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ABSTRACT 

 

Full Name : Ali Abdullah Al-Saihati 

Thesis Title : Optimization of Energy Detection in Cognitive Radio Networks 

Major Field : Electrical Engineering 

Date of Degree : May 2014 

 

 

The emergence of wireless services demands an efficient use of the radio spectrum due to 

its scarcity. This problem can be addressed by using Cognitive radio (CR) technology 

that uses the spectrum in an opportunistic manner. Spectral reuse is one application of 

cognitive radio that permits secondary users/networks to use the licensed spectrum of the 

primary users when they are not active. Different types of spectrum sensing methods will 

be explained. The signal model for CR networks under AWGN channel as well as CR 

networks experiencing Rayleigh, Nakagami, Lognormal, Gamma, Nakagami-Lognormal 

composite and Nakagami-Gamma composite fading will be discussed. The achievable 

average probability of detection is presented for different types of channels. Simulation 

results will be presented for the detection performance of CR networks under different 

channels for a single SU. After that, suggested methods for improving the detection 

performance such as cooperative spectrum sensing, spatial correlation and heuristic 

methods will be investigated. The detection performance of cooperating secondary users 

(SU) will be shown through simulation results for different fading channels. Particle 

Swarm Optimization (PSO) is a heuristic technique which achieves optimum value by 

mimicking the natural behavior of individual knowledge of communicating group of a 

swarm flock. PSO is implemented to maximize an objective function for a given problem 



xviii 

 

with set of parameters by exploring its search space. The implementation of PSO in CR 

networks is discussed. Simulation results of detection performance using PSO technique 

are produced among different fading channels. The new proposed method, PSO-HC 

hybrid is explained how it is implemented in CR networks. Results obtained from using 

PSO-HC hybrid method under different fading channels are compared to the 

conventional PSO method. While the PSO-HC hybrid performance shows little 

improvements in non-fading/ low fading channels, it gives good performance in deep 

fading channels compared to the conventional PSO method. 
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ٌّٚىٓ ِؼاٌدح ٘زٖ اٌّشىٍح ػٓ . ظٙٛس اٌخذِاخ اٌلاسٍىٍح ٌرطٍة الاسرخذاَ اٌفؼاي ٌٍطٍف اٌشادٌٛي تسثة ٔذسذٙا 

إػادج اسرخذاَ اٌطٍفٍح . اٌرً ذسرخذَ اٌطٍف تطشٌمح أرٙاصٌح  ( CR )طشٌك اسرخذاِاخ ذىٌٕٛٛخٍا الإراػح  اٌّؼشفٍح 

شثىاخ لاسرخذاَ اٌطٍف اٌّشخص ِٓ / ٘ٛأزذ ذطثٍك ِٓ اٌشادٌٛ اٌّؼشفٍح اٌرً ذسّر ٌٍّسرخذٍِٓ اٌثأٌٍٛٓ 

ٚسٛف . ٚسٍرُ ششذ أٔٛاع ِخرٍفح ِٓ أساٌٍة الاسرشؼاس ػٓ اٌطٍف. اٌّسرخذٍِٓ الأٌٍٍٚٓ ػٕذِا ذىْٛ غٍش ٔشطح

 اٌٍرً ذؼأً ذلاشً ِٓ ٔٛع ساًٌٍ ، CR ٚوزٌه شثىاخ AWGN ذسد لٕاج CRذٕالش ّٔٛرج الاشاسج ٌشثىاخ 

. غاِا- اٌٍٛغاسٌرًّ اٌطثٍؼً ٚ ِشوة ٔاواخاًِ - ٔاواخاًِ ، اٌٍٛغاسٌرًّ اٌطثٍؼً ، غاِا ، ِشوة ٔاواخاًِ 

ٚسرؼشض ٔرائح اٌّساواج لأداء . ٚسٛف ٌؼشض ِرٛسظ ازرّاي اٌىشف ػٓ الاشاسج تأٔٛاع ِخرٍفح ِٓ اٌمٕٛاخ

تؼذ رٌه، الرشذ سٍرُ اٌرسمٍك ِٓ أساٌٍة . SU ذسد لٕٛاخ ِخرٍفح ٌّسرخذَ ٚازذ ِٓ CRاٌىشف ػٓ شثىاخ 

سٍرُ . ٌرسسٍٓ أداء اٌىشف ِثً اٌرؼاٍٚٔح لاسرشؼاس اٌطٍف ، ٚالاسذثاط اٌّىأً ٚطشق اٌىشف ػٓ ِدشٌاخ الأِٛس 

سشب . ِٓ خلاي ٔرائح اٌّساواج ٌمٕٛاخ ِخرٍفح ( SU )ػشض أداء اٌىشف ػٓ ذؼاْٚ اٌّسرخذٍِٓ اٌثأٌٍٛٓ 

٘ٛ أسٍٛب اسشادي اٌزي ٌسمك اٌمٍّح اٌّثٍى ػٓ طشٌك ِساواج اٌسٍٛن اٌطثٍؼً ٌٍّؼشفح  ( PSO )اٌدسٍّاخ الأِثً 

 ٌرؼظٍُ داٌح اٌٙذف ٌّشىٍح ِؼٍٕح ِغ ِدّٛػح ِٓ PSOٌٚرُ ذٕفٍز . اٌفشدٌح ِٓ ِدّٛػح ِٓ لطٍغ سشب اٌرٛاصً

ٌٚرُ إٔراج ٔرائح اٌّساواج  . CR فً شثىاخ PSOٚسٍرُ ِٕالشح ذٕفٍز . اٌّؼٍّاخ ِٓ خلاي اسرىشاف فضاء اٌثسث

 وٍفٍح PSO-HCسرٛضر اٌطشٌمح اٌدذٌذج اٌّمرشزح ٘دٍٓ .  تٍٓ اٌمٕٛاخ اٌّخرٍفحPSOلأداء اٌىشف تاسرخذاَ ذمٍٕح 

 ذسد لٕٛاخ ِخرٍفح PSO-HCسررُ ِماسٔح إٌرائح اٌرً ذُ اٌسصٛي ػٍٍٙا ِٓ ٘دٍٓ  . CRذٕفٍز٘ا فً شثىاخ 
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لٕٛاخ /  ذسسٍٕاخ صغٍشج فً لٕٛاخ اٌغٍش ِرلاشٍح PSO-HCفً زٍٓ ٌظٙش ٘دٍٓ .  اٌرمٍٍذٌحPSOتطشٌمح 

  .PSOإٌّخفضح اٌرلاشً، ٚأٔٗ ٌؼطً أداء خٍذ فً لٕٛاخ ػٍّمح اٌرلاشً تاٌّماسٔح ِغ اٌطشٌمح اٌرمٍٍذٌح 
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1 CHAPTER 1 

INTRODUCTION 

 

1.1 Cognitive Radio 

Nowadays, the demand for radio spectrum has increased significantly which is a result of 

the increase of consumers’ interest in wireless services. Also, the emergence of new 

applications and mobile internet access requires a huge amount of spectrum usage. The 

spectrum is a limited resource that is regulated by government agencies like the Federal 

Communications Commission (FCC) in the US. Frequency bands are licensed 

exclusively to users to operate their communications. Today, it is hard to find vacant 

bands since they are mostly occupied. Recent measurements conducted by Spectrum 

Policy Task Force (SPTF) within FCC show the spectrum usage from 0 to 6 GHz bands 

varies between 15% and 85%. This led the FCC to propose the opening of licensed bands 

to unlicensed users. This posts a new challenge to find new ways to utilize the spectrum 

efficiently. Cognitive Radio (CR) can be used to effectively increase the spectrum usage 

[1, 2, 3, 4, 5, 6,7]. 

CR is a new technology that uses the spectrum in an opportunistic manner. Spectral reuse 

is one application of cognitive radio that permits secondary users (SUs)/networks to use 
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the licensed spectrum of the primary users (PUs) when they are not active. This is done 

by performing frequent channel sensing by SUs to detect the presence of PUs. SUs can 

use the spectrum for communication while primary users are not using the spectrum. 

However, detecting the presence of PUs must be accurate since SUs need to vacate the 

channel within certain time duration. This will permit PUs to utilize the spectrum when 

they become active. The spectrum usage for different frequencies along time can be seen 

in Figure 1.1. IEEE 802.22 wireless regional area network WRAN communication 

system implements spectrum reuse concept. It operates in the VHF/UHF bands which are 

used for TV broadcasting services and wireless microphone [4,9]. 

In practice, channel sensing is challenging matter because of some aspects. The SNR of 

the PUs might be very low. Also, it is difficult to sense the wireless channel because of 

the presence of multipath fading and time dispersion. The signal power could fluctuate by 

30 dB resulted from multipath fading. Also, when the time dispersion of the channel is 

unknown, the coherent detection may not be reliable [4]. 
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1.2 Thesis Objectives 

The thesis objectives are: 

 Survey spectrum sensing techniques for cognitive radio. 

 Study spectrum sensing in different radio environments. 

 Evaluate the impact of channel fading and shadowing in cognitive radio network 

(Rayleigh, Nakagami, Lognormal, Gamma, Nakagami-Lognormal composite, 

Nakagami-Gamma composite). 

 Look at methods of improving probability of detection and lowering probability 

of miss (Diversity, Correlation techniques, Heuristic algorithms). 

 Implement Particle Swarm Optimization and Particle Swarm Optimization- Hill 

Climbing Hybrid to improve probability of detection. 

 

Frequency 

Power 

Vacant Spectrum 

Time 

Occupied Spectrum 

‎1-1: Spectrum usage Across time and frequency Figure ‎1.1:  Spectrum usage Across time and frequency 
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1.3 Contribution 

The main contribution of the thesis is implementing PSO-HC hybrid technique to 

improve the detection performance of the CR network. PSO-HC hybrid method will be 

applied to seven different types of channels: AWGN, Rayleigh, Nakagami, Lognormal, 

Gamma, Nakagami-Lognormal composite and Nakagami-Gamma composite. 

1.4 Thesis Outline 

The thesis is organized as follows. Chapter 2 discusses different types of spectrum 

sensing methods. The signal model for CR networks under AWGN channel as well as CR 

networks experiencing Rayleigh, Nakagami, Lognormal, Gamma, Nakagami-Lognormal 

composite and Nakagami-Gamma composite fading will be explained. Simulation results 

will be presented for the detection performance of CR networks under different channels 

for a single SU. After that, suggested methods for improving the detection performance 

such as cooperative spectrum sensing, spatial correlation and heuristic methods will be 

investigated. The detection performance of cooperating SU will be shown through 

simulation results for different fading channels. Chapter 3 talks about PSO and gives an 

introduction of this technique. Then, the implementation of PSO in CR networks is 

discussed. Simulation results of detection performance using PSO technique are produced 

among different fading channels. Chapter 4 discusses the new proposed method, PSO-HC 

hybrid and how it is implemented in CR networks. Results obtained from using PSO-HC 

hybrid method under different fading channels are discussed and compared to the 

conventional PSO method. Finally, Chapter 5 summarizes the thesis and the obtained 

new results. 
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2 CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Spectrum Sensing Methods 

 

There are different methods for channel or spectrum sensing. Energy detection (ED), 

cyclosationary detection, matched filtering detection and waveform based detection are 

some types of sensing methods which are used to identify the signal transmission method. 

Some methods can obtain the characteristics of the detected signal. The choice of a 

sensing method depends on the required computational complexity, sensing duration, 

network requirements and accuracy required to achieve. Several sensing methods are 

shown in terms of accuracy and complexity in Figure 2.1 [4,10]. 
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2.1.1 Energy Detection 

 

In ED (known also as radiometry), a priori information of the source signal is not 

needed [10, 3]. It performs well in unknown dispersed channels and fading environments. 

ED has a good accuracy with low complexity implementation. As the averaging time 

increases, the SNR is improved which, in turn, decreases the noise power. In order to 

achieve certain detection probability, on the other hand, the required number of samples 

is of O(1/SNR
2
) so it suffers from long detection time [5,12, 24]. This is because the 

detection is non-coherent. Although ED is simple to implement, it has many 

disadvantages. Unknown or changing noise level has a great impact on the threshold used 

for primary user signal detection. Moreover, it is difficult to set a threshold in frequency 

Energy 

Detection 

Radio 

Identification 

Matched 

Filtering 

Cyclostationary 

Waveform 

based Sensing 

Accuracy 

Complexity 

 

 

 Figure ‎2.1: Several sensing method in accordance to their sensing accuracy and complexity 
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selective fading environment. Another issue of the ED is that it‎ can’t‎ cancel‎ the‎

interference using adaptive signal processing due to the inability to distinguish among 

modulated signals, noise and interference. So, it is up to CR users to take into account the 

other SUs as well as noise [3,12]. ED is not optimal for detecting correlated signals 

although it is optimal for independent and identically distributed (i.i.d.) signals. 

The block diagram of ED is shown in Figure 2.2. Let the output of the integrator be Y 

which is given by: 

                                                            𝑌 =  
1

𝑇
 |𝑥(𝜏)|2𝑑

𝑡

𝑡−𝑇

𝜏                                                 (2.1) 

and has the following distribution: 

                                                             𝑌~  
𝜒2𝑇𝑊

2 ,         𝐻0

𝜒2𝑇𝑊
2 (2𝛾), 𝐻1

                                               (2.2) 

where 𝜒2𝑇𝑊
2 (2𝛾) and 𝜒2𝑇𝑊

2 (2𝛾) represent the central and non-central chi-square 

distributions respectively, 𝐻0 is a signal hypothesis which represents the non existence of 

the primary signal and 𝐻1 is a signal hypothesis which represents the existence of the 

primary signal . They both have 2 𝑇𝑊 degrees of freedom. For the non-central chi-square 

distribution, the distribution is not central by 2γ where γ is the instantaneous SNR. 𝑇𝑊 is 

the time-bandwidth product (or time delay bandwidth product) and is assumed to be 

integer for simplicity. It will be denoted by m. The signal is passed through a band pass 

filter (BPF). Then it is passed to a squaring device until it is averaged over a period T. For 

the narrowband signals and sinewaves signals, the implementation of this method 

becomes inflexible. Another implementation of ED method can be done in frequency 
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domain where the spectrum is estimated by using fast Fourier Transform (FFT). This 

method is known as periodogram. Figure 2.3 shows implementation of ED using FFT. 

Multiple signals can be sensed simultaneously since the power spectral density (PSD) can 

be found to realize group of sub-bands [13, 14].  

 

 

 

 

 

ED performs well in wideband spread spectrum. The signal detection can be improved in 

two ways: either increasing the FFT frequency resolution by increasing the number of 

points K or increasing the number of averages N. If K increases, the sensing time 

increases while if the number of averages increases, the signal energy estimation 

improves [14]. A fixed FFT size is chosen in order to get the required resolution at 

moderate complexity and low latency in practice. Hence, the number of averages 

becomes a variable parameter [14]. Practically, the wideband spectrum sensing can be 

done in two stages: ED with low complexity is used to find vacant or idle sub-bands then 

next a more complex advanced spectrum sensing technique is used for another usage of 

Average M 

bins N times 

| |2 

 

K pt. FFT 

 

A/D 

 

Test statistics T 

 

Y(t) 

 

Threshold Device 

BPF (.)
2
  

𝑇

0

 X(t) Decide H0 or H1 

‎2-2: Energy detector block diagram 

‎2.3: Energy detector using FFT 

Figure ‎2.2: Energy detector block diagram 

Figure ‎2-3: Energy detector using FFT 
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sub-bands [14]. Examples of advanced spectrum sensing techniques are filter banks 

power spectrum estimation, multitaper spectrum estimator, wavelet based spectrum 

sensing and spectrum detection based on compressed sampling [14]. Because the 

transmitted powers may be different for licensed sub-bands and the random noise is 

present in unoccupied sub-bands, the power spectrum estimator must be accurate. The 

spectral dynamic range (SDR) which is the ratio of maximum to minimum spectral power 

is used in power spectrum estimator to determine the accuracy. A higher accuracy is 

achieved with higher SDR values. 

When the SNR of the signal is very low, the signal during detection might be 

indistinguishable. This is known as noise uncertainty and it severely degrades the 

performance of the energy detector. The noise comes from the local thermal noise and the 

environmental noise. The former is generated because of the variations of temperature 

over time while the latter comes from the aggregate random signals from different 

sources. Let x dB, 𝜎𝑛
2 and 𝜎𝑒

2 be the uncertainty noise for estimation, noise power and 

interference power respectively. 𝜎𝑛
2 varies between 𝜎𝑛

210−(𝑥/10) 
and                                  

𝜎𝑛
210(𝑥/10), (𝜎𝑛

2 ϵ [10−(𝑥/10)𝜎𝑛
2, 10(𝑥/10)𝜎𝑛

2]). For the primary signal to be always 

detected, the received signal power must be greater than the threshold 𝜎𝑇
2  

=10−(𝑥/10)𝜎𝑒
2 

and for the worst case of 𝜎𝑒
2  

= 10(𝑥/10) 𝜎𝑛
2, 𝜎𝑇

2= 10(2𝑥/10)𝜎𝑛
2 . Therefore, the received 

primary signal power must be greater than (𝜎𝑇
2 – 𝜎𝑛

2) for energy detection to succeed in 

signal detection [13]. This defines the SNR wall which implies that the signal cannot be 

detected below the minimum value. The SNR wall is given by [15]: 

                                                             𝛾𝑤 =  
𝜎𝑇

2 − 𝜎𝑛
2

𝜎𝑛2
= 10

2𝑥
10 − 1                                     (2.3)  
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To illustrate, when the noise variance uncertainty is 0.5 dB the signal cannot be detected 

at – 21 dB using ED. 

 

2.1.2 Filter Bank Power Spectrum 

 

In filter bank power spectrum, the whole wide spectrum of interest is divided into N 

sub-bands. Each sub-band has a sub-filter which can be expressed as: 

                                                                   ℎ𝑖 𝑛 = ℎ 𝑛 𝑒𝑗2𝜋𝑓𝑖𝑛                                          (2.4) 

where hi(n) indicates the i
th

 sub-band filter, h(n) represents the zeroth sub-band which is a 

low pass filter of the filter bank also known as prototype filter and fi is the normalized 

center frequency given by fi = i/N. The spectral components extraction is done through 

each sub-band filter. Figure 2.4 shows the filter bank power spectrum estimation. The 

performance of spectral estimation depends on the selection of the prototype filter. The 

frequency response should be designed such that the power leakage coming from the side 

lobes of neighboring sub-bands is minimum. The side lobes also determine the power 

spectrum estimator SDR. The i
th

 sub-band signal energy can be estimated as: 

 

𝑆  𝑓𝑖 =   𝑦 𝑛 𝑤 𝑛 𝑒−𝑗2𝜋𝑓𝑖𝑛

𝑁−1

𝑛=0

 

2
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                                                           =   𝑤 𝑛 𝑒−𝑗2𝜋𝑓𝑖𝑛

𝑁−1

𝑛=0

𝑦(𝑁 − 1 − 𝑛) 

2

                   (2.5) 

where w(n) is a symmetric window function which is given by:  

w(n)= w(N-1-n) 

The window function w(n) is actually the prototype filter bank [14]. It is used to suppress 

side lobes in which cut-off frequencies are tapered [13]. For example, to apply simple 

FFT energy detection, a rectangular window is applied. Because of the simplicity of the 

prototype filter, however, the SDR is limited due to the large lobe generated [14]. The 

performance of the periodogram as spectral estimator can be further improved by 

implementing several window functions designed to generate less side lobes. 

 

 

 

2.1.3 Multitaper Spectrum Estimation 

 

When the received signal is processed before the FFT operation, the process is called 

tapering. Although tapering decreases the leaked power coming from neighboring sub-

bands, there will be a loss in information due to the truncation in time domain window 

[12,14]. The variance of the power spectrum estimate increases as the information loss 

increases which, in turn, decreases the accuracy [12,14]. To solve the problem, a 

ℎ𝑖 𝑛 = ℎ(𝑛)𝑒𝑗2𝜋𝑓𝑖𝑛  

 

| |
2
 

 

y(n) 

 

𝑆  𝑓𝑖  

‎2-4: Filter bank power spectrum estimation Figure ‎2.4: Filter bank power spectrum estimation 
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multitaper power spectral estimator is applied where multitapers of prototype of filters 

are used. Tapers are implemented using Slepian sequences which are a special family of 

sequences [13]. The leakage power is minimum because the main lobe energy 

concentration of the Fourier transforms is maximum. Moreover, each sequence is 

orthogonal to others which results in generating outputs estimate from the tapers which 

are uncorrelated given the signal variation is negligible for each sub-band in the 

spectrum. Therefore, a minimum variance is obtained from averaging the estimates. The 

multitaper spectral estimation has a nearly optimal performance since the Cramer-Rao 

bound for a nonparametric is almost achieved. However, this can be achieved at high 

implementation complexities [13]. 

2.1.4 Wavelet Based Spread Spectrum 

 

The whole wide spectrum is treated as a consecutive frequency sub-bands in which the 

adjacent sub-bands have discontinuous power [13]. In wavelet based detection, estimated 

PSD irregularities with wavelet transformed are analyzed to determine spectral holes. For 

the wavelet based detection, CR network knows the entire spectrum band except for the 

number of licensed spectrum bands. Each occupied band PSD is assumed to be smooth 

and almost flat. Also, the noise PSD is assumed to be flat for the entire bandwidth [13]. 
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2.1.5 Compressed Sensing 

 

Sub-Nyquist sampling has been used to find the sparsity of wireless signals in frequency 

domain. When the primary user occupancy is low, it will have some sparsity. The 

fundamental limit on the sampling rate can be found using maximum sparsity order. 

However, high sampling is required in this method which results in wasted sensing 

resources. The performance can be improved by using a two step compressed spectrum 

sensing (TS-CSS) scheme. The actual sparsity order is estimated in the first step which 

can be determined from the number of zero elements of the primary signal vector. After 

that, the additional number of samples required to reconstruct the wideband spectrum and 

find spectrum hole is decided by the number of estimated sparsity order that can be done 

adaptively in the second step. Although this method requires a complex clocking system 

due to the random sampling, it has a lower average sampling rate with good sensing 

performance [13]. 

 

2.2 Signal Model 

 

There are two hypothesizes for signal detection: H0 and H1. H0 indicates signal does not 

exist while H1 indicates signal is present. The received signal samples for the given 

hypothesizes are given by [3]: 

                                                  𝑥 𝑡 =  
 𝑛 𝑡 ,                          𝐻0

 ℎ 𝑠 𝑡 + 𝑛 𝑡 , 𝐻1

                                   (2.6) 
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where x(t) is the SU received signal, s(t) is the primary user  transmitted signal, n(t) is the 

additive white Gaussian  noise (AWGN) and h is the channel response. Errors can be 

made in two ways. Either deciding 𝐻0 while 𝐻1 is sent and this is called error of the first 

kind or false alarm or deciding 𝐻1 while 𝐻0 is sent and this is called error of the second 

kind or miss. Probability of miss detection equals to Pm= 1-Pd where Pd is the probability 

of detection [9]. There is a tradeoff between false alarm and miss detection probabilities. 

Probability of miss detection determines how much interference is caused by SUs. False 

alarm probability, however, determines how efficiently the spectrum is used by SUs. So, 

the higher the miss probability, the higher the interference will become. A higher false 

alarm probability will result in a lot of missed opportunities [4]. 

h is deterministic in a non fading environment and detection and false alarm probabilities 

could be computed by [3]:  

                                            𝑃𝑑 = 𝑃 𝑌 > 𝜆 𝐻1 = 𝑄𝑚  2𝜆,  𝜆                             (2.7) 

                                                  𝑃𝑓 = 𝑃 𝑌 > 𝜆 𝐻0 =
Γ(𝑚, 𝜆/2)

Γ(𝑚)
                              (2.8) 

 

Where λ, m, Γ(.),‎Γ(. , .) and 𝑄𝑚 (. , .) are the detection threshold, time bandwidth product, 

complete gamma function, incomplete gamma function and the generalized Marcum Q-

function respectively . The upper incomplete gamma function and the generalized 

Marcum Q-function are given respectively by [2,8]: 

                                              Γ 𝑚, 𝑛 =  𝑡𝑚−1𝑒−𝑡𝑑𝑡
∞

𝑛

                                     (2.9) 
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                         𝑄𝑚 𝑎, 𝑏 =  
𝑥𝑚

𝑎𝑚−1
𝑒−−

𝑥2+𝑎2

2 𝐼𝑚−1(𝑎𝑥)𝑑𝑥
∞

𝑏

                             (2.10) 

  

where Im-1(.) is the modified Bessel function with (m-1)
th

 order. 

To achieve high probability of detection, false alarm probability should be as low as 

possible. Neyman-Pearson Criterion will be used in the detection process since it 

maximizes the detection probability on the constraint that the false alarm probability [10, 

16, 17, 25, 31, 37]. The determination of Pd is tied by the threshold and Pf. Since it is 

hard to choose the threshold using detection probability, false alarm probability is used to 

find the threshold. The advantage of finding the threshold using Pf, is that Pf  does not 

depend on the SNR [2,9]. In the presence of fading, the detection probability is 

conditioned on the instantaneous SNR. Pd can be found by averaging (2.7) over fading 

statistics which gives: 

                                       𝑃𝑑 =  𝑄𝑚  2𝛾,  𝜆 𝑓𝛾(𝑥)𝑑𝑥
𝑥

                                      (2.11) 

 

where 𝑓𝛾(𝑥) is the SNR probability density function (pdf) under fading environment. The 

receiver performance can be examined as a function of threshold setting. This can be 

represented using receiver operating characteristic (ROC) where it is a plot of probability 

of detection against probability of false alarm for different set of thresholds. Moreover, 

when the miss probability is plotted against false alarm probability, the plot becomes 

complementary ROC. The plot indicates what is the optimal value of detection 

probability or miss detection probability that can be achieved for certain false alarm 

probability at a particular SNR [4,9]. 
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2.2.1 Rayleigh 

 

The instantaneous SNR of Rayleigh distribution follows an exponential distribution. 

After substituting 𝑓𝛾(𝑥) by exponential distribution in (2.11) and calculating the 

integration, a closed form solution can be found as:  

𝑃𝑑 =  𝑒− 𝜆
2  

1

𝑘!
 
𝜆

2
 
𝑘𝑚−2

𝑘=0

+  
1 +  ͞γ 

 ͞γ 
 
𝑚−1

  𝑒
− 

𝜆
2(1+ ͞γ  ) − 𝑒− 𝜆

2  
1

𝑘!
 

𝜆 ͞γ 

2(1 +  ͞γ )
 
𝑘𝑚−2

𝑘=0

     (2.12) 

where‎͞γ  is the average SNR and λ is the threshold [3, 36]. 

2.2.2 Nakagami 

 

The instantaneous SNR of Nakagami distribution has the following distribution [3, 28]:  

                                          𝑓𝛾 𝛾,𝑚 =
𝑚𝑚𝛾𝑚−1

 ͞γ 𝑚Γ 𝑚 
𝑒
− 𝑚𝛾

 ͞γ     , 𝛾 ≥ 0                                           (2.13) 

Where m is the nakagami fading parameter, γ is‎the‎instantaneous‎SNR‎and‎͞ γ is the 

average SNR. Pd can be calculated after substituting 𝑓𝛾(𝑥) in (2.11) which gives:  

𝑃𝑑( ͞𝛾 , 𝑚,𝑀, 𝜆) =  𝑃𝑑 𝑀, 𝜆, 𝛾 𝑓𝛾 𝛾,𝑚 𝑑𝛾
+∞

0

 

                                                                 =  𝑒
− 𝜆

2(1+𝛾)  
1

𝑘!
 

𝜆

2(1 + 𝛾)
 
𝑘

𝑀/2−1

𝑘=0

+∞

0

𝑓𝛾 𝛾,𝑚 𝑑𝛾 

     𝑡 =
𝜆

2(1 + 𝛾)
=

   
𝜆𝑚𝑚𝑒

𝑚
 ͞𝛾

2Γ(𝑚) ͞𝛾𝑚
  

1

𝑘!

𝑀/2−1

𝑘=0

  
𝜆

2𝑡
− 1 

𝑚−1𝜆
2

0

𝑡𝑘−2𝑒
−  𝑡+𝑚𝜆

2 ͞𝛾
1
𝑡
 
𝑑𝑡     (2.14)  
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2.2.3 Lognormal 

 

The received power variation of the medium scale has a normal distribution if it is 

presented in dB which has been shown in [11] from empirical measurements. A 

lognormal random variable can be modeled from the linear channel gain as e
X
 where X is 

a Gaussian random variable with zero mean and variance σ
2
. The dB-spread 𝜎𝑑𝐵  is used 

to represent the Lognormal distribution. The relation between σ and 𝜎𝑑𝐵  is given by: σ = 

𝜎𝑑𝐵 /8.686. 𝜎𝑑𝐵  indicates the shadowing level or intensity which occurred in the channel. 

The shadowing intensity is proportional to the dB-spread so the higher the dB-spread, the 

higher the shadowing intensity. The instantaneous SNR has a lognormal distribution 

because of the shadowing. Pd does not have a closed form so it is calculated numerically 

after substituting 𝑓𝛾(𝑥) in (2.11) [3, 30]. 

 

2.2.4 Nakagami – Lognormal 

 

The Nakagami distribution is used to model the fading while Lognormal distribution is 

used to model the shadowing that occurrs in the channel. The Nakagami-Lognormal 

model is used to model both fading and shadowing occurring simultaneously at the same 

time. The Nakagami and Lognormal pdfs are given by, respectively: 

                                             𝑓𝑥 𝑥 =
2𝑚𝑚𝑥2𝑚−1𝑒−  𝑚/𝑝 𝑥2

Γ 𝑚 𝑝𝑚
, 𝑥 ≥ 0.5                           (2.15) 
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                          𝑓𝑝 𝑝 =
1

𝑝 2𝜋𝜎2
exp − 

 20 log 𝑝 − 𝜇𝑑𝐵𝑚  2

2𝜎2
 , 𝑝 > 0                   (2.16) 

where the p in (2.15) is the mean power of the received signal i.e. p= E[x
2
], σ is the 

shadowing standard deviation and μdBm is the constant area mean power where the  local 

mean power p fluctuates around it. The value of μdBm can be calculated as: μdBm=30 + 10 

E[Log10 p]. The shadowing disappears as σ approaches zero. When the shadowing is not 

present, the average power becomes deterministic. On the other hand, the received signal 

average power becomes random in the presence of shadowing. Therefore, the received 

envelope becomes conditioned by the average power p which can be written as: 

                                           𝑓𝑋|𝑃 𝑥|𝑝 =
2𝑚𝑚𝑥2𝑚−1𝑒−  𝑚/𝑝 𝑥2

Γ 𝑚 𝑝𝑚
, 𝑥, 𝑝 > 0                  (2.17) 

In general, the composite fading and shadowing pdf can be found as: 

                                                       𝑓𝑋 𝑥 =  𝑓𝑋|𝑃 𝑥 𝑝 𝑓𝑝 𝑝 𝑑𝑝
∞

0

                               (2.18) 

where fp(p) is the shadowing average power pdf. In case we have 𝑓𝑋|𝑃 𝑥|𝑝  a Nakagami 

distribution and a Lognormal distribution, computing (2.18) will give a Nakagami-

Lognormal composite distribution.  

However, the Nakagami-Lognormal composite will be approximated to a Nakagami-

Gamma distribution because the computation of Nakagami-Lognormal pdf as well as the 

average probability of detection involves complicated integral form. Neither the 

Nakagami-Lognormal pdf nor the probability of detection have a closed form expression. 

A two-parameter gamma distribution will be used to approximate the Lognormal 
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distribution. Also, it can be used to approximate many pdfs which has been tested using 

theoretical and empirical measurements[8, 27, 29, 33]. 

 

2.2.5 Nakagami – Gamma 

 

For small values of 𝜎𝑑𝐵 , Lognormal and Gamma pdfs are for data simulation 

interchangeably. For 𝜎𝑑𝐵  < 6, Gamma has a good approximation to Lognormal. The 

Gamma distribution is given by: 

                                                    𝑓𝑝 𝑝 =
𝑝𝑚0−1

Γ 𝑚0 𝑝0
𝑚0

exp  − 
𝑝

𝑝0
                                (2.19) 

where p0 is the average power and m0 is the Gamma pdf order. The relationships between 

p0 and m0 and Lognormal mean and variance are:  

                                                               𝑚0 =
1

 𝑒𝜎
2
− 1 

                                                 (2.20) 

                                                       𝑝0 = 𝜇 (𝑚0 + 1)/𝑚0                                                  (2.21)   

where σ and μ are standard deviation and mean power. Table 2.1 shows m0 values for 

different 𝜎𝑑𝐵 . The Nakagami-Gamma composite pdf can be computed as [8]: 

𝑓𝑋(𝑥) =  𝑓𝑋|𝑃 𝑥 𝑝 𝑓𝑝(𝑝)𝑑𝑝
∞

0

 

                                           =
2𝑐

Γ 𝑚0 Γ 𝑚 
 
𝑐𝑥

2
 
𝑚0+𝑚−1

𝐾𝑚0−𝑚
 𝑐𝑥 , 𝑥 > 0              (2.22) 
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Table 2.1: Relationship values between σdB and m0 

σdB 2 4 6 12 

m0 18.37 4.23 1.64 0.174 

 

where 𝑐 = 2 (𝑚/𝑝0) and 𝐾𝑚0−𝑚(. ) is the modified Bessel function with (𝑚0 −𝑚)
th

 

order. The Nakagami-Gamma composite moments is given by: 

                                          𝐸𝑐 𝑋
𝑡 =

Γ 𝑚0 + 𝑡/2 Γ 𝑚 + 𝑡/2 

Γ 𝑚0 Γ 𝑚 
 

2

𝑐
 
𝑡

                            (2.23) 

The amount of fading (AF) can be found from the moments: 

𝐴𝑓 =
variance[𝑋2]

𝐸 𝑋2 2
 

                                                                =
𝑚𝑚0 + 𝑚2𝑚0 + 𝑚𝑚0

2

𝑚2𝑚0
2

> 0                (2.24) 

Again, to find Pd  we need to use (2.11). In the case of the Nakagami-Gamma composite 

[34, 35], fγ(γ) experiencing fading and shadowing becomes conditioned on the average 

SNR. The SNR pdf of the Nakagami distribution can be expressed in terms of Gamma 

distribution, i.e.: 

                                      𝑓𝛾| ͞𝛾 𝛾 =
𝑚𝑚𝛾𝑚−1

Γ 𝑚  ͞𝛾𝑚
exp  − 

𝑚𝛾

 ͞𝛾
 , 𝛾 ≥ 0,𝑚 ≥ 0.5         (2.25) 
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The‎average‎SNR‎͞ γ equals‎to‎͞γ = E[h
2
Eb/N0] . The two-parameter Gamma distribution is 

modeled as: 

                                               𝑓 ͞𝛾0
 𝛾 =

𝑚0
𝑚0𝛾𝑚0−1

Γ 𝑚0  ͞𝛾0
𝑚0

exp  − 
𝛾

 ͞𝛾0
                              (2.26) 

where γ0 is the mean power related to average‎SNR‎͞γ and m0 is the Gamma pdf order and 

it measures the channel shadowing. The instantaneous SNR pdf under fading and 

shadowing is found as: 

                                                                𝑓𝛾 𝛾 =  𝑓 𝛾  ͞𝛾 𝑓𝑃 𝑝 
∞

0

                              (2.27) 

Therefore fγ(γ)becomes after using (2.25) and (2.26): 

𝑓𝛾 𝛾 =
2

Γ 𝑚 Γ 𝑚0 
  
𝑐0

2
 
𝑚0+𝑚

𝛾 
𝑚0+𝑚

2
 −1𝐾𝑚0−𝑚 𝑐0 𝛾 , 𝛾 > 0              (2.28) 

where 𝑐0 =  𝑚𝑚0/ ͞𝛾0 is the scaling‎parameter‎which‎has‎a‎relation‎with‎average‎SNR‎͞ γ. 

Since the computation of Pd involves integration over Marcum-Q function which is a 

complex process, another representation of the Marcum-Q function which has a series 

expansion can be used. It is expressed as: 

                       𝑄𝑢  2𝛾, 𝜆 = 1 − 𝑒
 − 

2𝛾+𝜆
2

 
  

𝜆

2𝛾
 

𝑛
2

∞

𝑛=𝑢

𝐼𝑛  2𝜆𝛾                  (2.29) 

where In(.) is the nth order modified Bessel function of the first kind. Pd is obtained after 

using (2.28) and (2.29) in (2.11) as: 
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𝑃𝑑 =   1 − 𝑒
 − 

2𝛾+𝜆
2

 
  

𝜆

2𝛾
 
𝑛/2∞

𝑛=𝑢

𝐼𝑛( 2𝜆𝛾) 
∞

0

×  
2

Γ 𝑚0 Γ 𝑚 
 
𝑐0

2
 
𝑚0+𝑚

𝛾 
𝑚0+𝑚

2
 −1𝐾𝑚0−𝑚 𝑐0 𝛾 𝑑𝛾        (2.30) 

This can be simplified after using  𝑓𝛾(𝑦)𝑑𝑦
∞

0
= 1 which becomes: 

𝑃𝑑 = 1 −
2𝑒−𝜆/2

Γ 𝑚0 Γ 𝑚 
 
𝑐0

2
 
𝑚0+𝑚

  
𝜆

2
 
𝑛/2∞

𝑛=𝑢

× 𝑒−𝛾
∞

0

 𝛾
 −𝑛+𝑚0+𝑚 

2
−1𝐼𝑛  2𝜆𝛾 𝐾𝑚0−𝑚 𝑐0 𝛾 𝑑𝛾              (2.31) 

The expression does not have a closed form because of the product In(.), Km0-m(.) and the 

exponential, so Pd  can be evaluated numerically [8]. 

 

2.3 Simulation Results for Single Secondary User 

 

The energy detector performance is simulated for a single SU with various channels 

including AWGN, Rayleigh, Nakagami, Gamma, Lognormal, Nakagami-Lognormal 

composite and Nakagami-Gamma composite using complementary ROC and Pd vs. SNR 

curves. The time-bandwidth product is taken as m = 5, hence the number of samples 

become N = 10. For complementary ROC curves the fixed SNR is 10 dB. For Pd vs. SNR 

curves, false alarm probabilities are taken as 0.01, 0.1 and 0.2. The results are produced 

using 1000 Monte-Carlo simulations.  
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2.3.1 AWGN and Rayleigh Fading Channels 

 

 

Figure ‎2-5: Complementary ROC curves for ED under AWGN and Rayleigh channels with SNRs= 5, 10 dB 

 

Figure 2.5 shows the complementary ROC curve of a single SU for ED under AWGN 

and Rayleigh fading channels with SNR of 10 dB and 5 dB across different probability of 

false alarm values. The detection performance in AWGN channel is better than the 

performance when the experiences Rayleigh fading. When the probability of false alarm 

is 0.1, the probability of miss detection for AWGN channel is 0.06  while in Rayleigh 

fading channel is 0.30 in the case of SNR =10 dB. 
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Figure ‎2-6: Probability of detection vs. SNR curves for ED under AWGN channel with false alarm probabilities 

of [0.01, 0.1, 0.2] 

 

Figure 2.6 shows the ED performance of a single SU under AWGN channel for different 

SNR from [0-30] dB. When the SNR is 10 dB, the probabilities of detection with 𝑃𝑓= 

[0.01, 0.1, 0.2] are 0.74, 0.95 and 0.98 respectively.  
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Figure ‎2-7: Probability of detection vs. SNR curves for ED under Rayleigh channel with false alarm 

probabilities of [0.01, 0.1, 0.2] 

 

Figure 2.7 shows the ED performance of a single SU under Rayleigh fading channel for 

different SNR from [0-30] dB. When the SNR is 10 dB, the probability of detections with 

𝑃𝑓= [0.01, 0.1, 0.2] are 0.51, 0.70 and 0.78 respectively. 
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2.3.2 Nakagami Fading Channels 

 

 

Figure ‎2-8: Complementary ROC curves for ED under Nakagami channel with m= 2 and m=3 

 

Figure 2.8 shows the complementary ROC curve of a single SU for ED under Nakagami 

fading channel with fading parameter m = 2 and m = 3 and SNR of 5 and10 dB across 

different probability of false alarm values. For probability of false alarm of 0.1, the 

achieved miss detection probabilities at SNR= 10 dB are 0.15 and 0.08 for m = 2 and m = 

3, respectively while at SNR= 5 dB it will give 0.45 and 0.30 for m = 2 and m = 3, 

respectively. 
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Figure ‎2-9: Probability of detection vs. SNR curves for ED under Nakagami channel with m=2, 3, 4 and false 

alarm probabilities of [0.01, 0.1, 0.2] 

 

Figure 2.9 shows the ED performance of a single SU under Nakagami fading channel 

with m = 2, 3 and 4 for different SNR from [0-30] dB. When the SNR is 10 dB, the 

probabilities of detection with 𝑃𝑓= [0.01, 0.1, 0.2] are 0.72, 0.87 and 0.91 respectively in 

the case of m = 2.  
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2.3.3 Lognormal Shadowing Channel 

 

 

Figure ‎2-10: Complementary ROC curves for ED under Lognormal channel with 𝝈𝒅𝑩= 2 dB 

 

Figure 2.10 shows the complementary ROC curve of a single SU for ED under 

Lognormal channel with SNR of 5 and10 dB across different probability of false alarm 

values. When the probability of false alarm is 0.1, the probabilities of miss detection are 

0.90 and 0.40 for SNRs 5 and 10 dB respectively. 
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Figure ‎2-11: Probability of detection vs. SNR curves for ED under Lognormal channel with 𝝈𝒅𝑩= 2 dB and false 

alarm probabilities of [0.01, 0.1, 0.2] 

 

Figure 2.11 shows the ED performance of a single SU under Lognormal channel for 

different SNR from [0-30] dB. When the SNR is 10 dB, the probabilities of detection 

with 𝑃𝑓= [0.01, 0.1, 0.2] are 0.70, 0.90 and 0.94 respectively.  
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2.3.4 Gamma Fading Channel 

 

 

Figure ‎2-12: Complementary ROC curves for ED under Gamma channel with 𝝈𝒅𝑩= 2 dB 

 

Figure 2.12 shows the complementary ROC curve of a single user for ED under Gamma 

channel with 𝜎𝑑𝐵  = 2, 6 and 12 dB and SNR of 5 and10 dB across different probability of 

false alarm values. When the probability of false alarm is 0.1, the probabilities of miss 

detection are 0.60 and 0.12 for 5 and 10 dB respectively at 𝜎𝑑𝐵 = 2 dB. 
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Figure ‎2-13: Probability of detection vs. SNR curves for ED under Gamma channel with 𝝈𝒅𝑩= 2, 6, 12 dB and 

false alarm probabilities of [0.01, 0.1, 0.2] 

 

Figure 2.13 shows the ED performance of a single SU under Gamma channel with 𝜎𝑑𝐵  = 

2 dB for different SNR from [0-30] dB. When the SNR is 10 dB, the probabilities of 

detection with 𝑃𝑓= [0.01, 0.1, 0.2] are 0.66, 0.88 and 0.93 respectively. 
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2.3.5 Nakagami – Lognormal Composite Fading Channel 

 

 

Figure ‎2-14: Complementary ROC curves for ED under Nakagami-Lognormal composite fading channel with 

m=2 and 𝝈𝒅𝑩= 2 dB 

 

Figure 2.14 shows the complementary ROC curve of a single SU for ED under 

Nakagami-Lognormal channel with 𝜎𝑑𝐵  = 2 dB, m = 2 and SNR of 5 and 10 dB across 

different probability of false alarm values. When the probability of false alarm is 0.01, 

the probabilities of miss detection are 0.65 and 0.30 for 5 and 10 dB respectively. 
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Figure ‎2-15: Probability of detection vs. SNR curves for ED under Nakagami-Lognormal composite fading 

channel with m= 2, 𝝈𝒅𝑩= 2 dB and false alarm probabilities of [0.01, 0.1, 0.2] 

 

Figure 2.15 shows the ED performance of a single user under Nakagami-Lognormal 

channel with 𝜎𝑑𝐵  = 2 dB and m = 2 for different SNR from [0-30] dB. When the SNR is 

10 dB, the probabilities of detection with 𝑃𝑓  = [0.01, 0.1, 0.2] are 0.70, 0.85 and 0.89 

respectively. This indicates that higher false alarm probability results in higher detection 

probability. 
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2.3.6 Nakagami – Gamma Composite Fading Channel 

 

 

Figure ‎2-16: Complementary ROC curves for ED under Nakagami-Gamma composite fading channel with m=2 

and 𝝈𝒅𝑩= 2, 6, 12 dB 

 

Figure 2.16 shows the complementary ROC curve of a single SU for ED under 

Nakagami-Gamma channel with 𝜎𝑑𝐵  = 2 dB, m = 2 and SNR of 5 and 10 dB across 

different probability of false alarm values. When the probability of false alarm is 0.01 and 

𝜎𝑑𝐵 = 2 dB, the probabilities of miss detection are 0.70 and 0.30 for 5 and 10 dB 

respectively. 
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Figure ‎2-17: Probability of detection vs. SNR curves for ED under Nakagami-Gamma composite fading channel 

with m= 2, 𝝈𝒅𝑩= 2, 6, 12 dB and false alarm probabilities of [0.01, 0.1, 0.2] 

 

Figure 2.17 shows the ED performance of a single SU under Nakagami-Gamma channel 

with 𝜎𝑑𝐵  = 2 dB and m = 2 for different SNR from [0-30] dB. When the SNR is 10 dB, 

the probabilities of detection with 𝑃𝑓  = [0.01, 0.1, 0.2] are 0.67, 0.82 and 0.88 

respectively.  
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2.4 Methods for Improving Pd 

 

The performance of spectrum sensing is hindered by the multipath fading and shadowing 

which degrades the detection performance. The performance of spectrum sensing can be 

improved by increasing the diversity such as increasing the number of users or using 

spatial correlation of the received signals. 

 

2.4.1 Cooperative Spectrum Sensing 

 

     Reliable sensing can be achieved if multiple users setting in different locations 

cooperate in finding the primary signal [15]. Cooperative spectrum sensing enhances the 

detection performance. A CR network is shown in Figure 2.18 where three SUs sense the 

spectrum to look for spectrum holes. The primary signal is not detected by users one and 

three because the signal is obscured by a building and tree which is known as shadowing. 

Only user two detects the presence of primary user so cooperative sensing improves the 

detection performance in a sense that users with undetected signals do not use the 

spectrum and cause interference with primary user. 
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There are two ways to process the sensed data: either by observing data or processing 

data for all users together and send data for decision fusion or by processing data 

independently for each user to make decisions independently and send their decision for a 

final decision. The former is called data fusion while the latter is called decision fusion 

[15]. Also cooperative network can be centralized or distributed network. The centralized 

CR network consists of a central unit like base station in wireless local area network 

(WLAN) or access point in cellular network for cognitive radio ad hoc networks where it 

controls  the CR network traffic regarding spectrum opportunity usage [15, 16]. The 

distributed CR network, on the other hand, does not need fusion center to make a 

decision for signal presence [13]. In data fusion, the entire data is sent to the fusion center 

to declare the status of the PU. Although it achieves accurate results, it has high 

Primary Transmitter 

Secondary User 1 Secondary User 2 Secondary User 3 

 

 Figure ‎2-18: Cooperative spectrum sensing in shadowed environment 
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implementation cost due to the large overhead of the data. However, it can be further 

simplified by using combining schemes like equal gain combination (EGC) or maximal 

ratio combination (MRC) where the users data are weighted in terms of their significance 

[1,15, 31]. To minimize the data overhead, a hard combination scheme is used with 1-bit 

or multiple-bit for decision making. The hard combination is implemented in decision 

fusion. In 1-bit decision, 0 bit decides signal is not present and 1 decides signal is present. 

Different decision fusion rules like Logical-OR (LO), Logical-AND (LA) and K out of N 

rule are used to determine the final decision. In LO, the primary user will be declared 

present if only one user declares the signal is present, the probability of detection and 

probability of false alarm of the final decision are given by respectively: 

                                        𝑃𝑑 = 1 − (1 − 𝑃𝑑,𝑖)
𝑀

𝑖=1
                                        (2.32) 

                                           𝑃𝑓𝑎 = 1 − (1 − 𝑃𝑓𝑎 ,𝑖)
𝑀

𝑖=1
                                   (2.33) 

 

where 𝑃𝑑,𝑖and 𝑃𝑓𝑎 ,𝑖  are the probability of detection and probability of false alarm of user i 

respectively and M is the total number of cooperating SUs. In contrast, the LA requires 

all users to declare the signal is present to determine signal presence. The 𝑃𝑑  and 𝑃𝑓𝑎  are 

given by respectively:  

                                                            𝑃𝑑 =  𝑃𝑑,𝑖

𝑀

𝑖=1
                                             (2.34) 

                                                           𝑃𝑓𝑎 =  𝑃𝑓𝑎 ,𝑖

𝑀

𝑖=1
                                          (2.35) 
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The K out of N rule is more general rule where LO and LA can be obtained by letting 

K=1 and K=N respectively. The majority rule is obtained by having K=N/2. The Pd and 

Pf are given by respectively [15]: 

                         𝑃𝑑 =   
𝑀

𝐾 + 𝑖
 

𝑀−𝐾

𝑖=0

(1 − 𝑃𝑑,𝑖)
𝑀−𝐾−𝑖(1 − 𝑃𝑑,𝑖)

𝐾+𝑖                           (2.36) 

                         𝑃𝑓𝑎 =   
𝑀

𝐾 + 𝑖
 

𝑀−𝐾

𝑖=0

(1 − 𝑃𝑓𝑎 ,𝑖)
𝑀−𝐾−𝑖(1 − 𝑃𝑓𝑎 ,𝑖)

𝐾+𝑖                        (2.37) 

 

2.4.2 Spatial Correlation  

 

Usually the received signals are correlated because they are generated from the same 

source. Since the energy detection is not optimal for detecting correlated signals. The 

sample covariance matrix is used in the analysis. This method enhances the detection 

performance and also mitigates the noise uncertainty. 

 

2.4.3 Heuristic Algorithms 

 

Heuristic algorithms are inspired by natural behavior of living creatures. Some examples 

of heuristic techniques are genetic algorithm, ant colony algorithm and particle swarm 

algorithm. These algorithms are used to find the optimum solution to given problem.  



40 

 

2.5 Simulation Results for Cooperative Secondary Users  

 

The energy detector performance is simulated for four cooperating SUs (𝑀 = 4) with 

various channels including AWGN, Rayleigh, Nakagami, Gamma, Lognormal, 

Nakagami-Lognormal composite and Nakagami-Gamma composite using 

complementary ROC curves. The time-bandwidth product is taken as m = 5, hence the 

number of samples become N = 10.The fixed SNR is set at 10 dB. Three techniques are 

used in the system: OR rule, AND rule and Majority rule. The performance of different 

techniques is compared to each other. The results are produced using 1000 Monte-Carlo 

simulations. The threshold is calculated from (2.8) for each SU independently. 
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2.5.1 AWGN Channel 

 

 

Figure ‎2-19: Complementary ROC curves for ED under AWGN channel with four cooperating users using 

AND, OR and Majority techniques 

 

Figure 2.19 shows the complementary ROC curve of four cooperating SUs for ED under 

AWGN channel with SNR of 10 dB across different probability of false alarm values. 

When the probability of false alarm is 0.01, the probabilities of miss detection using OR, 

AND and Majority rules are 2.3 x 10
-4

, 0.40 and 0.007 respectively. 
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2.5.2 Rayleigh Fading Channel 

 

 

Figure ‎2-20: Complementary ROC curves for ED under Rayleigh channel with four cooperating users using 

AND, OR and Majority techniques 

 

Figure 2.20 shows the complementary ROC curve of four cooperating SUs for ED under 

Rayleigh channel with SNR of 10 dB across different probability of false alarm values. 

When the probability of false alarm is 0.01, the probabilities of miss detection using OR, 

AND and Majority rules are 0.02, 0.80 and 0.16 respectively. 
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2.5.3 Nakagami Fading Channel 

 

 

Figure ‎2-21: Complementary ROC curves for ED under Nakagami channel with m=2 and four cooperating 

users using AND, OR and Majority techniques 

 

Figure 2.21 shows the complementary ROC curve of four cooperating SUs for ED under 

Nakagami fading channel with m = 2 and SNR of 10 dB across different probability of 

false alarm values. When the probability of false alarm is 0.01, the probabilities of miss 

detection using OR, AND and Majority rules are 0.05, 0.39 and 0.13 respectively. 

 



44 

 

 

Figure ‎2-22: Complementary ROC curves for ED under Nakagami channel with m=3 and four cooperating 

users using AND, OR and Majority techniques 

 

Figure 2.22 shows the complementary ROC curve of four cooperating SUs for ED under 

Nakagami fading channel with m = 3 and SNR of 10 dB across different probability of 

false alarm values. When the probability of false alarm is 0.01, the probabilities of miss 

detection using OR, AND and Majority rules are 0.024, 0.15 and 0.07 respectively. 
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2.5.4 Lognormal Shadowing Channel 

 

 

Figure ‎2-23: Complementary ROC curves for ED under Lognormal channel with 𝝈𝒅𝑩= 2 dB and four 

cooperating users using AND, OR and Majority techniques 

 

Figure 2.23 shows the complementary ROC curve of four cooperating SUs for ED under 

Lognormal channel with 𝜎𝑑𝐵  = 2 dB and SNR of 10 dB across different probability of 

false alarm values. When the probability of false alarm is 0.01, the probabilities of miss 

detection using OR, AND and Majority rules are 8 x 10
-4

, 0.50 and 0.018 respectively. 
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2.5.5 Gamma Fading Channel 

 

 

Figure ‎2-24: Complementary ROC curves for ED under Gamma channel with 𝝈𝒅𝑩= 2 dB and four cooperating 

users using AND, OR and Majority techniques 

 

Figure 2.24 shows the complementary ROC curve of four cooperating SUs for ED under 

Gamma channel with 𝜎𝑑𝐵  = 2 dB and SNR of 10 dB across different probability of false 

alarm values. When the probability of false alarm is 0.01, the probabilities of miss 

detection using OR, AND and Majority rules are 1.6 x 10
-3

, 0.60 and 0.029 respectively. 
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Figure ‎2-25: Complementary ROC curves for ED under Gamma channel with 𝝈𝒅𝑩= 6 dB and four cooperating 

users using AND, OR and Majority techniques 

 

Figure 2.25 shows the complementary ROC curve of four cooperating SUs for ED under 

Gamma channel with 𝜎𝑑𝐵  = 6 dB and SNR of 10 dB across different probability of false 

alarm values. When the probability of false alarm is 0.01, the probabilities of miss 

detection using OR, AND and Majority rules are 0.041, 0.90 and 0.25 respectively. 
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Figure ‎2-26: Complementary ROC curves for ED under Gamma channel with 𝝈𝒅𝑩= 12 dB and four cooperating 

users using AND, OR and Majority techniques 

 

Figure 2.26 shows the complementary ROC curve of four cooperating SUs for ED under 

Gamma channel with 𝜎𝑑𝐵  =12 and SNR of 10 dB across different probability of false 

alarm values. When the probability of false alarm is 0.01, the probabilities of miss 

detection using OR, AND and Majority rules are 0.31, 0.99 and 0.07 respectively. 
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2.5.6 Nakagami – Lognormal Composite Fading Channel 

 

 

Figure ‎2-27: Complementary ROC curves for ED under Nakagami-Lognormal channel with m=2, 𝝈𝒅𝑩= 2 dB 

and four cooperating users using AND, OR and Majority techniques 

 

Figure 2.27 shows the complementary ROC curve of four cooperating SUs for ED under 

Nakagami-Lognormal channel with m = 2, 𝜎𝑑𝐵  = 2 dB and SNR of 10 dB across different 

probability of false alarm values. When the probability of false alarm is 0.01, the 

probabilities of miss detection using OR, AND and Majority rules are 0.045, 0.42 and 

0.12 respectively. 
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2.5.7 Nakagami – Gamma Composite Fading Channel 

 

 

Figure ‎2-28: Complementary ROC curve for ED under Nakagami-Gamma channel with m=2, 𝝈𝒅𝑩= 2 dB and 

four cooperating users using AND, OR and Majority techniques 

 

Figure 2.28 shows the complementary ROC curve of four cooperating SUs for ED under 

Nakagami-Gamma channel with m = 2, 𝜎𝑑𝐵  = 2 dB and SNR of 10 dB across different 

probability of false alarm values. When the probability of false alarm is 0.01, the 

probabilities of miss detection using OR, AND and Majority rules are 0.05, 0.48 and 0.14 

respectively. 
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Figure ‎2-29: Complementary ROC curves for ED under Nakagami-Gamma channel with m=2, 𝝈𝒅𝑩= 6 dB and 

four cooperating users using AND, OR and Majority techniques 

 

Figure 2.29 shows the complementary ROC curve of four cooperating SUs for ED under 

Nakagami-Gamma channel with m = 2, 𝜎𝑑𝐵  = 6 dB and SNR of 10 dB across different 

probability of false alarm values. When the probability of false alarm is 0.01, the 

probabilities of miss detection using OR, AND and Majority rules are 0.071, 0.85 and 

0.28 respectively. 
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Figure ‎2-30: Complementary ROC curves for ED under Nakagami-Gamma channel with m=2, 𝝈𝒅𝑩= 12 dB and 

four cooperating users using AND, OR and Majority techniques 

 

Figure 2.30 shows the complementary ROC curve of four cooperating SUs for ED under 

Nakagami-Gamma channel with m = 2, 𝜎𝑑𝐵  = 12 dB and SNR of 10 dB across different 

probability of false alarm values. When the probability of false alarm is 0.01, the 

probabilities of miss detection using OR, AND and Majority rules are 0.30, 0.99 and 0.70 

respectively. 
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3 CHAPTER 3 

PARTICLE SWARM OPTIMIZATION 

 

3.1 Introduction 

 

PSO is a heuristic technique developed by James Kennedy and Russell C. Eberhart in 

1995. The roots of PSO come from two main concepts: swarming theory and 

evolutionary computation. Swarming theory is related to the behavior of some kinds of 

animals. PSO achieves optimum value by mimicking the natural behavior of individual 

knowledge of communicating group of a swarm flock. PSO is implemented to maximize 

an objective function for a given problem with set of parameters by exploring its search 

space [39, 40, 41, 42, 43, 44].  

Let f a function to be minimized within the search space R
n
 with n being the number of 

dimensions. The minimization process is defined as [50]: 

Given 𝑓: 𝑅𝑛
             
    𝑅 

                                   Find 𝑥  ∈  𝑅𝑛  such that 𝑓 𝑥  ≤ 𝑓 𝑥 , 𝑥 ∈  𝑅𝑛                              (3.1) 

If a function to be maximized, the maximized process becomes [50]: 

Given 𝑓: 𝑅𝑛
             
    𝑅 

                                Find 𝑥  ∈  𝑅𝑛  such that 𝑓 𝑥  ≥ 𝑓 𝑥 , 𝑥 ∈  𝑅𝑛                                 (3.2) 
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A candidate solution is considered for each individual element in the search space. x 

represents the optimal solution in the search space. Here, f is called the objective function 

where the search space is mapped to the function space. The fitness value is obtained by 

mapping the function space to the fitness space. Sometimes candidate solution elements 

undergo certain constraints e.g. (x >2) if we have constrained optimization. The candidate 

solution and fitness values can be represented graphically through fitness landscape. The 

fitness landscape is a plot between n-dimensional parameter space and one dimensional 

fitness for each parameter [50].  

A random swarm is used to initialize the conventional PSO algorithm the swarm has M 

particles each with dimension d. The fitness function is evaluated for each particle at each 

iteration. There are two sets which are stored and memorized by the algorithm: best 

particle solution and global best solution. These sets change whenever they achieve better 

values of fitness as the algorithm progresses. PSO consists of two equations: velocity 

equation and position equation. The velocity and position are adjusted for each particle 

as[45-55]: 

             𝑣𝑖𝑑
𝑡 = 𝜔𝑣𝑖𝑑

𝑡−1 + 𝑐1𝜉 𝑝𝑖𝑑
𝑡−1 − 𝑥𝑖𝑑

𝑡−1 + 𝑐2𝜂 𝑝𝑏𝑑
𝑡−1 − 𝑥𝑖𝑑

𝑡−1          (3.3) 

                                                    𝑥𝑖𝑑
𝑡 = 𝑥𝑖𝑑

𝑡−1 + 𝑣𝑖𝑑
𝑡                                       (3.4) 

where 𝑣𝑖𝑑
𝑡  is the velocity of the i

th
 particle in dimension d at iteration t, ω is the inertia 

weight, 𝑥𝑖𝑑
𝑡  is the position of the i

th
 particle in dimension d at iteration t, 𝑝𝑖𝑑

𝑡−1 is the best 

global solution at iteration t-1, 𝑝𝑏𝑑
𝑡−1 is the best particle solution at iteration t-1, c1 and c2 

are constants which are called the cognitive coefficient and the social coefficient 

respectively. η and ξ are random numbers uniformly distributed between [0,1].  
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The velocity update consists of three components: inertia component, cognitive 

component and social component. The inertia weight keeps the moving particles toward 

the intended destination. The inertia weight can have values between 0.4 - 1.2. Higher 

values of inertia weight results in particle acceleration thus higher convergence. This is 

because the exploration in the whole search space is increased. Lower values of inertia 

weight, on the other hand, result in more accuracy in the solution. The cognitive 

component serves as the memory of the particles. It directs the particles toward the area 

of high fitness value within the search space. The social component directs the particle 

toward‎the‎swarm’s‎best‎region.‎The social component and cognitive component have a 

stochastic influence resulted from the random values of η and ξ. The stochastic process 

acts as a semi-random stochastic. Therefore, the particles movement is heavily affected 

by the best particle solution and global best solution. The velocity determines the speed 

of particles movement within the search space. A higher velocity would let the particles 

stray from the search space. Therefore, the velocity is limited to Vmax for each particle 

[48-62]. 

The PSO advantages are listed as follows: 

1) PSO provides an accurate solution with few iterations. 

2) PSO maintains the cost per iteration and memory occupations for each iteration. 

3) Derivatives of the objective function is not required for the algorithm to work. 

PSO performance is affected by tuning parameters sometimes called exploration-

exploitation tradeoff. Exploration is related to finding a good optimum solution by testing 
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various solution regions. On the other hand, exploitation is related to finding a good 

optimum solution by concentrating the search around a promising solution. 

The PSO algorithm is given as: 

1) Initiate PSO position and velocity. 

2) Compute fitness value for each particle. 

3) Update best particle and global best particle fitness by comparing current and 

previous values. 

4) Update velocity and position for each particle. 

5) Repeat step (2) until the maximum iteration is reached. 

 

3.2 PSO for CR networks 

 

PSO algorithm is implemented in CR network to find the weights of each SU in the 

fusion center. Figure 3.1 shows a CR network with cooperating SUs. An internal noise in 

control channel occurs during transmission of SUs energies to the fusion center which is 

denoted by n with zero mean Gaussian noise and variance 𝛿2. At the fusion center, each 

SU energy is multiplied by a weight where they are summed and compared to a threshold 

to determine the presence or absence of PU signal. The global test statistics at the fusion 

center 𝑦𝑓𝑐  is calculated as: 

                                       𝑦𝑓𝑐 =  𝑤𝑙𝑦𝑙

𝑀

𝑙=1

= 𝒘𝑇𝒚                                            (𝟑. 𝟓) 
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where 𝒘 is the weight vector of assigned by the fusion center, 𝒚 is the sensed data vector 

of the SUs and T is the transpose of a matrix. 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝑀]𝑇 with 𝑤𝑙 ≥ 0 and 

𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑀]𝑇  [38, 63].  

 

The probability of detection is given by: 

                                𝑃𝑑 = 𝑄  
𝑄−1 𝑃𝑓  𝒘

𝑻𝑨𝒘 − 𝐸𝑠𝒉
𝑇𝒘

 𝒘𝑻𝑩𝒘
                        (3.6) 

where 𝑄(x) is the Q-function, Es is the energy signal, h is the channel gain vector, A is a 

variable vector taken from the variance of the global test statistics 𝑦𝑓𝑐  under hypothesis 

𝐻0, B is a variable vector taken from the variance of the global test statistics 𝑦𝑓𝑐  under 

hypothesis 𝐻1 and 𝑃𝑓  is false alarm probability. σ is the variance of the noise and δ is the 

variance of the internal noise in the control channel. 
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Figure ‎3-1: Cooperative spectrum sensing using PSO 
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𝑄 𝑥 , Es, h, A, B, σ and δ are expressed as, respectively [38]: 

                                                 𝑄 𝑥 =  
1

 2𝜋
𝑒−𝑡

2/2𝑑𝑡
+∞

𝑥

                                      (3.7) 

                                                   𝐸𝑠 =  |𝑠(𝑘)|2
𝑁−1

𝑘=0
                                                   (3.8) 

                                                𝐴 = 2𝑁diag2 𝜎 + diag 𝛿                                        (3.9) 

                      𝐵 = 2𝑁diag2 𝜎 + diag 𝛿 + 4𝐸𝑠diag ℎ + diag 𝛿                     (3.10) 

where 𝑠(𝑘) is primary signal, N is the number of samples , σ is the variance of the noise 

channel and δ is the variance of the internal noise in the control channel occurred during 

data transmission to the fusion center. The number of samples N can be obtained by 

multiplying the time bandwidth product m by 2 (𝑁 = 2𝑚). The ED threshold for the 

fusion center, where the combined energies from SUs are summed and compared to the 

threshold, is given by: 

                                                 𝜆 = 𝑁𝝈𝑇𝒘 + 𝑄−1 𝑃𝑓  𝒘𝑻𝑨𝒘                                  (3.11) 

where 𝜆 is the threshold, N is the number of samples, 𝝈 is the channel noise vector, 𝑄−1 

is the inverse q function, 𝑃𝑓  is false alarm probability, 𝒘 is the weight vector and A is a 

variable vector taken from the variance of the global test statistics 𝑦𝑓𝑐  under hypothesis 

𝐻0. 

The objective function to be optimized by PSO algorithm is given as: 

                              𝑓 𝑤 =
𝑄−1 𝑃𝑓  𝒘𝑻𝑨𝒘− 𝐸𝑠𝒉

𝑇𝒘

 𝒘𝑻𝑩𝒘
                                        (3.12) 
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where PSO tries to maximize the detection probability by finding the weight values of 

each user. Since there are infinite optimal solutions which can be acquired from the 

function, a constraint is applied to limit the number of the optimal solution. So if w
o
 is an 

optimal solution, then λw
o
 is also an optimal solution provided that λ is positive real 

number. The total weight sum of SUs is equal to one which can be expressed as:  

min
𝑤

𝑓 𝑤 ,   𝑠𝑡.    𝑤𝑙 = 1,

𝑀

𝑙=1

   0 ≤ 𝑤𝑙 ≤ 1,    𝑙 = 1,2, … ,𝑀                  (3.13) 

Each‎particle’s‎velocity and position in PSO can be expressed as [38, 63]: 

             𝑣𝑖𝑑
𝑡 = 𝜔𝑣𝑖𝑑

𝑡−1 + 𝑐1𝜉 𝑝𝑖𝑑
𝑡−1 − 𝑥𝑖𝑑

𝑡−1 + 𝑐2𝜂 𝑝𝑏𝑑
𝑡−1 − 𝑥𝑖𝑑

𝑡−1             (3.14) 

                                                  𝑥𝑖𝑑
𝑡 = 𝑥𝑖𝑑

𝑡−1 + 𝑣𝑖𝑑
𝑡                                             (3.15) 

where d represents the number of dimensions of the particle. In the case of the CR 

network, the number of dimensions d represents the number of cooperating users M. The 

fitness function f(w) will be multiplied by -1 i.e., –f(w) since it is a minimization of the 

function f(w). To satisfy the condition of the total weight sum equal to one, the position 

vector is divided by the total sum of position vector values i.e., 𝑥𝑖𝑑
𝑡  𝑥𝑖𝑑

𝑡𝑀
𝑑=1  . The PSO 

algorithm for the CR network is given by [38]: 

1) Generate the position and velocity vectors 𝑥𝑖𝑑
𝑡  and 𝑣𝑖𝑑

𝑡  randomly at t=0. 𝑥𝑖𝑑
𝑡  ϵ 

[0,1], 𝑣𝑖𝑑
𝑡  ϵ [-Vmax, +Vmax],‎1≤‎d ≤‎M,‎1≤‎ ‎ i ≤ S , where S is the total number of 

particles.  

2) Exchange 𝑥𝑖𝑑
𝑡

  by 𝑥𝑖𝑑
𝑡  𝑥𝑖𝑑

𝑡𝑀
𝑑=1  
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3) Evaluate fitness value for each particle in population then set 

𝒑𝑖
𝑡 = [𝑥𝑖1

𝑡 , 𝑥𝑖2
𝑡 , … , 𝑥𝑖𝑀

𝑡 ]𝑇, 𝒑𝑏
𝑡 = [𝑥𝑏1

𝑡 , 𝑥𝑏2
𝑡 , … , 𝑥𝑏𝑀

𝑡 ]𝑇. b represents the index of the 

particle which has the highest fitness value. 

4) Update 𝑣𝑖𝑑
𝑡  using equation (3.3) at t=t+1. If 𝑣𝑖𝑑

𝑡  >Vmax, let 𝑣𝑖𝑑
𝑡  = Vmax. If 𝑣𝑖𝑑

𝑡 <

−𝑉𝑚𝑎𝑥 , let 𝑣𝑖𝑑
𝑡  =-Vmax. 

5) Update 𝑥𝑖𝑑
𝑡  using equation (3.4). 

6) Exchange 𝑥𝑖𝑑
𝑡

  by 𝑥𝑖𝑑
𝑡  𝑥𝑖𝑑

𝑡𝑀
𝑑=1  . 

7) Evaluate fitness value for each particle in population. If the fitness value of 

particle i is larger than 𝒑𝑖
𝑡−1 fitness value, let 𝒑𝑖

𝑡 = [𝑥𝑖1
𝑡 , 𝑥𝑖2

𝑡 , … , 𝑥𝑖𝑀
𝑡 ]𝑇 otherwise 

let 𝒑𝑖
𝑡= 𝒑𝑖

𝑡−1. If the fitness value of particle i is larger than 𝒑𝑏
𝑡−1fitness value, let 

𝒑𝑏
𝑡 = [𝑥𝑖1

𝑡 , 𝑥𝑖2
𝑡 , … , 𝑥𝑖𝑀

𝑡 ]𝑇  otherwise let 𝒑𝑏
𝑡 =𝒑𝑏

𝑡−1. 

8) Terminate the algorithm if the maximum number of iteration is reached, otherwise 

return to step 4. 

The flowchart of the PSO algorithm is shown in Figure 3.2. 
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 Figure ‎3-2: Flowchart of the PSO algorithm 
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3.3 Simulation Results for PSO  

 

The energy detector performance is simulated for three cooperating SUs (𝑀 = 3) with 

various channels including AWGN, Rayleigh, Nakagami, Gamma, Lognormal, 

Nakagami-Lognormal composite and Nakagami-Gamma composite using ROC curves. 

The time-bandwidth product is taken as m = 5, hence the number of samples become N = 

10.The fixed SNR is set at 10 dB. The PSO parameters are taken as: the number of 

particles S = 60, the inertia weight 𝜔 = 1, the cognitive coefficient 𝑐1 = 2, the social 

coefficient 𝑐2 = 2 and the maximum number of iterations t = 30. The threshold at the 

fusion center is calculated from (3.11).The performance of PSO technique is plotted. The 

results are produced using 1000 Monte-Carlo simulations. 
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3.3.1 AWGN and Rayleigh Fading Channels 

 

 

Figure ‎3-3: ROC curves for ED under AWGN and Rayleigh channels with three cooperating SUs 

 

The ROC curve of three cooperating SUs for ED using PSO algorithm under AWGN and 

Rayleigh fading channels with SNRs of 10 dB and 5 dB across different probability of 

false alarm values is plotted in Figure 3.3. Given a probability of false alarm of 0.2, the 

probabilities of detection under AWGN at SNRs of 5 dB and 10 dB are 0.63 and 0.98, 

respectively. In the case of Rayleigh fading channel, the probabilities of detection at 

SNRs of 5 dB and 10 dB are 0.56 and 0.80, respectively. 
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3.3.2 Nakagami Fading Channel 

 

 

Figure ‎3-4 ROC curves for ED under Nakagami channel with three cooperating SUs and m= 2 

 

The ROC curve of three cooperating SUs for ED using PSO algorithm under Nakagami 

fading channel with  fading parameters m = 2 and m = 3 and SNRs of 10 dB and 5 dB 

across different probability of false alarm values is shown in Figure 3.4. When the 

probability of false alarm is 0.2, the probabilities of detection for m = 2 at SNRs of 5 dB 

and 10 dB are 0.69 and 0.91, respectively. For m = 3, the probabilities of detection at 

SNRs of 5 dB and 10 dB are 0.77 and 0.95, respectively. 
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3.3.3 Lognormal Shadowing Channel 

 

 

Figure ‎3-5: ROC curves for ED under Lognormal channel with three cooperating SUs and 𝝈𝒅𝑩= 2 dB 

 

The ROC curve of three cooperating SUs for ED using PSO algorithm under Lognormal 

channel with 𝜎𝑑𝐵  = 2 dB and SNR of 5 dB across different probability of false alarm 

values is shown in Figure 3.5. When the probability of false alarm is 0.2, the probability 

of detection is 0.63 at SNR 5 dB while the probability of detection is 0.96 at SNR 10 dB. 
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3.3.4 Gamma Fading Channel 

 

 

Figure ‎3-6: ROC curves for ED under Gamma channel with three cooperating SUs and 𝝈𝒅𝑩= 2 dB 

 

The ROC curve of three cooperating SUs for ED using PSO algorithm under Gamma 

channel with 𝜎𝑑𝐵  = 2 dB and SNR of 5 dB across different probability of false alarm 

values is plotted in Figure 3.6. When the probability of false alarm is 0.2, the 

probabilities of detection for 𝜎𝑑𝐵  = 2 at SNRs of 5 dB and 10 dB are 0.62 and 0.88, 

respectively. For 𝜎𝑑𝐵  = 6, the probabilities of detection at SNRs of 5 dB and 10 dB are 

0.53 and 0.73, respectively. 
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3.3.5 Nakagami – Lognormal Composite Fading Channel 

 

 

Figure ‎3-7: ROC curves for ED under Nakagami-Lognormal channel with three cooperating SUs, 𝝈𝒅𝑩= 2 dB 

and m=2 

 

The ROC curve of three cooperating SUs for ED using PSO algorithm under Nakagami-

Lognormal channel with m = 2, 𝜎𝑑𝐵  = 2 dB and SNR of 5 dB across different probability 

of false alarm values is shown in Figure 3.7. When the probability of false alarm is 0.2, 

the probability of detection is 0.69 at SNR 5 dB while the probability of detection is 0.90 

at SNR 10 dB. 
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3.3.6 Nakagami – Gamma Composite Fading Channel 

 

 

Figure ‎3-8: ROC curves for ED under Gamma-Lognormal channel with three cooperating SUs, 𝝈𝒅𝑩= 6 dB and 

m=2 

 

The ROC curve of three cooperating SUs for ED using PSO algorithm under Nakagami-

Gamma channel with m = 2, 𝜎𝑑𝐵  = 2 dB and 6 dB and SNRs of 5 dB and 10 dB across 

different probability of false alarm values is shown in Figure 3.8. When the probability of 

false alarm is 0.2, the probabilities of detection for 𝜎𝑑𝐵  = 2 at SNRs of 5 dB and 10 dB 

are 0.66 and 0.89, respectively. For 𝜎𝑑𝐵  = 6, the probabilities of detection at SNRs of 5 

dB and 10 dB are 0.56 and 0.73, respectively. 
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4 CHAPTER 4 

PARTICLE SWARM OPTIMIZATION-HILL CLIMBING 

HYBRID 

4.1 Introduction 

 

Hill climbing algorithm is a local search method used to make some improvement of the 

problem solution which is done by initiating a random solution to the problem. Based on 

the random chosen value, evaluation of the change of movement between neighborhood 

entities is selected. The change will become either positive or negative. Generation of a 

new individual is done if the move is positive. On the other hand, the individual is kept if 

the move is negative. The process is halted when there is no improvement to be found. 

Because of the simplicity of hill climbing algorithm, it is mostly chosen among other 

optimizing algorithms. Hill climbing algorithm is capable of giving better results than 

other algorithms when search time is limited [64, 65]. 

In terms of mathematical description, hill climbing algorithm tries to minimize a target 

function f(x) where x is a continuous or discrete vector. A single element in x is adjusted 

at each iteration. The change determines if it improves the value of f(x). The process ends 

if there is no change found in to improve the value of f(x) and x becomes locally 

optimized [64, 65]. 
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Local maximum and local minimum are encountered during optimizing problem solution. 

The problem real optimal solution cannot be found if the local optimum is not overcome. 

One of the effective methods to solve this problem is using hill climbing algorithm. The 

local optimum can be overcome by applying hill climbing algorithm to find the real 

global optimal value of the problem. However, hill climbing algorithm does not always 

converge to the global maximum since most problems are not convex but it can converge 

to a local maximum [70].  

The hill climbing algorithm process is expressed as [65]: 

1) Pick a random number in the search space. 

2) Consider‎all‎current‎state’s‎neighbors. 

3) Choose the neighbor which has the best quality and move to that state.  

4) Repeat steps (2-4) until all neighboring states have lower quality. 

5) Return the current state as the solution state. 

To‎illustrate‎how‎the‎hill‎climbing‎algorithm‎works,‎let’s‎consider‎the‎hill‎climbing‎model‎

shown in Figure 4.1.‎Here‎we‎have‎two‎current‎states:‎current‎state‎’A’ and current state 

’B’ at different time instances trying to find the global maximum using hill climbing 

algorithm. Each current state tries to find the best neighbor value in order to reach the 

global maximum. Current‎state‎’A’ will eventually reach a local maximum since it will 

move to the right based on the best neighbor to the right while current‎ state‎ ’B’‎will‎

eventually reach a global maximum since it will move to the left based on the best 

neighbor to the left. This indicates that the hill climbing algorithm does not always 

guarantee a global maximum. 
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4.2 PSO-HC for CR networks 

 

To improve the probability of detection in CR networks, a PSO-HC hybrid is proposed. 

The PSO-HC hybrid improves the global search and increases the accuracy. The optimal 

position and velocity vectors are obtained in one iteration operation. After that, the hill 

climbing algorithm is applied to further optimize the velocity vector. This is done by 

applying hill climbing algorithm to each particle velocity vector at iteration t. A random 

value is chosen from each particle velocity vector to compare between the neighbors of 

the chosen value. If one of the‎neighbors’‎value is greater than the current state value, 

then the current state will move to the next neighbor. The process is repeated whenever 

there is a higher value found between the neighbors until no further higher values 

encountered. The highest value found will be returned to the current state and replaced by 

Y 

X 

Beginning 

position 

Local 

maximum 

Global maximum 

Flat local maximum 

Global maximum 

Local maximum 

Current state A 

 

Current state B 

 Figure ‎4-1: Hill climbing model 
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its newly found value. The results of PSO-HC give better improvement than the 

conventional PSO. 

The hill climbing algorithm process applied to the PSO is expressed as: 

1) Pick a random number in the particle velocity vector (𝑣𝑖𝑑
𝑡 ) at iteration t. 

2) Consider‎ all‎ current‎ state’s‎ neighbors in the particle velocity vector (𝑣𝑖𝑑
𝑡 ) at 

iteration t. 

3) Choose the neighbor which has a higher value and move to that state.  

4) Repeat steps (2-4) until all neighboring states have lower values in the same 

particle velocity vector (𝑣𝑖𝑑
𝑡 ) at iteration t. 

5) Return the current state as the solution state within the particle velocity vector 

(𝑣𝑖𝑑
𝑡 ) at iteration t i.e., replace the current state value by the higher value found 

through the search. 

The PSO-HC hybrid procedure can be described as: 

1) Generate the position and velocity vectors 𝑥𝑖𝑑
𝑡  and 𝑣𝑖𝑑

𝑡  randomly at t=0. 𝑥𝑖𝑑
𝑡  ϵ 

[0,1] and 𝑣𝑖𝑑
𝑡  ϵ [-Vmax, +Vmax],‎1≤‎d ≤‎M,‎1≤‎‎i ≤ S where S is the total number of 

particles. 

2) Exchange 𝑥𝑖𝑑
𝑡

  by 𝑥𝑖𝑑
𝑡  𝑥𝑖𝑑

𝑡𝑀
𝑑=1  

3) Evaluate fitness value for each particle in population then set 

𝒑𝑖
𝑡 = [𝑥𝑖1

𝑡 , 𝑥𝑖2
𝑡 , … , 𝑥𝑖𝑀

𝑡 ]𝑇, 𝒑𝑏
𝑡 = [𝑥𝑏1

𝑡 , 𝑥𝑏2
𝑡 , … , 𝑥𝑏𝑀

𝑡 ]𝑇. b represents the index of the 

particle which has the highest fitness value. 

4) Update 𝑣𝑖𝑑
𝑡  using equation (3.3) at t=t+1. If 𝑣𝑖𝑑

𝑡  >Vmax, let 𝑣𝑖𝑑
𝑡  = Vmax. If 𝑣𝑖𝑑

𝑡 <

−𝑉𝑚𝑎𝑥 , let 𝑣𝑖𝑑
𝑡  =-Vmax. 
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5) Update 𝑥𝑖𝑑
𝑡  using equation (3.4). 

6) Exchange 𝑥𝑖𝑑
𝑡

  by 𝑥𝑖𝑑
𝑡  𝑥𝑖𝑑

𝑡𝑀
𝑑=1  . 

7) Apply hill climbing algorithm on the velocity vector 𝒗𝑖
𝑡 = [𝑣𝑖1

𝑡 , 𝑣𝑖2
𝑡 , … , 𝑣𝑖𝑀

𝑡 ]𝑇  at 

iteration t for each velocity particle to optimize it. 

8) Evaluate fitness value for each particle in population. If the fitness value of 

particle i is larger than 𝒑𝑖
𝑡−1 fitness value, let 𝒑𝑖

𝑡 = [𝑥𝑖1
𝑡 , 𝑥𝑖2

𝑡 , … , 𝑥𝑖𝑀
𝑡 ]𝑇 otherwise 

let 𝒑𝑖
𝑡= 𝒑𝑖

𝑡−1. If the fitness value of particle i is larger than 𝒑𝑏
𝑡−1fitness value, let 

𝒑𝑏
𝑡 = [𝑥𝑖1

𝑡 , 𝑥𝑖2
𝑡 , … , 𝑥𝑖𝑀

𝑡 ]𝑇  otherwise let 𝒑𝑏
𝑡 =𝒑𝑏

𝑡−1. 

9) Terminate the algorithm if the maximum number of iteration is reached, otherwise 

return to step 4. 

 

Figure 4.2 shows the flowchart of PSO-HC hybrid: 
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 Figure ‎4-2: Flowchart of PSO-HC hybrid 
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4.3 Simulation Results for PSO-HC Fixed SNR 

 

The energy detector performance is simulated for three cooperating SUs (𝑀 = 3) with 

various channels including AWGN, Rayleigh, Nakagami, Gamma, Lognormal, 

Nakagami-Lognormal composite and Nakagami-Gamma composite using ROC curves. 

The time-bandwidth product is taken as m = 5, hence the number of samples become N = 

10.The fixed SNR is set at 10 dB. The PSO parameters are taken as: the number of 

particles S = 60, the inertia weight 𝜔 = 1, the cognitive coefficient 𝑐1 = 2, the social 

coefficient 𝑐2 = 2 and the maximum number of iterations t = 30. The threshold at the 

fusion center is calculated from (3.). PSO-HC hybrid is applied among cooperating SUs 

to improve the detection performance. The performance of PSO and PSO-HC hybrid 

techniques are compared to each other. The results are produced using 1000 Monte-Carlo 

simulations. 
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4.3.1 AWGN Channel 

 

 

Figure ‎4-3: ROC curves for ED under AWGN channel with three cooperating SUs using PSO and PSO-HC 

 

The performance of detection probabilities are compared between PSO and PSO-HC 

algorithms. Both ROC curves are plotted in Figure 4.3 each with three cooperating SUs 

under AWGN channel with SNRs of 5 dB and 10 dB across different probability of false 

alarm values. When the probability of false alarm is 0.2, the probabilities of detection 

using PSO algorithm and PSO-HC hybrid are 0.97 and 0.98 respectively at SNR of 10 

dB. At SNR of 5 dB, the probabilities of detection are 0.63 and 0.67 for PSO algorithm 

and PSO-HC hybrid, respectively 
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4.3.2 Rayleigh Fading Channel 

 

 

Figure ‎4-4: ROC curves for ED under Rayleigh channel with three cooperating SUs using PSO and PSO-HC 

 

The performances of signal detection are compared between PSO and PSO-HC 

algorithms. Both ROC curves using PSO algorithm and PSO-HC hybrid are plotted in 

Figure 4.4 each with three cooperating SUs for under Rayleigh channel with SNRs of 5 

dB and 10 dB across different probability of false alarm values. When the probability of 

false alarm is 0.1, the probabilities of detection for PSO-HC hybrid at SNRs of 5 dB and 

10 dB are 0.46 and 0.80, respectively. For PSO, the probabilities of detection at SNRs of 

5 dB and 10 dB are 0.43 and 0.72, respectively. 
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4.3.3 Nakagami Fading Channel 

 

 

Figure ‎4-5: ROC curves for ED under Nakagami channel with three cooperating SUs and m=2 using PSO and 

PSO-HC 

 

The performance of detection probabilities are compared between PSO and PSO-HC 

algorithms. Both ROC curves are plotted in Figure 4.5 each with three cooperating SUs 

under Nakagami channel with m = 2 and SNRs of 5 dB and 10 dB across different 

probability of false alarm values. When the probability of false alarm is 0.1, the 

probabilities of detection for PSO-HC hybrid at SNRs of 5 dB and 10 dB are 0.51 and 

0.87, respectively. For PSO, the probabilities of detection at SNRs of 5 dB and 10 dB are 

0.49 and 0.86, respectively. 
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Figure ‎4-6: ROC curves for ED under Nakagami channel with three cooperating SUs and m=3 using PSO and 

PSO-HC 

 

The performance of detection probabilities are compared between PSO and PSO-HC 

algorithms. Both ROC curves are plotted in Figure 4.6 each with three cooperating SUs 

under Nakagami channel with m = 2 and SNRs of 5 dB and 10 dB across different 

probability of false alarm values. When the probability of false alarm is 0.1, the 

probabilities of detection for PSO-HC hybrid at SNRs of 5 dB and 10 dB are 0.70 and 

0.93, respectively. For PSO, the probabilities of detection at SNRs of 5 dB and 10 dB are 

0.67 and 0.93, respectively. 
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4.3.4 Lognormal Shadowing Channel 

 

 

Figure ‎4-7: ROC curves for ED under Lognormal channel with three cooperating SUs and 𝝈𝒅𝑩= 2 dB using PSO 

and PSO-HC 

 

Figure 4.7 represents the ROC curves of three cooperating SUs for ED using PSO 

algorithm and PSO-HC hybrid under Lognormal channel with 𝜎𝑑𝐵  = 2 dB and SNR 

SNRs of 5 dB and 10 dB across different probability of false alarm values. When the 

probability of false alarm is 0.1, the probabilities of detection for PSO-HC hybrid at 

SNRs of 5 dB and 10 dB are 0.55 and 0.94, respectively. For PSO, the probabilities of 

detection at SNRs of 5 dB and 10 dB are 0.50 and 0.91, respectively. 
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4.3.5 Gamma Fading Channel 

 

 

Figure ‎4-8: ROC curves for ED under Gamma channel with three cooperating SUs and 𝝈𝒅𝑩= 6 dB using PSO 

and PSO-HC 

 

Figure 4.8 represents the ROC curves of three cooperating SUs for ED using PSO 

algorithm and PSO-HC hybrid under Gamma channel with 𝜎𝑑𝐵  = 6 dB and SNRs of 5 dB 

and 10 dB across different probability of false alarm values. When the probability of false 

alarm is 0.1, the probabilities of detection for PSO-HC hybrid at SNRs of 5 dB and 10 dB 

are 0.47 and 0.72, respectively. For PSO, the probabilities of detection at SNRs of 5 dB 

and 10 dB are 0.41 and 0.65, respectively. 
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4.3.6 Nakagami – Lognormal Composite Fading Channel 

 

 

Figure ‎4-9: ROC curves for ED under Nakagami-Lognormal channel with three cooperating SUs, m= 2 and 

𝝈𝒅𝑩= 2 dB using PSO and PSO-HC 

 

The ROC curves of three cooperating SUs for ED using PSO algorithm and PSO-HC 

hybrid under Nakagami-Lognormal channel with m = 2, 𝜎𝑑𝐵   = 2 dB and SNRs of 5 dB 

and 10 dB across different probability of false alarm values are represented in Figure 4.9. 

When the probability of false alarm is 0.1, the probabilities of detection using PSO 

algorithm and PSO-HC hybrid are 0.86 and 0.88 respectively at SNR of 10 dB. For SNR 

of 5 dB, the probabilities of detection are 0.57 and 0.61 for PSO algorithm and PSO-HC 

hybrid, respectively. 
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4.3.7 Nakagami – Gamma Composite Fading Channel 

 

 

Figure ‎4-10: ROC curves for ED under Nakagami-Gamma channel with three cooperating SUs, m= 2 and 𝝈𝒅𝑩= 

2 dB using PSO and PSO-HC 

 

The ROC curves of three cooperating SUs for ED using PSO algorithm and PSO-HC 

hybrid under Nakagami-Gamma channel with m = 2, 𝜎𝑑𝐵   = 2 dB and SNRs of 5 dB and 

10 dB across different probability of false alarm values are represented in Figure 4.10. 

When the probability of false alarm is 0.1, the probabilities of detection using PSO 

algorithm and PSO-HC hybrid are 0.83 and 0.86 respectively at SNR of 10 dB. For SNR 

of 5 dB, the probabilities of detection are 0.56 and 0.60 for PSO algorithm and PSO-HC 

hybrid, respectively. 
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Figure ‎4-11: ROC curves for ED under Nakagami-Gamma channel with three cooperating SUs, m= 2 and 𝝈𝒅𝑩= 

6 dB using PSO and PSO-HC 

 

The ROC curves of three cooperating SUs for ED using PSO algorithm and PSO-HC 

hybrid under Nakagami-Gamma channel with m = 2, 𝜎𝑑𝐵  = 6 dB and SNRs of 5 dB and 

10 dB across different probability of false alarm values are represented in Figure 4.11. 

When the probability of false alarm is 0.1, the probabilities of detection using PSO 

algorithm and PSO-HC hybrid are 0.73 and 0.65 respectively at SNR of 10 dB. For SNR 

of 5 dB, the probabilities of detection are 0.46 and 0.51 for PSO algorithm and PSO-HC 

hybrid, respectively. 
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4.4 Simulation Results for PSO-HC Fixed Pf 

 

The energy detector performance is simulated for three cooperating SUs (𝑀 = 3) with 

various channels including AWGN, Rayleigh, Nakagami, Gamma, Lognormal, 

Nakagami-Lognormal composite and Nakagami-Gamma composite using ROC curves.  

The time-bandwidth product is taken as m = 5, hence the number of samples become N = 

10.The fixed false alarm probability is set at 0.1. PSO-HC hybrid is applied among 

cooperating users to improve the detection performance. The PSO parameters are taken 

as: the number of particles S = 60, the inertia weight 𝜔 = 1, the cognitive coefficient 

𝑐1 = 2, the social coefficient 𝑐2 = 2 and the maximum number of iterations t = 30. The 

threshold at the fusion center is calculated from (3.11). PSO-HC hybrid is applied among 

cooperating SUs to improve the detection performance. The performance of PSO and 

PSO-HC hybrid techniques are compared to each other. The results are produced using 

1000 Monte-Carlo simulations. 
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4.4.1 AWGN Channel 

 

 

Figure ‎4-12: Probability of detection vs. SNR curves for ED under AWGN channel with three cooperating SUs 

and false alarm probability of 0.1 using PSO and PSO-HC 

 

The performance of detection probabilities are compared between PSO and PSO-HC 

algorithms. Both ROC curves are plotted in Figure 4.12 each with three cooperating SUs 

under AWGN channel for different SNR from [0-30] dB. When the SNR is 10 dB, the 

probabilities of detection using PSO algorithm and PSO-HC hybrid are 0.95 and 0.98 

respectively. 
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4.4.2 Rayleigh Fading Channel 

 

 

Figure ‎4-13: Probability of detection vs. SNR curves for ED under Rayleigh channel with three cooperating SUs 

and false alarm probability of 0.1 using PSO and PSO-HC 

 

The performance of detection probabilities are compared between PSO and PSO-HC 

algorithms. Both ROC curves are plotted in Figure 4.13 each with three cooperating SUs 

under Rayleigh channel for different SNR from [0-30] dB. When the SNR is 10 dB, the 

probabilities of detection using PSO algorithm and PSO-HC hybrid are 0.73 and 0.78 

respectively. 
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4.4.3 Nakagami Fading Channel 

 

 

Figure ‎4-14: Probability of detection vs. SNR curves for ED under Nakagami channel with three cooperating 

SUs, m= 2 and false alarm probability of 0.1 using PSO and PSO-HC 

 

Figure 4.14 represents the ED performance of three cooperating SUs for using PSO 

algorithm and PSO-HC hybrid under Nakagami channel with m = 2 for different SNR 

from [0-30] dB. When the SNR is 10 dB, the probabilities of detection using PSO 

algorithm and PSO-HC hybrid are 0.87 and 0.88 respectively. 
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Figure ‎4-15: Probability of detection vs. SNR curves for ED under Nakagami channel with three cooperating 

SUs, m= 3 and false alarm probability of 0.1 using PSO and PSO-HC 

 

Figure 4.15 represents the ED performance of three cooperating SUs for using PSO 

algorithm and PSO-HC hybrid under Nakagami channel with m = 3 for different SNR 

from [0-30] dB. When the SNR is 10 dB, the probabilities of detection using PSO 

algorithm and PSO-HC hybrid are 0.93 and 0.94 respectively. 
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Figure ‎4-16: Probability of detection vs. SNR curves for ED under Nakagami channel with three cooperating 

SUs, m= 4 and false alarm probability of 0.1 using PSO and PSO-HC 

 

Figure 4.16 represents the ED performance of three cooperating SUs for using PSO 

algorithm and PSO-HC hybrid under Nakagami channel with m = 4 for different SNR 

from [0-30] dB. When the SNR is 10 dB, the probabilities of detection using PSO 

algorithm and PSO-HC hybrid are 0.95 and 0.96 respectively. 
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4.4.4 Lognormal Shadowing Channel 

 

 

Figure ‎4-17: Probability of detection vs. SNR curves for ED under Lognormal channel with three cooperating 

SUs, 𝝈𝒅𝑩= 2 dB and false alarm probability of 0.1 using PSO and PSO-HC 

 

The ED performance of three cooperating SUs for using PSO algorithm and PSO-HC 

hybrid under Lognormal channel with 𝜎𝑑𝐵  = 2 dB for different SNR from [0-30] dB is 

shown in Figure 4.17. When the SNR is 10 dB, the probabilities of detection using PSO 

algorithm and PSO-HC hybrid are 0.91 and 0.94 respectively. 
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4.4.5 Gamma Fading Channel 

 

 

Figure ‎4-18: Probability of detection vs. SNR curves for ED under Gamma channel with three cooperating SUs, 

𝝈𝒅𝑩= 2 dB and false alarm probability of 0.1 using PSO and PSO-HC 

 

The ED performance of three cooperating SUs for using PSO algorithm and PSO-HC 

hybrid under Gamma channel with 𝜎𝑑𝐵  = 2 dB for different SNR from [0-30] dB is 

shown in Figure 4.18. When the SNR is 10 dB, the probabilities of detection using PSO 

algorithm and PSO-HC hybrid are 0.89 and 0.93 respectively. 
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Figure ‎4-19: Probability of detection vs. SNR curves for ED under Gamma channel with three cooperating SUs, 

𝝈𝒅𝑩= 6 dB and false alarm probability of 0.1 using PSO and PSO-HC 

 

The ED performance of three cooperating SUs for using PSO algorithm and PSO-HC 

hybrid under Gamma channel with 𝜎𝑑𝐵  = 6 dB for different SNR from [0-30] dB is 

shown in Figure 4.19. When the SNR is 10 dB, the probabilities of detection using PSO 

algorithm and PSO-HC hybrid are 0.65 and 0.70 respectively. 
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4.4.6 Nakagami – Lognormal Composite Fading Channel 

 

 

Figure ‎4-20: Probability of detection vs. SNR curves for ED under Nakagami-Lognormal channel with three 

cooperating SUs, m=2, 𝝈𝒅𝑩= 2 dB and false alarm probability of 0.1 using PSO and PSO-HC 

 

The ED performance of three cooperating SUs for using PSO algorithm and PSO-HC 

hybrid under Nakagami-Lognormal channel with m = 2 and 𝜎𝑑𝐵  = 2 dB for different SNR 

from [0-30] dB is shown in Figure 4.20. When the SNR is 10 dB, the probabilities of 

detection using PSO algorithm and PSO-HC hybrid are 0.86 and 0.88 respectively. 
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4.4.7 Nakagami – Gamma Composite Fading Channel 

 

 

Figure ‎4-21: Probability of detection vs. SNR curves for ED under Nakagami-Gamma channel with three 

cooperating SUs, m=2, 𝝈𝒅𝑩= 2 dB and false alarm probability of 0.1 using PSO and PSO-HC 

 

Figure 4.21 shows the ED performance of three cooperating SUs for using PSO algorithm 

and PSO-HC hybrid under Nakagami-Gamma channel with m = 2 and 𝜎𝑑𝐵  = 2 dB for 

different SNR from [0-30] dB. When the SNR is 10 dB, the probabilities of detection 

using PSO algorithm and PSO-HC hybrid are 0.85 and 0.86 respectively. 
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Figure ‎4-22: Probability of detection vs. SNR curves for ED under Nakagami-Gamma channel with three 

cooperating SUs, m=2, 𝝈𝒅𝑩= 6 dB and false alarm probability of 0.1 using PSO and PSO-HC 

 

Figure 4.22 shows the ED performance of three cooperating SUs for using PSO algorithm 

and PSO-HC hybrid under Nakagami-Gamma channel with m = 2 and 𝜎𝑑𝐵  = 6 dB for 

different SNR from [0-30] dB. When the SNR is 10 dB, the probabilities of detection 

using PSO algorithm and PSO-HC hybrid are 0.67 and 0.71 respectively. 
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4.5 Simulation Results for PSO-HC Fixed SNR 

 

The performance analysis of detection probability is summarized for single SU in Table 

4.1, four cooperating SUs using OR, AND and Majority rules in Table 4.2, three 

cooperating SUs using PSO in Table 4.3 and three cooperating SUs using PSO-HC 

hybrid in Table 4.4. 

 

Table 4.1: performance analysis of detection probability summary for single SU 

SNR 

(dB) 

AWGN Rayleigh Nakagami 

(m=3) 

Lognormal 

(𝜎𝑑𝐵= 2 

dB) 

Gamma 

(𝜎𝑑𝐵= 2 

dB) 

Nakagami-

Lognormal 

(m=2, 𝜎𝑑𝐵   

= 2 dB) 

Nakagami-

Gamma 

(m=2, 𝜎𝑑𝐵=2 

dB) 

5 0.50 0.40 0.70 0.10 0.45 0.6 0.45 

10 0.94 0.7 0.92 0.6 0.88 0.83 0.81 

 

 

Table 4.2: performance analysis of detection probability summary for four cooperating SUs using OR, AND and 

Majority rules 

SNR 

(dB) 

AWGN Rayleigh Nakagami 

(m=2) 

Lognormal 

(𝜎𝑑𝐵= 2 

dB) 

Gamma 

(𝜎𝑑𝐵= 2 

dB) 

Nakagami-

Lognormal 

(m=2, 𝜎𝑑𝐵   

= 2 dB) 

Nakagami-

Gamma 

(m=2, 𝜎𝑑𝐵=2 

dB) 

OR 0.9998
 

0.98 0.95 0.9992 0.9984 0.955 0.95 

AND 0.60 0.20 0.61 0.50 0.40 0.58 0.52 

Majority 0.993 0.84 0.87 0.982 0.271 0.88 0.86 

 

Table 4.3: performance analysis of detection probability summary for three cooperating SUs using PSO 

SNR 

(dB) 

AWGN Rayleigh Nakagami 

(m=2) 

Lognormal 

(𝜎𝑑𝐵= 2 

dB) 

Gamma 

(𝜎𝑑𝐵= 6 

dB) 

Nakagami-

Lognormal 

(m=2, 𝜎𝑑𝐵   

= 2 dB) 

Nakagami-

Gamma 

(m=2, 𝜎𝑑𝐵=6 

dB) 

5 0.49 0.43 0.49 0.50 0.41 0.57 0.46 

10 0.96 0.72 0.86 0.91 0.65 0.86 0.65 
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Table 4.4: performance analysis of detection probability summary for three cooperating SUs using PSO-HC 

hybrid 

SNR 

(dB) 

AWGN Rayleigh Nakagami 

(m=2) 

Lognormal 

(𝜎𝑑𝐵= 2 

dB) 

Gamma 

(𝜎𝑑𝐵= 6 

dB) 

Nakagami-

Lognormal 

(m=2, 𝜎𝑑𝐵   

= 2 dB) 

Nakagami-

Gamma 

(m=2, 𝜎𝑑𝐵=6 

dB) 

5 0.51 0.46 0.51 0.55 0.47 0.61 0.51 

10 0.97 0.80 0.87 0.94 0.72 0.88 0.73 
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5 CHAPTER 5 

CONCLUSION 

 

 

5.1 Conclusion 

 

CR technology makes efficient use of the radio spectrum by using the spectrum in an 

opportunistic manner. Also PSO is an efficient optimization method to solve problems. 

This thesis proposes a new PSO-HC hybrid method where it combines PSO algorithm 

and HC algorithm. PSO-HC hybrid is implemented in CR networks to improve the 

detection probability performance using energy detection. 

Simulation results show the performance of PSO-HC hybrid across different fading 

channels. PSO-HC hybrid is compared to the conventional PSO. In non-fading/ low 

fading channels , the performance improves a little over the conventional PSO. This can 

be seen in AWGN channel and Nakagami fading channel with higher fading parameter m 

results. On the other hand, in deep fading channels, the performance improves a greatly 

over the conventional PSO. This can be seen in results of Rayleigh channel and 

Nakagami-Gamma fading channel with higher spread. PSO-HC hybrid performs well in 

deep fading channels and it is easy to implement especially when the time is limited. 
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5.2 Future Work 

 

The energy detector performance is simulated for using various channels including 

AWGN, Rayleigh, Nakagami, Gamma, Lognormal, Nakagami-Lognormal composite and 

Nakagami-Gamma composite using ROC and complementary ROC curves. This work 

can be extended by implementing double threshold in energy detector where two 

thresholds are used to determine the PU signal presence. This method shows 

improvement in energy detection performance over the energy detection performance 

when using single threshold method. Also, in our work we have considered flat fading 

channels for the various fading channels used. The work can also be extended to 

frequency selective fading environments to see how it affects the detection performance 

of the energy detector. The signals processed through energy detector are assumed to be 

i.i.d where the ED is optimal is this case. However, the ED is not optimal for correlated 

signals. To solve this problem, one can use other detection methods e.g., maximum 

eigenvalue detection where it uses the maximum eigenvalue of a sample covariance 

matrix of the received signal as test statistics. This method gives better detection 

performance than ED method when signals are correlated. 
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