard wiretap codes. Each

codebook Cm is a (n, 2nR
−
s ) code with 2n(R

−
s +Re,m) codewords randomly partitioned

into 2nR
−
s bins.

Encoding and Decoding: Given a particular common message w∈{1, · · ·, 2nR−
s },

to be transmitted, the encoder selects M codewords, one for each subchannel. More

specifically, if the message to be sent is w, then for each subchannel m, the encoder

randomly selects one of the codewords Un
m from the wth bin in Cm. During each fad-

ing block, of length κ, the transmitter experiences one of the events Jm. Depending

on the encountered channel state, the transmitter broadcasts κRq information bits of

Un
m using a Gaussian codebook. By the weak law of large numbers, when the total

number of fading blocks L is large, the entire binary sequences are transmitted with

high probability. To decode, each legitimate receiver considers the observations cor-

responding to all M subchannels. And since the transmission is adapted with regard

to the receiver with the weakest average SNR, all legitimate receivers can recover the
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transmitted codewords, with high probability, and hence recover message w. Details

on the error probability evaluation are similar to the parallel channels case [30]. Since

τk,m ∈ {τ1, · · ·, τQ}, by rewriting the summation over the states of each legitimate re-

ceiver, the expression of R−
s can then be reformulated as

R−
s =

M∑

m=1

Pr [Jm]E
γe

[{
log

(
1+τmin

m Pm

1+γePm

)}+
]

(4.42)

= min
1≤k≤K

M∑

m=1

Pr [Jm]E
γe

[{
log

(
1+τk,mPm

1+γePm

)}+
]

(4.43)

= min
1≤k≤K

M∑

m=1

Q∑

q=1

Pr [Jm, τk,m=τq]E
γe

[{
log

(
1+τqPq

1+γePq

)}+]
(4.44)

= min
1≤k≤K

Q∑

q=1

Pr [τq≤γk<τq+1]E
γe

[{
log

(
1+τqPq

1+γePq

)}+]
, (4.45)

where (4.43) results since the logarithm function is monotonic and the sum and

the expectation are taking over positive terms, (4.44) is obtained by noting that

τmin
m ∈ {τ1, · · ·, τQ} and applying the total probability theorem, and (4.45) comes

from the fact that
M∑

m=1

Pr [Jm, τk,m=τq] =Pr [τq≤γk<τq+1] .

Since each user gets to know the feedback information of the other legitimate

receivers, our proof is also valid when the reconstruction points {τq}Qq=1, and the

transmission strategies {Pq}Qq=1, associated with each legitimate receiver, are different.

That is, we can choose these quantization parameters to satisfy (4.38).

Secrecy Analysis: We need to prove that the equivocation rate satisfies

Re ≥ R−
s − ǫ.

Let ΓL=
{
γL
1 , γ

L
2 , · · ·, γL

K

}
and FL=

{
FL
1 , F

L
2 , · · ·, FL

K

}
, with Fk(l) ∈ {τ1, · · ·, τQ} being

the feedback information sent by receiver k in the l-th fading block.
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We have

nRe = H(W |Y n
e , γ

L
e ,Γ

L, FL) (4.46)

≥ I(W ;Xn|Y n
e , γ

L
e ,Γ

L, FL) (4.47)

= H(Xn|Y n
e ,γ

L
e ,Γ

L,FL)−H(Xn|Y n
e ,γ

L
e ,Γ

L,FL,W ). (4.48)

On one hand, we can write

H(Xn|Y n
e , γ

L
e ,Γ

L, FL)

=
L∑

l=1

H(Xκ(l)|Y κ
e (l),γe(l),γ1(l),· · ·,γK(l),F1(l),· · ·,FK(l)) (4.49)

≥
∑

l∈DL

H(Xκ(l)|Y κ
e (l),γe(l),γ1(l),· · ·,γK(l),F1(l),· · ·,FK(l)) (4.50)

≥
∑

l∈DL

κ

(
min

1≤k≤K

Q∑

q=1

Pr [τq≤γk(l)<τq+1] (Rq− log (1+γe(l)Pq))−ǫ′

)
(4.51)

=
L∑

l=1

κ

(
min

1≤k≤K

Q∑

q=1

Pr [τq≤γk(l)<τq+1]{Rq−log(1+γe(l)Pq)}+−ǫ′

)
(4.52)

= n min
1≤k≤K

Q∑

q=1

Pr [τq≤γk<τq+1]E
γe

[
{Rq− log (1+γePq)}+

]
− nǫ′ (4.53)

= nR−
s − nǫ′, (4.54)

where (4.49) results from the memoryless property of the channel and the indepen-

dence of the Xκ(l)’s, (4.50) is obtained by removing all the terms corresponding to the

fading blocks l 6∈ DL, with DL = ∪k∈{1,···,K} {l ∈ {1, · · ·, L} : Fk(l) > he(l)}, and (4.53)

follows from the ergodicity of the channel as L → ∞.

On the other hand, using list decoding argument at the eavesdropper side and

applying Fano’s inequality [28], 1
n
H(Xn|Y n

e , γ
L
e ,Γ

L, FL,W ) vanishes as n → ∞ and

we can write

H(Xn|Y n
e , γ

L
e ,Γ

L, FL,W ) ≤ nǫ′′. (4.55)

Substituting (4.54) and (4.55) in (4.48), we get Re ≥ R−
s − ǫ, with ǫ = ǫ′ + ǫ′′, and ǫ′

and ǫ′′ are selected to be arbitrarily small. This concludes the proof. �
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4.4.2.2 Proof of the Upper Bound in Theorem 4.2

To establish the upper bound on the common message secrecy capacity in (4.39),

we start by supposing that the transmitter sends message w to only one legitimate

receiver Rk. Using the result in [123], for single user transmission with limited CSI

feedback, the secrecy capacity of our system can be upper bounded as

Cs ≤ max
{τq ;Pq}

Q
q=1

Q∑

q=0

Pr [τq≤γk<τq+1] E
γe,γk

[{
log

(
1+γkPq

1+γePq

)}+∣∣∣τq ≤ γk < τq+1

]
. (4.56)

Since the choice of the receiver to transmit to is arbitrary, we tighten this upper

bound by choosing the legitimate receiver Rk that minimizes this quantity, yielding

C+
s = min

1≤k≤K
max

{τq ;Pq}
Q
q=1

Q∑

q=0

Pr [τq≤γk<τq+1] E
γe,γk

[{
log

(
1+γkPq

1+γePq

)}+∣∣∣τq ≤ γk < τq+1

]
.

This concludes the proof. �

4.4.3 Asymptotic Analysis at High-SNR

Corollary 4.4. In the high-SNR regime, the ergodic common message secrecy ca-

pacity of the block-fading multi-user broadcast wiretap channel with an error free

b-bit CSI feedback sent by each legitimate receiver is characterized as

C−
H-SNR ≤ Cs-HSNR ≤ C+

H-SNR, (4.57)

where C−
H-SNR and C+

H-SNR are given by

C−
H-SNR= min

1≤k≤K
max
{τq}

Q
q=1

Q∑

q=1

Pr [τq≤γk<τq+1]E
γe

[{
log

(
τq
γe

)}+]
, (4.58)

C+
H-SNR= min

1≤k≤K
E

γe,γk

[{
log

(
γk
γe

)}+]
, (4.59)

with Q=2b, and {τq | 0=τ0<τ1< · · ·<τQ}Qq=1 are the reconstruction points describing

the support of γk with τQ+1=∞ for convenience.
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Figure 4.2: Common message secrecy rate in Theorem 4.2 for Rayleigh fading channels
with K=3.

Proof: The result in Corollary 4.4 can be deduced directly from Theorem 4.2 by

taking the limits of C−
s and C+

s when Pavg → ∞.

The obtained result in Corollary 4.4 shows that the secrecy capacity is bounded

at high SNR, i.e., it does not depend on Pavg.

4.5 Numerical Results

In this section, we provide selected simulation results for the illustrative case of inde-

pendent and identically distributed Rayleigh fading channels. We consider that the

system’s variables, the main channel gains hk, k ∈ {1, · · · , K}, and the eavesdrop-

per’s channel gain he, are all distributed according to the zero-mean, unit-variance,

complex Gaussian distribution.

Figure 4.2 illustrates the common message achievable secrecy rate C−
s , presented

in Theorem 4.2, with K=3 and various b-bit feedback, b=1, 2, 4. The secrecy capac-

ity Cs, from Corollary 4.3, is also presented as a benchmark. It represents the secrecy
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Figure 4.3: Independent messages secrecy sum-rate in Theorem 4.1 for Rayleigh fad-
ing channels with b=4.

capacity with full main CSI at the transmitter. We can see that as the capacity of

the feedback link grows, i.e., the number of bits b increases, the achievable rate grows

toward the secrecy capacity Cs. The asymptotic expressions are also illustrated and

show that the secrecy throughput is bounded at high SNR. The same observations can

be made for the independent messages case; illustrated in figure 4.3. Two scenarios

are considered here; the transmission of three independent messages to three legiti-

mate receivers, K=3, and the transmission of ten independent messages with K=10.

Both the achievable secrecy sum-rate in Theorem 4.1 and the secrecy sum-capacity in

Corollary 4.1 are depicted. The impact of changing the number of legitimate receivers

K on the secrecy sum-rate is illustrated in Figures 4.4 and 4.5 for different values of

the average power constraint Pavg and of the number of feedback bits b. We can see

from these two figures that the secrecy throughput of the system, when broadcasting

multiple messages, increases with K.
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4.6 Conclusion

The aim of this chapter was to study and understand the effect of having a limited

knowledge of the CSIT on the ergodic secrecy throughput of multi-user broadcast

wiretap channels. This limitation in the knowledge of the CSIT is the downside of

the realistic assumption that the feedback links, used by the legitimate receivers to

inform the transmitter about their CSI, have finite capacity. We considered both

cases when independent confidential messages and when a common secret message

are broadcasted to multiple legitimate receivers in the presence of an eavesdropper.

In both cases, we showed that as long as the transmitter has some knowledge of the

main CSI, a positive secrecy rate can still be achieved.
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Chapter 5

On the Secrecy Capacity Region of the Block-Fading BCCM

with Limited CSI Feedback

5.1 Introduction

In this chapter, we examine the secrecy capacity region of the block-fading broad-

cast channel with confidential messages (BCCM) when the transmitter has limited

knowledge of the instantaneous channel realizations. In particular, we consider a

two-user communication system where the transmitter has one common message to

be transmitted to both users and one confidential message intended to only one of

them. The confidential message has to be kept secret from the other user to whom

the information is not intended. The transmitter is not aware of the CSI of neither

channel and is only provided by limited CSI feedback sent at the beginning of each

fading block. Assuming an error-free feedback link, we characterize the secrecy ca-

pacity region of this channel and show that even with a B-bit CSI feedback, a positive

secrecy rate can still be achieved. Then, we look at the case where the feedback link

is not error-free, and is rather a binary erasure channel (BEC). In the latter case,

we provide an achievable secrecy rate region and show that as long as the erasure

event is not a probability 1 event, the transmitter can still transmit the confidential

information with a positive secrecy rate.

The remainder of this chapter is organized as follows. Section 5.2 describes the

system model. The main results are introduced in section 5.3. The proof of achiev-

ability and the converse for the BCCM with an error-free B-bit feedback are presented
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in section 5.4 and selected simulation results are presented in section 5.5. Finally,

section 5.6 concludes the chapter.

5.2 System Model

We consider a broadcast channel where a transmitter T communicates with two re-

ceivers R1 and R2. As depicted in Figure 5.1, the transmitter wants to send a common

message W0 to both receivers and a confidential message W1 to R1 only. Message W1

has to be kept secret from R2. The respective received signals at R1 and R2, at fading

block l, l ∈ {1, · · ·, L}, are given by

Y1(l, j) = h1(l)X(l, j) + v1(l, j)

Y2(l, j) = h2(l)X(l, j) + v2(l, j),

(5.1)

where j ∈ {1, · · · ,κ}, with κ representing the length of each fading block, X(l, j)

is the transmitted signal, h1(l) ∈ C, h2(l) ∈ C are stationary and ergodic complex

channel gain coefficients, and v1(l, j) ∈ C, v2(l, j) ∈ C represent zero-mean, unit-

variance circularly symmetric white Gaussian noises at R1 and R2, respectively.

T

R1

R2

(W0,W1)

(Ŵ
(1)
0 , Ŵ1)

Ŵ
(2)
0

1
n
I(W1; Y

n
2 )→0

h1

h2

B-Bit CSI Feedback

Figure 5.1: Block-fading BCCM with a B-bit CSI feedback sent at the beginning of
each fading block over an error-free link.
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5.2.1 Channel Assumptions

We consider a block-fading channel where the channel gains remain constant within a

fading block. We assume that the channel encoding and decoding frames span a large

number of fading blocks, i.e., L is large, and that the blocks change independently

from a fading block to another. An average transmit power constraint is imposed at

the transmitter such that

1

n

n∑

t=1

E[|X(t)|2] ≤ Pavg, (5.2)

where n=κL, and the expectation is over the input distribution. We assume perfect

CSI at the receiving nodes. That is, each receiver is instantaneously aware of its

channel gain. Further, we assume that the transmitter is not aware of the instan-

taneous channel realizations of neither channel. However, the receivers provide the

transmitter with a B-bit CSI feedback sent at the beginning of each fading block.

The feedback bits are sent either by one of the receivers, if they share their CSI, or

by a central controller who is aware of the CSI of both receivers. The last setting

is possible since both receivers are interested by a common message. Hence, they

both belong to the same network and their channels are more likely to be known by

a controller center. First, we consider the case when the CSI feedback is sent over

an error-free link. Then, as illustrated in Figure 5.2, we examine the case when the

T

R1

R2

(W0,W1)

(Ŵ
(1)
0 , Ŵ1)

Ŵ
(2)
0

1
n
I(W1; Y

n
2 )→0

h1

h2

00

1 1
?ǫ

ǫ

1−ǫ

1−ǫ

Figure 5.2: Block-fading BCCM with a B-bit CSI feedback sent at the beginning of
each fading block over a BEC.
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feedback information is sent over a BEC with erasure probability ǫ. In the rest of this

chapter, we denote |h1|2 and |h2|2 by γ1 and γ2, respectively, and we let γ = [γ1; γ2].

5.2.2 Coding for the Two-User BCCM

A (2nR0, 2nR1, n) code for the BCCM channel consists of the following elements:

• Two message sets: W0 =
{
1, 2, · · ·, 2nR0

}
and W1 =

{
1, 2, · · ·, 2nR1

}
with the

messages W0 ∈ W0 and W1 ∈ W1 independent and uniformly distributed over

the corresponding sets;

• A stochastic encoder f : (W0,W1) → X n that maps each message pair (w0, w1)

to a codeword xn ∈ X n;

• A decoder at the first receiver g1 : Yn
1 → (W0,W1) that maps a received se-

quence yn1 ∈ Yn
1 to a message pair (ŵ

(1)
0 , ŵ1) ∈ (W0,W1);

• A decoder at the second receiver g2 : Yn
2 → W0 that maps a received sequence

yn2 ∈ Yn
2 to a message ŵ

(2)
0 ∈W0.

A rate pair (R0,R1) is achievable if there exists a sequence of (2nR0 , 2nR1, n) code

such that both the average error probability

P n
e =Pr

[
(ŵ

(1)
0 , ŵ

(2)
0 , ŵ1) 6= (w0, w0, w1)

]
, (5.3)

and the leakage rate at receiver R2,
1
n
I(W1; Y

n
2 , γ

L), go to zero as n goes to infinity.

Given the described system model, our goal is to characterize the secrecy capacity

region that contains all achievable rate pairs.

5.3 Main Results

In this section, we present the main results obtained for the ergodic secrecy capacity

region of the block-fading BCCM with a B-bit CSI feedback. First, we consider the

case of the error-free feedback link. Then, we characterize the achievable secrecy rate

region when the feedback link is a BEC.
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5.3.1 Feedback Sent Over an Error-Free Link

5.3.1.1 B-Bit CSI Feedback

Theorem 5.1. The ergodic secrecy capacity region of the block-fading BCCM with

a B-bit CSI feedback, sent at the beginning of each coherence block over an error-free

link, is given by

Cs =
⋃

(p01q ,p02q ,p1q
q∈{1,··· ,Q}

)∈P





(R0,R1) :

R0 ≤min

{
Q∑

q=1

E
γ

[
log

(
1+

p01qγ1

1+p1qγ1

)∣∣∣γ∈A∩Hq

]
Pr[γ∈A∩Hq]

+E
γ

[
log
(
1+p02qγ1

) ∣∣γ∈Ac∩Hq

]
Pr[γ∈Ac∩Hq];

Q∑

q=1

E
γ

[
log

(
1+

p01qγ2

1+p1qγ2

) ∣∣∣γ∈A∩Hq

]
Pr[γ∈A∩Hq]

+E
γ

[
log
(
1+p02qγ2

) ∣∣γ∈Ac∩Hq

]
Pr[γ∈Ac∩Hq]

}

R1 ≤
Q∑

q=1

E
γ

[
log

(
1+p1qγ1

1+p1qγ2

) ∣∣∣γ∈A∩Hq

]
Pr[γ∈A∩Hq],

(5.4)

where Q = 2B−1, {Hq}Qq=1 are the partition regions representing the space of γ,

A=
{
γ : γ1 > γ2

}
and

P=
{
(p01q , p02q , p1q) :

Q∑

q=1

(p01q+p1q) Pr[γ∈A∩Hq]+p02q Pr[γ∈Ac∩Hq]≤Pavg

}
.

Proof. A detailed proof of Theorem 5.1 is provided in the following subsection.

The main idea here is to use one bit of feedback to indicate which channel is

better and exploit the remaining B−1 bits to adapt the transmission power. We

can see, from Theorem 5.1, that the common message W0 is sent over all coherence

blocks while the confidential message W1 is transmitted only over the fading blocks

where the channel to receiver R1 is better than the one to R2, i.e., γ ∈ A. That

is, when γ ∈ A, we decode the common message considering the secure message as



109

noise, whereas when γ ∈ Ac, since the confidential message is not sent, the common

message is decoded at a single user rate. The minimization is due to a bottleneck

argument.

It is worth mentioning that, in order to adapt the power, the space of the channel

gain vector γ is partitioned into Q regions. During each fading block, the index of the

partition region where γ lies is fed back to the transmitter along with the indication

bit. Furthermore, each partition index q corresponds to a transmission power profile

p01q and p1q to transmit the common and the confidential messages when γ ∈ A

and p02q to transmit the common message solely when γ ∈ Ac, with p01q , p02q and

p1q satisfying the average power constraint. The codebooks for the partition regions

and the corresponding transmission power profiles should be known to all terminals.

Also, it should be emphasized that when the feedback link has an infinite capacity,

i.e., Q → ∞, the secrecy capacity region in Theorem 5.1 coincides with the perfect

CSIT result in [31].

5.3.1.2 Special Case: 1-Bit CSI Feedback

Corollary 5.1. The ergodic secrecy capacity region of the block-fading BCCM with

a 1-bit CSI feedback, sent at the beginning of each coherence block over an error-free

link, is given by

Cs =
⋃

(p01,p02,p1)∈P





(R0,R1) :

R0 ≤ min

{
E
γ

[
log

(
1+

p01γ1
1+p1γ1

) ∣∣∣γ∈A
]
Pr[γ∈A]

+E
γ

[
log (1+p02γ1)

∣∣γ∈Ac
]
Pr[γ∈Ac];

E
γ

[
log

(
1+

p01γ2
1+p1γ2

) ∣∣∣γ∈A
]
Pr[γ∈A]

+E
γ

[
log (1+p02γ2)

∣∣γ∈Ac
]
Pr[γ∈Ac]

}

R1 ≤ E
γ

[
log (1+p1γ1)− log (1+p1γ2)

∣∣γ∈A
]
Pr[γ∈A],

(5.5)
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where A =
{
γ : γ1 > γ2

}
and

P=
{
(p01, p02, p1) : (p01+p1) Pr[γ∈A]+p02 Pr[γ∈Ac]≤Pavg

}
.

Proof. Corollary 5.1 is a special case of Theorem 5.1.

Corollary 5.1 states that even with a 1-bit CSI feedback, and as long as event

A is not a zero probability event, a positive secrecy rate can still be achieved. The

1-bit feedback case is particularly important since we only need one bit of feedback

to indicate which channel is better.

At the difference of the perfect CSIT case [31], the power cannot be instanta-

neously adapted to the channel realizations and will only depend on the received

1-bit CSI feedback according to a deterministic mapping. It is worth mentioning that

p01 and p02 in Corollary 5.1 correspond to the power allocated to common message

transmissions in A and Ac, respectively, whereas p1 is the power allocated to the

confidential message.

5.3.1.3 Special Case: 2-Bit CSI Feedback

We would like here to connect our idea to use the feedback bits as indication bits to

the two-user case considered in Chapter 3, Section 3.4.2.1.

We recall that the secrecy rate in Theorem 3.2 was achieved using a probabilistic

transmission model that is constrained by the quality of the legitimate channels.

In fact, for the particular case of K=2, we constructed two independent wiretap

codebooks C0 and C1, and we considered that the transmitted common message is

given in the form W = (W0,W1). Then, we defined the following four events:
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



S1=
{
|ĥ1|2≥τ, |ĥ2|2≥τ

}
Select randomly a codeword associated withW0.

S2=
{
|ĥ1|2≥τ, |ĥ2|2<τ

}
ForW1, the transmitter selects two independent codewords;

S3=
{
|ĥ1|2<τ, |ĥ2|2≥τ

}
one to be sent in stateS2 and the other one in stateS3.

S4=
{
|ĥ1|2<τ, |ĥ2|2<τ

}
Remain idle.

where ĥ1 and ĥ2 are the estimated channel gains known at the transmitter and re-

spectively corresponding to the actual realizations h1 and h2, and τ is a prefixed

transmission threshold. The transmission of the common secret message was, then,

adapted according to the occurrence of these events. We consider, here, that the

estimation error variance α is equal to zero, i.e., ĥ1=h1 and ĥ2=h2, since we do not

need each receiver to feed back the channel realization itself.

In Chapter 3, we have not imposed any limitation on the capacity of the CSI

feedback link. We can see, though, that the secrecy rate in Theorem 3.2, can be

achieved with only two bits of CSI feedback when K=2 and α=0. The two bits of

feedback would be used in this case as follows





When event S1 occurs −→ The feedback is equal to 11

When event S2 occurs −→ The feedback is equal to 10

When event S3 occurs −→ The feedback is equal to 01

When event S4 occurs −→ The feedback is equal to 00

. (5.6)

This remark could be further generalized to the case when K > 2. In this case,

the receivers need to send K feedback bits. Also, this special case does not require

the receivers to cooperate to send the feedback information. The same secrecy rate
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can still be achieved when each legitimate receiver sends a 1-bit feedback that would

be used to compare the channel realization to the transmission threshold τ .

5.3.2 Feedback Sent Over a BEC

5.3.2.1 B-Bit CSI Feedback

Corollary 5.2. An achievable secrecy rate region of the block-fading BCCM with

a B-bit CSI feedback, sent at the beginning of each coherence block over a BEC with

erasure probability ǫ, is given by

Rs =
⋃

(p01,p02,p1)∈P



(R0,R1) :

R0 ≤min

{
E
γ

[
log

(
1+

p01γ1
1+p1γ1

)∣∣∣E c
B−bit& γ∈A

]
(1−ǫB)Pr[γ∈A]

+E
γ

[
log (1+p02γ1)

∣∣EB−bit or
(
E c
B−bit& γ∈Ac

)] (
ǫB+(1−ǫB)Pr[γ∈Ac]

)
;

E
γ

[
log

(
1+

p01γ2
1+p1γ2

) ∣∣∣E c
B−bit& γ∈A

]
(1−ǫB)Pr[γ∈A]

+E
γ

[
log (1+p02γ2)

∣∣EB−bit or
(
E c
B−bit & γ∈Ac

)] (
ǫB+(1−ǫB)Pr[γ∈Ac]

)}

R1 ≤ E
γ

[
log

(
1+p1γ1
1+p1γ2

) ∣∣∣E c
B−bit & γ∈A

]
(1−ǫB)Pr[γ∈A],

(5.7)

where A =
{
γ : γ1 > γ2

}
, EB−bit represents the event when all B feedback bits are

erased, and

P=
{
(p01, p02, p1) : (p01+p1)(1−ǫB) Pr[γ∈A]+p02

(
ǫB+(1−ǫB)Pr[γ∈Ac]

)
≤Pavg

}
.

Proof: The achievability proof is provided in the following subsection. When

the feedback is sent over a BEC, the transmission of the confidential message W1 is

restricted to the coherence blocks where γ1 > γ2 and the feedback information is not
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erased. The common message W0 is sent over all fading blocks. It is clear that the

confidential rate R1 reduces as the erasure probability increases and vanishes when

the erasure event is a sure event, i.e., the transmitter has no knowledge about the

CSI. However, as long as ǫ 6= 1 and event A is not a zero probability event, a positive

secrecy rate can still be achieved.

In the previous subsection, we did see that when more than one bit of feedback is

sent over an error-free link, one bit is used as an indication bit while the remaining

extra bits are used to adapt the transmission power. Now, in the case when the

feedback bits are sent over a BEC, it is more interesting to use all bits as redundant

indication bits. By doing so, the probability of receiving a non-erased indication bit

will increase, and this will eventually increase the probability of transmitting the

secret information. Indeed, we can see, from Corollary 5.2, that the probability of

transmitting the secret information depends on the erasure event EB−bit, and is equal

to (1−ǫB)Pr[γ∈A]. That is, as long as event A is not a zero probability event, increas-

ing the number of redundant indication bits increases the probability of transmitting

the secret message. This is particularly interesting when the probability of erasure ǫ

is high.

5.4 Secrecy Capacity Region Analysis

In this section, we establish the obtained result for the ergodic secrecy capacity region

presented in Theorem 5.1 and Corollary 5.2.

5.4.1 Achievability Scheme in Theorem 5.1

Since the transmission is controlled by the feedback information, we consider that,

during each fading block, one feedback bit is used to indicate to the transmitter

which channel is better, i.e., the indication bit is equal to 1 when γ1 > γ2 and equal

to 0 otherwise, while the remaining B−1 bits are exploited to adapt the transmission
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power. Therefore, the space of the channel gain vector γ is partitioned into Q = 2B−1

regions, {Hq}Qq=1. During each fading block, the index of the partition region where

γ lies is fed back to the transmitter along with the indication bit. Furthermore,

each partition index q corresponds to a transmission power profile
(
p01q , p02q , p1q

)
,

q ∈ {1, · · · , Q}. The achievability follows from [25, Corollary 1] by choosing the

following input distributions:

• For γ ∈ A, U ∼ CN (0,
√
p01q), X

′ ∼ CN (0,
√
p1q), with X ′ independent of U

and V=X=U+X ′;

• For γ ∈ Ac, U=V=X∼CN (0,
√
p02q),

where A =
{
γ : γ1 > γ2

}
, U and V are the auxiliary random variables defined in [25],

and the transmission powers p01q , p02q , p1q are chosen to satisfy

P=
{
(p01q , p02q , p1q) :

Q∑

q=1

(p01q+p1q) Pr[γ∈A∩Hq]+p02q Pr[γ∈Ac∩Hq]≤Pavg

}
. (5.8)

The codebooks for the partition regions and the corresponding transmission power

profiles are known to all terminals.

5.4.2 Proof of the Converse in Theorem 5.1

5.4.2.1 Bound on the Common Rate R0

Let FL={F (1), F (2), · · · , F (L)}, with F (l) ∈ {0, 1} being the feedback information

sent in the l-th fading block, l ∈ {1, · · · , L}. We have

nR0 = H(W0|FL) (5.9)

= I(W0; Y
n
1 |FL) +H(W0|FL, Y n

1 ) (5.10)

≤ I(W0; Y
n
1 |FL) + nη1 (5.11)

=

L∑

l=1

κ∑

k=1

I(W0; Y1(l, k)|FL, Y
κ(l−1)+(k−1)
1 ) + nη1 (5.12)
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≤
L∑

l=1

κ∑

k=1

I(W0,Y
[κ(l−1)+(k+1),n]
2 ;Y1(l, k)|FL,Y

κ(l−1)+(k−1)
1 )+nη1 (5.13)

≤
L∑

l=1

κ∑

k=1

I(W0,Y
[κ(l−1)+(k+1),n]
2 ,Y

κ(l−1)+(k−1)
1 ;Y1(l, k)|FL)+nη1, (5.14)

where (5.11) is obtained using Fano’s inequality. By defining the following auxiliary

random variable U(l, k) = (W0,Y
[κ(l−1)+(k+1),n]
2 ,Y

κ(l−1)+(k−1)
1 ), we can write

nR0 ≤
L∑

l=1

κ∑

k=1

I(U(l, k); Y1(l, k)|FL) + nη1 (5.15)

=
∑

l∈A

κ∑

k=1

I(U(l, k); Y1(l, k)|FL) +
∑

l∈Ac

κ∑

k=1

I(U(l, k); Y1(l, k)|FL) + nη1. (5.16)

On one hand, when l ∈ Ac, we have

I(U(l, k); Y1(l, k)|FL) ≤ I(X(l, k); Y1(l, k)|FL) (5.17)

= I(X(l, k); Y1(l, k)|FL, h1(l)) (5.18)

≤ E
F l,γ(l)

[
log
(
1+γ1(l)ωl(F

l)
) ∣∣γ(l)∈Ac

]
, (5.19)

where (5.17) follows from U(l, k)→X(l, k)→Y1(l, k) is a Markov chain, (5.18) holds

since given FL, X(l, k) is independent of h1(l), and (5.19) results since a Gaussian X

maximizes the right hand side of (5.18), with ωl(F
l) = E

[
|X(l, k)|2

∣∣F l
]
. On the

other hand, when l ∈ A, we have

I(U(l, k); Y1(l, k)|FL) = I(U(l, k); Y1(l, k)|FL, h1(l)) (5.20)

= H(Y1(l, k)|FL,h1(l))−H(Y1(l, k)
∣∣U(l, k),FL,h1(l)), (5.21)

where (5.20) follows since given FL, U(l, k) is independent of h1(l), with

H(Y1(l, k)
∣∣U(l, k), FL, h1(l)) ≤ H(Y1(l, k)

∣∣FL, h1(l)) (5.22)

= E
F l,γ(l)

[
log
(
πe
(
1+γ1(l)δl(F

l)
)) ∣∣γ(l)∈A

]
, (5.23)

where (5.23) follows by taking X(l, k)∼CN
(
0,
√
δl(F l)

)
, and



116

H(Y1(l, k)
∣∣U(l, k), FL, h1(l)) ≥ H(Y1(l, k)

∣∣X(l, k), FL, h1(l)) (5.24)

= log πe. (5.25)

Hence, there exists 0 ≤ αl ≤ 1 such that

H(Y1(l, k)
∣∣U(l, k), FL, h1(l)) = E

F l,γ(l)

[
log
(
πe
(
1+γ1(l)αlδl(F

l)
)) ∣∣γ(l)∈A

]
. (5.26)

We can then write

I(U(l, k); Y1(l, k)|FL) ≤ E
F l,γ(l)

[
log
(
πe
(
1+γ1(l)δl(F

l)
)) ∣∣γ(l)∈A

]

− E
F l,γ(l)

[
log
(
πe
(
1+γ1(l)αlδl(F

l)
)) ∣∣γ(l)∈A

]
(5.27)

= E
F l,γ(l)

[
log

(
1+

γ1(l)(1−αl)δl(F
l)

1+γ1(l)αlδl(F l)

) ∣∣∣γ(l)∈A
]
. (5.28)

Substituting (5.19) and (5.28) in (5.16), we get

nR0 ≤
∑

l∈A

κ E
F l,γ(l)

[
log

(
1+

γ1(l)(1−αl)δl(F
l)

1+γ1(l)αlδl(F l)

) ∣∣∣γ(l)∈A
]

+
∑

l∈Ac

κ E
F l,γ(l)

[
log
(
1+γ1(l)ωl(F

l)
) ∣∣γ(l)∈Ac

]
+nη1. (5.29)

Noting that E
F l
[.] = E

F (l)

[
E

F l−1
[.|F (l)]

]
, and applying Jensen’s inequality, we get

R0 ≤
1

L

∑

l∈A

E
F (l),
γ(l)

[
log

(
1+

γ1(l)(1−αl)∆l(F (l))

1+γ1(l)αl∆l(F (l))

)∣∣∣γ(l)∈A
]

+
1

L

∑

l∈Ac

E
F (l),
γ(l)

[
log(1+γ1(l)Ωl(F (l)))

∣∣γ(l)∈Ac
]
+η1 (5.30)

=
1

L

∑

l∈A

E
F (l),γ

[
log

(
1+

γ1(1−αl)∆l(F (l))

1+γ1αl∆l(F (l))

)∣∣∣γ∈A
]

+
1

L

∑

l∈Ac

E
F (l),γ

[
log(1+γ1Ωl(F (l)))

∣∣γ∈Ac
]
+η1, (5.31)
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with ∆l(F (l))= E
F l−1

[
δl(F

l)
∣∣F (l)

]
, Ωl(F (l))= E

F l−1

[
ωl(F

l)
∣∣F (l)

]
, and (5.31) follows from

the ergodicity and the stationarity of the channel gain. Applying Jensen’s inequality

once again, we get

R0 ≤ E
γ


log


1+

γ1
LA

∑

l∈A

(1−αl)∆l(F (l))

1+
γ1
LA

∑

l∈A

αl∆l(F (l))




∣∣∣∣∣γ∈A


Pr

[
γ∈A

]

+ E
γ

[
log

(
1+

γ1
LAc

∑

l∈Ac

Ωl(F (l))

)∣∣∣γ∈Ac

]
Pr
[
γ∈Ac

]
+η1, (5.32)

where LA = Pr
[
γ∈A

]
L and LAc = Pr

[
γ∈Ac

]
L.

Then, by taking Ω(F ) =
1

LAc

∑

l∈Ac

Ωl(F (l)), ∆1(F ) =
1

LA

∑

l∈A

(1− αl)∆l(F (l)), and

∆2(F ) =
1

LA

∑

l∈A

αl∆l(F (l)), we can write

R0 ≤ E
γ

[
log

(
1+

γ1∆1(F )

1+γ1∆2(F )

)∣∣∣γ∈A
]
Pr
[
γ∈A

]

+ E
γ

[
log(1+γ1Ω(F ))

∣∣γ∈Ac
]
Pr
[
γ∈Ac

]
+η1, (5.33)

with Pr[γ∈A] (∆1(F )+∆2(F ))+Pr[γ∈Ac] Ω(F )≤Pavg.

Similarly, we can prove that

R0 ≤ E
γ

[
log

(
1+

γ2∆1(F )

1+γ2∆2(F )

)∣∣∣γ∈A
]
Pr
[
γ∈A

]

+ E
γ

[
log(1+γ2Ω(F ))

∣∣γ∈Ac
]
Pr
[
γ∈Ac

]
+η2. (5.34)

Now, using the fact that F=ρ(γ), with ρ(.) being a deterministic mapping that is

conditioned on the region where vector γ lies, and taking η1 and η2 arbitrary small,

we get the outer boundary on the common rate R0, presented in Theorem 5.1.
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5.4.2.2 Bound on the Confidential Rate R1

Let us now bound the confidential rate R1. We have

nR1 ≤ nRe (5.35)

= H(W1|FL, γL, Y n
2 ) (5.36)

= I(W1;W0|FL, γL, Y n
2 )+H(W1|FL, γL,W0, Y

n
2 ) (5.37)

≤ I(W1; Y
n
1 |FL, γL,W0)−I(W1; Y

n
2 |FL, γL,W0)

+H(W1|FL, γL,W0, Y
n
1 )+H(W0|FL, γL, Y n

2 ) (5.38)

≤ I(W1; Y
n
1 |FL, γL,W0)−I(W1; Y

n
2 |FL, γL,W0)+n(η1+η2) (5.39)

=

L∑

l=1

κ∑

k=1

{
I(W1; Y1(l, k)|FL, γ(l),W0, Y

κ(l−1)+(k−1)
1 )

− I(W1; Y2(l, k)|FL, γ(l),W0, Y
[κ(l−1)+(k+1),n]
2 )

}
+nη (5.40)

=
L∑

l=1

κ∑

k=1

{
I(W1, Y

[κ(l−1)+(k+1),n]
2 ; Y1(l, k)|FL, γ(l),W0, Y

κ(l−1)+(k−1)
1 )

− I(Y
[κ(l−1)+(k+1),n]
2 ; Y1(l, k)|FL, γ(l),W1,W0, Y

κ(l−1)+(k−1)
1 )

− I(W1, Y
κ(l−1)+(k−1)
1 ; Y2(l, k)|FL, γ(l),W0, Y

[κ(l−1)+(k+1),n]
2 )

+ I(Y
κ(l−1)+(k−1)
1 ; Y2(l, k)|FL, γ(l),W1,W0, Y

[κ(l−1)+(k+1),n]
2 )

}
+nη (5.41)

=
L∑

l=1

κ∑

k=1

{
I(W1, Y

[κ(l−1)+(k+1),n]
2 ; Y1(l, k)|FL, γ(l),W0, Y

κ(l−1)+(k−1)
1 )

− I(W1, Y
κ(l−1)+(k−1)
1 ; Y2(l, k)|FL, γ(l),W0, Y

[κ(l−1)+(k+1),n]
2 )

}
+nη (5.42)

=

L∑

l=1

κ∑

k=1

{
I(W1; Y1(l, k)|FL, γ(l),W0, Y

κ(l−1)+(k−1)
1 , Y

[κ(l−1)+(k+1),n]
2 )

− I(W1; Y2(l, k)|FL, γ(l),W0, Y
κ(l−1)+(k−1)
1 , Y

[κ(l−1)+(k+1),n]
2 )

}
+nη, (5.43)

where (5.39) is obtained using Fano’s inequality, (5.42) and (5.43) follow from Lemma 7

in [25], and η = η1+η2. By defining U(l, k) = (W0,Y
[κ(l−1)+(k+1),n]
2 ,Y

κ(l−1)+(k−1)
1 ), and

V (l, k) = (W1, U(l, k)), such that U(l, k) → V (l, k) → X(l, k) → (Y1(l, k), Y2(l, k)) is
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a Markov chain, we can write

nR1 ≤
L∑

l=1

κ∑

k=1

{
I(V (l, k); Y1(l, k)|FL, γ(l), U(l, k))

−I(V (l, k); Y2(l, k)|FL, γ(l), U(l, k))
}
+nη. (5.44)

When l ∈ Ac, we have

I(V (l, k); Y1(l, k)|FL, γ(l), U(l, k))− I(V (l, k); Y2(l, k)|FL, γ(l), U(l, k))

≤ I(V (l, k); Y1(l, k), Y2(l, k)|FL, γ(l), U(l, k))−I(V (l, k); Y2(l, k)|FL, γ(l), U(l, k))

= I(V (l, k); Y2(l, k)|FL, γ(l), U(l, k))+I(V (l, k); Y1(l, k)|FL, γ(l), Y2(l, k), U(l, k))

− I(V (l, k); Y2(l, k)|FL, γ(l), U(l, k)) (5.45)

= 0, (5.46)

where (5.46) results since X(l, k)→Y1(l, k)→Y2(l, k) is a Markov chain when l∈Ac.

Hence, we have

R1 ≤
1

n

∑

l∈A

κ∑

k=1

{
I(V (l, k); Y1(l, k)|FL, γ(l), U(l, k))

−I(V (l, k); Y2(l, k)|FL, γ(l), U(l, k))
}
+η (5.47)

≤ 1

n

∑

l∈A

κ∑

k=1

{
I(X(l, k); Y1(l, k)|FL, γ(l), U(l, k))

−I(X(l, k); Y2(l, k)|FL, γ(l), U(l, k))
}
+η (5.48)

Then, following similar lines as for the common rate case, we get

R1 ≤ E
γ

[
log(1+γ1∆2(F ))− log(1+γ2∆2(F ))

∣∣∣γ∈A
]
Pr
[
γ∈A

]
+η. (5.49)

This concludes the proof of the converse. �

5.4.3 Achievability Scheme in Corollary 5.2

The achievability follows from [25, Corollary 1] by considering a similar feedback

scheme as the one in Theorem 5.1. However, we consider here that during each
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fading block, all B bits of feedback are redundantly used to indicate to the transmitter

which channel is better (each of these bits is equal to 1 when γ1 > γ2 and equal to

0 otherwise). Besides, we consider that the confidential message is only transmitted

over the coherence blocks where at least one indication bit is not erased and is equal

to 1. The input distributions are chosen, in this case, as follows

• When γ ∈ A and at least one indication bit is not erased, U ∼ CN (0,
√
p01),

X ′ ∼ CN (0,
√
p1), with X ′ independent of U and V=X=U+X ′;

• When γ ∈ Ac or when all feedback bits are erased, U=V=X ∼ CN (0,
√
p02),

where A =
{
γ : γ1 > γ2

}
, U and V are the auxiliary random variables defined in [25],

and the transmission powers p01, p02, p1 are chosen to satisfy

(p01+p1)(1−ǫB) Pr[γ∈A]+p02
(
ǫB+(1−ǫB)Pr[γ∈Ac]

)
≤Pavg.

5.5 Numerical Results

In this section, we provide selected simulation results for the illustrative case of inde-

pendent and identically distributed Rayleigh fading channels. We consider that the

system’s variables, the main channel gains, h1 and h2, are distributed according to

the zero-mean, complex Gaussian distribution.

Figure 5.3 illustrates the secrecy capacity region for the BCCM when 1-bit feed-

back is sent over an error-free link with h1 ∼ CN (0, 1), h2 ∼ CN (0, σ2
2), and Pavg=5dB.

The boundary of the secrecy capacity region when perfect CSI is available at the trans-

mitter is also presented as a benchmark. From Figure 5.3, we can see that when the

channel to receiver R1 is better than the channel to receiver R2, i.e., when σ2
2=0.5,

the confidential rate R1 improves while the common rate R0 decreases.

The impact of having a binary erasure feedback link, on the achievable secrecy

rate region, is illustrated in Figure 5.4, along with the boundaries on the secrecy
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Figure 5.3: Secrecy capacity regions for the Rayleigh BCCM with an error-free CSI
feedback.
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Figure 5.5: Secrecy capacity regions for Rayleigh BCCM with 1-bit CSI feedback.

capacity regions for the error-free feedback case and the perfect CSIT case, with

h1 ∼ CN (0, 1), h2 ∼ CN (0, 1), Pavg=5 dB, and different values of the erasure prob-

ability ǫ=0.2, 0.5, and 0.8. As expected, we can see that the confidential rate R1

decreases as the probability of erasure increases since the transmission of the confi-

dential message will be restricted, not only by the channel quality but also by the

reception of a not erased feedback. The transmission of the common message solely

is not affected by the erasure of the feedback information. Besides, from Figure 5.5,

we can see that when the erasure probability is high; ǫ=0.8, the confidential rate

does not improve much even when we increase the average power constraint from

Pavg=5 dB to Pavg=20 dB. However, the secrecy rate can be significantly improved

by using more redundant feedback bits as illustrated in Figure 5.6.
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5.6 Conclusion

In this chapter, we investigated the secrecy capacity region of the block-fading BCCM

when the transmitter has limited knowledge of the CSI. More specifically, we consid-

ered that the transmitter in unaware of the instantaneous channel realizations of

neither channel and is only provided by a B-bit CSI feedback sent at the beginning of

each fading block. By utilizing one feedback bit to indicate which channel is better,

we showed that a positive secrecy rate can still be achieved and that any additional

feedback bits should be exploited to adapt the power. We examined both the case

when the feedback link is error-free and the case when the feedback link is subject

to erasure. In the first case, we characterized the BCCM secrecy capacity region,

whereas in the latter case, we presented an achievable secrecy rate region.
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Chapter 6

Secure Multiple-Antenna Block-Fading Wiretap Channels

with Finite CSI Feedback

6.1 Introduction

In this chapter, we investigate the ergodic secrecy capacity of multiple-antenna block-

fading wiretap channels with limited CSI feedback. We consider that the transmitter

is unaware of the channel matrices of neither the main nor the eavesdropper chan-

nels, and is only provided by a finite CSI feedback sent by the legitimate receiver

through a public, error-free, link with limited capacity. Assuming an average power

constraint at the transmitter, we provide two achievable secrecy rates and an upper

bound on the ergodic secrecy capacity. The first secrecy rate is achieved by using

the feedback information not only to adapt the power but also to adjust the trans-

mission rate during each fading block. The considered scheme guarantees that the

best the eavesdropper can receive, during a given fading block, is the fixed trans-

mission rate received at the legitimate node. For the second achievable secrecy rate,

the feedback is mainly employed for the power adaptation purpose. Besides, in order

to maximize the secrecy rate, we present a framework to design the used codebboks

for feedback and transmission. The presented framework is based on the iterative

Lloyd’s algorithm [19]. For the particular case of infinite feedback, we prove that the

first achievable secrecy rate and the presented upper bound on the ergodic secrecy

capacity coincide, hence, fully characterizing the ergodic secrecy capacity in this case.

The high-SNR regime and the SDoF are also investigated.
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The chapter is organized as follows. Section 6.2 describes the system model. The

main results are summarized in Section 6.3; the ergodic secrecy capacity is character-

ized in subsection 6.3.1, an asymptotic analysis in the high-SNR regime is presented in

subsection 6.3.2, and an optimal framework for feedback and transmission is provided

in subsection 6.3.3. In Section 6.4, we present details on the characterization of the

achievable ergodic secrecy rates and the upper bound on the ergodic secrecy capac-

ity. Finally, selected simulation results are illustrated in Section 6.5, and Section 6.6

concludes the chapter.

6.2 System Model

We consider a discrete-time memoryless wiretap channel where a transmitter wants to

communicate a secret message to a legitimate receiver in the presence of an eavesdrop-

per. The model of interest consists of a multiple-antenna channel with NT transmit

antennas, NR receive antennas at the legitimate receiver, and NE receive antennas at

the eavesdropper. The respective received signals at the intended receiver and the

eavesdropper, at time instant t, are given by

YR(t) = HR(t)X(t) + ZR(t)

YE(t) = HE(t)X(t) + ZE(t)

(6.1)

where X(t) is the transmitted signal, HR(t) ∈ CNR×NT and HE(t) ∈ CNE×NT are the

complex channel gain matrices, and ZR(t)∼CN (0, σ2
RINR

) and ZE(t)∼CN (0, σ2
EINE

)

are independent and identically distributed (i.i.d.) additive complex Gaussian noise

vectors. We consider a block-fading channel where the channel gain matrices remain

constant within a fading block of length κ>>1, i.e., HR(κl) = HR(κl − 1) = · · · =

HR(κl−κ+1) and HE(κl) = HE(κl−1) = · · · = HE(κl−κ+1), where l = 1, · · · , L,

and L is the total number of fading blocks. In the rest of this chapter, we denote



126

ENC DECR

DECE

B&PC P(Yn
R|Hn

R,X
n)

P(Yn
E|Hn

E,X
n)

P(Hn
R)

P(Hn
E)

Xn

Xn

Un

Un

Hn
R

Hn
R

Hn
E

Hn
E

Yn
R

Yn
E

W Tn Ŵ
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Figure 6.1: Block diagram of the channel model.

the respective main and eavesdropper channel gain matrices, during the l th fading

block, as HR(l) and HE(l), l = 1, · · · , L. We assume that the channel encoding and

decoding frames span a large number of fading blocks, i.e., L is large, that the blocks

change independently from a fading block to another, and that the entries of HR and

HE have bounded distributions. The channel input {X(t)}t is subject to an average

total power constraint

1

n

n∑

t=1

||X(t)||2 ≤ Pavg, (6.2)

where n=κL. We assume perfect CSI at the receiver sides. That is, the legitimate

receiver is instantaneously aware of its channel gain matrix HR(l), and the eaves-

dropper knows HE(l), with l = 1, · · · , L. The fading distributions of the main and

the eavesdropping channels are known to all nodes. Further, we assume that the

transmitter is not aware of the instantaneous channel realizations of neither channel.

However, the legitimate receiver provides the transmitter with a B-bit CSI feedback

through an error-free channel with limited capacity. This feedback is transmitted at

the beginning of each fading block and is also tracked by the eavesdropper. A block

diagram of the communication system is presented in Fig. 6.1, where ENC represents
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the encoder at the transmitter, B&PC is the beamforming and power control entity,

and DECR and DECE are the respective decoders at the legitimate receiver and the

eavesdropper.

6.2.1 Feedback Channel Model

For every fading block, and prior to payload data transmission, a preamble signal is

sent to the legitimate receiver in order to estimate its channel gain. This preamble

transmission is also tracked by the eavesdropper who gets to estimate its channel too.

We assume that the channel gain matrices are perfectly estimated at the receiving

sides. This is achievable for asymptotically large fading blocks [145]. Also, we consider

that the feedback channel capacity is constrained to B bits per fading block, i.e.,

log2 |U| ≤ B, with |U| denoting the cardinality of the set, U , of fed back symbols.

In the light of the work in [146], the adopted feedback strategy consists on par-

titioning the space of the main channel gain into Q regions {H1, · · · ,HQ}, where

Q = 2B. Knowing HR perfectly, the legitimate receiver determines in which region,

Hq with q=1, · · · , Q, the channel matrix lies. Also, the legitimate receiver associates

the partition index q with each region Hq, and transmits the index codeword uq

through the feedback channel. We assume that the partition regions {H1, · · · ,HQ}

are known to all terminals.

6.2.2 Adaptive Beamforming and Power Control Model

At the transmitter side, in addition to an encoder for secrecy, the confidential forward

transmission is adapted using beamforming and power control. Since the only infor-

mation available to the transmitter, about the main channel gain, is obtained through

the limited feedback link, the choice of the relevant transmission strategy is based on

what was fed back. In fact, each feedback information uq corresponds to a Hermitian

beamforming matrix Vq and a diagonal power control matrix Λq with q = 1, · · · , Q.
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That is, for each fading block, the transmitter uses the fed back information to apply

the appropriate beamforming matrix and power control matrix to the encoded sym-

bol T. The forward signal X can then be written in the form X = VqΛ
1/2
q T, and we

let E[TT∗]=INT
for normalization. By taking ρq=VqΛqV

∗
q , the respective received

SNRs at the legitimate receiver and the eavesdropper are 1
σ2
R
HRρqH

∗
R and 1

σ2
E
HEρqH

∗
E.

Note that the chosen set of beamforming and power control matrices should satisfy

the average power constraint, i.e., tr
[
E[ρq]

]
≤Pavg for all q ∈ {1, · · · , Q}, with the

expectation taken over all channel gain realizations.

The adopted feedback and transmission strategies require the construction of a

codebook for the partitioning of the main channel gain space into Q regions, as well

as a codebook for the associated set of beamforming and power control matrices. In

this work, we propose a design of fixed feedback and transmission codebooks that

optimizes the secrecy performance of the system. Indeed, we present a framework to

find the optimal feedback strategy {H1, · · · ,HQ}, as well as the optimal transmis-

sion strategy
{
ρ1, · · · ,ρQ

}
, such that the average power constraint is satisfied, i.e.,

tr
[
E[ρq]

]
≤ Pavg, matrix ρq is positive semi-definite, i.e., ρq � 0, and the secrecy

rate is maximized. It is assumed that all nodes are aware of the codebooks used for

feedback and transmission. More details on the codebooks generation are available

in the following section.

6.3 Main Results

In this section, we start by characterizing the ergodic secrecy capacity of the consid-

ered multiple-antenna system. Then, to better understand the correlation between the

obtained expressions, the number of antennas deployed, and the number of feedback

bits, we present an asymptotic analysis of the results. The SDoF of the system is also

analyzed. Finally, a framework characterizing the generation of optimal codebooks

for the feedback and the transmission strategies is introduced.
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6.3.1 Lower and Upper Bounds on the Secrecy Capacity

6.3.1.1 Achievable Secrecy Rates

Theorem 6.1. For the discrete-time memoryless multiple-antenna wiretap channel

described in (6.1), with an error-free B-bit CSI feedback link, sent at the beginning

of each fading block, the following secrecy rates are achievable

C−
s =

Q∑

q=1

max
{Hq,ρq}

E
HE|HR∈Hq







log

min
HR∈Hq

∣∣∣INR
+ 1

σ2
R
HRρqH

∗
R

∣∣∣
∣∣∣INE

+ 1
σ2
E
HEρqH

∗
E

∣∣∣





+

Pq, (6.3)

C̃−
s =

Q∑

q=1

max
{Hq,ρq}

E
HE,HR|HR∈Hq


log

∣∣∣INR
+ 1

σ2
R
HRρqH

∗
R

∣∣∣
∣∣∣INE

+ 1
σ2
E
HEρqH

∗
E

∣∣∣


Pq, (6.4)

where Q=2B, tr
[
E[ρq]

]
≤Pavg, ρq�0, and Pq=Pr [HR ∈ Hq] for all q ∈ {1, · · · , Q}.

Proof. A detailed proof of Theorem 6.1 is provided in the following section. Here,

we outline the achievability scheme.

- Achievability scheme for C−
s : We adopt a variable rate transmission controlled

by the feedback information sent by the legitimate receiver. Thereby, during each

fading block, if the main channel gain matrix falls within the partition region Hq,

q ∈ {1, · · ·, Q}, the transmitter conveys codewords at rate

Rq = min
HR∈Hq

log

∣∣∣∣INR
+

1

σ2
R

HRρqH
∗
R

∣∣∣∣ , (6.5)

with the transmission strategy ρq. Rate Rq changes only periodically and is held

constant over the duration interval of a fading block. Let Tq be a channel gain

matrix from Hq satisfying Tq = argmin
HR∈Hq

∣∣∣INR
+ 1

σ2
R
HRρqH

∗
R

∣∣∣ . The considered scheme

guarantees that when the channel to the eavesdropper is better than the worst main

channel gain in region Hq, the mutual information between the transmitter and the

eavesdropper is upper bounded by Rq. Otherwise, this mutual information will be
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log
∣∣∣INE

+ 1
σ2
E
HEρqH

∗
E

∣∣∣. We can then optimize over the main channel gain regions,

Hq’s, and the transmission strategies, ρq’s, to maximize the secrecy rate.

- Achievability scheme for C̃−
s : The proposed feedback and transmission proce-

dure can be seen as a deterministic mapping that associates each feedback information

with an appropriate transmission strategy. Accordingly, the adopted communication

system can be equivalently modeled as a multiple-antenna memoryless channel with-

out feedback where the mapping function becomes an amplification component of

the new channel. The amplification matrix gain depends on which region the main

channel gain lies in, i.e., if HR ∈ Hq, the transmitted signal T is amplified by VqΛ
1/2
q .

Intuitively, Theorem 1 states that even a 1-bit CSI feedback, sent at the beginning

of each fading block, ensures a positive secrecy rate. of course, the more the trans-

mitter knows the better the secrecy performances are. As a matter of fact, increasing

the number of feedback bits B, also increases the mutual information between the

transmitted feedback information and the actual channel gain matrix. More specifi-

cally, when B increases, equivalently Q increases, the partitions {Hq}Qq will provide

a better characterization for matrix HR. That is, the transmitter will end up with

more information about the main channel gain, which will allow a better adaptation

of the transmission strategy and, hence, the achievement of a higher secrecy rate.

6.3.1.2 Upper Bound on the Secrecy Capacity

Theorem 6.2. For the discrete-time memoryless multiple-antenna wiretap channel

described in (6.1), with an error-free B-bit CSI feedback link, sent at the beginning

of each fading block, an upper bound on the ergodic secrecy capacity is given by

C+
s =

Q∑

q=1

max
{Hq ,ρq}

E
HE,HR|HR∈Hq






log

∣∣∣INR
+ 1

σ2
R
HRρqH

∗
R

∣∣∣
∣∣∣INE

+ 1
σ2
E
HEρqH

∗
E

∣∣∣





+

Pq, (6.6)
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where Q=2B, tr
[
E[ρq]

]
≤Pavg, ρq�0, and Pq=Pr [HR ∈ Hq] for all q ∈ {1, · · · , Q}.

Proof. The proof is provided in the following section. We can see that the ex-

pression of the upper bound, in Theorem 6.2, is quite similar to the expression of

C−
s , in Theorem 6.1. The difference is that, for the achievable secrecy rate C−

s , in the

numerator, we have a minimization over all channels in each partition, whereas, in

the upper bound, there is no such a minimization. The minimization, in the achiev-

able secrecy rate, is required to ensure reliability as the transmitter has a limited

knowledge of the main CSI.

6.3.1.3 Special Case: Single-Antenna System

Our aim here is to connect the obtained results for the multiple-antenna case to the

single-antenna scenario considered in Chapter 4. In fact, when the transmitter, the

legitimate receiver, and the eavesdropper are all equipped with a single antenna, i.e.,

NT=NR=NE=1, the achievable secrecy rate C−
s , presented in Theorem 6.1, and the

upper bound on the secrecy capacity C+
s , presented in Theorem 6.2, both coincide

with the secrecy capacity bounds presented in Theorem 4.1 with K=1. We should

particularly mention that, for the single-antenna case, the channel gains are one

dimensional and we can write HR = hR and HE = hE. We can, therefore, partition

the support of hR into intervals, i.e., Hq = [τq, τq+1[ , q ∈ {1, · · · , Q}, and there

would be no beamforming at the transmitter in this case, i.e., ρq = Pq. Making

the appropriate substitutions in the expressions of C−
s and C+

s , we retrieve the result

in Theorem 4.1 with K=1.

6.3.1.4 Special Case: Infinite CSI Feedback

Letting Q goes to ∞, the lower bound in (6.3) and the upper bound in (6.6) coincide,

hence, fully characterizing the ergodic secrecy capacity in this case.
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Corollary 6.1. The ergodic secrecy capacity of a discrete-time memoryless multiple-

antenna wiretap block fading channel with perfect main CSIT is given by

Cs = max
ρ(HR)

E
HE,HR






log

∣∣∣INR
+ 1

σ2
R
HRρ(HR)H

∗
R

∣∣∣
∣∣∣INE

+ 1
σ2
E
HEρ(HR)H∗

E

∣∣∣





+

 , (6.7)

where tr [E[ρ(HR)]] ≤ Pavg and ρ(HR) � 0.

Proof. Corollary 6.1 results directly from the expressions of the achievable rate

in (6.3) and the upper bound in (6.6), by taking into consideration that as Q → ∞,

the set of partition regions, {H1, · · ·,HQ}, becomes infinite and the legitimate receiver

is basically forwarding matrix HR to the transmitter.

To the best of our knowledge, this result has not been reported in earlier works.

For the special case of NT=NR=NE=1, the ergodic secrecy capacity in Corollary 6.1

coincides with the result in [28, Theorem 2].

6.3.2 Asymptotic Analysis in the High-SNR Regime

6.3.2.1 Finite CSI Feedback

Corollary 6.2. In the high-SNR regime, the ergodic secrecy capacity CFF
s of the

discrete-time memoryless multiple-antenna wiretap channel, with finite CSI feedback,

can be characterized as follows

lim
Pavg→∞

[
CFF
s −{rR−rE}+ log

Pavg

NT

]
= θ1, (6.8)

with






Q∑

q=1

max
{Hq}

E
λE|HR∈Hq


 min

λR
HR∈Hq

rR∑

i=1

log
λRi

σ2
R

−
rE∑

i=1

log
λEi

σ2
E


Pq ≤ θ1 if rR≥rE

θ1 = 0 otherwise

, (6.9)

and where rR=min(NT, NR), rE=min(NT, NE), and λR and λE are the respective
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vectors of non-zeros eigenvalues of HRH
∗
R and HEH

∗
E, i.e., λR={λR1

, · · · , λRrR
} and

λE={λE1, · · · , λErE
}.

Proof. The proof is provided in Appendix B.1.

We note that the lower bound on θ1 is obtained by considering uniform power

allocation over all transmit antennas. For the achievable secrecy rate C−
s , uniform

power allocation is nearly optimal when NT≤NR. When NT>NR, using all transmit

antennas to send the secret information is not the best that the transmitter can do. In

this latter case, to transmit with fixed power, the transmitter may consider sending its

confidential message over NT antennas and exploits the remaining NT−NR antennas

to send jamming signals. This is, however, not easy to accomplish as the transmitter

has limited knowledge of the main CSI and will end up disrupting not only to the

eavesdropper but also to the legitimate receiver, especially when Q is small.

Secrecy degree of freedom: A figure-of-merit of interest is the so-called secrecy

degree of freedom (SDoF) which has the same intuitive interpretation as the degree

of freedom (DoF) widely used in the MIMO literature, but incorporates the secrecy

constraint. Essentially, the SDoF is formally defined as

ds = lim
Pavg→∞

Cs
log (Pavg)

. (6.10)

Theorem 6.3. The SDoF of the discrete-time memoryless multiple-antenna block-

fading wiretap channel with finite CSI feedback is lower bounded as

dFFs ≥ {min(NT, NR)−min(NT, NE)}+ . (6.11)

Proof. The result can be deduced from Corollary 6.2. An upper bound on dFFs is

the SDoF with infinite CSI feedback that is characterized in the following subsection.



134

6.3.2.2 Perfect Main CSIT

Corollary 6.3. At high SNR, the ergodic secrecy capacity of the multiple-antenna

wiretap channel, with perfect main CSI, can be characterized as follows

lim
Pavg→∞

[
Cs−min

(
{NT−NE}+ , NR

)
log

Pavg

NT

]
= θ2 (6.12)

with

θ2 ≥





0 ifNT<NE

E
λR,λE

[
NT∑

i=1

log
λRi

σ2
R

−
NE∑

i=1

log
λEi

σ2
E

]
ifNE≤NT≤NR

E
λR,λEZ,

λsum




NR∑

i=1

log
λRi

σ2
R

+

min(NT−NR,NE)∑

i=1

log
λEZi

σ2
E

−
NE∑

i=1

log
λsumi

σ2
E



 ifNT>max(NE, NR)

,

and θ2 ≤
∑

j:αj≥1

logα2
j − o(1), (6.13)

where λR, λE, λEZ and λsum are the respective vectors of non-zeros eigenvalues

of HRH
∗
R, HEH

∗
E, HEZZ

∗H∗
E and (HEH

∗
E+HEZZ

∗H∗
E), i.e., λR={λR1 , · · · , λRrR

},

λE={λE1, · · · , λErE
}, λEZ={λEZ1 , · · · , λEZrEZ

} and λsum={λsum1 , · · · , λsumrsum
}, with

Z = null(HR), the αjs represent the generalized singular values of (HR,HE), and o(1)

is a vanishing term, i.e., o(1)→0.

Proof. The proof is provided in Appendix B.2. Since the entries of the channel

gain matrices HR and HE have bounded distributions, the constant term θ2 is finite

and does not scale with Pavg. Also, it must be emphasized that the lower bound

on θ2, when NE≤NT≤NR, is obtained by considering uniform power allocation over

all transmit antennas. In the case when NT>max(NE, NR), transmitting the secret

information, solely, is no longer near optimal as the null space ofHR becomes nontriv-

ial. In this case, we consider a transmission scheme that broadcasts jamming signals

over the null space of HR. Details on the adopted system and the derived expressions

are presented in Appendix B.2.
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Theorem 6.4. The SDoF of the discrete-time memoryless multiple-antenna block-

fading wiretap channel with perfect main CSI is given by

ds = min({NT−NE}+ , NR). (6.14)

Proof. The result can be deduced directly from Corollary 6.3. Note that even

thought in our case the transmitter is not aware of the eavesdropper’s instantaneous

CSI, the obtained SDoF are the same as if the transmitter has a perfect knowledge

of both the legitimate receiver’s and the eavesdropper’s CSI [37].

Corollary 6.4. At high SNR, and with uniform power allocation over all transmit

antennas, the gap between the ergodic secrecy capacity with perfect main CSI and

the achievable secrecy rates with finite CSI feedback can be characterized as follows

lim
Pavg→∞

[
Cs−C−

s

]
= E

λR




NT∑

i=1

log λRi
−

Q∑

q=1

max
{Hq}

min
λR

HR∈Hq

NT∑

i=1

log λRi
Pq



 , (6.15)

lim
Pavg→∞

[
Cs−C̃−

s

]
= E

λR,λE




{
(rE−NT) log

Pavg

NT
+

rE∑

i=1

log
λEi

σ2
E

−
NT∑

i=1

log
λRi

σ2
R

}+

 , (6.16)

with NT ≤ NR, rE = min(NT, NE), and λR and λE are the respective vectors of

non-zeros eigenvalues of HRH
∗
R and HEH

∗
E.

Proof: The proof is provided in Appendix B.3. It is worth mentioning that, on

one hand, the asymptotic gap between Cs and C−
s vanishes as the number of feedback

bits increases, i.e., Q→∞. Indeed, we have

Q∑

q=1

max
{Hq}

min
λR

HR∈Hq

NT∑

i=1

log λRi
Pq −−−−−→

Q→∞

NT∑

i=1

log λRi
.

On the other hand, the asymptotic gap between Cs and C̃−
s is independent of the

number of feedback bits. A similar inference can be made in the case of NT > NR.
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6.3.3 Optimal Feedback and Transmission (OFT)

6.3.3.1 OFT for the Achievable Secrecy Rate C̃−
s

Finding the optimal feedback strategy, {H1, · · ·,HQ}, and the optimal transmission

strategy, {ρ1, · · ·,ρQ}, that maximizes the achievable secrecy rate C̃−
s in (6.4), is equiv-

alent to the design of a vector quantizer with a modified distortion measure. Let λ

be the Lagrange multiplier corresponding to the average transmit power constraint.

We define the following distortion measure

δ̃
(
HR,HE,ρq

)
= −


log

∣∣∣INR
+ 1

σ2
R
HRρqH

∗
R

∣∣∣
∣∣∣INE

+ 1
σ2
E
HEρqH

∗
E

∣∣∣
−λtrρq


 , (6.17)

where ρq � 0 and q = {1, · · ·, Q}. We need to find the optimal {H1, · · ·,HQ} and

{ρ1, · · ·,ρQ} that minimizes the average distortion measure ∆̃ given by

∆̃=

Q∑

q=1

E
HE,HR|HR∈Hq

[
δ̃
(
HR,HE,ρq

)]
Pq. (6.18)

To solve this optimization problem, we use Lloyd’s algorithm [19]. The OFT for

the achievable secrecy rate C̃−
s is given in Algo.11. It should be noted that since we

are using Lloyd algorithm, the partitioning is performed according to the Voronoi

diagram using the nearest neighbor rule, i.e.,

Hq =
{
HR : δ̃

(
HR,HE,ρq

)
≤ δ̃

(
HR,HE,ρj

)
; ∀j ∈ {1, · · ·, Q}, j 6= q

}
. (6.19)

The probability Pq = Pr [HR∈Hq] can then be characterized, in this case, as follows

Pq = Pr
[
δ̃
(
HR,HE,ρq

)
≤ δ̃

(
HR,HE,ρj

)
; ∀j ∈ {1, · · ·, Q}, j 6= q

]
(6.20)

= Pr

[
δ̃
(
HR,HE,ρq

)
≤ max

j∈{1,···,Q},j 6=q
δ̃
(
HR,HE,ρj

)]
. (6.21)

1In general, there is no guarantee that Lloyd’s algorithm converges to the global optimum [19].
In the simulations, we repeat the iterations multiple times and pick the one that gives us the largest
secrecy rate.



137

Algorithm 1: OFT for C̃−
s

Input : Q, λ.
Output: Optimal feedback and transmission strategy {H1, · · ·,HQ} and

{ρ1, · · ·,ρQ}.
Consider a random partition of the space of HR: H1 = {H1, · · ·,HQ};
Define H0 as the set of Q empty regions;
Let itr = 1;
while Hitr 6= Hitr−1 do

for q = 1 : Q do

Find the optimal transmission strategy ρq, given by the generalized
partition centroid :

ρq = argmin
ρq

E
HE,HR|HR∈Hq

[
δ̃
(
HR,HE,ρq

)]
Pq;

for q = 1 : Q do

Find the optimal partition region Hq, given the transmission strategies
{ρ1, · · ·,ρQ}, using the nearest neighbor rule:

Hq =
{
HR : δ̃

(
HR,HE,ρq

)
≤ δ̃

(
HR,HE,ρj

)
; ∀j ∈ {1, · · ·, Q}, j 6= q

}
;

itr = itr + 1;
Hitr = {H1, · · ·,HQ};

Pavg =

Q∑

q=1

trρq Pr [HR∈Hq] .

We should also mention that the proposed scheme is an offline optimization algorithm

and it only depends on the knowledge of the statistics of the channel gains.

6.3.3.2 OFT for the Achievable Secrecy Rate C−
s

To design the optimal feedback and transmission codebooks that maximizes the achiev-

able secrecy rate C−
s in (6.3), we consider the following modified distortion measure

δ
(
HR,HE,ρq

)
=−






log

∣∣∣INR
+ 1

σ2
R
HRρqH

∗
R

∣∣∣
∣∣∣INE

+ 1
σ2
E
HEρqH

∗
E

∣∣∣





+

−λtrρq


 , (6.22)
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Algorithm 2: OFT for C−
s

Input : Q, λ.
Output: Optimal feedback and transmission strategy {H1, · · ·,HQ} and

{ρ1, · · ·,ρQ}.
Consider a random partition of the space of HR: H1 = {H1, · · ·,HQ};
Define H0 as the set of Q empty regions;
Let itr = 1;
while Hitr 6= Hitr−1 do

for q = 1 : Q do

Tq(ρq) = argmin
HR∈Hq

∣∣∣INR
+ 1

σ2
R
HRρqH

∗
R

∣∣∣;

Find the optimal transmission strategy:

ρq = argmin
ρq

E
HE|HR∈Hq

[
δ
(
Tq(ρq),HE,ρq

)]
Pq;

for q = 1 : Q do

Find the optimal partition region:

Hq =
{
HR : δ

(
HR,HE,ρq

)
≤ δ

(
HR,HE,ρj

)
; ∀j ∈ {1, · · ·, Q}, j 6= q

}
;

itr = itr + 1;
Hitr = {H1, · · ·,HQ};

Pavg =

Q∑

q=1

trρq Pr [HR∈Hq] .

where ρq�0, q={1, · · ·, Q} and λ is the Lagrange multiplier. We need to find the op-

timal {H1, · · ·,HQ} and {ρ1, · · ·,ρQ} that minimizes the average distortion measure

∆ =

Q∑

q=1

E
HE|HR∈Hq

[
δ
(
Tq,HE,ρq

)]
Pq, (6.23)

where Tq = argmin
HR∈Hq

∣∣∣∣INR
+

1

σ2
R

HRρqH
∗
R

∣∣∣∣.

To solve this optimization problem, we use Lloyd’s algorithm [19]. The OFT for

the achievable secrecy rate C−
s is given in Algo.2.
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6.4 Secrecy Capacity Analysis

In this section, we establish the lower and the upper bounds on the ergodic secrecy

capacity presented in Theorem 6.1 and Theorem 6.2, respectively.

6.4.1 Proof of Achievability in Theorem 6.1

6.4.1.1 Proof of the Lower Bound C−
s

Given a partition of the channel gain space {H1, · · · ,HQ} and a transmission strategy

{ρ1, · · · ,ρQ}, let Tq, q∈{1, · · ·, Q}, be the element of Hq that minimizes the function

ξ(HR) =
∣∣INR

+
1

σ2
R

HRρqH
∗
R

∣∣, i.e.,

∣∣INR
+

1

σ2
R

TqρqT
∗
q

∣∣ ≤
∣∣INR

+
1

σ2
R

HRρqH
∗
R

∣∣, for allHR ∈ Hq. (6.24)

We note that such a minimum exists since the function ξ(HR) is logarithmically

concave in HR, and Hq corresponds to a Voronoi region which is by definition a

convex set [147]. We assume that the rates

Rq= log

∣∣∣∣INR
+

1

σ2
R

TqρqT
∗
q

∣∣∣∣ , q ∈ {1, · · ·, Q}, (6.25)

are selected in advance. We need to prove that the rate

R−
s =

Q∑

q=1

Pq E
HE|HR∈Hq

[{
Rq − log

∣∣∣∣INE
+

1

σ2
E

HEρqH
∗
E

∣∣∣∣
}+
]
− ǫ1, (6.26)

is achievable. Let

Re =

Q∑

q=1

Pq E
HE|HR∈Hq

[
log

∣∣∣∣INE
+

1

σ2
E

HEρqH
∗
E

∣∣∣∣
]
− ǫ2. (6.27)

The considered wiretap codebook is generated by uniformly and randomly partition-

ing the 2nRm length n sequences into 2nR
−
s bins; each containing 2nRe codewords,

where Rm =

Q∑

q=1

PqRq−ǫ. That is, to transmit a message W , the transmitter selects

the corresponding bin and then randomly chooses a binary sequence among all the

uniformly distributed codewords in the selected bin. During each fading block, of
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length κ, the transmitter sends κRq information bits using the generated Gaussian

codebook. Then, using the weak law of large numbers, when the number of spanned

fading blocks L is large, the entire binary sequence is transmitted with high proba-

bility. Also, since Rq ≤ log
∣∣INR

+HRρqH
∗
R

∣∣ is valid for all fading blocks, the receiver

can decode the transmitted signal with a negligible probability of error.

For the secrecy analysis, we need to prove that the equivocation rate Re

satisfies Re ≥ R−
s − ǫ. We have

nRe = H(W |Yn
E,H

L
E,H

L
R, U

L) (6.28)

≥ I(W ;Xn|Yn
E,H

L
E,H

L
R, U

L) (6.29)

= H(Xn|Yn
E,H

L
E,H

L
R, U

L)−H(Xn|Yn
E,H

L
E,H

L
R, U

L,W ). (6.30)

On one hand, we can write

H(Xn|Yn
E,H

L
E,H

L
R, U

L) =

L∑

l=1

H(Xκ(l)|Yκ
E(l),HE(l),HR(l), U(l)) (6.31)

≥
∑

l∈SL

H(Xκ(l)|Yκ
E(l),HE(l),HR(l), U(l)) (6.32)

≥
∑

l∈SL

κ

(
Q∑

q=1

Pq

(
Rq− log

∣∣∣∣INE
+

1

σ2
E

HE(l)ρqH
∗
E(l)

∣∣∣∣
)
−ǫ′

)
(6.33)

=

L∑

l=1

κ

(
Q∑

q=1

Pq

{
Rq− log

∣∣∣∣INE
+

1

σ2
E

HE(l)ρqH
∗
E(l)

∣∣∣∣
}+

−ǫ′

)
(6.34)

= n

Q∑

q=1

Pq E
HE|HR∈Hq

[{
Rq − log

∣∣∣∣INE
+

1

σ2
E

HEρqH
∗
E

∣∣∣∣
}+
]
− nǫ′ (6.35)

= nR−
s − nǫ′, (6.36)

where (6.31) results from the memoryless property of the channel and the indepen-

dence of the Xκ(l)’s, (6.32) is obtained by removing all the terms corresponding to

the fading blocks l 6∈ SL, with SL = {l ∈ {1, · · · , L} : Tq(l) > HE(l)} , and (6.35)

follows from the ergodicity of the channel as L → ∞.

On the other hand, using list decoding argument at the eavesdropper side and
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applying Fano’s inequality [28], 1
n
H(Xn|Yn

E,H
L
E, U

L,W ) vanishes as n → ∞ and we

can write

H(Xn|Yn
E,H

L
E,H

L
R,W ) ≤ nǫ′′. (6.37)

Substituting (6.36) and (6.37) in (6.30), we get Re ≥ R−
s − ǫ, with ǫ = ǫ′ + ǫ′′, and

ǫ′ and ǫ′′ are selected to be arbitrarily small. Maximizing over the main channel

gain partition regions Hq and the associated transmission strategies ρq, for each

q ∈ {1, · · · , Q}, concludes the proof. �

6.4.1.2 Proof of the Lower Bound C̃−
s

In the proposed communication system, the transmitter uses the fed back partition

index to select the optimal beamforming and power control matrices for the forward

transmission. This could be seen as a deterministic mapping that associates each

feedback index uq with a beamforming matrixVq and a power control matrix Λq. The

adopted system model, illustrated in Fig. 6.1, can then be equivalently modeled by

the block diagram in Fig. 6.2. That is, the original adaptive encoding function, which

produces symbol X from message W using the feedback information U , is replaced

by an encoding entity and a deterministic mapping function, ϕ, that becomes part of

the channel.

ENC DECR

DECE

P(Yn
R,H

n
R|Xn, Un)

P(Yn
E,H

n
E|Xn, Un)

P(Un|Hn
R)

ϕ(Un,Tn)

Xn

Xn

Un

Un

UnUnHn
R

Hn
R

Hn
E

Yn
R

Yn
E

W Tn Ŵ

1
n
I(W,Yn

E)−−→
n→∞

0

Figure 6.2: Equivalent channel model of the communication system with inputTn and
outputs Yn

R and Hn
R, at the legitimate receiver, and Yn

E and Hn
E, at the eavesdropper.
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The new encoder is independent of U and uses a wiretap codebook to construct

the new channel input alphabet T from message W , whereas the mapping function f

adapts the transmission of signal T using U , i.e., ϕ(uq,T) = VqΛqT. The equivalent

channel model becomes a multiple-antenna memoryless channel without feedback,

with input T and outputs (YR,HR, U) at the legitimate receiver, and (YE,HE, U) at

the eavesdropper. Thus, using [148, Proposition 2] and [25, Corollary 2], the following

secrecy rate is achievable

R̃−
s = I(T;YR|HR, U)− I(T;YE|HE, U). (6.38)

Now, since I(T;YR|HR, U) can be expressed as

I(T;YR|HR, U) =

Q∑

q=1

E
HR∈Hq

[I(T;YR|HR, uq)]Pq, (6.39)

and I(T;YE|HE, U) can be expressed similarly, then, taking T ∼ CN (0, INT
), the

achievable secrecy rate R−
s can be rewritten as

R̃−
s =

Q∑

q=1

(
E

HE,HR|HR∈Hq

[
log

∣∣∣∣INR
+

1

σ2
R

HRρqH
∗
R

∣∣∣∣− log

∣∣∣∣INE
+

1

σ2
E

HEρqH
∗
E

∣∣∣∣
])

Pq.

Then, maximizing over the main channel gain partition regions Hq and the asso-

ciated transmission strategies ρq, for each q ∈ {1, · · · , Q}, concludes the proof. �

It is clear that the main difference between the two schemes is that, in the first

scheme, we adapt both the rate and the power whereas, in the second scheme, we

only adapt the power.

6.4.2 Proof of the Upper Bound in Theorem 6.2

Let RE be the equivocation rate at the eavesdropper. We recall that n=κL, with

L being the total number of spanned fading blocks and κ the length of each fading

block. We have

nRE = H(W |Yn
E,H

L
E,H

L
R, U

L) (6.40)
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= I(W ;Yn
R|Yn

E,H
L
E,H

L
R,U

L)+H(W |Yn
R,Y

n
E,H

L
E,H

L
R,U

L) (6.41)

≤ I(W ;Yn
R|Yn

E,H
L
E,H

L
R, U

L)+nǫ (6.42)

=
L∑

l=1

κ∑

k=1

I(W;YR(l, k)|Yn
E,H

L
E,H

L
R, U

L,Y
κ(l−1)+(k−1)
R )+nǫ (6.43)

=

L∑

l=1

κ∑

k=1

H(YR(l, k)|Yn
E,H

L
E,H

L
R, U

L,Y
κ(l−1)+(k−1)
R )

−H(YR(l, k)|W,Yn
E,H

L
E,H

L
R, U

L,Y
κ(l−1)+(k−1)
R )+nǫ (6.44)

≤
L∑

l=1

κ∑

k=1

H(YR(l, k)|YE(l, k),HE(l),HR(l), U
l)

−H(YR(l, k)|W,X(l, k),Yn
E,H

L
E,H

L
R,U

L,Y
κ(l−1)+(k−1)
R )+nǫ (6.45)

=
L∑

l=1

κ∑

k=1

H(YR(l, k)|YE(l, k),HE(l),HR(l), U
l)

−H(YR(l, k)|X(l, k),YE(l, k),HE(l),HR(l), U
l)+nǫ (6.46)

=
L∑

l=1

κ∑

k=1

I(X(l, k);YR(l, k)|YE(l, k),HE(l),HR(l),U
l)+nǫ (6.47)

≤
L∑

l=1

κ∑

k=1

E
ωl,HR(l)
HE(l),



{
log

|INR
+ 1

σ2
R
HR(l)ωl(U

l)H∗
R(l)|

|INE
+ 1

σ2
E
HE(l)ωl(U l)H∗

E(l)|

}+

+nǫ (6.48)

where (6.42) comes from Fano’s inequality, (6.45) follows since conditioning reduces

the entropy, and (6.48) holds true since given HR(l) and HE(l), the channel at hand

is a multiple antenna wiretap channel and, hence, the bound in (6.47) is tight if Xn

is a sequence with zero-mean Gaussian components X(l, k), statistically independent

conditionally on UL, i.e., X(l, k)∼CN
(
0, ω

1/2
l (U l)

)
, with the power policy ωl(U

l)

satisfying the average power constraint.

Since the channel gains and the feedback information are constant during each fading

block, we can write

nRE ≤
L∑

l=1

κ E
ωl,HR(l)
HE(l),



{
log

|INR
+ 1

σ2
R
HR(l)ωl(U

l)H∗
R(l)|

|INE
+ 1

σ2
E
HE(l)ωl(U l)H∗

E(l)|

}+

+nǫ (6.49)



144

=

L∑

l=1

κ E
ωl,

HR(l),

HE(l)


E



{
log

|INR
+ 1

σ2
R
HR(l)ωl(U

l)H∗
R(l)|

|INE
+ 1

σ2
E
HE(l)ωl(U l)H∗

E(l)|

}+∣∣∣∣U(l),HR(l),HE(l)




+nǫ (6.50)

≤
L∑

l=1

κ E
ωl,

HR(l),

HE(l)



{
log

|INR
+ 1

σ2
R
HR(l)E[ωl(U

l)|U(l),HR(l),HE(l)]H∗
R(l)|

|INE
+ 1

σ2
E
HE(l)E[ωl(U

l)|U(l),HR(l),HE(l)]H∗
E(l)|

}+
+nǫ (6.51)

=

L∑

l=1

κ E
Ωl,

HR(l),

HE(l)



{
log

|INR
+ 1

σ2
R
HR(l)Ωl(U(l))H∗

R(l)|
|INE

+ 1
σ2
E
HE(l)Ωl(U(l))H∗

E(l)|

}+

+ nǫ (6.52)

=

L∑

l=1

κ E
Ωl,HR,HE



{
log

|INR
+ 1

σ2
R
HRΩl(U)H∗

R|
|INE

+ 1
σ2
E
HEΩl(U)H∗

E|

}+

+ nǫ, (6.53)

where (6.51) results from Jensen’s inequality since the functionX→
{
log

|I+AXA∗|
|I+BXB∗|

}+

is concave over the set of nonnegative definite matrices, Ωl(U(l)) in (6.52) is defined

as Ωl(U(l))=E
[
ωl(U

l)|U(l)
]
, since given U(l), U l is independent of HR(l) and HE(l),

and where (6.53) follows from the ergodicity and the stationarity of the channel gains.

Thus, we have

RE ≤ 1

L

L∑

l=1

E
Ωl,HR,HE







log

|INR
+

1

σ2
R

HRΩl(U)H∗
R|

|INE
+

1

σ2
E

HEΩl(U)H∗
E|





+
+ ǫ (6.54)

≤ E
Ωl,HR,HE








log

∣∣∣∣∣INR
+

1

σ2
R

HR
1

L

L∑

l=1

Ωl(U)H∗
R

∣∣∣∣∣
∣∣∣∣∣INE

+
1

σ2
E

HE
1

L

L∑

l=1

Ωl(U)H∗
E

∣∣∣∣∣





+

+ ǫ (6.55)

= E
Ω,HR,HE







log

|INR
+

1

σ2
R

HRΩ(U)H∗
R|

|INE
+

1

σ2
E

HEΩ(U)H∗
E|





+
+ ǫ, (6.56)

where (6.55) comes from applying Jensen’s inequality once again, and where Ω(U) in

(6.56) is defined as Ω(U)=
L∑

l=1

Ωl(U).Maximizing over the main channel gain partition

regions Hq and the associated transmission strategies ρq, for each q ∈ {1, · · · , Q},

concludes the proof. �
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6.5 Simulation Results

In this section, we provide selected simulation results for the illustrative case of inde-

pendent and identically distributed Rayleigh fading channels. We consider that the

system’s variables, the entries of the main channel gain matrix HR and the eaves-

dropper’s channel gain matrix HE, are all drawn from the zero-mean, unit-variance

Gaussian distribution.

Figure 6.3 and Figure 6.4 illustrate the achievable secrecy rates C−
s and C̃−

s , in

nats per channel use (npcu), when the transmitter and the legitimate receiver have

two antennas each, i.e. NT=NR=2. The eavesdropper is equipped with one antenna

in Figure 6.3, i.e., NE=1, and with two antennas in Figure 6.4, i.e., NE=2. The upper

bound C+
s and the ergodic secrecy capacity Cs, from Corollary 1, are also presented

in both figures. On one hand, we can see, from both figures, that as the capacity of

the feedback link grows, i.e., the number of bits B increases, the achievable secrecy

rate C−
s grows toward the secrecy capacity Cs. On the other hand, we can observe

that the secrecy rate C̃−
s , in Figure 6.3, is almost comparable to the secrecy rate C−

s

with 12 bits CSI feedback; while, in Figure 6.4, C̃−
s is very low even compared to C−

s

with 4 bits CSI feedback. We should mention that, in both figures, we illustrate the

achievable secrecy rate C̃−
s only for the case when B = 4. The reason behind this

is that, through the conducted simulations, we noticed that increasing the number

of feedback bits has a limited impact on C̃−
s compared to C−

s . Indeed, increasing B

only results in a slight improvement of C̃−
s , and only at very low SNR values where

the achieved secrecy rates are small, making this improvement insignificant. The

secrecy rate C̃−
s is more convenient when the number of antennas at the eavesdropper

is less than the number of antennas at the legitimate receiver, and the number of CSI

feedback bits is small, which is in perfect agreement with Corollary 4 and Remark 1.

In Figure 6.5, the achievable secrecy rate C−
s is presented along with the secrecy

capacity Cs when both the transmitter and the legitimate receiver have two antennas
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Figure 6.3: Achievable secrecy rates for Rayleigh fading channels with NT=NR=2,
NE=1 and various B-bit CSI feedback, B=4, 8, 12.

−5 0 5 10 15 20 25 30

0.5

1

1.5

2

2.5

3

 

 

S
ec
re
cy

R
at
e
(n
p
cu
)

SNR (dB)

Secrecy Capacity Cs with Perfect Main CSI

Secrecy Rate C−
s with a 4-bit CSI Feedback

Secrecy Rate C−
s with an 8-bit CSI Feedback

Secrecy Rate C−
s with a 12-bit CSI Feedback

Secrecy Rate C̃−
s with a 4-bit CSI Feedback

Upper bound C+
s with an 8-bit CSI Feedback

Figure 6.4: Achievable secrecy rates with NT=NR=NE=2 and various B-bit CSI
feedback, B=4, 8, 12.
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Figure 6.5: Comparison of the achievable secrecy rates when the eavesdropper has
one and two antennas with NT=NR=2 and 12 bits feedback.

each, i.e. NT=NR=2, and twelve bits are used for CSI feedback, i.e. B=12. The figure

compares the cases when the eavesdropper has only one antenna, i.e. NE=1 and when

he has two antennas, i.e. NE=2. As expected, the secrecy rate is higher when the

eavesdropper has fewer antennas compared to the transmitter and the legitimate user.

The effect of changing the number of antennas, at the legitimate receiver, is il-

lustrated in Figure 6.6 when 8 bits are used for CSI feedback, NT=2, NE=1, and

NR varies between one and four antennas. Clearly, we can see that as we augment

the number of antennas at the legitimate receiver, the achievable secrecy rate C−
s

increases. Also, we can notice that when the legitimate receiver has an equal number

of antennas as the eavesdropper, NR=NE=1 in this case, the achievable secrecy rate

is very low compared to when the legitimate receiver has more antennas.

In Figure 6.7, the achievable secrecy rate C−
s is presented along with the secrecy

capacity Cs when 8 bits are used for CSI feedback, NR=2, and NE=1. The figure

compares the cases when the transmitter has one antenna, NT=1, two antennas,
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Figure 6.6: Achievable secrecy rate with NT=2, NE=1, 8 bits feedback, and different
values for the number of antennas at the legitimate receiver, NR=1, 2, 3, 4.

NT=2, and four antennas, NT=4. We can see that the secrecy throughput increases

as the number of antennas at the transmitter augments. Also, we can see that the

bounds are very tight when NT=1 as the size of the main channel gain matrix is small

compared to the other cases, i.e., HR is a 2 by 1 matrix in this case. An 8-bit CSI

feedback almost achieves the secrecy capacity with perfect main CSI when NT=1,

NR=2, and NE=1.

Figure 6.8 illustrates the asymptotic analysis, in the high SNR regime, when the

transmitter and the legitimate receiver has two antennas, i.e., NT=NR=2, and the

eavesdropper is equipped with one antenna, i.e., NE=1. The respective asymptotic

curves representing the achievable secrecy rate C−
s and the secrecy capacity Cs ap-

proach, very tightly, the exact curves. Besides, the asymptotic curve of the achievable

secrecy rate C̃−
s coincides perfectly with the exact curve.

A comparison between our achievable secrecy rates C−
s and C̃−

s , and the achiev-



149

−5 0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

 

 

S
ec
re
cy

R
at
e
(n
p
cu
)

SNR (dB)

Secrecy Capacity Cs with Perfect Main CSI and NT=4
Secrecy Rate C−

s with an 8-bit CSI Feedback and NT=4
Secrecy Capacity Cs with Perfect Main CSI and NT=2
Secrecy Rate C−

s with an 8-bit CSI Feedback and NT=2
Secrecy Capacity Cs with Perfect Main CSI and NT=1
Secrecy Rate C−

s with an 8-bit CSI Feedback and NT=1
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Figure 6.8: Asymptotic secrecy rates for Rayleigh fading channels with NT=NR=2,
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Figure 6.9: Achievable secrecy rates C−
s , C̃−

s , and R̂M(α) in [128], with NT=4, NR=2,
NE=1, and α=0.5.

able secrecy rate studied by [128], given by eq. (27) in the reference in question,

is illustrated in Figures 6.9 and 6.10. In Figure 6.9, we present the achievable se-

crecy rates for three different values of the number of feedback bits, B = 4, 8, and

10, with NT = 4, NR = 2, NE = 1, and α = 0.5. The parameter α, in [128], rep-

resents the power splitting factor, i.e., αPavg/NR is used for data transmission and

(1−α)Pavg/(NT−NR) is used for AN transmission. We can see that the transmission

of AN is preferable for certain values of the SNR especially when the number of feed-

back bits is large. However, as we can see from Figure 6.9, for a fixed value of B, the

achievable secrecy rate in [128] is bounded while C−
s and C̃−

s are not. In Figure 6.10,

we illustrate the achievable secrecy rates in terms of the factor α for three different

values of the SNR, SNR=0 dB, 10 dB, and 20 dB, with NT = 4, NR = 2, NE = 1, and

B = 4. As no AN transmission is considered in our work, the secrecy rates remain

constant. In the case when SNR=0 dB, we can that the achievable secrecy rate in
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Figure 6.10: Achievable secrecy rates C−
s , C̃−

s , and R̂M (α) in [128], with NT=4, NR=2,
NE=1, and B=4.

[128] is equal to zero while C−
s and C̃−

s are not. In the other two cases, we can see that

the AN transmission is preferable compared to C−
s only when the power allocated to

the AN is restricted (α & 0.5).

6.6 Conclusion

The impact of having limited main CSI feedback on the ergodic secrecy performance of

a multiple-antenna block-fading wiretap channel has been investigated. We presented

two achievable secrecy rates C−
s and C̃−

s and an upper bound on the ergodic secrecy

capacity C+
s , and showed that even with a 1-bit CSI feedback, a positive secrecy rate

can still be achieved. The first achievable secrecy rate C−
s adapts both the power and

the transmission rate and guarantees that the best the eavesdropper can receive is

the fixed transmission rate received at the legitimate node. The second achievable

rate C̃−
s only adapt the power and is more convenient when the number of antennas
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at the eavesdropper is less than the number of antennas at the legitimate receiver,

and the number of CSI feedback bits is small. Furthermore, we showed that the

achievable secrecy rate C−
s and the upper bound C+

s coincide, asymptotically, as the

capacity of the feedback link becomes large, i.e. B → ∞; hence, fully characterizing

the ergodic secrecy capacity in this case. Asymptotic analysis, in the high SNR

regime, were also presented, and the gap between the bounds was estimated. In

particular, we characterized the scaling behavior of the presented bounds, and showed

that the asymptotic gap between Cs and C−
s vanishes as the number of feedback bits

increases while the asymptotic gap between Cs and C̃−
s is independent of the number of

feedback bits.
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Chapter 7

Summary of Contributions and Future Directions

7.1 Summary of Contributions

The aim of this thesis was to analyze and understand the impact of CSIT uncertainty

on the ergodic secrecy capacity of fading wiretap channels. Mainly, we showed that

even though the secrecy performance of the system deteriorates compared to the case

when the transmitter has perfect CSI, a positive secrecy rate can still be achieved as

long as the transmitter has some knowledge of the main channel gain. We considered

two common causes of CSIT imperfections, namely, the occurrence of an estimation

error of the CSI at the transmitter and the limited capacity of the CSI feedback link.

In both cases, we noticed that the more the transmitter knows about the main CSI,

the better the secrecy performances are.

In particular, we characterized the ergodic secrecy capacity of multi-user broad-

cast wiretap channels over fast fading channels with imperfect main CSIT in Chap-

ter 3. We proved that a non-zero secrecy rate can still be achieved even with a poor

main channel estimator at the transmitter. In addition, we showed that the common

message secrecy rate is limited by the legitimate receiver having the lowest average

SNR, and that the achievable secrecy sum-rate, when broadcasting multiple inde-

pendent messages, scales with the number of users K according to the scaling law

log((1−α) log(K)), where α is the estimation error variance of the CSIT. Asymptotic

analysis at high-SNR, perfect and no-main CSI were addressed and the results were

illustrated for the case of Rayleigh fading channels.
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In Chapter 4, we evaluated the impact of having finite CSI feedback on the se-

crecy throughput of multi-user block-fading broadcast channels. More specifically, we

considered that the feedback bits are provided to the transmitter by each legitimate

receiver, at the beginning of each coherence block, through error-free public links with

limited capacity. We examined both the common message transmission case, where

the same message is broadcasted to all the legitimate receivers, and the independent

messages transmission scenario, where the source broadcasts multiple independent

messages to the users. Assuming an average power constraint at the transmitter, we

provided an upper and a lower bounds on the ergodic secrecy capacity for the com-

mon message case, and an upper and a lower bounds on the secrecy sum-rate for the

independent messages case. For the particular case of infinite feedback, we proved

that our bounds coincide.

The secrecy capacity region of the block-fading BCCM with limited CSIT was

established in Chapter 5. In particular, we considered a two-user communication

system where the transmitter has one common message to be transmitted to both

users and one confidential message intended to only one of them. The confidential

message has to be kept secret from the other user to whom the information is not

intended. The transmitter is not aware of the CSI of neither channel and is only

provided by limited CSI feedback sent at the beginning of each fading block. Assuming

an error-free feedback link, we characterized the secrecy capacity region of this channel

and showed that even with a 1-bit CSI feedback, a positive secrecy rate can still be

achieved. Then, we looked at the case where the feedback link is subject to erasure.

In the latter case, we provided an achievable secrecy rate region and showed that

as long as the erasure event is not a probability one event, the transmitter can still

transmit the confidential information with a positive secrecy rate.
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The ergodic secrecy capacity of multi-antenna block-fading wiretap channels with

limited CSI feedback was investigated in Chapter 6. We provided two achievable

secrecy rates and an upper bound on the ergodic secrecy capacity. The first secrecy

rate is achieved by using the feedback information not only to adapt the power but

also to adjust the transmission rate during each fading block. The considered scheme

guarantees that the best the eavesdropper can receive, during a given fading block, is

the fixed transmission rate received at the legitimate node. For the second achievable

secrecy rate, the feedback is mainly employed for the power adaptation purpose.

Besides, in order to maximize the secrecy rate, we proposed an iterative framework

to design the used codebooks for feedback and transmission. For the particular case

of infinite feedback, we proved that the first achievable secrecy rate and the presented

upper bound on the ergodic secrecy capacity coincide, hence, fully characterizing the

ergodic secrecy capacity in this case. The high-SNR regime and the SDoF of the

system were also investigated.

7.2 Future Research Directions

Certainly, there are still open challenges related to physical layer security with CSIT

uncertainty. First, we can see that, for most cases, the secrecy capacity of fading

wiretap channels with partial CSIT is not perfectly known and is only characterized

in terms of bounds. Also, we notice that a certain level of CSI knowledge is required at

the transmitter, i.e., at least the fading distributions of the communicating channels

should be known at the transmitter. It would be of interest to consider and study

the case when even the distribution of the eavesdropper’s channel cannot be obtained

at the transmitter. The construction of practical wiretap codes is another open issue

facing physical layer security either with perfect or partial CSIT.
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Appendix A

A.1 Proof of Achievability in Theorem 3.2

To prove the achievability of the lower bound on the secrecy capacity in Theorem 3.2,

we adopt a coding scheme similar to the one presented in [30]. We denote the message

to be transmitted by W , and we let U be a sequence of independent random variables

over some alphabet U . Also, we adopt the following notation

H={h1, · · · , hK}, H i={h1(1), · · · , h1(i), h2(1), · · · , h2(i), · · · , hK(1), · · · , hK(i)},

Ĥ={ĥ1, · · · , ĥK}, Ĥ i={ĥ1(1), · · · , ĥ1(i), ĥ2(1), · · · , h2(i), · · · , ĥK(1), · · · , ĥK(i)}.

Let η1 and η2 be two positive constants. We define Re = I(U ;Z|g,H, Ĥ)− η2, and

R = min
1≤k≤K

{
I(U ; Yk|H, Ĥ)− I(U ;Z|g,H, Ĥ)

}
− η1.

We construct K+1 independent random codebooks C1, · · · , CK+1, for the K legit-

imate subchannels and the eavesdropper subchannel. For each message W , codebook

Ck is randomly partitioned into 2nR bins, such that each bin contains 2nRe code-

words. To decode the received signal, each receiver will try to find a message W

that is jointly typical with the channel output Yk. The error probability analysis are

similar to the case of perfect CSI [30]. For the secrecy analysis, we need to prove

that, for n sufficiently large

1

n
I(W ;Zn|gn, Hn, Ĥn) ≤ ǫ. (A.1)

We have

I(W ;Zn|gn, Hn, Ĥn) = H(W |gn, Hn, Ĥn)−H(W |Zn, gn, Hn, Ĥn), (A.2)
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and

H(W |Zn, gn, Hn, Ĥn) = H(W,Un|Zn,gn,Hn,Ĥn)−H(Un|W,Zn,gn,Hn,Ĥn) (A.3)

= H(Un|Zn,gn,Hn,Ĥn)−H(Un|W,Zn,gn,Hn,Ĥn) (A.4)

≥ H(Un|Zn, gn, Hn, Ĥn)−nǫ1 (A.5)

= H(Un|gn,Hn,Ĥn)−I(Un;Zn|gn,Hn,Ĥn)− nǫ1 (A.6)

= H(Un,W |gn,Hn,Ĥn)−I(Un;Zn|gn,Hn,Ĥn)−nǫ1 (A.7)

= H(W |gn, Hn, Ĥn)+H(Un|W, gn, Hn, Ĥn)−I(Un;Zn|gn, Hn, Ĥn)−nǫ1 (A.8)

= H(W |gn,Hn,Ĥn)+nI(U ;Z|g,H,Ĥ)−I(Un;Zn|gn,Hn,Ĥn)−nǫ1 (A.9)

≥ H(W |gn, Hn, Ĥn)− nǫ1 − nη2 − nǫ2, (A.10)

where (A.4) and (A.7) follows from the fact that each codeword Un corresponds to one

message W , i.e., W is deterministic given Un, where (A.5) is obtained using Fano’s in-

equality, i.e.,
1

n
H(Un|W,Zn, gn, Hn, Ĥn) ≤ 1

n
+ η2Re , ǫ1, where (A.9) follows from

the fact that each bin contains nRe codewords, i.e.,

H(Un|W, gn, Hn, Ĥn) = nI(U ;Z|g,H, Ĥ)− nη2, (A.11)

and where (A.10) results since the codewords are equally likely to be transmitted [2],

i.e.,
1

n
I(Un;Zn|gn, Hn, Ĥn) ≤ I(U ;Z|g,H, Ĥ) + ǫ2. Taking ǫ=ǫ1+ǫ2+η2, we deduce

(A.1). To finish the proof, we consider the proposed on-off power scheme in (3.57),

set X=U∼CN (0, P (τ)) and adopt a probabilistic transmission model as explained in

Section 3.4.2.1. �

A.2 Derivation Details of (3.69)

The lower bound on the secrecy sum capacity with imperfect main CSIT, presented

in Theorem 3.1, can be written for i.i.d. Rayleigh fading channels as
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C̃−
s =max

P (τ)

∫ ∞

γ=0

∫ ∞

γ̂=τ

∫ ∞

γe=0

log

(
1+γP (τ)

1+γeP (τ)

)
fγe(γe)fγest

max|γ̂max(γ|γ̂)fγ̂max(γ̂)dγedγdγ̂, (A.12)

with P (τ)=Pavg/
(
1− (1− e−τ )

K
)
, fγe(γe)=e−γe , fγ̂max(γ̂)=Ke−γ̂(1−e−γ̂)K−1, and

fγest
max|γ̂max(γ|γ̂)=

1

α
exp

(
−γ+(1−α)γ̂

α

)
I0

(
2

√
1−α

α2
γγ̂

)
. (A.13)

We can then express (A.12) such as C−
s =max

τ

{
Ĩ1 − Ĩ2

}
, (A.14)

with integrals Ĩ2 and Ĩ1, respectively, given by

Ĩ2 = K

∫ ∞

τ

∫ ∞

0

log (1+γeP (τ)) e−γee−γ̂(1−e−γ̂)K−1dγedγ̂ (A.15)

= −
(
1−
(
1−e−τ

)K)
exp

(
1

P (τ)

)
Ei

(
− 1

P (τ)

)
, (A.16)

where (A.16) is obtained using [143, Eq.(4.337.2)], and

Ĩ1 =
K

α

∫ ∞

0

∫ ∞

τ

log (1+γP (τ)) exp

(
−γ + (1−α)γ̂

α

)

× I0

(
2

√
1−α

α2
γγ̂

)
e−γ̂(1−e−γ̂)K−1dγ̂dγ. (A.17)

Using the binomial theorem [143, Eq.(1.111)] along with equation (A.24), integral Ĩ1

can be given by

Ĩ1 = K
K−1∑

k=0

(
K−1

k

)
(−1)k

1+αk
(A.18)

×
∫ ∞

0

log(1+γP (τ)) exp

(
−(1+k)γ

1+αk

)
Q

(√
2

1−α

α(1+αk)
γ,

√
2τ

α
(1+αk)

)
dγ.

Substituting Ĩ2 and Ĩ1 in (A.14) by their respective expressions in (A.16) and (A.18),

we get (3.69).
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A.3 Derivation Details of (3.87)

When transmitting over i.i.d. Rayleigh fading, the lower bound on the common

message secrecy capacity with imperfect main CSI at the transmitter, presented in

Theorem 3.2, can be written as

C−
s = max

P (τ)

∫ ∞

γ=0

∫ ∞

γ̂=τ

∫ ∞

γe=0

log

(
1+γP (τ)

1+γeP (τ)

)
fγe(γe)fγ|γ̂(γ|γ̂)fγ̂(γ̂)dγedγdγ̂, (A.19)

with P (τ) = Pavge
τ , fγe(γe) = e−γe, fγ̂(γ̂) = e−γ̂ , and

fγ|γ̂(γ|γ̂) =
1

α
exp

(
−γ+(1−α)γ̂

α

)
I0

(
2

√
1−α

α2
γγ̂

)
, (A.20)

where I0(.) is the modified Bessel function of the first kind [143, Eq.(8.406.3)].

We can then express (A.19) such as C−
s =maxτ {I1 − I2} , with integrals I2 and I1,

respectively, given by

I2 = e−τ

∫ ∞

0

log(1+γePavge
τ ) e−γedγe (A.21)

= − exp

(
e−τ

Pavg

)
Ei

(
− e−τ

Pavg

)
e−τ , (A.22)

where (A.22) is obtained using [143, Eq.(4.337.2)], and

I1=
1

α

∫ ∞

0

log(1+γPavge
τ ) exp

(
−γ

α

)∫ ∞

τ

exp

(
− γ̂

α

)
I0

(
2

√
1−α

α2
γγ̂

)
dγ̂dγ. (A.23)

Using the definition of the Q-function [144, Eq.(16)] and the appropriate change

of variables, we have

∫ ∞

τ

exp

(
− γ̂

α

)
I0

(
2

√
1−α

α2
γγ̂

)
dγ̂=α exp

(
1−α

α
γ

)
Q

(√
2
1−α

α
γ,

√
2τ

α

)
, (A.24)
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which allows us to write

I1 =

∫ ∞

0

log(1+γPavge
τ ) exp(−γ) Q

(√
2
1−α

α
γ,

√
2τ

α

)
dγ. (A.25)

Substituting I2 and I1 by their respective expressions in (A.22) and (A.25),

we get(3.87).

Now, since

Q(a, b) = exp

(
−a2 + b2

2

) ∞∑

n=0

∞∑

m=0

a2(n+m)b2m

2n+2mΓ(1+m)Γ(1+m+n)
[149, Eq.(9)],

(A.26)

we can rewrite I1 in the form

I1 =
∞∑

n=0

∞∑

m=0

(1−α)n+mτm exp(−τ/α))

αn+2mΓ(1 +m)Γ(1+n+m)

∫ ∞

0

γn+m log(1+γPavge
τ ) exp

(
−γ

α

)
dγ.

Using [150, Eq.(01.03.26.0004.01)], [150, Eq.(01.04.26.0003.01)], and

[150, Eq.(07.34.21.0011.01)], we get

I1 =
∞∑

n=0

∞∑

m=0

(1−α)n+mτm exp(−τ/α))

αm−1Γ(1 +m)Γ(1+n+m)
G1,3

3,2


αPavge

τ

∣∣∣∣∣∣
1, 1,−n−m

1, 0


 . (A.27)

A.4 Alternative Proof of the Lower Bound in Corollary 3.5

At high SNR, the achievable secrecy sum-rate is given by Corollary 3.1, i.e.,

C̃−
H-SNR = E

γe,γest
max,

γ̂max≥τ

[
log

(
γest
max

γe

)]
(A.28)

=

∫ ∞

γ=0

∫ ∞

γ̂=τ

∫ ∞

γe=0

log

(
γ

γe

)
fγe(γe)fγest

max|γ̂max(γ|γ̂)fγ̂max(γ̂)dγedγdγ̂. (A.29)

Since fγ̂max(γ̂max) −−−−→
K→∞

δ(γ̂max− logK) as K→∞, then, we can write
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lim
K→∞

C̃−
H-SNR = (A.30)

lim
K→∞

(
1

α

∫ ∞

0

log(γ) exp

(
−γ+(1−α) logK

α

)
I0

(
2

√
1−α

α2
logKγ

)
dγ−E

γe
[log γe]

)
,

and since the variable γe does not depend on K, the term E
γe
[log (γe)] is asymptotically

dominated by log logK, i.e., E
γe
[log (γe)]=o(log logK).

Thus, we have

lim
K→∞

C̃−
H-SNR (A.31)

= lim
K→∞

(
1

α
exp

(
α−1

α
logK

)∫ ∞

0

log(γ) exp
(
−γ

α

)
I0

(
2

√
1−α

α2
logKγ

)
dγ

)

(a)
= lim

K→∞

(
1

α
exp

(
α−1

α
logK

) ∞∑

m=0

1

Γ(m+ 1)m!

(
1−α

α2
logK

)m ∫ ∞

0

γm log(γ) exp
(
−γ

α

)
dγ

)

(b)
= lim

K→∞

(
1

α
exp

(
α−1

α
logK

)((
logα−C

) ∞∑

m=0

(1−α)m(logK)m

αm−1m!
+

∞∑

m=0

Hm(1−α)m(logK)m

αm−1m!

))

(c)
= lim

K→∞

(
log((1−α) logK)− Ei

(
−1−α

α
logK

))
,

where (a) is obtained using Iv(z)=

∞∑

m=0

1

Γ(m+v+1)m!

(z
2

)2m+v

, (b) follows from

∫ ∞

0

γm log(γ) exp
(
−γ

α

)
dγ = αm+1Γ(m+ 1) (logα+Hm−C), (A.32)

with Hm is the harmonic number, and (c) comes from
∞∑

m=0

(1−α)m(logK)m

αm−1m!
=αK

1−α
α ,

and

∞∑

m=0

Hm(1−α)m(logK)m

αm−1m!
= αK

1−α
α

(
C−Ei

(
−1−α

α
logK

)
+ log

(
1−α

α
logK

))
.

(A.33)

Now, since lim
K→∞

Ei

(
−1−α

α
logK

)
=0, then we have

lim
K→∞

[
C̃−
H-SNR− log((1−α) logK)

]
=0.
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Appendix B

B.1 Proof of Corollary 6.2

Considering uniform power allocation over all transmit antennas, at all times, and

using the expression of the achievable secrecy rate in (6.3), we have

CFF
s ≥

Q∑

q=1

max
{Hq}

E
HE|HR∈Hq







log

min
HR∈Hq

∣∣∣INR
+ Pavg

σ2
RNT

HRH
∗
R

∣∣∣
∣∣∣INE

+ Pavg

σ2
ENT

HEH∗
E

∣∣∣





+

Pq (B.1)

=
Q∑

q=1

max
{Hq}

E
λE|HR∈Hq






 min

λR
HR∈Hq

rR∑

i=1

log

(
1+

Pavg

σ2
RNT

λRi

)
−

rE∑

i=1

log

(
1+

Pavg

σ2
ENT

λEi

)


+
Pq, (B.2)

with rR=min(NT, NR), rE=min(NT, NE), and λR and λE are the respective vec-

tors of non-zeros eigenvalues of HRH
∗
R and HEH

∗
E, i.e., λR={λR1 , · · · , λRrR

} and

λE={λE1, · · · , λErE
}. Taking Pavg→∞, the terms

Pavg

σ2
RNT

λRi
and

Pavg

σ2
ENT

λEi
, in (B.2),

become dominant and we can write

lim
Pavg→∞

CFF
s ≥ lim

Pavg→∞

Q∑

q=1

max
{Hq}

E
λE|HR∈Hq







 min

λR
HR∈Hq

rR∑

i=1

log

(
Pavg

σ2
RNT

λRi

)
−

rE∑

i=1

log

(
Pavg

σ2
ENT

λEi

)


+

Pq

= lim
Pavg→∞

Q∑

q=1

max
{Hq}

E
λE|HR∈Hq






(rR−rE) log

Pavg

NT

+ min
λR

HR∈Hq

rR∑

i=1

log
λRi

σ2
R

−
rE∑

i=1

log
λEi

σ2
E





+
Pq. (B.3)

We can, then, rewrite the limit in the following form

lim
Pavg→∞

[
CFF
s −{rR−rE}+ log

Pavg

NT

]
≥ (B.4)

lim
Pavg→∞

Q∑

q=1

max
{Hq}

E
λE|HR∈Hq







(rR−rE) log
Pavg

NT
+ min

λR
HR∈Hq

rR∑

i=1

log
λRi

σ2
R

−
rE∑

i=1

log
λEi

σ2
E






+

−{rR−rE}+ log
Pavg

NT


Pq.
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In the special case when rR=rE, we get

lim
Pavg→∞

CFF
s ≥ lim

Pavg→∞

Q∑

q=1

max
{Hq}

E
λE|HR∈Hq







 min
λR

HR∈Hq

rR∑

i=1

log
λRi

σ2
R

−
rE∑

i=1

log
λEi

σ2
E






+
Pq. (B.5)

When rR 6= rE, we use the fact that the term (rR − rE) log
Pavg

NT
is dominant, and that

{a+b}+−{a}+=




b if a > 0

0 otherwise

, when a is dominant1, to get

lim
Pavg→∞

[
CFF
s −{rR−rE}+ log

Pavg

NT

]
≥






Q∑

q=1

max
{Hq}

E
λE|HR∈Hq



 min
λR

HR∈Hq

rR∑

i=1

log
λRi

σ2
R

−
rE∑

i=1

log
λEi

σ2
E



Pq if rR≥rE

0 if rR<rE

,

This concludes our proof. �

B.2 Proof of Corollary 6.3

- Lower Bounding the Secrecy Capacity with Perfect CSI at High SNR: We distin-

guish between two cases depending on the number of transmit antennas compared to

the number of receive antennas.

• First Case: NT≤NR

Using the expression of the ergodic secrecy capacity, in (6.7), and considering

uniform power allocation over all transmit antennas, we can write

lim
Pavg→∞

Cs ≥ lim
Pavg→∞

E
HE,HR






log

∣∣∣INR
+ Pavg

σ2
RNT

HRH
∗
R

∣∣∣
∣∣∣INE

+ Pavg

σ2
ENT

HEH∗
E

∣∣∣





+

 (B.6)

= lim
Pavg→∞

E
λR,λE








NT∑

i=1

log

(
1 +

Pavg

σ2
RNT

λRi

)
−
min(NT,NE)∑

i=1

log

(
1 +

Pavg

σ2
ENT

λEi

)


+
 (B.7)

1a is dominant in the sense that the sign of a+b is dictated by the sign of a.
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= lim
Pavg→∞

E
λR,λE









NT∑

i=1

log

(
Pavg

σ2
RNT

λRi

)
−
min(NT,NE)∑

i=1

log

(
Pavg

σ2
ENT

λEi

)



+
 (B.8)

= lim
Pavg→∞

E
λR,λE







{NT−NE}+ log

Pavg

NT
+

NT∑

i=1

log
λRi

σ2
R

−
min(NT,NE)∑

i=1

log
λEi

σ2
E





+

 , (B.9)

where λR and λE are the respective vectors of non-zeros eigenvalues of HRH
∗
R and

HEH
∗
E, i.e., λR={λR1, · · · , λRrR

} and λE={λE1 , · · · , λErE
}. Then, using the fact that,

when a is dominant, {a+b}+−{a}+ =





b if a > 0

0 otherwise

, we get the following result

lim
Pavg→∞

[
Cs− {NT−NE}+ log

Pavg

NT

]
≥






0 ifNT<NE

E
λR,λE

[
NT∑

i=1

log
λRi

σ2
R

−
NE∑

i=1

log
λEi

σ2
E

]
ifNE≤NT≤NR

.

• Second Case: NT>NR

When NT>NR, we consider a uniform power transmitting scheme that broadcasts

artificial noise over the null space of HR. Let HR = URλRV
∗
R be the singular value

decomposition (SVD) of HR, where UR ∈ C
NR×NR and VR ∈ C

NT×NT are unitary

matrices. Then, we can write matrix VR in the form VR = [ṼR,Z], with Z =

null(HR) ∈ CNT×(NT−NR), such that HRZ = 0NR×(NT−NR) and the NR columns of

ṼR ∈ CNT×NR span the orthogonal complement subspace to Z. Since perfect CSI is

assumed in this case, the transmitter has perfect knowledge of the precoding matrix

VR and transmits X=
√

Pavg/NT

(
ṼRu+ Zv

)
, where u ∈ CNR is the information

vector and v ∈ CNT−NR is the artificial noise vector. Both u and v are assumed to be

circular symmetric Gaussian random vectors with i.i.d. zero mean and unit variance

entries. The respective received signals at the intended receiver and the eavesdropper

can, then, be written as

YR =

√
Pavg

NT
HRṼRu+ ZR

YE =

√
Pavg

NT

HEṼRu+

√
Pavg

NT

HEZv + ZE.

(B.10)
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Hence, the secrecy capacity can be characterized, in the high-SNR regime, as

lim
Pavg→∞

Cs ≥ lim
Pavg→∞

E
HE,HR






log

∣∣∣∣INR
+

Pavg

σ2
RNT

HRH
∗
R

∣∣∣∣− log

∣∣∣INE
+ Pavg

σ2
ENT

HEH
∗
E+

Pavg

σ2
ENT

HEZZ
∗H∗

E

∣∣∣
∣∣∣INE

+ Pavg

σ2
ENT

HEZZ∗H∗
E

∣∣∣





+



= lim
Pavg→∞

E
λR,λEZ,λsum









NR∑

i=1

log

(
1+

Pavg

σ2
RNT

λRi

)
+

min(NT−NR,NE)∑

i=1

log

(
1+

Pavg

σ2
ENT

λEZi

)
−

NE∑

i=1

log

(
1+

Pavg

σ2
ENT

λsumi

)


+



= lim
Pavg→∞

E
λR,λEZ,λsum









NR∑

i=1

log

(
Pavg

σ2
RNT

λRi

)
+

min(NT−NR,NE)∑

i=1

log

(
Pavg

σ2
ENT

λEZi

)
−

NE∑

i=1

log

(
Pavg

σ2
ENT

λsumi

)



+


= lim
Pavg→∞

E
λR,λEZ,

λsum






min (NT−NE, NR) log

Pavg

NT

+

NR∑

i=1

log
λRi

σ2
R

+

min(NT−NR,NE)∑

i=1

log
λEZi

σ2
E

−
NE∑

i=1

log
λsumi

σ2
E





+


where λR, λE, λEZ and λsum are the respective vectors of non-zeros eigenvalues

of HRH
∗
R , HEH

∗
E, HEZZ

∗H∗
E and (HEH

∗
E+HEZZ

∗H∗
E), i.e., λR={λR1 , · · ·, λRrR

},

λE={λE1 , · · ·, λErE
}, λEZ={λEZ1 , · · · , λEZrEZ

} and λsum={λsum1 , · · · , λsumrsum
}. Once

again, using the fact that, when a is dominant, {a+b}+−{a}+ =





b if a > 0

0 otherwise

,

we obtain

lim
Pavg→∞

[
Cs−min

(
{NT−NE}+ , NR

)
log

Pavg

NT

]
≥






0 ifNT<NE

E
λR,λEZ,

λsum




NR∑

i=1

log
λRi

σ2
R

+

min(NT−NR,NE)∑

i=1

log
λEZi

σ2
E

−
NE∑

i=1

log
λsumi

σ2
E


 ifNT>max(NE, NR)

.

(B.11)

- Upper Bounding the Secrecy Capacity with Perfect CSI at High SNR:

Since the secrecy capacity when both the main and the eavesdropper’s CSI are avail-

able at the transmitter upper bounds the secrecy capacity when only the main CSI is

known at the transmitter, the upper bound in (6.13) results directly from [37, Theo-

rem 2] and [63]. This concludes our proof. �
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B.3 Proof of Corollary 6.4

Considering uniform power allocation over all transmit antennas, the constants θ1

and θ2 in Corollary 2 and Corollary 3, respectively, are equal to their respective

lour bounding terms. Thus, the asymptotic difference between Cs and C−
s can be

characterized, when NT ≤ NR, as

lim
Pavg→∞

[
Cs− C−

s

]

= E
λR,λE

[
NT∑

i=1

log
λRi

σ2
R

−
NE∑

i=1

log
λEi

σ2
E

]
−

Q∑

q=1

max
{Hq}

E
λE



 min
λR

HR∈Hq

NT∑

i=1

log
λRi

σ2
R

−
NE∑

i=1

log
λEi

σ2
E



Pq (B.12)

= E
λR,λE




NT∑

i=1

log
λRi

σ2
R

−
NE∑

i=1

log
λEi

σ2
E

−
Q∑

q=1

max
{Hq}

min
λR

HR∈Hq

NT∑

i=1

log
λRi

σ2
R

−
NE∑

i=1

log
λEi

σ2
E

Pq


 (B.13)

= E
λR




NT∑

i=1

log λRi
−

Q∑

q=1

max
{Hq}

Pq min
λR

HR∈Hq

NT∑

i=1

log λRi



 (B.14)

where λR and λE are the respective vectors of non-zeros eigenvalues of HRH
∗
R and

HEH
∗
E, i.e., λR={λR1 , · · · , λRrR

} and λE={λE1 , · · · , λErE
}. The gap between Cs

and C̃−
s can be deduced, directly, using {a}+ − a = {−a}+. �
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