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ABSTRACT

Full Name . Ali Abdullah Al-Saihati
Thesis Title . Optimization of Energy Detection in Cognitive Radio Networks
Major Field . Electrical Engineering

Date of Degree : May 2014

The emergence of wireless services demands an efficient use of the radio spectrum due to
its scarcity. This problem can be addressed by using Cognitive radio (CR) technology
that uses the spectrum in an opportunistic manner. Spectral reuse is one application of
cognitive radio that permits secondary users/networks to use the licensed spectrum of the
primary users when they are not active. Different types of spectrum sensing methods will
be explained. The signal model for CR networks under AWGN channel as well as CR
networks experiencing Rayleigh, Nakagami, Lognormal, Gamma, Nakagami-Lognormal
composite and Nakagami-Gamma composite fading will be discussed. The achievable
average probability of detection is presented for different types of channels. Simulation
results will be presented for the detection performance of CR networks under different
channels for a single SU. After that, suggested methods for improving the detection
performance such as cooperative spectrum sensing, spatial correlation and heuristic
methods will be investigated. The detection performance of cooperating secondary users
(SU) will be shown through simulation results for different fading channels. Particle
Swarm Optimization (PSO) is a heuristic technique which achieves optimum value by
mimicking the natural behavior of individual knowledge of communicating group of a

swarm flock. PSO is implemented to maximize an objective function for a given problem
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with set of parameters by exploring its search space. The implementation of PSO in CR
networks is discussed. Simulation results of detection performance using PSO technique
are produced among different fading channels. The new proposed method, PSO-HC
hybrid is explained how it is implemented in CR networks. Results obtained from using
PSO-HC hybrid method under different fading channels are compared to the
conventional PSO method. While the PSO-HC hybrid performance shows little
improvements in non-fading/ low fading channels, it gives good performance in deep

fading channels compared to the conventional PSO method.
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CHAPTER 1

INTRODUCTION

1.1  Cognitive Radio

Nowadays, the demand for radio spectrum has increased significantly which is a result of
the increase of consumers’ interest in wireless services. Also, the emergence of new
applications and mobile internet access requires a huge amount of spectrum usage. The
spectrum is a limited resource that is regulated by government agencies like the Federal
Communications Commission (FCC) in the US. Frequency bands are licensed
exclusively to users to operate their communications. Today, it is hard to find vacant
bands since they are mostly occupied. Recent measurements conducted by Spectrum
Policy Task Force (SPTF) within FCC show the spectrum usage from 0 to 6 GHz bands
varies between 15% and 85%. This led the FCC to propose the opening of licensed bands
to unlicensed users. This posts a new challenge to find new ways to utilize the spectrum
efficiently. Cognitive Radio (CR) can be used to effectively increase the spectrum usage

[1,2,3,4,5,67].

CR is a new technology that uses the spectrum in an opportunistic manner. Spectral reuse

is one application of cognitive radio that permits secondary users (SUs)/networks to use



the licensed spectrum of the primary users (PUs) when they are not active. This is done
by performing frequent channel sensing by SUs to detect the presence of PUs. SUs can
use the spectrum for communication while primary users are not using the spectrum.
However, detecting the presence of PUs must be accurate since SUs need to vacate the
channel within certain time duration. This will permit PUs to utilize the spectrum when
they become active. The spectrum usage for different frequencies along time can be seen
in Figure 1.1. IEEE 802.22 wireless regional area network WRAN communication
system implements spectrum reuse concept. It operates in the VHF/UHF bands which are

used for TV broadcasting services and wireless microphone [4,9].

In practice, channel sensing is challenging matter because of some aspects. The SNR of
the PUs might be very low. Also, it is difficult to sense the wireless channel because of
the presence of multipath fading and time dispersion. The signal power could fluctuate by
30 dB resulted from multipath fading. Also, when the time dispersion of the channel is

unknown, the coherent detection may not be reliable [4].
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Figure 1.1: Spectrum usage Across time and frequency

1.2 Thesis Objectives

The thesis objectives are:

e Survey spectrum sensing techniques for cognitive radio.

e Study spectrum sensing in different radio environments.

e Evaluate the impact of channel fading and shadowing in cognitive radio network
(Rayleigh, Nakagami, Lognormal, Gamma, Nakagami-Lognormal composite,
Nakagami-Gamma composite).

e Look at methods of improving probability of detection and lowering probability
of miss (Diversity, Correlation techniques, Heuristic algorithms).

e Implement Particle Swarm Optimization and Particle Swarm Optimization- Hill

Climbing Hybrid to improve probability of detection.



1.3 Contribution

The main contribution of the thesis is implementing PSO-HC hybrid technique to
improve the detection performance of the CR network. PSO-HC hybrid method will be
applied to seven different types of channels: AWGN, Rayleigh, Nakagami, Lognormal,

Gamma, Nakagami-Lognormal composite and Nakagami-Gamma composite.

1.4 Thesis Outline

The thesis is organized as follows. Chapter 2 discusses different types of spectrum
sensing methods. The signal model for CR networks under AWGN channel as well as CR
networks experiencing Rayleigh, Nakagami, Lognormal, Gamma, Nakagami-Lognormal
composite and Nakagami-Gamma composite fading will be explained. Simulation results
will be presented for the detection performance of CR networks under different channels
for a single SU. After that, suggested methods for improving the detection performance
such as cooperative spectrum sensing, spatial correlation and heuristic methods will be
investigated. The detection performance of cooperating SU will be shown through
simulation results for different fading channels. Chapter 3 talks about PSO and gives an
introduction of this technique. Then, the implementation of PSO in CR networks is
discussed. Simulation results of detection performance using PSO technique are produced
among different fading channels. Chapter 4 discusses the new proposed method, PSO-HC
hybrid and how it is implemented in CR networks. Results obtained from using PSO-HC
hybrid method under different fading channels are discussed and compared to the
conventional PSO method. Finally, Chapter 5 summarizes the thesis and the obtained

new results.



CHAPTER 2

LITERATURE REVIEW

2.1 Spectrum Sensing Methods

There are different methods for channel or spectrum sensing. Energy detection (ED),
cyclosationary detection, matched filtering detection and waveform based detection are
some types of sensing methods which are used to identify the signal transmission method.
Some methods can obtain the characteristics of the detected signal. The choice of a
sensing method depends on the required computational complexity, sensing duration,
network requirements and accuracy required to achieve. Several sensing methods are

shown in terms of accuracy and complexity in Figure 2.1 [4,10].
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Figure 2.1: Several sensing method in accordance to their sensing accuracy and complexity

2.1.1 Energy Detection

In ED (known also as radiometry), a priori information of the source signal is not
needed [10, 3]. It performs well in unknown dispersed channels and fading environments.
ED has a good accuracy with low complexity implementation. As the averaging time
increases, the SNR is improved which, in turn, decreases the noise power. In order to
achieve certain detection probability, on the other hand, the required number of samples
is of O(1/SNR?) so it suffers from long detection time [5,12, 24]. This is because the
detection is non-coherent. Although ED is simple to implement, it has many
disadvantages. Unknown or changing noise level has a great impact on the threshold used

for primary user signal detection. Moreover, it is difficult to set a threshold in frequency



selective fading environment. Another issue of the ED is that it can’t cancel the
interference using adaptive signal processing due to the inability to distinguish among
modulated signals, noise and interference. So, it is up to CR users to take into account the
other SUs as well as noise [3,12]. ED is not optimal for detecting correlated signals

although it is optimal for independent and identically distributed (i.i.d.) signals.

The block diagram of ED is shown in Figure 2.2. Let the output of the integrator be Y
which is given by:

Y = %ft;lx(rﬂzdr (2.1)

and has the following distribution:

2

H

Y~ {XgTW' 0 (2.2)
Xotw (2Y), H;

where x2rw (2y) and x3rw (2y) represent the central and non-central chi-square
distributions respectively, H, is a signal hypothesis which represents the non existence of
the primary signal and H; is a signal hypothesis which represents the existence of the
primary signal . They both have 2 TW degrees of freedom. For the non-central chi-square
distribution, the distribution is not central by 2y where y is the instantaneous SNR. TW is
the time-bandwidth product (or time delay bandwidth product) and is assumed to be
integer for simplicity. It will be denoted by m. The signal is passed through a band pass
filter (BPF). Then it is passed to a squaring device until it is averaged over a period T. For
the narrowband signals and sinewaves signals, the implementation of this method

becomes inflexible. Another implementation of ED method can be done in frequency



domain where the spectrum is estimated by using fast Fourier Transform (FFT). This
method is known as periodogram. Figure 2.3 shows implementation of ED using FFT.
Multiple signals can be sensed simultaneously since the power spectral density (PSD) can

be found to realize group of sub-bands [13, 14].

BPF (Y ' —
X({t) —» > ' > J; > ] ——  Decide Hy or H;
Threshold Device
Figure 2.2: Energy detector block diagram
2
Yt ———p AD > Kpt FFT > I > Averag? M I—» Teststatistics T
bins N times

Figure 2-3: Energy detector using FFT

ED performs well in wideband spread spectrum. The signal detection can be improved in
two ways: either increasing the FFT frequency resolution by increasing the number of
points K or increasing the number of averages N. If K increases, the sensing time
increases while if the number of averages increases, the signal energy estimation
improves [14]. A fixed FFT size is chosen in order to get the required resolution at
moderate complexity and low latency in practice. Hence, the number of averages
becomes a variable parameter [14]. Practically, the wideband spectrum sensing can be
done in two stages: ED with low complexity is used to find vacant or idle sub-bands then

next a more complex advanced spectrum sensing technique is used for another usage of



sub-bands [14]. Examples of advanced spectrum sensing techniques are filter banks
power spectrum estimation, multitaper spectrum estimator, wavelet based spectrum
sensing and spectrum detection based on compressed sampling [14]. Because the
transmitted powers may be different for licensed sub-bands and the random noise is
present in unoccupied sub-bands, the power spectrum estimator must be accurate. The
spectral dynamic range (SDR) which is the ratio of maximum to minimum spectral power
is used in power spectrum estimator to determine the accuracy. A higher accuracy is

achieved with higher SDR values.

When the SNR of the signal is very low, the signal during detection might be
indistinguishable. This is known as noise uncertainty and it severely degrades the
performance of the energy detector. The noise comes from the local thermal noise and the
environmental noise. The former is generated because of the variations of temperature
over time while the latter comes from the aggregate random signals from different
sources. Let x dB, a2 and a2 be the uncertainty noise for estimation, noise power and
interference  power  respectively. o2 varies between ¢210-*/19  and
g210%/10) (g2 € [10~*/1Dg2  10*/10)52]). For the primary signal to be always
detected, the received signal power must be greater than the threshold gz =10~-(*/190 42
and for the worst case of g2 = 10%/19 g2 gZ= 102*/10)g2  Therefore, the received
primary signal power must be greater than (¢Z — ¢2) for energy detection to succeed in
signal detection [13]. This defines the SNR wall which implies that the signal cannot be

detected below the minimum value. The SNR wall is given by [15]:

2 2
n 2x
Y = —0_2 =1010 — 1 (23)



To illustrate, when the noise variance uncertainty is 0.5 dB the signal cannot be detected

at — 21 dB using ED.

2.1.2 Filter Bank Power Spectrum

In filter bank power spectrum, the whole wide spectrum of interest is divided into N

sub-bands. Each sub-band has a sub-filter which can be expressed as:
h;(n) = h(n)e/2™fi (2.4)

where hi(n) indicates the i sub-band filter, h(n) represents the zeroth sub-band which is a
low pass filter of the filter bank also known as prototype filter and f; is the normalized
center frequency given by fi = i/N. The spectral components extraction is done through
each sub-band filter. Figure 2.4 shows the filter bank power spectrum estimation. The
performance of spectral estimation depends on the selection of the prototype filter. The
frequency response should be designed such that the power leakage coming from the side
lobes of neighboring sub-bands is minimum. The side lobes also determine the power

spectrum estimator SDR. The i sub-band signal energy can be estimated as:

2

N—-1
S(f) = Z y(m)w(n)e /2 m
n=0

10



N-1 2
Z w(n)e 2 m y(N — 1 — n) (2.5)
n=0

where w(n) is a symmetric window function which is given by:
w(n)= w(N-1-n)

The window function w(n) is actually the prototype filter bank [14]. It is used to suppress
side lobes in which cut-off frequencies are tapered [13]. For example, to apply simple
FFT energy detection, a rectangular window is applied. Because of the simplicity of the
prototype filter, however, the SDR is limited due to the large lobe generated [14]. The
performance of the periodogram as spectral estimator can be further improved by

implementing several window functions designed to generate less side lobes.

h;(n) = h(n)e/2mfin |

yn) ————» —— 35D

A 4

Figure 2.4: Filter bank power spectrum estimation

2.1.3 Multitaper Spectrum Estimation

When the received signal is processed before the FFT operation, the process is called
tapering. Although tapering decreases the leaked power coming from neighboring sub-
bands, there will be a loss in information due to the truncation in time domain window
[12,14]. The variance of the power spectrum estimate increases as the information loss

increases which, in turn, decreases the accuracy [12,14]. To solve the problem, a

11



multitaper power spectral estimator is applied where multitapers of prototype of filters
are used. Tapers are implemented using Slepian sequences which are a special family of
sequences [13]. The leakage power is minimum because the main lobe energy
concentration of the Fourier transforms is maximum. Moreover, each sequence is
orthogonal to others which results in generating outputs estimate from the tapers which
are uncorrelated given the signal variation is negligible for each sub-band in the
spectrum. Therefore, a minimum variance is obtained from averaging the estimates. The
multitaper spectral estimation has a nearly optimal performance since the Cramer-Rao
bound for a nonparametric is almost achieved. However, this can be achieved at high

implementation complexities [13].

2.1.4 Wavelet Based Spread Spectrum

The whole wide spectrum is treated as a consecutive frequency sub-bands in which the
adjacent sub-bands have discontinuous power [13]. In wavelet based detection, estimated
PSD irregularities with wavelet transformed are analyzed to determine spectral holes. For
the wavelet based detection, CR network knows the entire spectrum band except for the
number of licensed spectrum bands. Each occupied band PSD is assumed to be smooth

and almost flat. Also, the noise PSD is assumed to be flat for the entire bandwidth [13].

12



2.1.5 Compressed Sensing

Sub-Nyquist sampling has been used to find the sparsity of wireless signals in frequency
domain. When the primary user occupancy is low, it will have some sparsity. The
fundamental limit on the sampling rate can be found using maximum sparsity order.
However, high sampling is required in this method which results in wasted sensing
resources. The performance can be improved by using a two step compressed spectrum
sensing (TS-CSS) scheme. The actual sparsity order is estimated in the first step which
can be determined from the number of zero elements of the primary signal vector. After
that, the additional number of samples required to reconstruct the wideband spectrum and
find spectrum hole is decided by the number of estimated sparsity order that can be done
adaptively in the second step. Although this method requires a complex clocking system
due to the random sampling, it has a lower average sampling rate with good sensing

performance [13].

2.2 Signal Model

There are two hypothesizes for signal detection: Ho and Hy. Ho indicates signal does not
exist while Hj indicates signal is present. The received signal samples for the given

hypothesizes are given by [3]:

n(t), HO

x(6) = { hs(®) +n(0),  H (2.6)
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where x(t) is the SU received signal, s(t) is the primary user transmitted signal, n(t) is the
additive white Gaussian noise (AWGN) and h is the channel response. Errors can be
made in two ways. Either deciding Hy, while H; is sent and this is called error of the first
kind or false alarm or deciding H; while Hy is sent and this is called error of the second
kind or miss. Probability of miss detection equals to Pp,= 1-P4where Py is the probability
of detection [9]. There is a tradeoff between false alarm and miss detection probabilities.
Probability of miss detection determines how much interference is caused by SUs. False
alarm probability, however, determines how efficiently the spectrum is used by SUs. So,
the higher the miss probability, the higher the interference will become. A higher false

alarm probability will result in a lot of missed opportunities [4].

h is deterministic in a non fading environment and detection and false alarm probabilities
could be computed by [3]:
Py = P{Y > A|H,} = Q,,(V24,V2) (2.7)

r(m, 1/2)

Where 4, m, I'(.), I'(., .) and Q,,, (., .) are the detection threshold, time bandwidth product,
complete gamma function, incomplete gamma function and the generalized Marcum Q-
function respectively . The upper incomplete gamma function and the generalized

Marcum Q-function are given respectively by [2,8]:

I'(m,n) =J. tmletdt (2.9)
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0 m 2.2

0,.(a,b) = f a’;_l e 5L (ax)dx (2.10)
b

where I,.1(.) is the modified Bessel function with (m-1)" order.

To achieve high probability of detection, false alarm probability should be as low as
possible. Neyman-Pearson Criterion will be used in the detection process since it
maximizes the detection probability on the constraint that the false alarm probability [10,
16, 17, 25, 31, 37]. The determination of Py is tied by the threshold and P;:. Since it is
hard to choose the threshold using detection probability, false alarm probability is used to
find the threshold. The advantage of finding the threshold using Py, is that P; does not
depend on the SNR [2,9]. In the presence of fading, the detection probability is
conditioned on the instantaneous SNR. Py can be found by averaging (2.7) over fading

statistics which gives:

P, =j Qm (Y27, VA, (x)dx (2.11)

where £, (x) is the SNR probability density function (pdf) under fading environment. The
receiver performance can be examined as a function of threshold setting. This can be
represented using receiver operating characteristic (ROC) where it is a plot of probability
of detection against probability of false alarm for different set of thresholds. Moreover,
when the miss probability is plotted against false alarm probability, the plot becomes
complementary ROC. The plot indicates what is the optimal value of detection
probability or miss detection probability that can be achieved for certain false alarm

probability at a particular SNR [4,9].
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2.2.1 Rayleigh

The instantaneous SNR of Rayleigh distribution follows an exponential distribution.
After substituting f,(x) by exponential distribution in (2.11) and calculating the

integration, a closed form solution can be found as:

m—2

~ k
;%(zm ))) (2.12)

where 7 is the average SNR and A is the threshold [3, 36].

-2

m e ) (5 (e

=0

2.2.2 Nakagami

The instantaneous SNR of Nakagami distribution has the following distribution [3, 28]:

m,,m—1

mmy —my

— ,v=0 2.13

f,y,m) =

Where m is the nakagami fading parameter, y is the instantaneous SNR and ~ y is the

average SNR. Py can be calculated after substituting f, (x) in (2.11) which gives:

+ oo

Py m M) = [ PaCML A Gy
0

M/2-1 k
_f+oo _2(1/1+y) Z 1( A ) £( )
), ¢ K\2(1 +p)) Y
k=0
m  M/2-1 A -
’ AmTer Z ! 7(/1 1>m 1tk—2 G f)dt 2.14
_— — _—— i
2(1+y) 2r(myy™ L k! )y \2t ¢ (@14



2.2.3 Lognormal

The received power variation of the medium scale has a normal distribution if it is
presented in dB which has been shown in [11] from empirical measurements. A
lognormal random variable can be modeled from the linear channel gain as e* where X is
a Gaussian random variable with zero mean and variance ¢°. The dB-spread g5 is used
to represent the Lognormal distribution. The relation between ¢ and a5 is given by: ¢ =
0,45/8.686. g, indicates the shadowing level or intensity which occurred in the channel.
The shadowing intensity is proportional to the dB-spread so the higher the dB-spread, the
higher the shadowing intensity. The instantaneous SNR has a lognormal distribution
because of the shadowing. P4 does not have a closed form so it is calculated numerically

after substituting f, (x) in (2.11) [3, 30].

2.2.4 Nakagami - Lognormal

The Nakagami distribution is used to model the fading while Lognormal distribution is
used to model the shadowing that occurrs in the channel. The Nakagami-Lognormal
model is used to model both fading and shadowing occurring simultaneously at the same

time. The Nakagami and Lognormal pdfs are given by, respectively:

meme—le— (m/p)x?

fi(x) = T

,x =05 (2.15)
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20logp — 2
exp (— ( gzaz'udBm) ),p >0 (2.16)

(@) =

pV2mo?

where the p in (2.15) is the mean power of the received signal i.e. p= E[x%], & is the
shadowing standard deviation and uqgm is the constant area mean power where the local
mean power p fluctuates around it. The value of xgsm Ccan be calculated as: zgsm=30 + 10
E[Logio p]. The shadowing disappears as o approaches zero. When the shadowing is not
present, the average power becomes deterministic. On the other hand, the received signal
average power becomes random in the presence of shadowing. Therefore, the received

envelope becomes conditioned by the average power p which can be written as:

meXZm—le— (m/p)x?
r(m)p™

fxip(x|p) = ,%,p >0 (2.17)

In general, the composite fading and shadowing pdf can be found as:

fe(0) = fo For CIP)f, (D) dp 2.18)

where fy(p) is the shadowing average power pdf. In case we have fyp(x|p) a Nakagami

distribution and a Lognormal distribution, computing (2.18) will give a Nakagami-

Lognormal composite distribution.

However, the Nakagami-Lognormal composite will be approximated to a Nakagami-
Gamma distribution because the computation of Nakagami-Lognormal pdf as well as the
average probability of detection involves complicated integral form. Neither the
Nakagami-Lognormal pdf nor the probability of detection have a closed form expression.

A two-parameter gamma distribution will be used to approximate the Lognormal

18



distribution. Also, it can be used to approximate many pdfs which has been tested using

theoretical and empirical measurements[8, 27, 29, 33].

2.2.5 Nakagami - Gamma

For small values of ag,5, Lognormal and Gamma pdfs are for data simulation
interchangeably. For o, < 6, Gamma has a good approximation to Lognormal. The
Gamma distribution is given by:

fr () = P Xp(— %) (2.19)

——e
F(mo)P(r)nO

where po is the average power and mq is the Gamma pdf order. The relationships between

po and my and Lognormal mean and variance are:

1

e - 1)

my = (2.20)

Po = py/ (Mg +1)/mq (2.21)

where ¢ and u are standard deviation and mean power. Table 2.1 shows m, values for

different o,;5. The Nakagami-Gamma composite pdf can be computed as [8]:

fe(@) = jo For GIDYf, (@) dp

mo+m-—1

2c cx
— W(7) Koy —m (¢X), % > 0 (2.22)
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Table 2.1: Relationship values between 4z and my

odB 2 4 6 12

Mo 18.37 4.23 1.64 0.174

where ¢ = 2,/(m/p,) and K,,,_,(.) is the modified Bessel function with (m, —m)"

order. The Nakagami-Gamma composite moments is given by:

E[xt] = I'(mg +t/2)I'(m +t/2) (g>f

2.23
TERCONY: (2:23)
The amount of fading (AF) can be found from the moments:
_ variance[X?]
f — E[XZ]Z
mmg + m?my + mmg?
= — >0 (2.24)

mm

Again, to find P4 we need to use (2.11). In the case of the Nakagami-Gamma composite
[34, 35], f,(y) experiencing fading and shadowing becomes conditioned on the average
SNR. The SNR pdf of the Nakagami distribution can be expressed in terms of Gamma

distribution, i.e.:

m, m—1

i) = Wem (— Tf—yy)y >0,m=05 (2.25)
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The average SNR 7 equals to 7 = E[h’Ep/Ng] . The two-parameter Gamma distribution is
modeled as:

momoymo—l ( y )
5 = —_mex - - 2.26
o) Timo)7em P\~ 50 (2.26)

where yq is the mean power related to average SNR y and mg is the Gamma pdf order and
it measures the channel shadowing. The instantaneous SNR pdf under fading and

shadowing is found as:

£@) = jo @ 2.27)

Therefore f,(y)becomes after using (2.25) and (2.26):

mo+m mo+m

2 motm)
L) = m(cz—o) y( 2 ) 1Km0_m(co\/7),y >0 (2.28)

where ¢, = /mmg /7y, is the scaling parameter which has a relation with average SNR 7.
Since the computation of Py involves integration over Marcum-Q function which is a
complex process, another representation of the Marcum-Q function which has a series

expansion can be used. It is expressed as:

NS

Q(2rVa)=1- o(-7%) i (2’1—]/) 1,(y2%y) (2.29)

where 1,(.) is the nth order modified Bessel function of the first kind. Py is obtained after

using (2.28) and (2.29) in (2.11) as:
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P, =Lm<1—e(‘@)i (%)

2 (Co)m0+m M)

X W ? mo—m(CO\/_)dy (230)

This can be simplified after using fooofy(y)dy =1 which becomes:

2e2/2 (o N
Pa =1 2 (2)
¢ F(mo)r(m) L
® M_l
xj eVy I, (,/2/1 )Kmo_m(co\/—)dy (2.31)
0

The expression does not have a closed form because of the product I(.), Kmo-m(.) and the

exponential, so P4 can be evaluated numerically [8].

2.3 Simulation Results for Single Secondary User

The energy detector performance is simulated for a single SU with various channels
including AWGN, Rayleigh, Nakagami, Gamma, Lognormal, Nakagami-Lognormal
composite and Nakagami-Gamma composite using complementary ROC and Pq4 vs. SNR
curves. The time-bandwidth product is taken as m = 5, hence the number of samples
become N = 10. For complementary ROC curves the fixed SNR is 10 dB. For P4 vs. SNR
curves, false alarm probabilities are taken as 0.01, 0.1 and 0.2. The results are produced

using 1000 Monte-Carlo simulations.

22



2.3.1 AWGN and Rayleigh Fading

Channels

compROC curve for ED under AYWGN & Rayleigh (m=5)
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Figure 2-5: Complementary ROC curves for ED under AWGN and Rayleigh channels with SNRs=5, 10 dB

Figure 2.5 shows the complementary ROC curve of a single SU for ED under AWGN
and Rayleigh fading channels with SNR of 10 dB and 5 dB across different probability of
false alarm values. The detection performance in AWGN channel is better than the
performance when the experiences Rayleigh fading. When the probability of false alarm

is 0.1, the probability of miss detection for AWGN channel is 0.06 while in Rayleigh

fading channel is 0.30 in the case of SNR =10 dB.
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Figure 2-6: Probability of detection vs. SNR curves for ED under AWGN channel with false alarm probabilities
of [0.01, 0.1, 0.2]

Figure 2.6 shows the ED performance of a single SU under AWGN channel for different

SNR from [0-30] dB. When the SNR is 10 dB, the probabilities of detection with Pr=

[0.01, 0.1, 0.2] are 0.74, 0.95 and 0.98 respectively.
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Pd vs. SMNR under Rayleigh
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Figure 2-7: Probability of detection vs. SNR curves for ED under Rayleigh channel with false alarm
probabilities of [0.01, 0.1, 0.2]

Figure 2.7 shows the ED performance of a single SU under Rayleigh fading channel for
different SNR from [0-30] dB. When the SNR is 10 dB, the probability of detections with

Pr=1[0.01, 0.1, 0.2] are 0.51, 0.70 and 0.78 respectively.
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2.3.2 Nakagami Fading Channels
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Figure 2-8: Complementary ROC curves for ED under Nakagami channel with m=2 and m=3

Figure 2.8 shows the complementary ROC curve of a single SU for ED under Nakagami
fading channel with fading parameter m = 2 and m = 3 and SNR of 5 and10 dB across
different probability of false alarm values. For probability of false alarm of 0.1, the
achieved miss detection probabilities at SNR= 10 dB are 0.15 and 0.08 for m=2 and m =

3, respectively while at SNR= 5 dB it will give 0.45 and 0.30 for m = 2 and m = 3,

respectively.
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Pd vs. SNR under Nakagami
1 T - ¥ 35—
(e | .- WO it s SR L N -
08 ............................. e e S -
o 07k o L T R SR RS R ............................ -
= :
g 06 < S AT TR < SO TS EPTRp T
o :
O : 3
E 05 J| —&—PE0.01,m=4 []
15 : o —+— P01 m=4
§ 0.4_ ......................................... Pf=0.2 m=d
QE_ (010 o 5 R 3 U R S A R S I e | —&—PE0.01m=3 ||
| —+—Pf0.1,m=3
Qb B i ——PED2m=3 []
| e PED.OTm=2
0.15.__, ...................................................... —+—PE01:m=2
1 | —+—PE02,m=2
0 1 1 1 i I
0 5 10 15 20 25 30
SNR

Figure 2-9: Probability of detection vs. SNR curves for ED under Nakagami channel with m=2, 3, 4 and false

alarm probabilities of [0.01, 0.1, 0.2]

Figure 2.9 shows the ED performance of a single SU under Nakagami fading channel
with m = 2, 3 and 4 for different SNR from [0-30] dB. When the SNR is 10 dB, the

probabilities of detection with Pr=[0.01, 0.1, 0.2] are 0.72, 0.87 and 0.91 respectively in

the case of m = 2.
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2.3.3 Lognormal Shadowing Channel

0 compROC curve for ED under Lognormal (m=5, sigma=2 dB)
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Figure 2-10: Complementary ROC curves for ED under Lognormal channel with e45=2 dB
Figure 2.10 shows the complementary ROC curve of a single SU for ED under
Lognormal channel with SNR of 5 and10 dB across different probability of false alarm

values. When the probability of false alarm is 0.1, the probabilities of miss detection are

0.90 and 0.40 for SNRs 5 and 10 dB respectively.
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Figure 2-11: Probability of detection vs. SNR curves for ED under Lognormal channel with o ,5= 2 dB and false
alarm probabilities of [0.01, 0.1, 0.2]

Figure 2.11 shows the ED performance of a single SU under Lognormal channel for
different SNR from [0-30] dB. When the SNR is 10 dB, the probabilities of detection

with Pr=[0.01, 0.1, 0.2] are 0.70, 0.90 and 0.94 respectively.
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2.3.4 Gamma Fading Channel
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Figure 2-12: Complementary ROC curves for ED under Gamma channel with o,5=2 dB

Figure 2.12 shows the complementary ROC curve of a single user for ED under Gamma
channel with o5 = 2, 6 and 12 dB and SNR of 5 and10 dB across different probability of
false alarm values. When the probability of false alarm is 0.1, the probabilities of miss

detection are 0.60 and 0.12 for 5 and 10 dB respectively at o, = 2 dB.
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Figure 2-13: Probability of detection vs. SNR curves for ED under Gamma channel with o,45= 2, 6, 12 dB and

false alarm probabilities of [0.01, 0.1, 0.2]

Figure 2.13 shows the ED performance of a single SU under Gamma channel with g5 =

2 dB for different SNR from [0-30] dB. When the SNR is 10 dB, the probabilities of

detection with P,=[0.01, 0.1, 0.2] are 0.66, 0.88 and 0.93 respectively.
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2.3.5 Nakagami — Lognormal Composite Fading Channel

compROC curve for ED under Nakagami-Lognhormal m=2, sigma=2 dB
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Figure 2-14: Complementary ROC curves for ED under Nakagami-Lognormal composite fading channel with
m=2 and a45=2 dB

Figure 2.14 shows the complementary ROC curve of a single SU for ED under
Nakagami-Lognormal channel with a;5 =2 dB, m = 2 and SNR of 5 and 10 dB across
different probability of false alarm values. When the probability of false alarm is 0.01,

the probabilities of miss detection are 0.65 and 0.30 for 5 and 10 dB respectively.
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Pd vs. SNR under Nakagami-Lognormal, m=2, sigma= 2 dB
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Figure 2-15: Probability of detection vs. SNR curves for ED under Nakagami-Lognormal composite fading
channel with m= 2, 645= 2 dB and false alarm probabilities of [0.01, 0.1, 0.2]

Figure 2.15 shows the ED performance of a single user under Nakagami-Lognormal

channel with a5 =2 dB and m = 2 for different SNR from [0-30] dB. When the SNR is

10 dB, the probabilities of detection with P, = [0.01, 0.1, 0.2] are 0.70, 0.85 and 0.89

respectively. This indicates that higher false alarm probability results in higher detection

probability.
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2.3.6 Nakagami — Gamma Composite Fading Channel
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Figure 2-16: Complementary ROC curves for ED under Nakagami-Gamma composite fading channel with m=2
and o45= 2,6, 12 dB

Figure 2.16 shows the complementary ROC curve of a single SU for ED under

Nakagami-Gamma channel with o, = 2 dB, m = 2 and SNR of 5 and 10 dB across

different probability of false alarm values. When the probability of false alarm is 0.01 and

o4z = 2 dB, the probabilities of miss detection are 0.70 and 0.30 for 5 and 10 dB

respectively.
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Figure 2-17: Probability of detection vs. SNR curves for ED under Nakagami-Gamma composite fading channel
withm=2, ,45= 2, 6, 12 dB and false alarm probabilities of [0.01, 0.1, 0.2]

Figure 2.17 shows the ED performance of a single SU under Nakagami-Gamma channel
with g;5 =2 dB and m = 2 for different SNR from [0-30] dB. When the SNR is 10 dB,

the probabilities of detection with P = [0.01, 0.1, 0.2] are 0.67, 0.82 and 0.88

respectively.
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2.4  Methods for Improving Pd

The performance of spectrum sensing is hindered by the multipath fading and shadowing
which degrades the detection performance. The performance of spectrum sensing can be
improved by increasing the diversity such as increasing the number of users or using

spatial correlation of the received signals.

2.4.1 Cooperative Spectrum Sensing

Reliable sensing can be achieved if multiple users setting in different locations
cooperate in finding the primary signal [15]. Cooperative spectrum sensing enhances the
detection performance. A CR network is shown in Figure 2.18 where three SUs sense the
spectrum to look for spectrum holes. The primary signal is not detected by users one and
three because the signal is obscured by a building and tree which is known as shadowing.
Only user two detects the presence of primary user so cooperative sensing improves the
detection performance in a sense that users with undetected signals do not use the

spectrum and cause interference with primary user.
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Figure 2-18: Cooperative spectrum sensing in shadowed environment

There are two ways to process the sensed data: either by observing data or processing
data for all users together and send data for decision fusion or by processing data
independently for each user to make decisions independently and send their decision for a
final decision. The former is called data fusion while the latter is called decision fusion
[15]. Also cooperative network can be centralized or distributed network. The centralized
CR network consists of a central unit like base station in wireless local area network
(WLAN) or access point in cellular network for cognitive radio ad hoc networks where it
controls the CR network traffic regarding spectrum opportunity usage [15, 16]. The
distributed CR network, on the other hand, does not need fusion center to make a
decision for signal presence [13]. In data fusion, the entire data is sent to the fusion center

to declare the status of the PU. Although it achieves accurate results, it has high
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implementation cost due to the large overhead of the data. However, it can be further
simplified by using combining schemes like equal gain combination (EGC) or maximal
ratio combination (MRC) where the users data are weighted in terms of their significance
[1,15, 31]. To minimize the data overhead, a hard combination scheme is used with 1-bit
or multiple-bit for decision making. The hard combination is implemented in decision

fusion. In 1-bit decision, O bit decides signal is not present and 1 decides signal is present.

Different decision fusion rules like Logical-OR (LO), Logical-AND (LA) and K out of N
rule are used to determine the final decision. In LO, the primary user will be declared
present if only one user declares the signal is present, the probability of detection and

probability of false alarm of the final decision are given by respectively:

rM

P, =1- r (1-P,) (2.32)
)

—M
Pro=1- —[ (=P (2.33)
1.

where P, ;and Py, ; are the probability of detection and probability of false alarm of user i
respectively and M is the total number of cooperating SUs. In contrast, the LA requires

all users to declare the signal is present to determine signal presence. The Py and P, are

given by respectively:

Pd = ) Pd,i (234)

Pfa = . Pfa,i (235)



The K out of N rule is more general rule where LO and LA can be obtained by letting
K=1 and K=N respectively. The majority rule is obtained by having K=N/2. The P4 and

P; are given by respectively [15]:

M—-K
M ki .
Fa = Z (K + i) (1= Py )" 7 = Py )" (2.36)
i=0
M—-K
M Kt .
Fra = Z (K + i) (1= Pre )M 7711 = P ¥ (2.37)

(=]

=

2.4.2 Spatial Correlation

Usually the received signals are correlated because they are generated from the same
source. Since the energy detection is not optimal for detecting correlated signals. The
sample covariance matrix is used in the analysis. This method enhances the detection

performance and also mitigates the noise uncertainty.

2.4.3 Heuristic Algorithms

Heuristic algorithms are inspired by natural behavior of living creatures. Some examples

of heuristic techniques are genetic algorithm, ant colony algorithm and particle swarm

algorithm. These algorithms are used to find the optimum solution to given problem.
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2.5 Simulation Results for Cooperative Secondary Users

The energy detector performance is simulated for four cooperating SUs (M = 4) with
various channels including AWGN, Rayleigh, Nakagami, Gamma, Lognormal,
Nakagami-Lognormal  composite and  Nakagami-Gamma  composite  using
complementary ROC curves. The time-bandwidth product is taken as m = 5, hence the
number of samples become N = 10.The fixed SNR is set at 10 dB. Three techniques are
used in the system: OR rule, AND rule and Majority rule. The performance of different
techniques is compared to each other. The results are produced using 1000 Monte-Carlo

simulations. The threshold is calculated from (2.8) for each SU independently.
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2.5.1 AWGN Channel

compROC curve for ED under AWGN with 4 Users
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Figure 2-19: Complementary ROC curves for ED under AWGN channel with four cooperating users using

AND, OR and Majority techniques

Figure 2.19 shows the complementary ROC curve of four cooperating SUs for ED under

AWGN channel with SNR of 10 dB across different probability of false alarm values.

When the probability of false alarm is 0.01, the probabilities of miss detection using OR,

AND and Majority rules are 2.3 x 10, 0.40 and 0.007 respectively.
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2.5.2 Rayleigh Fading Channel
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Figure 2-20: Complementary ROC curves for ED under Rayleigh channel with four cooperating users using

AND, OR and Majority techniques

Figure 2.20 shows the complementary ROC curve of four cooperating SUs for ED under
Rayleigh channel with SNR of 10 dB across different probability of false alarm values.

When the probability of false alarm is 0.01, the probabilities of miss detection using OR,

AND and Majority rules are 0.02, 0.80 and 0.16 respectively.
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2.5.3 Nakagami Fading Channel

compROC curve for ED under Nakagami m=2 with 4 Users (SNR=10 dB)
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Figure 2-21: Complementary ROC curves for ED under Nakagami channel with m=2 and four cooperating
users using AND, OR and Majority techniques

Figure 2.21 shows the complementary ROC curve of four cooperating SUs for ED under

Nakagami fading channel with m = 2 and SNR of 10 dB across different probability of

false alarm values. When the probability of false alarm is 0.01, the probabilities of miss

detection using OR, AND and Majority rules are 0.05, 0.39 and 0.13 respectively.
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compROC curve for ED under Nakagaml m=3 with 4 Users (SNR=10 dB)
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Figure 2-22: Complementary ROC curves for ED under Nakagami channel with m=3 and four cooperating
users using AND, OR and Majority techniques

Figure 2.22 shows the complementary ROC curve of four cooperating SUs for ED under
Nakagami fading channel with m = 3 and SNR of 10 dB across different probability of
false alarm values. When the probability of false alarm is 0.01, the probabilities of miss

detection using OR, AND and Majority rules are 0.024, 0.15 and 0.07 respectively.
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2.5.4 Lognormal Shadowing Channel

compR
o

Probahility of Miss-Detection
=

—e— OR :
—— AND :
| Majority .E......\:-. :

[T TR TS R St

-4

........

.......

.................

...................

10 R
10 10°

10

Probability of False-Alarm

Figure 2-23: Complementary ROC curves for ED under Lognormal channel with o,5= 2 dB and four
cooperating users using AND, OR and Majority techniques

Figure 2.23 shows the complementary ROC curve of four cooperating SUs for ED under

Lognormal channel with o, = 2 dB and SNR of 10 dB across different probability of

false alarm values. When the probability of false alarm is 0.01, the probabilities of miss

detection using OR, AND and Majority rules are 8 x 10, 0.50 and 0.018 respectively.
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2.5.,5 Gamma Fading Channel
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Figure 2-24: Complementary ROC curves for ED under Gamma channel with o45= 2 dB and four cooperating
users using AND, OR and Majority techniques

Figure 2.24 shows the complementary ROC curve of four cooperating SUs for ED under

Gamma channel with g5 = 2 dB and SNR of 10 dB across different probability of false

alarm values. When the probability of false alarm is 0.01, the probabilities of miss

detection using OR, AND and Majority rules are 1.6 x 107, 0.60 and 0.029 respectively.

46



compROC curve for ED under Gamma with 4 Users (
10 e . : -

=5, SNR=1

AN B KD

0 dB, sigma=6 dB)

Probabhility of Miss-Detection

.....................

R T TR R Nt S S P S NPT ISR Ser Py

........

10'2 ot i s e S S
10-3 T s
AN R Ruiviaingsiepabia s o K tad
| Majorlty é ............................
4 s ¥ pEean Pl
10 M T A | piaal 1ig
10 10° 107 10" 10°

Probability of False-Alarm

Figure 2-25: Complementary ROC curves for ED under Gamma channel with ¢,5= 6 dB and four cooperating

users using AND, OR and Majority techniques

Figure 2.25 shows the complementary ROC curve of four cooperating SUs for ED under

Gamma channel with g;5 = 6 dB and SNR of 10 dB across different probability of false

alarm values. When the probability of false alarm is 0.01, the probabilities of miss

detection using OR, AND and Majority rules are 0.041, 0.90 and 0.25 respectively.
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Figure 2-26: Complementary ROC curves for ED under Gamma channel with a45= 12 dB and four cooperating
users using AND, OR and Majority techniques

Figure 2.26 shows the complementary ROC curve of four cooperating SUs for ED under

Gamma channel with g;5 =12 and SNR of 10 dB across different probability of false

alarm values. When the probability of false alarm is 0.01, the probabilities of miss

detection using OR, AND and Majority rules are 0.31, 0.99 and 0.07 respectively.
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2.5.6 Nakagami — Lognormal Composite Fading Channel

compROC curve for ED under Nakagami-Lognormal m=2 - 4 Users (SNR=10 dB, sigma=2 dB)
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Figure 2-27: Complementary ROC curves for ED under Nakagami-Lognormal channel with m=2, a45= 2 dB
and four cooperating users using AND, OR and Majority techniques

Figure 2.27 shows the complementary ROC curve of four cooperating SUs for ED under
Nakagami-Lognormal channel with m =2, ;5 =2 dB and SNR of 10 dB across different
probability of false alarm values. When the probability of false alarm is 0.01, the

probabilities of miss detection using OR, AND and Majority rules are 0.045, 0.42 and

0.12 respectively.
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2.5.7 Nakagami — Gamma Composite Fading Channel
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Figure 2-28: Complementary ROC curve for ED under Nakagami-Gamma channel with m=2, a45= 2 dB and
four cooperating users using AND, OR and Majority techniques

Figure 2.28 shows the complementary ROC curve of four cooperating SUs for ED under
Nakagami-Gamma channel with m = 2, g;5 = 2 dB and SNR of 10 dB across different
probability of false alarm values. When the probability of false alarm is 0.01, the

probabilities of miss detection using OR, AND and Majority rules are 0.05, 0.48 and 0.14

respectively.
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complé’OC curve for ED under Nakagaml Gamma m=2 -4 Users (SNR=10 dB, sigma=6 dEB)
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Figure 2-29: Complementary ROC curves for ED under Nakagami-Gamma channel with m=2, ¢,5=6 dB and
four cooperating users using AND, OR and Majority techniques

Figure 2.29 shows the complementary ROC curve of four cooperating SUs for ED under
Nakagami-Gamma channel with m = 2, a;5 = 6 dB and SNR of 10 dB across different
probability of false alarm values. When the probability of false alarm is 0.01, the
probabilities of miss detection using OR, AND and Majority rules are 0.071, 0.85 and

0.28 respectively.
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compROC curve for ED under Nakagami-Gamma m=2 -4 Users (SNR=10 dB, sigma=12 dB)
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Figure 2-30: Complementary ROC curves for ED under Nakagami-Gamma channel with m=2, a45= 12 dB and
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four cooperating users using AND, OR and Majority techniques

Figure 2.30 shows the complementary ROC curve of four cooperating SUs for ED under
Nakagami-Gamma channel with m = 2, g,5 = 12 dB and SNR of 10 dB across different
probability of false alarm values. When the probability of false alarm is 0.01, the

probabilities of miss detection using OR, AND and Majority rules are 0.30, 0.99 and 0.70

respectively.
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CHAPTER 3

PARTICLE SWARM OPTIMIZATION

3.1 Introduction

PSO is a heuristic technique developed by James Kennedy and Russell C. Eberhart in
1995. The roots of PSO come from two main concepts: swarming theory and
evolutionary computation. Swarming theory is related to the behavior of some kinds of
animals. PSO achieves optimum value by mimicking the natural behavior of individual
knowledge of communicating group of a swarm flock. PSO is implemented to maximize
an objective function for a given problem with set of parameters by exploring its search

space [39, 40, 41, 42, 43, 44].

Let f a function to be minimized within the search space R" with n being the number of

dimensions. The minimization process is defined as [50]:

Given f: R* — R

FindX € R" suchthat f(%¥) < f(x),x € R" (3.1)

If a function to be maximized, the maximized process becomes [50]:

Given f: R — R

Find X € R"™ such that f(X) = f(x),x € R" (3.2)
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A candidate solution is considered for each individual element in the search space. x
represents the optimal solution in the search space. Here, f is called the objective function
where the search space is mapped to the function space. The fitness value is obtained by
mapping the function space to the fitness space. Sometimes candidate solution elements
undergo certain constraints e.g. (x >2) if we have constrained optimization. The candidate
solution and fitness values can be represented graphically through fitness landscape. The
fitness landscape is a plot between n-dimensional parameter space and one dimensional

fitness for each parameter [50].

A random swarm is used to initialize the conventional PSO algorithm the swarm has M
particles each with dimension d. The fitness function is evaluated for each particle at each
iteration. There are two sets which are stored and memorized by the algorithm: best
particle solution and global best solution. These sets change whenever they achieve better
values of fitness as the algorithm progresses. PSO consists of two equations: velocity
equation and position equation. The velocity and position are adjusted for each particle

as[45-55]:

vy = wvlit + @i —x D) + enist —xi (3.3)

xlq = xi7 + vl (3.4)

where v, is the velocity of the i particle in dimension d at iteration t, e is the inertia
weight, x, is the position of the i" particle in dimension d at iteration t, p‘;* is the best
global solution at iteration t-1, pi;® is the best particle solution at iteration t-1, ¢; and ¢,
are constants which are called the cognitive coefficient and the social coefficient

respectively. » and & are random numbers uniformly distributed between [0,1].
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The velocity update consists of three components: inertia component, cognitive
component and social component. The inertia weight keeps the moving particles toward
the intended destination. The inertia weight can have values between 0.4 - 1.2. Higher
values of inertia weight results in particle acceleration thus higher convergence. This is
because the exploration in the whole search space is increased. Lower values of inertia
weight, on the other hand, result in more accuracy in the solution. The cognitive
component serves as the memory of the particles. It directs the particles toward the area
of high fitness value within the search space. The social component directs the particle
toward the swarm’s best region. The social component and cognitive component have a
stochastic influence resulted from the random values of # and & The stochastic process
acts as a semi-random stochastic. Therefore, the particles movement is heavily affected
by the best particle solution and global best solution. The velocity determines the speed
of particles movement within the search space. A higher velocity would let the particles
stray from the search space. Therefore, the velocity is limited to Vnax for each particle

[48-62].

The PSO advantages are listed as follows:

1) PSO provides an accurate solution with few iterations.
2) PSO maintains the cost per iteration and memory occupations for each iteration.

3) Derivatives of the objective function is not required for the algorithm to work.

PSO performance is affected by tuning parameters sometimes called exploration-

exploitation tradeoff. Exploration is related to finding a good optimum solution by testing
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various solution regions. On the other hand, exploitation is related to finding a good

optimum solution by concentrating the search around a promising solution.
The PSO algorithm is given as:

1) Initiate PSO position and velocity.

2) Compute fitness value for each particle.

3) Update best particle and global best particle fitness by comparing current and
previous values.

4) Update velocity and position for each particle.

5) Repeat step (2) until the maximum iteration is reached.

3.2 PSO for CR networks

PSO algorithm is implemented in CR network to find the weights of each SU in the
fusion center. Figure 3.1 shows a CR network with cooperating SUs. An internal noise in
control channel occurs during transmission of SUs energies to the fusion center which is
denoted by n with zero mean Gaussian noise and variance 62. At the fusion center, each
SU energy is multiplied by a weight where they are summed and compared to a threshold
to determine the presence or absence of PU signal. The global test statistics at the fusion

center yy. is calculated as:

M
Ve = ) wiy = w'y (3.5)
=1
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where w is the weight vector of assigned by the fusion center, y is the sensed data vector

of the SUs and T is the transpose of a matrix. w = [wy, wy, ...,wy]" with w; > 0 and

y = [y1,¥2, ., yul" [38, 63].

(k) Uy v
CR: > Z:nz %
r>(K) U Ny vo Wy
g T O~y T
§ n, Wo
rm(K) '
— Un Ym Decision
CRm > DR ‘b@—’@—k Device
N Wm

Fusion Center

Figure 3-1: Cooperative spectrum sensing using PSO

The probability of detection is given by:

-1 _EF Rl
P, =0 <Q (Pf)\/wTAw E.h w) (3.6)

vwT Bw

where Q(x) is the Q-function, Es is the energy signal, h is the channel gain vector, A is a
variable vector taken from the variance of the global test statistics ys. under hypothesis
Hy, B is a variable vector taken from the variance of the global test statistics y;. under
hypothesis H; and Py is false alarm probability. o is the variance of the noise and ¢ is the

variance of the internal noise in the control channel.
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Q(x), Es, h, A, B, o and o are expressed as, respectively [38]:

( )‘rwi 2t 3.7
Q(x) = ) me (3.7)
N-1
_ 2
Eo=) Is@)l (39
A = 2Ndiag?(0) + diag(s) (3.9)
B = 2Ndiag?(o) + diag(8) + 4E diag(h) + diag(5) (3.10)

where s(k) is primary signal, N is the number of samples , ¢ is the variance of the noise
channel and ¢ is the variance of the internal noise in the control channel occurred during
data transmission to the fusion center. The number of samples N can be obtained by
multiplying the time bandwidth product m by 2 (N = 2m). The ED threshold for the
fusion center, where the combined energies from SUs are summed and compared to the

threshold, is given by:

A=No"w+Q71(P;)Vw'Aw (3.11)

where 1 is the threshold, N is the number of samples, o is the channel noise vector, Q1
is the inverse g function, P is false alarm probability, w is the weight vector and A is a
variable vector taken from the variance of the global test statistics yr. under hypothesis

H,.
The objective function to be optimized by PSO algorithm is given as:

Q (P )VwWTAw — E;h™w
vwT Bw
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where PSO tries to maximize the detection probability by finding the weight values of
each user. Since there are infinite optimal solutions which can be acquired from the
function, a constraint is applied to limit the number of the optimal solution. So if w® is an
optimal solution, then Aw® is also an optimal solution provided that 1 is positive real

number. The total weight sum of SUs is equal to one which can be expressed as:
M
min f(w), st. Zwl -1, 0<w, <1, [=12,..,M (3.13)
w
=1

Each particle’s velocity and position in PSO can be expressed as [38, 63]:
via = wvig +ad®ig —xig D+ enhy — xig ) (3.14)
xitd = xitd_l + Uitd (315)

where d represents the number of dimensions of the particle. In the case of the CR
network, the number of dimensions d represents the number of cooperating users M. The
fitness function f(w) will be multiplied by -1 i.e., —f(w) since it is a minimization of the
function f(w). To satisfy the condition of the total weight sum equal to one, the position
vector is divided by the total sum of position vector values i.e., x5, />¥_; x{, . The PSO

algorithm for the CR network is given by [38]:

1) Generate the position and velocity vectors x; and v}, randomly at t=0. x{; €
[0,1], v{; € [-Vmax +Vmax], 1S d <M, 1< i <, where S is the total number of
particles.

2) Exchange x{; by x5, /¥M_, xf,
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3) Evaluate fitness value for each particle in population then set
pi =[x, x5, o, iy 1", DY = [%51, X0, o, xbp]T. b represents the index of the
particle which has the highest fitness value.

4) Update v}, using equation (3.3) at t=t+1. If v}, >Vpax let vl = Viya If v, <
~Vinax » 16t U5y =-Vinax.

5) Update x/; using equation (3.4).

6) Exchange x{; by x{; /% x{y -

7) Evaluate fitness value for each particle in population. If the fitness value of
particle i is larger than p!~! fitness value, let p! = [x}}, x5, ..., x5 ]" otherwise
let pi= p!~1. If the fitness value of particle i is larger than p}~fitness value, let
p., = [x4, x5, ..., x5y ]T otherwise let p§=p} 1.

8) Terminate the algorithm if the maximum number of iteration is reached, otherwise

return to step 4.

The flowchart of the PSO algorithm is shown in Figure 3.2.
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Figure 3-2: Flowchart of the PSO algorithm
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3.3 Simulation Results for PSO

The energy detector performance is simulated for three cooperating SUs (M = 3) with
various channels including AWGN, Rayleigh, Nakagami, Gamma, Lognormal,
Nakagami-Lognormal composite and Nakagami-Gamma composite using ROC curves.
The time-bandwidth product is taken as m = 5, hence the number of samples become N =
10.The fixed SNR is set at 10 dB. The PSO parameters are taken as: the number of
particles S = 60, the inertia weight w = 1, the cognitive coefficient ¢; = 2, the social
coefficient ¢, = 2 and the maximum number of iterations t = 30. The threshold at the
fusion center is calculated from (3.11).The performance of PSO technique is plotted. The

results are produced using 1000 Monte-Carlo simulations.
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3.3.1 AWGN and Rayleigh Fading Channels
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Figure 3-3: ROC curves for ED under AWGN and Rayleigh channels with three cooperating SUs

The ROC curve of three cooperating SUs for ED using PSO algorithm under AWGN and
Rayleigh fading channels with SNRs of 10 dB and 5 dB across different probability of
false alarm values is plotted in Figure 3.3. Given a probability of false alarm of 0.2, the
probabilities of detection under AWGN at SNRs of 5 dB and 10 dB are 0.63 and 0.98,
respectively. In the case of Rayleigh fading channel, the probabilities of detection at

SNRs of 5 dB and 10 dB are 0.56 and 0.80, respectively.
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3.3.2 Nakagami Fading Channel

ROC curve Under Nakagami m=2 & m=3 with 3 users using PSO
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Figure 3-4 ROC curves for ED under Nakagami channel with three cooperating SUs and m= 2

The ROC curve of three cooperating SUs for ED using PSO algorithm under Nakagami
fading channel with fading parameters m = 2 and m = 3 and SNRs of 10 dB and 5 dB
across different probability of false alarm values is shown in Figure 3.4. When the
probability of false alarm is 0.2, the probabilities of detection for m = 2 at SNRs of 5 dB
and 10 dB are 0.69 and 0.91, respectively. For m = 3, the probabilities of detection at

SNRs of 5 dB and 10 dB are 0.77 and 0.95, respectively.
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3.3.3 Lognormal Shadowing Channel

ROC curve Under Lognormal with 3 users using PS0O,Sigma=2 dB
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Figure 3-5: ROC curves for ED under Lognormal channel with three cooperating SUs and a45= 2 dB

The ROC curve of three cooperating SUs for ED using PSO algorithm under Lognormal
channel with o, = 2 dB and SNR of 5 dB across different probability of false alarm
values is shown in Figure 3.5. When the probability of false alarm is 0.2, the probability

of detection is 0.63 at SNR 5 dB while the probability of detection is 0.96 at SNR 10 dB.
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3.3.4 Gamma Fading Channel

ROC curve Under Gamma with 3 users using PSO
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Figure 3-6: ROC curves for ED under Gamma channel with three cooperating SUs and a45=2 dB

The ROC curve of three cooperating SUs for ED using PSO algorithm under Gamma

channel with o, = 2 dB and SNR of 5 dB across different probability of false alarm

values is plotted in Figure 3.6. When the probability of false alarm

probabilities of detection for o, = 2 at SNRs of 5 dB and 10 dB are 0.62 and 0.88,

respectively. For 0,5 = 6, the probabilities of detection at SNRs of 5 dB and 10 dB are

0.53 and 0.73, respectively.
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3.3.5 Nakagami — Lognormal Composite Fading Channel

ROC curve Under Nakagami-Lognormal m=2 with 3 users using PS0,Sigma=2 dB
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Figure 3-7: ROC curves for ED under Nakagami-Lognormal channel with three cooperating SUs, 4= 2 dB
and m=2

The ROC curve of three cooperating SUs for ED using PSO algorithm under Nakagami-
Lognormal channel with m =2, o, = 2 dB and SNR of 5 dB across different probability
of false alarm values is shown in Figure 3.7. When the probability of false alarm is 0.2,
the probability of detection is 0.69 at SNR 5 dB while the probability of detection is 0.90

at SNR 10 dB.
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3.3.6 Nakagami — Gamma Composite Fading Channel

ROC curve Under Nakagami-Gamma m=2 with 3 users using PSO
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Figure 3-8: ROC curves for ED under Gamma-LognormzaI channel with three cooperating SUs, a45= 6 dB and
m=

The ROC curve of three cooperating SUs for ED using PSO algorithm under Nakagami-

Gamma channel with m = 2, ;5 = 2 dB and 6 dB and SNRs of 5 dB and 10 dB across

different probability of false alarm values is shown in Figure 3.8. When the probability of

false alarm is 0.2, the probabilities of detection for 0,5 = 2 at SNRs of 5 dB and 10 dB

are 0.66 and 0.89, respectively. For a;5 = 6, the probabilities of detection at SNRs of 5

dB and 10 dB are 0.56 and 0.73, respectively.

68



CHAPTER 4

PARTICLE SWARM OPTIMIZATION-HILL CLIMBING

HYBRID

4.1 Introduction

Hill climbing algorithm is a local search method used to make some improvement of the
problem solution which is done by initiating a random solution to the problem. Based on
the random chosen value, evaluation of the change of movement between neighborhood
entities is selected. The change will become either positive or negative. Generation of a
new individual is done if the move is positive. On the other hand, the individual is kept if
the move is negative. The process is halted when there is no improvement to be found.
Because of the simplicity of hill climbing algorithm, it is mostly chosen among other
optimizing algorithms. Hill climbing algorithm is capable of giving better results than

other algorithms when search time is limited [64, 65].

In terms of mathematical description, hill climbing algorithm tries to minimize a target
function f(x) where x is a continuous or discrete vector. A single element in x is adjusted
at each iteration. The change determines if it improves the value of f(x). The process ends
if there is no change found in to improve the value of f(x) and x becomes locally

optimized [64, 65].
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Local maximum and local minimum are encountered during optimizing problem solution.
The problem real optimal solution cannot be found if the local optimum is not overcome.
One of the effective methods to solve this problem is using hill climbing algorithm. The
local optimum can be overcome by applying hill climbing algorithm to find the real
global optimal value of the problem. However, hill climbing algorithm does not always
converge to the global maximum since most problems are not convex but it can converge

to a local maximum [70].

The hill climbing algorithm process is expressed as [65]:

1) Pick a random number in the search space.

2) Consider all current state’s neighbors.

3) Choose the neighbor which has the best quality and move to that state.
4) Repeat steps (2-4) until all neighboring states have lower quality.

5) Return the current state as the solution state.

To illustrate how the hill climbing algorithm works, let’s consider the hill climbing model
shown in Figure 4.1. Here we have two current states: current state A’ and current state
"B’ at different time instances trying to find the global maximum using hill climbing
algorithm. Each current state tries to find the best neighbor value in order to reach the
global maximum. Current state A’ will eventually reach a local maximum since it will
move to the right based on the best neighbor to the right while current state B’ will
eventually reach a global maximum since it will move to the left based on the best
neighbor to the left. This indicates that the hill climbing algorithm does not always

guarantee a global maximum.
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Figure 4-1: Hill climbing model

4.2 PSO-HC for CR networks

To improve the probability of detection in CR networks, a PSO-HC hybrid is proposed.
The PSO-HC hybrid improves the global search and increases the accuracy. The optimal
position and velocity vectors are obtained in one iteration operation. After that, the hill
climbing algorithm is applied to further optimize the velocity vector. This is done by
applying hill climbing algorithm to each particle velocity vector at iteration t. A random
value is chosen from each particle velocity vector to compare between the neighbors of
the chosen value. If one of the neighbors’ value is greater than the current state value,
then the current state will move to the next neighbor. The process is repeated whenever
there is a higher value found between the neighbors until no further higher values

encountered. The highest value found will be returned to the current state and replaced by
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its newly found value. The results of PSO-HC give better improvement than the

conventional PSO.
The hill climbing algorithm process applied to the PSO is expressed as:

1) Pick a random number in the particle velocity vector (v),) at iteration t.

2) Consider all current state’s neighbors in the particle velocity vector (vf;) at
iteration t.

3) Choose the neighbor which has a higher value and move to that state.

4) Repeat steps (2-4) until all neighboring states have lower values in the same
particle velocity vector (v},) at iteration t.

5) Return the current state as the solution state within the particle velocity vector
(v};) at iteration t i.e., replace the current state value by the higher value found

through the search.
The PSO-HC hybrid procedure can be described as:

1) Generate the position and velocity vectors x, and vf, randomly at t=0. x{; €
[0,1] and v}, € [-Vimax, +Vimax], 1< d <M, 1< i < S where S is the total number of
particles.

2) Exchange x; by xiy /Xd-1 xiy

3) Evaluate fitness value for each particle in population then set
pi = [xf1, x5, o, xiy 1T, D = [xh1, xb0s o, xby]T. b represents the index of the
particle which has the highest fitness value.

4) Update v}, using equation (3.3) at t=t+1. If v}, >Vpax, let v}y = Vpax. If v, <

t —
_Vmax y Iet Uld —'Vmax.
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5) Update x},; using equation (3.4).

6) Exchange x{; by x{, /% x{q -

7) Apply hill climbing algorithm on the velocity vector v¢ = [vf;, v5, ..., viy]" at
iteration t for each velocity particle to optimize it.

8) Evaluate fitness value for each particle in population. If the fitness value of
particle i is larger than p!~! fitness value, let p! = [x!}, x5, ..., x5, 1" otherwise
let pi= p!~1. If the fitness value of particle i is larger than p}fitness value, let
p., = [x5, x5, ..., x5y ]T otherwise let pb=p} 1.

9) Terminate the algorithm if the maximum number of iteration is reached, otherwise

return to step 4.

Figure 4.2 shows the flowchart of PSO-HC hybrid:
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Figure 4-2: Flowchart of PSO-HC hybrid
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4.3 Simulation Results for PSO-HC Fixed SNR

The energy detector performance is simulated for three cooperating SUs (M = 3) with
various channels including AWGN, Rayleigh, Nakagami, Gamma, Lognormal,
Nakagami-Lognormal composite and Nakagami-Gamma composite using ROC curves.
The time-bandwidth product is taken as m = 5, hence the number of samples become N =
10.The fixed SNR is set at 10 dB. The PSO parameters are taken as: the number of
particles S = 60, the inertia weight w = 1, the cognitive coefficient ¢; = 2, the social
coefficient ¢, = 2 and the maximum number of iterations t = 30. The threshold at the
fusion center is calculated from (3.). PSO-HC hybrid is applied among cooperating SUs
to improve the detection performance. The performance of PSO and PSO-HC hybrid
techniques are compared to each other. The results are produced using 1000 Monte-Carlo

simulations.
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4.3.1 AWGN Channel

ROC curve Under AVWGN with 3 users
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Figure 4-3: ROC curves for ED under AWGN channel with three cooperating SUs using PSO and PSO-HC

The performance of detection probabilities are compared between PSO and PSO-HC
algorithms. Both ROC curves are plotted in Figure 4.3 each with three cooperating SUs
under AWGN channel with SNRs of 5 dB and 10 dB across different probability of false
alarm values. When the probability of false alarm is 0.2, the probabilities of detection
using PSO algorithm and PSO-HC hybrid are 0.97 and 0.98 respectively at SNR of 10
dB. At SNR of 5 dB, the probabilities of detection are 0.63 and 0.67 for PSO algorithm

and PSO-HC hybrid, respectively
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4.3.2 Rayleigh Fading Channel

ROC curve Under Rayleigh with 3 users )
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Figure 4-4: ROC curves for ED under Rayleigh channel with three cooperating SUs using PSO and PSO-HC

The performances of signal detection are compared between PSO and PSO-HC
algorithms. Both ROC curves using PSO algorithm and PSO-HC hybrid are plotted in
Figure 4.4 each with three cooperating SUs for under Rayleigh channel with SNRs of 5
dB and 10 dB across different probability of false alarm values. When the probability of
false alarm is 0.1, the probabilities of detection for PSO-HC hybrid at SNRs of 5 dB and

10 dB are 0.46 and 0.80, respectively. For PSO, the probabilities of detection at SNRs of

5dB and 10 dB are 0.43 and 0.72, respectively.

77



4.3.3 Nakagami Fading Channel

ROC curve Under Nakagami m=2 with 3 users )
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Figure 4-5: ROC curves for ED under Nakagami channel with three cooperating SUs and m=2 using PSO and
PSO-HC

The performance of detection probabilities are compared between PSO and PSO-HC
algorithms. Both ROC curves are plotted in Figure 4.5 each with three cooperating SUs
under Nakagami channel with m = 2 and SNRs of 5 dB and 10 dB across different
probability of false alarm values. When the probability of false alarm is 0.1, the
probabilities of detection for PSO-HC hybrid at SNRs of 5 dB and 10 dB are 0.51 and
0.87, respectively. For PSO, the probabilities of detection at SNRs of 5 dB and 10 dB are

0.49 and 0.86, respectively.

78



ROC curve Under Nakagami m=3 with 3 users )
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Figure 4-6: ROC curves for ED under Nakagami channel with three cooperating SUs and m=3 using PSO and
PSO-HC

The performance of detection probabilities are compared between PSO and PSO-HC
algorithms. Both ROC curves are plotted in Figure 4.6 each with three cooperating SUs
under Nakagami channel with m = 2 and SNRs of 5 dB and 10 dB across different
probability of false alarm values. When the probability of false alarm is 0.1, the
probabilities of detection for PSO-HC hybrid at SNRs of 5 dB and 10 dB are 0.70 and
0.93, respectively. For PSO, the probabilities of detection at SNRs of 5 dB and 10 dB are

0.67 and 0.93, respectively.
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4.3.4 Lognormal Shadowing Channel

ROC curve Under Lognormal sigma=2 dB with 3 users )
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Figure 4-7: ROC curves for ED under Lognormal channel with three cooperating SUs and a45= 2 dB using PSO
and PSO-HC

Figure 4.7 represents the ROC curves of three cooperating SUs for ED using PSO
algorithm and PSO-HC hybrid under Lognormal channel with g;5 = 2 dB and SNR
SNRs of 5 dB and 10 dB across different probability of false alarm values. When the
probability of false alarm is 0.1, the probabilities of detection for PSO-HC hybrid at
SNRs of 5 dB and 10 dB are 0.55 and 0.94, respectively. For PSO, the probabilities of

detection at SNRs of 5 dB and 10 dB are 0.50 and 0.91, respectively.
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4.3.5 Gamma Fading Channel

ROC curve Under Gamma sigma=6 dB with 3 users )
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Figure 4-8: ROC curves for ED under Gamma channel with three cooperating SUs and a45= 6 dB using PSO

and PSO-HC

Figure 4.8 represents the ROC curves of three cooperating SUs for ED

algorithm and PSO-HC hybrid under Gamma channel with o, = 6 dB and SNRs of 5 dB
and 10 dB across different probability of false alarm values. When the probability of false
alarm is 0.1, the probabilities of detection for PSO-HC hybrid at SNRs of 5 dB and 10 dB

are 0.47 and 0.72, respectively. For PSO, the probabilities of detection at SNRs of 5 dB

and 10 dB are 0.41 and 0.65, respectively.
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4.3.6

Probability of Detection

Figure 4-9: ROC curves for ED under Nakagami-Lognormal channel with three cooperating SUs

The ROC curves of three cooperating SUs for ED using PSO algorithm and PSO-HC

hybrid

and 10

When the probability of false alarm is 0.1, the probabilities of detection using PSO
algorithm and PSO-HC hybrid are 0.86 and 0.88 respectively at SNR of 10 dB. For SNR

of 5 dB, the probabilities of detection are 0.57 and 0.61 for PSO algorithm and PSO-HC

hybrid,

Nakagami — Lognormal Composite Fading Channel

ROC curve Under Nakagami-Lognormal m=2 sigma=2 dB with 3 users )
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o4p= 2 dB using PSO and PSO-HC

under Nakagami-Lognormal channel with m = 2, ;5 =2 dB and SNRs of 5 dB

dB across different probability of false alarm values are represented in Figure 4.9.

respectively.
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4.3.7 Nakagami — Gamma Composite Fading Channel
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Figure 4-10: ROC curves for ED under Nakagami-Gamma channel with three cooperating SUs, m=2 and a 4=

The ROC curves of three cooperating SUs for ED using PSO algorithm and PSO-HC
hybrid under Nakagami-Gamma channel with m = 2, o, =2 dB and SNRs of 5 dB and
10 dB across different probability of false alarm values are represented in Figure 4.10.
When the probability of false alarm is 0.1, the probabilities of detection using PSO
algorithm and PSO-HC hybrid are 0.83 and 0.86 respectively at SNR of 10 dB. For SNR

of 5 dB, the probabilities of detection are 0.56 and 0.60 for PSO algorithm and PSO-HC
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ROC curve Under Nakagami-Gamma sigma=6 dB with 3 users )
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Figure 4-11: ROC curves for ED under Nakagami-Gamma channel with three cooperating SUs, m=2 and a45=
6 dB using PSO and PSO-HC

The ROC curves of three cooperating SUs for ED using PSO algorithm and PSO-HC
hybrid under Nakagami-Gamma channel with m = 2, g;5 = 6 dB and SNRs of 5 dB and
10 dB across different probability of false alarm values are represented in Figure 4.11.
When the probability of false alarm is 0.1, the probabilities of detection using PSO
algorithm and PSO-HC hybrid are 0.73 and 0.65 respectively at SNR of 10 dB. For SNR
of 5 dB, the probabilities of detection are 0.46 and 0.51 for PSO algorithm and PSO-HC

hybrid, respectively.
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4.4  Simulation Results for PSO-HC Fixed Pf

The energy detector performance is simulated for three cooperating SUs (M = 3) with
various channels including AWGN, Rayleigh, Nakagami, Gamma, Lognormal,
Nakagami-Lognormal composite and Nakagami-Gamma composite using ROC curves.
The time-bandwidth product is taken as m = 5, hence the number of samples become N =
10.The fixed false alarm probability is set at 0.1. PSO-HC hybrid is applied among
cooperating users to improve the detection performance. The PSO parameters are taken
as: the number of particles S = 60, the inertia weight w = 1, the cognitive coefficient
c; = 2, the social coefficient ¢, = 2 and the maximum number of iterations t = 30. The
threshold at the fusion center is calculated from (3.11). PSO-HC hybrid is applied among
cooperating SUs to improve the detection performance. The performance of PSO and
PSO-HC hybrid techniques are compared to each other. The results are produced using

1000 Monte-Carlo simulations.
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441 AWGN Channel

Pd vs. SNR Under AWGN with 3 users (m=5, Pf=0.1)
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Figure 4-12: Probability of detection vs. SNR curves for ED under AWGN channel with three cooperating SUs
and false alarm probability of 0.1 using PSO and PSO-HC

The performance of detection probabilities are compared between PSO and PSO-HC
algorithms. Both ROC curves are plotted in Figure 4.12 each with three cooperating SUs
under AWGN channel for different SNR from [0-30] dB. When the SNR is 10 dB, the
probabilities of detection using PSO algorithm and PSO-HC hybrid are 0.95 and 0.98

respectively.
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4.4.2 Rayleigh Fading Channel

Pd vs. SNR Under Rayleigh with 3 users {m=5, Pf=0.1)
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Figure 4-13: Probability of detection vs. SNR curves for ED under Rayleigh channel with three cooperating SUs
and false alarm probability of 0.1 using PSO and PSO-HC

The performance of detection probabilities are compared between PSO and PSO-HC
algorithms. Both ROC curves are plotted in Figure 4.13 each with three cooperating SUs
under Rayleigh channel for different SNR from [0-30] dB. When the SNR is 10 dB, the
probabilities of detection using PSO algorithm and PSO-HC hybrid are 0.73 and 0.78

respectively.
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4.4.3 Nakagami Fading Channel

Pd vs. SNR Under Nakagami m=2 with 3 users , Pf=0.1
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Figure 4-14: Probability of detection vs. SNR curves for ED under Nakagami channel with three cooperating
SUs, m= 2 and false alarm probability of 0.1 using PSO and PSO-HC

Figure 4.14 represents the ED performance of three cooperating SUs for using PSO
algorithm and PSO-HC hybrid under Nakagami channel with m = 2 for different SNR
from [0-30] dB. When the SNR is 10 dB, the probabilities of detection using PSO

algorithm and PSO-HC hybrid are 0.87 and 0.88 respectively.
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Pd vs. SNR Under Nakagami m=3 with 3 users , Pf=0.1
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Figure 4-15: Probability of detection vs. SNR curves for ED under Nakagami channel with three cooperating
SUs, m= 3 and false alarm probability of 0.1 using PSO and PSO-HC

Figure 4.15 represents the ED performance of three cooperating SUs for using PSO
algorithm and PSO-HC hybrid under Nakagami channel with m = 3 for different SNR
from [0-30] dB. When the SNR is 10 dB, the probabilities of detection using PSO

algorithm and PSO-HC hybrid are 0.93 and 0.94 respectively.
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Pd vs. SNR Under Nakagami m=4 with 3 users , Pf=0.1
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Figure 4-16: Probability of detection vs. SNR curves for ED under Nakagami channel with three cooperating
SUs, m=4 and false alarm probability of 0.1 using PSO and PSO-HC

Figure 4.16 represents the ED performance of three cooperating SUs for using PSO
algorithm and PSO-HC hybrid under Nakagami channel with m = 4 for different SNR
from [0-30] dB. When the SNR is 10 dB, the probabilities of detection using PSO

algorithm and PSO-HC hybrid are 0.95 and 0.96 respectively.

90



4.4.4 Lognormal Shadowing Channel

Pd vs. SNR Under Lognormal with 3 users |, Pf=0.1, Sigma=2 dB
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Figure 4-17: Probability of detection vs. SNR curves for ED under Lognormal channel with three cooperating
SUs, o,45= 2 dB and false alarm probability of 0.1 using PSO and PSO-HC

The ED performance of three cooperating SUs for using PSO algorithm and PSO-HC
hybrid under Lognormal channel with o, = 2 dB for different SNR from [0-30] dB is
shown in Figure 4.17. When the SNR is 10 dB, the probabilities of detection using PSO

algorithm and PSO-HC hybrid are 0.91 and 0.94 respectively.
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445 Gamma Fading Channel

Pd vs. SNR Under Gamma with 3 users , P=0.1, Sigma=2 dB
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Figure 4-18: Probability of detection vs. SNR curves for ED under Gamma channel with three cooperating SUs,
645= 2 dB and false alarm probability of 0.1 using PSO and PSO-HC

The ED performance of three cooperating SUs for using PSO algorithm and PSO-HC

hybrid under Gamma channel with g, = 2 dB for different SNR from [0-30] dB is

shown in Figure 4.18. When the SNR is 10 dB, the probabilities of detection using PSO

algorithm and PSO-HC hybrid are 0.89 and 0.93 respectively.
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Pd vs. SNR Under Gamma with 3 users , P=0.1, Sigma=6 dB
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Figure 4-19: Probability of detection vs. SNR curves for ED under Gamma channel with three cooperating SUs,

o ,45= 6 dB and false alarm probability of 0.1 using PSO and PSO-HC

The ED performance of three cooperating SUs for using PSO algorithm and PSO-HC
hybrid under Gamma channel with a;5 = 6 dB for different SNR from [0-30] dB is
shown in Figure 4.19. When the SNR is 10 dB, the probabilities of detection using PSO

algorithm and PSO-HC hybrid are 0.65 and 0.70 respectively.
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4.4.6 Nakagami — Lognormal Composite Fading Channel

Pd vs. SNR Under Nakagami-Lognormal m=2 with 3 users , P=0.1, Sigma=2 dB
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Figure 4-20: Probability of detection vs. SNR curves for ED under Nakagami-Lognormal channel with three
cooperating SUs, m=2, 45= 2 dB and false alarm probability of 0.1 using PSO and PSO-HC

The ED performance of three cooperating SUs for using PSO algorithm and PSO-HC
hybrid under Nakagami-Lognormal channel with m =2 and g5 = 2 dB for different SNR
from [0-30] dB is shown in Figure 4.20. When the SNR is 10 dB, the probabilities of

detection using PSO algorithm and PSO-HC hybrid are 0.86 and 0.88 respectively.
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4.4.7 Nakagami — Gamma Composite Fading Channel

Pd vs. SNR Under Nakagami-Gamma m=2 with 3 users , P=0.1, Sigma=2 dB
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Figure 4-21: Probability of detection vs. SNR curves for ED under Nakagami-Gamma channel with three
cooperating SUs, m=2, 45= 2 dB and false alarm probability of 0.1 using PSO and PSO-HC

Figure 4.21 shows the ED performance of three cooperating SUs for using PSO algorithm
and PSO-HC hybrid under Nakagami-Gamma channel with m = 2 and g5 = 2 dB for
different SNR from [0-30] dB. When the SNR is 10 dB, the probabilities of detection

using PSO algorithm and PSO-HC hybrid are 0.85 and 0.86 respectively.
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Pd vs. SNR Under Nakagami-Gamma m=2 with 3 users , P=0.1, Sigma=6 dB
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Figure 4-22: Probability of detection vs. SNR curves for ED under Nakagami-Gamma channel with three
cooperating SUs, m=2, o45= 6 dB and false alarm probability of 0.1 using PSO and PSO-HC

Figure 4.22 shows the ED performance of three cooperating SUs for using PSO algorithm
and PSO-HC hybrid under Nakagami-Gamma channel with m = 2 and o, = 6 dB for
different SNR from [0-30] dB. When the SNR is 10 dB, the probabilities of detection

using PSO algorithm and PSO-HC hybrid are 0.67 and 0.71 respectively.
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4.5

Simulation Results for PSO-HC Fixed SNR

The performance analysis of detection probability is summarized for single SU in Table

4.1, four cooperating SUs using OR, AND and Majority rules in Table 4.2, three

cooperating SUs using PSO in Table 4.3 and three cooperating SUs using PSO-HC

hybrid in Table 4.4.

Table 4.1: performance analysis of detection probability summary for single SU

SNR | AWGN | Rayleigh | Nakagami | Lognormal | Gamma | Nakagami- | Nakagami-
(dB) (m=3) (o4p=2 (045=2 | Lognormal Gamma
dB) dB) (m=2,045 | (M=2,0,45=2
=2dB) dB)
5 0.50 0.40 0.70 0.10 0.45 0.6 0.45
10 0.94 0.7 0.92 0.6 0.88 0.83 0.81

Table 4.2: performance analysis of detection probability summary for four cooperating SUs using OR, AND and
Majority rules

SNR AWGN | Rayleigh | Nakagami | Lognormal | Gamma | Nakagami- | Nakagami-
(dB) (m=2) (648=2 | (o4p=2 | Lognormal Gamma
dB) dB) (m=2, 04 (m:2, 04B =2
=2dB) dB)
OR 0.9998 0.98 0.95 0.9992 0.9984 0.955 0.95
AND 0.60 0.20 0.61 0.50 0.40 0.58 0.52
Majority | 0.993 0.84 0.87 0.982 0.271 0.88 0.86

Table 4.3: performance analysis of detection probability summary for three cooperating SUs using PSO

SNR | AWGN | Rayleigh | Nakagami | Lognormal | Gamma | Nakagami- | Nakagami-
(dB) (m=2) (o4p=2 (645=6 | Lognormal Gamma
dB) dB) (m=2,043 | (M=2,0,5=6
=2dB) dB)
5 0.49 0.43 0.49 0.50 0.41 0.57 0.46
10 0.96 0.72 0.86 0.91 0.65 0.86 0.65
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Table 4.4: performance analysis of detection probability summary for three cooperating SUs using PSO-HC

hybrid
SNR | AWGN | Rayleigh | Nakagami | Lognormal | Gamma | Nakagami- | Nakagami-
(dB) (m=2) (045=2 (045=6 | Lognormal Gamma
dB) dB) (m=2,045 | (M=2,0,5=6
=2dB) dB)
9) 0.51 0.46 0.51 0.55 0.47 0.61 0.51
10 0.97 0.80 0.87 0.94 0.72 0.88 0.73
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CHAPTER 5

CONCLUSION

5.1 Conclusion

CR technology makes efficient use of the radio spectrum by using the spectrum in an
opportunistic manner. Also PSO is an efficient optimization method to solve problems.
This thesis proposes a new PSO-HC hybrid method where it combines PSO algorithm
and HC algorithm. PSO-HC hybrid is implemented in CR networks to improve the

detection probability performance using energy detection.

Simulation results show the performance of PSO-HC hybrid across different fading
channels. PSO-HC hybrid is compared to the conventional PSO. In non-fading/ low
fading channels , the performance improves a little over the conventional PSO. This can
be seen in AWGN channel and Nakagami fading channel with higher fading parameter m
results. On the other hand, in deep fading channels, the performance improves a greatly
over the conventional PSO. This can be seen in results of Rayleigh channel and
Nakagami-Gamma fading channel with higher spread. PSO-HC hybrid performs well in

deep fading channels and it is easy to implement especially when the time is limited.
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5.2 Future Work

The energy detector performance is simulated for using various channels including
AWGN, Rayleigh, Nakagami, Gamma, Lognormal, Nakagami-Lognormal composite and
Nakagami-Gamma composite using ROC and complementary ROC curves. This work
can be extended by implementing double threshold in energy detector where two
thresholds are used to determine the PU signal presence. This method shows
improvement in energy detection performance over the energy detection performance
when using single threshold method. Also, in our work we have considered flat fading
channels for the various fading channels used. The work can also be extended to
frequency selective fading environments to see how it affects the detection performance
of the energy detector. The signals processed through energy detector are assumed to be
i.i.d where the ED is optimal is this case. However, the ED is not optimal for correlated
signals. To solve this problem, one can use other detection methods e.g., maximum
eigenvalue detection where it uses the maximum eigenvalue of a sample covariance
matrix of the received signal as test statistics. This method gives better detection

performance than ED method when signals are correlated.
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