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In silico toxicology: comprehensive
benchmarking of multi-label
classification methods applied
to chemical toxicity data
Arwa B. Raies and Vladimir B. Bajic *

One goal of toxicity testing, among others, is identifying harmful effects of che-
micals. Given the high demand for toxicity tests, it is necessary to conduct these
tests for multiple toxicity endpoints for the same compound. Current computa-
tional toxicology methods aim at developing models mainly to predict a single
toxicity endpoint. When chemicals cause several toxicity effects, one model is
generated to predict toxicity for each endpoint, which can be labor and computa-
tionally intensive when the number of toxicity endpoints is large. Additionally,
this approach does not take into consideration possible correlation between the
endpoints. Therefore, there has been a recent shift in computational toxicity
studies toward generating predictive models able to predict several toxicity end-
points by utilizing correlations between these endpoints. Applying such correla-
tions jointly with compounds’ features may improve model’s performance and
reduce the number of required models. This can be achieved through multi-label
classification methods. These methods have not undergone comprehensive
benchmarking in the domain of predictive toxicology. Therefore, we performed
extensive benchmarking and analysis of over 19,000 multi-label classification
models generated using combinations of the state-of-the-art methods. The
methods have been evaluated from different perspectives using various metrics
to assess their effectiveness. We were able to illustrate variability in the perfor-
mance of the methods under several conditions. This review will help
researchers to select the most suitable method for the problem at hand and pro-
vide a baseline for evaluating new approaches. Based on this analysis, we pro-
vided recommendations for potential future directions in this area. © 2017 The
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INTRODUCTION

Toxicity testing aims at identifying harmful effects
of chemicals on humans, animals, plants, and the

environment. Additionally, there are many benefits of
toxicity testing1: to determine safety of compounds
and identify safe doses; to categorize potential toxic
effects through different routes of exposure
(e.g., oral, dermal, or inhalation) and frequency of
exposure; to determine mode and mechanism of
action; to explain observations of effects in different
groups of the population (e.g., based on gender or
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age); and to verify in vitro or in silico testing results.1

It is a necessary step in many processes including
drugs design2; identification of environmental haz-
ards, such as chemical pollutants3; manufacturing
chemical products, such as pesticides3; and synthesis
of food products, such as food additives.4 Given the
high demand for toxicity tests, it is crucial to conduct
these tests for multiple toxicity endpoints for the
same compound. For a long time, in vivo testing
(i.e., using animal models or cell lines) has been the
primary toxicity assessment method.2 Following the
development of High Throughput Screening, in vitro
toxicity testing in a large number of cultured cells or
cell lines became feasible.5 In contrast, in silico toxi-
cology relies on using computational resources for
toxicity assessment.6 In silico toxicology has contrib-
uted considerably to toxicity testing and its first
developments occurred as early as 1934.7 During the
last century, in silico toxicology has evolved signifi-
cantly to provide various computational tools for
gathering, modeling, simulating, and visualizing tox-
icity data.6

Several methods have been developed to gener-
ate toxicity prediction models.6 Current in silico toxi-
cology methods aim at developing models mainly to
predict a single toxicity endpoint.6 When chemicals
cause several toxicity effects, one model is generated
for each endpoint8 (i.e., the binary relevance
method9), which can be laborious and computation-
ally intensive when the number of toxicity endpoints
is large. It should be noted that there are some sys-
tems (e.g., Derek Nexus,10 ToxTree,11,12 and OECD
QSAR toolbox13) that include many pre-built models
to predict different toxicity endpoints.6 These tools
contain many pre-built models each aimed at predict-
ing a single endpoint. While it is easy to use the exist-
ing pre-built models for each endpoint, it is labor
intensive to develop these models in the first place.
With advancements in High Throughput Screening,
it became feasible to measure hundreds of toxicity
endpoints per compound.5 Developing one model for
each newly measured endpoint would require devel-
oping hundreds of models. This is inefficient and
impractical. Additionally, this approach does not
take into consideration possible correlation between
the endpoints, and it relies entirely on features of
compounds. However, it has been found that some
toxicity endpoints may correlate.8,14 In 2006, analy-
sis of data from the US Food and Drug Administra-
tion showed that there are high correlations between
four composite toxicity categories (gene mutation,
DNA damage, clastogenicity, and reproductive toxic-
ity) with carcinogenicity in rodents.14

Therefore, there was a recent shift in computa-
tional toxicity toward generating predictive models
able to predict several toxicity endpoints by utilizing
correlations between these endpoints. This can be
achieved through multi-label classification methods.
Applying such associations jointly with compounds’
features may improve model performance and reduce
the number of generated models. Developments have
been made to create multi-label classification models
using toxicity data sets such as the ToxCast data
set,15,16 Tox21 data sets,17–19 Accelrys Toxicity
Database,20,21 and RepDose and ELINC data sets.22,23

However, a recurrent problem in these studies, caused
by missing labels in toxicity data sets, illustrated a
major challenge in applying multi-label classification
approaches to toxicity prediction. Toxicity profiles of
some compounds are unknown across all toxicity phe-
notypes, either because such data are unavailable
(e.g., compounds are not tested for all toxicity pheno-
types), or it may be hard to find (e.g., being scattered in
scientific literature). Determining relationships between
endpoints is more difficult if toxicity data are not avail-
able for all toxicity endpoints in a data set. In such
cases, some studies excluded compounds whose toxic-
ity is unknown across all toxicity endpoints in the data
set.15 However, this approach disregards the known
toxicity information of the discarded compounds.
Additionally, some studies applied imputation as a pre-
processing step.8,22–24 Imputation is a process that
aims at ‘completing’ the missing data in the data set by
substituting (in this case) the missing toxicity data with
predicted values. Subsequently, multi-label classifica-
tion methods are applied to the completed data set.
Other studies applied multi-label classification methods
directly to toxicity data sets without imputing the miss-
ing labels.25

Multi-label classification has not undergone
comprehensive benchmarking for predictive toxicol-
ogy. In the studies mentioned above different data
sets, preprocessing steps, and evaluation metrics were
used. Such inconsistent conditions make objective
comparison and reproducibility of models’ perfor-
mances infeasible and complicate the process of
selecting the best method for a particular purpose.
Therefore, to support the progress in this area, we
performed comprehensive benchmarking and analy-
sis of 19,186 multi-label classification models gener-
ated using various combinations of computational
methods. We evaluated the models’ performances
using several statistical metrics and analyzed their
predictive performance in internal validation (fivefold
cross-validation on the training set) and external vali-
dation (using a blind testing set), and across end-
points and compounds.
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This review is organized into five sections. First,
we explain single-label and multi-label classification.
Second, we present an overview of different methods
for multi-label classification used in the benchmark
study. The methods were chosen either because they
have been applied to multi-labeled toxicity data sets
(i.e., data sets that include several toxicity endpoints),
or they represent the state-of-the-art methods for
multi-label classification. The third section describes
the benchmarking process, the data set, and evalua-
tion metrics. Next, we report the benchmarking anal-
ysis results. Finally, based on the results of the
benchmark analysis, we provided recommendations
for potential future research directions in this area.

SINGLE-LABEL AND MULTI-LABEL
CLASSIFICATION

There are two main types of classification: single-
label and multi-label classification. Single-label classi-
fication is used when each instance in a data set
belongs to only one class9 and is thus associated with
only one label. Single-label classification can be
binary (Figure 1(a)) if the data set can be split into
only two classes (e.g., carcinogenic or noncarcino-
genic compounds). If the data set can be divided into
more than two classes, it is a multi-class classifica-
tion26 (Figure 1(b)). For example, compounds can be
classified based on the degree of skin sensitization
(e.g., high, moderate, low). In multi-class classifica-
tion, classes are mutually exclusive. A given instance
can belong to only one class.

In multi-label classification, however, an instance
may belong to several classes simultaneously9,27

(Figure 1(c)). In this case, each toxicity endpoint repre-
sents a label, and a given compound can have different
activity for each endpoint. For example, if the data set
contains two labels, carcinogenicity and genotoxicity,
then a given compound can be only genotoxic, only
carcinogenic, both genotoxic and carcinogenic, or both
nongenotoxic and noncarcinogenic. In some cases, the
labels are not known for some instances in a data set.
For example, a compound can be genotoxic, but it is
unknown if it is carcinogenic. This situation is referred
to as ‘missing labels,’ and it is common in many multi-
label classification datasets.

MODELING MULTI-LABEL TOXICITY
DATA WITH MISSING LABELS

In this review, we considered three categories of com-
putational methods to generate the predictive models
as shown in Figure 2(a):

• Nine methods for multi-label classification
(Figure 2(a)).

• Each multi-label classification method is applied
using one of nine base classifiers. Each base
classifier is used with various computational set-
tings including distance metrics, kernels,
solvers, and splitting criteria when applicable
(Figure 2(b)).

• Three methods for feature selection (Figure 2(c)).

Multi-Label Classification Methods
Here we provide a brief description of the multi-label
classification methods while focusing on how to
apply them to multi-label toxicity data sets with
missing toxicity data. However, generic descriptions
of these methods are provided in great detail in their
corresponding references, which can be useful for
readers in understanding how to apply the methods
to related or similar types of datasets.

Binary relevance method requires generating
one prediction model per label.9 Each model is
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FIGURE 1 | Illustrations of single-label classification and multi-
label classification. X is the data set in which feature vectors describe
compounds C1–Cn; n is the number of compounds; F1–Fm are features;
m is the number of features. Y is the label vector (in single-label
classification) or the label matrix (in multi-label classification).
(a) Binary classification. (b) Multi-class classification. (c) Multi-label
classification. Missing labels are denoted with ‘?.’ ‘1’ and ‘0’ are
known labels.
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produced using a base classifier (Base classifiers are
detailed in the next section). Therefore, the number
of generated base models is equal to the number of
endpoints in the data set. For example, if the data set
contains N toxicity endpoints, and a decision tree is
used as a base classifier then N decision trees will be
generated. Each trained decision tree will be used to
predict a single toxicity endpoint of new compounds.
However, the binary relevance method does not take
into consideration correlations between endpoints.28

To handle missing toxicity data only known toxicity
data per endpoint is used to train base classifiers.

Classifier chains method is similar to binary rel-
evance method since it requires generating one model
per endpoint. However, it aims to identify relation-
ships between endpoints by using some endpoints as
features to predict other endpoints.29 The workflow
of this approach begins by selecting one endpoint
randomly. A base classifier is trained using the
known toxicity data of the endpoint. Secondly, the
endpoint is used as a feature, and the missing data of
the endpoint is imputed using the trained base classi-
fier (Figure 3(c)). Next, a second endpoint is selected
randomly, and the training set (which now includes
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FIGURE 2 | Overview of modeling approaches. (a) Three categories of the computational methods including feature selection, multi-label
classification, and base classifiers. MLDT, multi-label decision tree; MLKNN, multi-label K nearest neighbors; MLC-BMaD, multi-label Boolean
matrix decomposition. (b) A list of base classifiers along with their corresponding kernels, solvers, splitting criteria, and distance metrics (when
applicable). CD, Coordinate Decent; CG, Conjugate Gradient; LBFGS, Memory-limited quasi-Newton; SAG, Stochastic Average Gradient; RBF, Radial
Basis Function. (c) Three feature selection methods. L1, L2, and L3: labels; X: the original feature set; X1, X2, X3: selected feature sets for labels L1,
L2, and L3, respectively; xi: a single feature; Xs: the combined feature set; M1, M2, and M3: models for endpoints L1, L2, and L3, respectively; t:
variance threshold.
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compounds features and the first endpoint) is used to
train the second base classifier for modeling the sec-
ond endpoint. These steps are repeated for all end-
points. If the data set contains N endpoints, N base
classifiers will be trained. An application of this
method to a multi-label dataset with missing data is
described in reference.25

Label powerset method transforms multi-label
classification to multi-class classification by treating
combinations of labels as distinct classes (Figure 3
(d)). Only one multi-class base classifier is generated
regardless of the number of endpoints in the data set.
If the base-classifier does not support multi-class clas-
sification, there are two ways to transform multi-
class classification to binary classification:

• One-versus-one approach creates a binary prob-
lem for each pair of classes.

• One-versus-rest (also called one-versus-all)
approach creates a binary problem between one
class, and the rest of the classes that are
grouped to make the other class.

The label powerset approach aids in identifying cor-
relations between endpoints. However, it may result
in a large number of classes associated with a small
number of compounds.9 Typically, classes are
encoded using combinations of the presence of toxic-
ity. However, to handle the missing toxicity data, the
classes are encoded using combinations of presence
and absence of toxicity (Figure 3(d)). An application
of this method to a multi-label data set with missing
data is explained in reference.25

Random K labelset method is an ensemble
approach that combines binary relevance and label
powerset methods.30 First, endpoints are randomly
grouped into labelsets of length K (1 ≤ K ≤ N, where
N is the number of endpoints in the data set). Then
the label powerset method is applied to each labelset
(Figure 3(e)). If K = 1 (i.e., each labelset contains
only one endpoint), the approach resembles the
binary relevance method. However, if K = N, where
N is the number of endpoints (i.e., there is only one
labelset that contains all the endpoints in the data-
set), the approach resembles the label powerset
method. There are two approaches to generate the
labelsets: distinct and overlapping labelsets. The dis-
tinct labelsets approach generates disjoint labelsets
such that each endpoint belongs to only one labelset.
On the other hand, in the overlapping labelsets
approach, labels can belong to more than one label-
set. The overlapping labelset approach implements a
voting mechanism to aggregate predictions for labels
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FIGURE 3 | Illustrations of some multi-label classification
methods. (a) X is the matrix of features of compounds C1–Cn, where
n is the number of compounds, and their features F1–Fm, where m is
the number of features. (b) L is the label matrix that consists of four
labels in this example. Positive and negative labels are denoted by ‘1’
and ‘0’, respectively, while ‘?’ indicates missing labels. (c) Classifier
chains method. Matrix X’ consists of the feature matrix X from part
(a) extended with the label L1 from matrix L, where L is from part (b).
The missing labels of L1 are imputed. X’ is used to train a model M to
predict a second label, L2. (d) Label powerset method. Matrix L’
consists of the transformed multi-class labels. Each unique label
combination is a distinct class. For example, l1 indicates that L1 is
positive, while ~l2 indicates that L2 is negative. Missing labels are not
encoded. (e) Random K labelset method. Matrix L’ consists of two
labelsets of length K = 2, and each labelset is represented using the
label powerset method. In this example, the first labelset consists of
labels L1 and L2, and the second labelset consists of labels L3 and L4.
(f ) Multi-label Boolean matrix decomposition method. L’ is the
decomposed matrix that consists of three latent labels in this example:
L’1, L’2, and L’3. (g) Matrix Y0 is the second matrix from the
decomposition based on the multi-label Boolean matrix decomposition
method.
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that belong to several labelsets. In this review, we
applied the distinct labelset approach. The main
advantage of random K labelset method over the
label powerset method is that grouping endpoints
into labelsets can reduce the number of classes per
labelset, and increase the number of compounds
associated with each class. Decreasing the number of
classes may reduce models complicity and conse-
quently may improve their performance.30

Semi-supervised learning is applied when there
is only a small proportion of data with known labels
but a large proportion of data with missing labels,
which is a common characteristic of multi-label data
sets.31 This approach uses both known and missing
labels for model training. It was found that using a
small data set with known labels in addition to data
with missing labels may improve model’s perfor-
mance over merely using a small data set with known
labels.31 Algorithms that implement this method are
explained in the next section.

Multi-label Boolean matrix decomposition
method decomposes the labels matrix to a smaller
matrix, which contains latent labels to encode end-
points correlations.32 Then binary relevance or classi-
fier chains approaches are applied to predict the
latent labels (Figure 3(f )). Since the number of latent
labels is smaller than the number of endpoints, fewer
models are generated. This method aims to identify
relationships between endpoints while reducing the
number of generated models. To predict the toxicity
of a new compound, models predict the latent labels.
The predictions are transformed back to the original
labels using the second matrix from the decomposi-
tion32 as shown in Figure 3(g).

Deep learning method uses a neural network to
model high-level abstractions of compound features
using linear or nonlinear transformations. The trans-
formed features may be more meaningful than the
original features.33 This approach uses binary rele-
vance, classifier chains, label powerset, or random
K labelset to generate the multi-label classification
models. An application of deep learning to toxicity
data with missing labels is available in Ref 17.

Multi-label decision tree is a modified algorithm
of a binary or multi-class decision tree (explained in
the next section), which can predict several toxicity
endpoints at leaf nodes. It applies an extended defini-
tion of entropy by calculating average entropy across
all endpoint.34 This method implements implicit neg-
ativity to handle missing toxicity data (i.e., treat all
missing data as negative/non-toxic).

Multi-label K nearest neighbor (KNN) is an
extended algorithm of the lazy KNN algorithm
(explained in the next section) to predict several

toxicity endpoints.35 However, it requires computing
posterior and prior probabilities for each endpoint in
the training set. Prior probability is the compound’s
likelihood to cause a toxicity effect, whereas poste-
rior probability is the likelihood that some KNNs
will cause the toxicity effect. This method applies a
Bayesian rule for labels ranking.35 To handle missing
toxicity data, we implemented a modified version of
this algorithm, so that only known data is used to
calculate the prior and posterior probabilities.

Base Classifiers Methods
K Nearest Neighbors (KNN) algorithm is a lazy learn-
ing approach that uses a voting mechanism from the
top K similar compounds to predict toxicity effects of
new compounds.36 This algorithm supports both
binary and multi-class classifications. In applying this
method, we considered two voting mechanisms:
majority votes and weighted (by the distance) votes.
When predicting the toxicity of a new compound, the
majority votes mechanism assigns the class of major-
ity of the nearest neighbor compounds to the new
compound. Therefore, all votes from the nearest
neighbor compounds have equal weights. However,
the weighted votes mechanism considers the distance
of the nearest neighbor compounds from the new
compound. Therefore, votes of the nearest neighbor
compounds that are further away from the new com-
pound are weighted less. To calculate the distance
between two compounds p and q, where n is the num-
ber of features, we consider three distance metrics37:

Manhattan Distance : p−qk k1 =
Xn
i =1

pi−qij j ð1Þ

Euclidean Distance : p−qk k2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i =1

pi−qij j22

s
ð2Þ

Minkowski Distance : p−qk kx =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i = 1

pi−qij jxx

s
,

wherex ≥ 1 ð3Þ

Logistic regression is a regression algorithm for binary
classification that uses direct or iterative solvers for lin-
ear or nonlinear optimization problems.38 We consid-
ered four solvers: Newton Conjugate Gradient,39

Memory limited quasi-Newton (L-BFGS),40 Coordi-
nate Decent,41 and Stochastic Average Descent.42 Reg-
ularization is often used to prevent the solver’s
coefficients from overfitting by adding a regularization
term. L1 regularization is calculated using the sum of
the coefficients, but L2 regularization is calculated
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using the sum of the square of the coefficients.43 A
multinomial fit function across the entire probability
distribution is used in the case of multi-class
classification.

Decision trees are a decision-making frame-
work represented by a hierarchy of decision nodes.
The top node in the hierarchy is called the root node.
The data processed by the root node is split into two
or more data subsets that are directed for processing
to the nodes at the second level of the hierarchy. This
process repeats for the remaining levels of the deci-
sion tree hierarchy. Nodes at the bottom of the hier-
archy, which do not further split the data, are called
leaf nodes. Compounds are classified by tracing a
path from the root to leaf nodes. Homogeneous leaf
nodes contain compounds that belong to one class.
These are considered ‘pure’ nodes. Therefore, deci-
sion tree algorithms aim at creating decision trees
with homogenous leaf nodes. In reality, this is rarely
the case, and leaf nodes frequently contain mixed
label data. We considered two metrics for measuring
nodes impurity: information gain index, and Gini
index (Raileanu & Stoffel, 2004). For the bench-
marking analysis, the classification and regression
trees algorithm44 is used to create the decision trees.

An ensemble of trees algorithm generates sev-
eral decision trees that process data in parallel. Then
a voting mechanism is applied to aggregate predic-
tions from all the trees. Two algorithms are consid-
ered in this review to create the ensembles: random
forest and extra trees. Random forest algorithm
selects random subsets from the training set then one
decision tree is trained on each subset.45 On the other
hand, extra trees algorithm uses the whole data set,
but the trees are generated randomly.46

Support Vector Machines (SVMs) algorithm
works by finding a hyperplane to separate two clas-
ses of data. It uses kernel functions to transform the
data to higher dimensions.47 Let hp, qi denotes the
dot product of two compounds p and q, let d be a
polynomial degree, γ a coefficient, and r a constant.
In this review, we considered four kernel functions48:

Linear : p,qh i ð4Þ
Polynomial : γ p,qh i+ rð Þd ð5Þ

Radial Basis Function RBFð Þ : exp −γ p−qj j2
� �

,
where γ >0 ð6Þ

Sigmoid : tanh γ p,qh i+ rð Þ ð7Þ

Naturally, SVM algorithm does not support multi-
class classification. In this case, we considered the
one-vs.-one approach for the benchmarking analysis.

However, there is an extended definition of SVM to
support multi-class classification.49

Label propagation and label spreading are two
semi-supervised learning algorithms. Both algorithms
work by constructing a similarity graph over all
items in the data set.50 Label spreading algorithm
normalizes the weights of edges in the similarity
graph, while label propagation does not modify the
weights. We considered two kernels for propagating
the labels: Radial Basis Function (RBF) and KNN.

Naïve Bayes is a probabilistic algorithm that
uses prior probabilities of labels to calculate posterior
probabilities of predicted labels with the naïve
assumption of independence between pairs of fea-
tures.51 The prior probability of label L, P(L) is the
number of co-associated with a label divided by the
total number of compounds in the data set. The pos-
terior probability P(L|C) of compound C is estimated
as follows

P LjCð Þ/P Lð Þ
Yn
i = 1

P xijLð Þ ð8Þ

where n is the number of features and xi is a feature
of compound C.

Feature Selection Methods
Although data sets may contain features that are rele-
vant to the toxicity endpoints, prediction models may
not need all of them to produce good predictions.
Feature selection is a preprocessing step aiming at elim-
inating features that do not contribute to models’ pre-
dictive power. A reduced set of features may decrease
models’ complexity. Therefore, feature selection can
improve models’ interpretability, and in some cases,
enhance their performance.52 Feature selection is
supervised if the labels are taken into consideration
when selecting the features; otherwise, the feature
selection is unsupervised. In the case of multi-label clas-
sification, it is more challenging to extract features that
are relevant to all labels in the data set, especially in the
cases with missing labels. We considered three methods
for feature selection as summarized in Figure 2(c).

Supervised feature selection method uses statis-
tical indices or scores to measure correlation or
dependence between the features and the labels. This
method removes features that are independent of the
endpoints. In this approach, the top K dependent fea-
tures per endpoint are selected then grouped to make
the final feature set. Therefore, in this approach, only
one feature set is used to train models to predict all
endpoints in the data set. To handle missing toxicity
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data the scores are calculated using only the known
toxicity data per endpoint. In this review, we consid-
ered the Chi-square test, which ranks features
according to their dependence to toxicity endpoints.
The scores range from 0.0 (low dependence) to 1.0
(high dependence).53

Unsupervised feature selection method applies the
variance score,54 which removes features whose vari-
ance is less than a certain threshold. Features that have
low variance scores (i.e., present or absent in all or most
of compounds) may not be used to distinguish between
toxic and nontoxic compounds. Unsupervised feature
selection is suitable for data sets with missing toxicity
data since labels are not involved in calculating the vari-
ance. However, the selected features may not contribute
to models’ predictive power since the features may not
correlate with the labels. Similar to supervised feature
selection, unsupervised feature selection generates one
feature set for training models to predict all the
endpoints.

Label-specific feature selection method is a
supervised feature selection approach that aims at
selecting features that are most suited for the multi-
label classification method, which may help in
increasing the model performance. Chi-square scores
are used to measure correlations between the features
and the labels as explained below:

• For the label powerset approach, the feature set
is selected after generating the multi-class labels.

• For binary relevance and classifier chains
methods, one set of features is selected per tox-
icity endpoint. Unlike supervised feature selec-
tion, label-specific feature selection does not
group the selected features. Instead, each model
is trained using the feature set specific to the
considered endpoint. Therefore, the number of
generated feature sets is equal to the number of
toxicity endpoints in the data set. An example is
provided in Figure 2(c).

• For the random K labelset approach, a set of fea-
tures is selected for each labelset after generating
the multi-class labels; then each model is trained
using the feature set that corresponds to a partic-
ular labelset. Therefore, the number of generated
feature sets is equal to the number of labelsets.

BENCHMARKING MODELS, DATA
SET, AND EVALUATION METRICS

Generation of Models
Each model is generated using a combination of the
methods mentioned above. As an example, one

model is generated using the random K labelset
method for multi-label classification with K equal to
2, with the base-classifier being a decision tree that
uses information gain as a splitting criterion, and
where supervised feature selection is used to select
the best 16 features per label. The algorithm’s param-
eters were tuned using fivefold cross-validation on
the training set. Parameters for each method are
detailed in Table S1, Supporting Information.

We generated more than 100,000 multi-label
classification models. However, a majority of the
models (~80,000) were useless since they predicted
all compounds in internal validation as only positive
or only negative. Thus, we excluded these models
from the analysis. Here, we discuss the performance
of 19,186 models (of which 1141 models are binary
relevance models) that were able to provide meaning-
ful predictions.

Figures S1 and S2 describe the characteristics of
the 19,186 models. All relevant codes for training
and testing the models, analyzing the results and cre-
ating the figures, and instructions how to run the
code are available online at www.cbrc.kaust.edu.
sa/mlc/index.php. Specifications of the used software
are available in Appendix S1.

Data Set Description
Figure 4(a) shows toxicity profiles of 6644 pharma-
ceutical, environmental, and industrial compounds
for 17 in vivo toxicity endpoints in five species. We
compiled the data set from several public toxicity
databases. A list of data sources is provided in
Appendix S1. We gathered toxicity data with binary
annotations [e.g., positive (toxic) or negative (non-
toxic)]. We included endpoints that are associated
with at least 50 toxic and 50 nontoxic compounds.19

Only 17 endpoints from the used data sources satisfy
these conditions as shown in Figure 4.

For each compound, the toxicity endpoints are
marked as positive, negative, or missing (unknown
toxicity). Figure 4(b) shows the number of toxic and
nontoxic compounds associated with each toxicity
endpoint. In this data set, a large number of com-
pounds (3096 compounds) have known toxicity effects
for genotoxicity in Salmonella toxicity endpoint. How-
ever, a small number of compounds (221 compounds)
have known toxicity effects for developmental toxicity
in mice. On average, each toxicity endpoint is associ-
ated with 1020 compounds. Some endpoints are bal-
anced (i.e., associated with an equal number of toxic
and nontoxic compounds), while other endpoints are
imbalanced (i.e., associated with a large number of
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FIGURE 4 | Data set description. (a) Toxicity profiles of 6644 compounds for 17 toxicity endpoints. Each row corresponds to a compound,
each column corresponds to a toxicity endpoint, and each cell represents a compound’s activity per endpoint. Compounds are numbered from 0 to
6643. Red cells indicate active/toxic compounds, while blue cells indicate inactive/nontoxic compounds. However, gray cells denote the unknown
toxicity. (b) A bar graph of the number of toxic and nontoxic compounds associated with each toxicity endpoint. (c) A bar graph of the number of
known toxicity effects per compound. (d) A bar graph of the percentage of positive and negative toxicity effects per compound.
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toxic compounds, but a small number of nontoxic
compounds, or vice versa).

Some compounds cause several toxicity effects,
and a given compound can be toxic for some end-
points, but non-toxic for others. In this data set,
compounds have known toxicity effects (either posi-
tive or negative) for at least 1 and at most 15 end-
points (Figure 4(c)). In this data set, the average
number of known toxicity effects per compound is
2.61. No compound has known toxicity effects for
all the 17 endpoints. Figure 4(d) shows that 32% of
compounds have both positive and negative effects.
However, 41% of compounds have only known neg-
ative effects, while the remaining 27% have only
known positive effects.

Eighty percentage of the compounds in the data
set (5316 compounds) was used for training the
models and internal validation using fivefold cross-
validation, and the rest (1328 compounds) was
reserved for external validation as a blind testing set.
The data set is used without the imputation of the
missing data. The final data set used for benchmark-
ing and its description are available online at www.
cbrc.kaust.edu.sa/mlc/index.php.

Compound Identification and Features
For each compound, we recorded CAS Registry
Number, chemical name and synonyms (if available),
simplified molecular-input line-entry system
(SMILES) notation, and molecular formula. We used
the SMILES notation for generating the compound’s
features. We used categorical and structural features
that may provide insight into mechanisms of actions,
including but not limited to:

• electrophilic, nucleophilic, and covalent reactiv-
ity mechanisms (e.g., Michael acceptors);

• radical mechanism by radical oxygen species
formation;

• compound’s potential to bind/interact with bio-
logical entities (e.g., DNA, proteins, peptides, or
estrogen receptors);

• bioavailabity, biodegradation, bioaccumulation,
and stability;

• functional groups (e.g., hydrocarbons; halogen;
bases and acids groups; and oxygen, nitrogen,
sulfur, phosphorus, or boron groups); and

• classes of compounds.

We used OECD QSAR toolbox,13 which contains
databases and computational tools to assign com-
pounds to these categories. Moreover, structural

features were generated using the OECD QSAR tool-
box and PADEL toolbox55 in Python 2.7. All the fea-
tures are binary (e.g., present or absent). To reduce
the number of features, we excluded features that are
present in less than 5% of compounds. One hundred
and eighty-six features satisfy this condition: 20 struc-
tural features from PADEL, 128 categorical features,
and 38 structural features from the OECD QSAR
toolbox. A complete list of all categorical and struc-
tural features is available in the dataset files.

Applicability Domain
The applicability domain of a prediction model is
‘the theoretical space in which a model can make reli-
able predictions.’56 We used Ambit Discovery
tool57,58 to define the applicability domain using the
Euclidean distance to the Mean method. To deter-
mine the applicability domain, we entered the train-
ing compounds along with their generated
186 features described in the ‘Compound identifica-
tion and features’ section above. After defining the
domain, we used the tool to determine wither the test
compounds fall within or outside the applicability
domain. Only two test compounds fall outside the
applicability domain.

Performance Evaluation Metrics
Predictions were classified into four categories: True
Positive (TP: compounds are toxic and predicted to
be toxic), True Negative (TN: compounds are non-
toxic and predicted to be nontoxic), False Positive
(FP: compounds are nontoxic but predicted to be
toxic), and False Negative (FN: compounds are toxic
but predicted to be nontoxic). Model macro-average
performance was determined by calculating the per-
formance per endpoint then averaged across all end-
points. The performance metrics are the following53:

• Recall (also called sensitivity) is the proportion
of toxic compounds that are predicted to be
toxic. It is defined as TP/(TP + FN).

• Specificity is the proportion of nontoxic com-
pounds that are predicted to be nontoxic. It is
defined as TN/(TN + FP).

• Precision (also called positive predictive value)
is the proportion of correctly predicted toxic
compounds out of all compounds that are pre-
dicted to be toxic. It is defined as TP/(TP + FP).

• Negative predictive value (NPV) is the propor-
tion of correctly predicted nontoxic compounds
out of all compounds that are predicted to be
nontoxic. It is defined as TN/(TN + FN).
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• F1-score is the harmonic mean of precision and
recall. It is defined as 2*(Precision*Recall)/(Pre-
cision + Recall).

• Accuracy is the success rate in predicting toxic
and nontoxic compounds. It is defined as
(TP + TN)/(TP + FP + TN + FN).

• Area Under Receiver Operating Characteristics
curve (AUROC) is the area under a curve repre-
senting the relationship between TP rate
(i.e., recall) and FP rate (i.e., 1 – specificity) for
a model.

The above metrics produce scores between 0.0 and
1.0. A perfect model would score 1.0 for all metrics.
High specificity but low recall scores indicate that
models predicted most of the compounds as non-
toxic. On the other hand, high recall but low specific-
ity suggests that models predicted most of the
compounds as toxic. Additionally, high F1-score is
achieved when both precision and recall are high.

Accuracy scores show the average performance
in predicting toxic and nontoxic compounds for bal-
anced data sets. However, in the case of imbalanced
data sets (e.g., the number of toxic compounds is
much larger than nontoxic compounds or vice versa),
accuracy scores can be overestimated if the models
adjust to the majority class (e.g., predict all com-
pounds as toxic where toxic compounds represent
the majority class). However, the AUROC metric is
not sensitive to imbalanced data sets.

BENCHMARKING ANALYSIS

Multi-Label Versus Binary Relevance
Models Macro-Average Performance
Binary relevance method, which works by generating
an individual model for each label, is often used as a
baseline to assess the performance of other multi-
label classification methods and determine whether
using endpoints correlations enhances model’s per-
formance.9 Figure 5 shows the models macro-average
performances based on five metrics: accuracy, F1-
score, precision, recall, and specificity in internal
(Figure 5(a)) and external (Figure 5(b)) validations.
The gray areas in bar graphs show the performance
range of binary relevance models.

The performance of many multi-label models
falls within the performance range of binary rele-
vance models (i.e., their performances fall within the
gray areas in Figure 5). However, some multi-label
models, such as those generated by random
K labelset and label powerset, significantly exceed
the performance of binary relevance models

(i.e., their performances fall above the gray areas in
Figure 5). On the other hand, other multi-label
models, such as those generated by deep learning and
multi-label Boolean matrix decomposition methods,
appear to be considerably weaker (i.e., their perfor-
mances fall below the gray areas in Figure 5). More-
over, some multi-label models outperformed binary
relevance models across all the five performance met-
rics (e.g., leftmost models in bar graphs in Figure 5
(a)). However, some multi-label models outper-
formed binary relevance models in only one perfor-
mance metric (e.g., middle to rightmost models in
Figure 5(a) outperformed binary relevance models in
specificity only).

Internal Versus External Validation
We analyzed variability in predictive performance
between internal and external validations. Figure 6
shows scatter plots of macro-average performances
of models in internal and external validation based
on the five performance metrics. Properly fitted
models have similar performance in internal and
external validation and appear close to the diagonal
(from (0,0) point to (1) point) of the scatter plots
(marked in green in Figure 6). We define the ‘diago-
nal region’ as the region of properly fitted models
where the difference between the performances in
external and internal validations is <20%. Overfitted
models achieved high performance in internal valida-
tion, but weaker performance in external valida-
tion.59 These models appear below the diagonal
region (marked in orange in Figure 6). However,
poor performance in internal validation, but high
performance in external validation, may occur when
the characteristics of the data in the testing set are
similar to the portion of the data in the training set
were the models performed well. These models
appear above the diagonal region (marked in blue in
Figure 6).

The majority of the generated models have sim-
ilar performances in internal and external validation.
Overall, 4.13, 6.54, 8.73, 6.84, and 2.92% of models
show big differences (≥ 20%) between internal and
external validation in accuracy, F1-score, precision,
recall, and specificity, respectively. Table 1 details the
proportion of models that appear above, within or
below the diagonal region generated by each multi-
label classification method. Notably, the performance
of all models generated by multi-label K nearest
neighbors, binary relevance, and classifier chains
methods reside within the diagonal region. Similarly,
the majority of models generated by deep learning,
semi-supervised learning, multi-label Boolean matrix

WIREs Computational Molecular Science In silico toxicology

© 2017 The Authors. WIREs Computational Molecular Science published by Wiley Periodicals, Inc. 11 of 26



decomposition methods reside in the diagonal region.
However, the performance of a significant percentage
models generated by random K labelset and label
powerset methods reside below the diagonal region
(i.e., overfitted). Additionally, many models gener-
ated by the label powerset method reside above the
diagonal region.

Best Performing Models
To determine the best-performing models, each
model was assigned seven ranks according to its
average performance in internal and external valida-
tion using seven performance metrics: accuracy, F1-

score, precision, recall, AUROC, specificity, and
NPV. The seven ranks were averaged to calculate the
final rank. Figure 7 shows the accuracy scores per
endpoint of the top-ranked models generated by each
multi-label classification method and the top-ranked
model generated by the binary relevance method.

Description of the top 10 ranked models gener-
ated by each multi-label classification method and
binary relevance method is provided in Table S2
along with their macro-average performance calcu-
lated using the seven performance metrics. Models’
ranks are provided in Table S3 along with their aver-
age internal and external validation performances
calculated using the seven performance metrics.
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FIGURE 5 | Comparison of macro-average performances of multi-label and binary relevance models in (a) internal and (b) external validation.
Bar graphs show models performance via five metrics: accuracy, F1-score, precision, recall, and specificity. Models are numbered from 0 to 19,185.
The gray areas in bar graphs show the performance range of binary relevance models. BR, binary relevance; CC, classifier chains; LP, label
powerset; MLC-BMad, multi-label Boolean matrix decomposition; MLDT, multi-label decision tree; MLKNN, multi-label K nearest neighbors; RAkEL:
random K labelset.
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Performances and ranks of all 19,186 models are
available at www.cbrc.kaust.edu.sa/mlc/index.php.

The results in Table S2 and Figure 7 indicate that
random K labelset method considerably outperformed
binary relevance method. The top-ranked random
K labelset model achieved macro-average accuracy,
F1-score, precision, recall, AUROC, specificity, and
NPV scores of 90, 76, 86, 74, 83, 92, and 91%, respec-
tively, in internal validation, and 91, 79, 86, 76,
85, 94, and 92%, respectively, in external validation.
On the other hand, the top-ranked binary relevance
model achieved for the above-mentioned measures
70, 56, 56, 57, 57, 58, and 67%, respectively, in inter-
nal validation, and 65, 48, 48, 50, 51, 53, and 53%,
respectively, in external validation. This indicates that
utilizing labels correlations by the random K labelset
method improved the performance.

The top-performing models generated by label
powerset method exhibited overfitting. For example,
the top-ranked label powerset model achieved for the
above-mentioned measures 98, 97, 97, 98, 98, 98,

and 98%, respectively, in internal validation, and
53, 5, 46, 4, 50, 97, and 53%, respectively, in exter-
nal validation. Overfitting is possible side effect of
the label powerset method, since this method tends
to generate a large number of classes that are associ-
ated with a small number of compounds. The ran-
dom K labelset method aims to avoid this problem
by grouping the labels into labelsets, which can
reduce the number of generated classes per labelset.

Moreover, classifier chains and multi-label
K nearest neighbors slightly outperformed the binary
relevance models. The multi-label K nearest neighbor
method depends on calculating prior and posterior
probabilities of the labels, which could be difficult to
estimate accurately for multi-label data sets with
missing labels. In addition, one possible factor that
could affect the performance of the classifier chains
method is the order in selecting the endpoints. This is
done randomly in many implementations of this
method. Also, imputation of missing labels is neces-
sary when the classifier chains method is applied to
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FIGURE 6 | Comparison of macro-average performances of models in internal and external validations. The scatter plots demonstrate models
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data sets with missing labels. The accuracy of the
imputation may affect the performance of the
models.

However, multi-label Boolean matrix decompo-
sition, semi-supervised learning, and deep learning
performed worse than the top-ranked binary rele-
vance models. Deep learning works by converting the
original features into new features that my not
always be sufficiently useful for the intended applica-
tion. Moreover, the AUROC curve scores of the top-
performing multi-label Boolean matrix decomposi-
tion range between 49 and 52% (Table S2), which is
close to random predictions. Additionally, the semi-

supervised learning method does not take label-
correlation into consideration, which may resulted in
its poor performance.

Notably, the top-ranked multi-label decision
tree models achieved high specificity but low recall
scores. For example, the top-ranked multi-label deci-
sion tree model achieved specificity, recall, precision,
and NPV scores of 94, 11, 61, and 54%, respec-
tively, in internal validation, and 95, 6, 47, and
53%, respectively, in external validation. This sug-
gests that these models predicted most of the com-
pounds as negative with low accuracy. This
performance may be due to the implementation of

TABLE 1 | The Proportion of Models that Have High or Low Variability in Predictive Performance between Internal and External Validations
Based on Five Metrics

Multi-Label Classification Method Scatter Plot Region

Proportion of Models Per Metric1

ACC F1 RR RE SP

Random K labelset Above diagonal region 1.25% 2.73% 1.76% 4.26% 1.06%

Within diagonal region 70.54% 63.83% 66.47% 62.95% 90.80%

Below diagonal region 28.21% 33.44% 31.78% 32.79% 8.14%

Label powerset Above diagonal region 2.24% 22.72% 23.92% 20.03% 0.30%

Within diagonal region 81.02% 53.66% 49.18% 56.65% 81.46%

Below diagonal region 16.74% 23.62% 26.91% 23.32% 18.24%

Multi-label K nearest neighbors Above diagonal region 0.00% 0.00% 0.00% 0.00% 0.00%

Within diagonal region 100.00% 100.00% 100.00% 100.00% 100.00%

Below diagonal region 0.00% 0.00% 0.00% 0.00% 0.00%

Deep learning Above diagonal region 0.00% 0.00% 0.00% 0.00% 0.00%

Within diagonal region 100.00% 100.00% 98.22% 100.00% 100.00%

Below diagonal region 0.00% 0.00% 1.78% 0.00% 0.00%

Binary relevance Above diagonal region 0.00% 0.00% 0.00% 0.00% 0.00%

Within diagonal region 100.00% 100.00% 100.00% 100.00% 100.00%

Below diagonal region 0.00% 0.00% 0.00% 0.00% 0.00%

Classifier Chains Above diagonal region 0.00% 0.00% 0.00% 0.00% 0.00%

Within diagonal region 100.00% 100.00% 100.00% 100.00% 100.00%

Below diagonal region 0.00% 0.00% 0.00% 0.00% 0.00%

Semi-supervised Learning Above diagonal region 0.00% 0.00% 0.00% 1.14% 0.00%

Within diagonal region 100.00% 99.43% 99.43% 98.86% 97.16%

Below diagonal region 0.00% 0.57% 0.57% 0.00% 2.84%

Multi-label decision tree Above diagonal region 0.00% 0.00% 0.00% 0.00% 0.00%

Within diagonal region 100.00% 100.00% 45.00% 100.00% 100.00%

Below diagonal region 0.00% 0.00% 55.00% 0.00% 0.00%

Multi-label Boolean matrix decomposition Above diagonal region 0.00% 0.00% 0.01% 0.52% 2.58%

Within diagonal region 99.62% 97.56% 93.26% 96.78% 96.82%

Below diagonal region 0.38% 2.44% 6.72% 2.70% 0.60%

ACC, accuracy; F1, F1-score; PR, precision; RE, recall; SP, specificity.
1 The percentage of generated models whose performance falls above, within, or below the diagonal region according to each performance metric. For exam-
ple, the first row shows that 1.25% of models generated by random K Labelset method reside above the diagonal region according to their accuracy scores.
Similarly, only 2.73% of models created by random K labelset method reside above the diagonal region according to their F1-scores.
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multi-label decision tree method that assumes implicit
negativity (i.e., treat all missing labels as negative).

Moreover, we identified seven multi-label
models that exceeded the performance range of
binary relevance models in all five metrics: accuracy,

F1-score, precision, recall, and specificity in both
internal and external validation. Then, we ranked the
seven models as explained above. The seven models
were generated using random K labelset method.
Description of these seven models is provided in
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FIGURE 7 | Accuracy scores per endpoint of the top-ranked models generated by each multi-label classification method and top ranked binary
relevance model in (a) internal and (b) external validation. Rows correspond to the multi-label classification methods and the binary relevance
method. Column corresponds to endpoints. Each cell shows the accuracy scores of each method per endpoint. The scores range from 0.0 (worst
performance) to 1.0 (best performance). BR, binary relevance; CC, classifier chains; DL, deep learning; LP, label powerset; MLC-BMaD, multi-label
Boolean matrix decomposition; MLDT, multi-label decision tree; MLKNN, multi-label K nearest neighbor; RAkEL, random K labelset; SSL, semi-
supervised learning.
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Table 2 along with their calculated seven perfor-
mance metrics. Models’ ranks are provided in
Table S4 along with their average internal and exter-
nal validation performances calculated by the seven
performance metrics.

In Table 2, the best-performing model is gener-
ated by random K labelset approach (with K = 4),
decision trees as base classifiers, and label-specific
feature selection method. The length of the labelset
K is four indicating that each labelset has four end-
points. Since there are 17 endpoints, the method gen-
erated five labelsets. Each labelset includes four
endpoints except for one labelset, which contains
only one endpoint. The model created five decision
trees (one tree for each labelset) using the Gini index
for measuring nodes purity. The parameters of the
decision trees were tuned using fivefold cross-
validation on the training set. Each tree was trained
using 16 features selected by the label-specific feature
selection method. The model achieved accuracy, F1-
score, precision, recall, AUROC, specificity, and
NPV scores of 90, 76, 86, 74, 83, 92, and 91%,
respectively in internal validation, and 91, 79,
86, 76, 85, 94, and 92%, respectively, in external
validation.

Random Chance Analysis
Figure 8 shows AUROC scores of the top-ranked
models generated by each multi-label classification
method and the binary relevance method. AUROC
scores range from 0.0 (worst performance) to 1.0
(best performance), and a score of 0.5 indicates ran-
dom predictions. Figure 8 shows that the binary rele-
vance method performed slightly better than random.
However, the random K labelset model achieved high
AUROC scores in predicting most of the endpoints.
Interestingly, the label powerset method achieved
high AUROC scores in internal validation, but its
performance is almost random in external validation.

Estimating Toxicity of a Given Endpoint
Using Average Toxicity Values of Other
Endpoints
We investigated the possibility to estimate the toxic-
ity of a given compound for a specific endpoint using
the average toxicity measurements of other endpoints
for the same compound. Since this approach requires
calculating the average toxicity measurements of the
endpoints, we applied this approach only to com-
pounds that have known toxicity data for at least
two endpoints. The macro-average accuracy, F1-
score, precision, recall, AUROC, specificity, and

NPV scores in internal validation are 63, 57, 57, 62,
62, 63, and 64%, respectively. Moreover, in external
validation, the previously mentioned scores are
60, 51, 52, 54, 57, 58, and 60%, respectively. These
results indicate that this approach achieved worse
than the binary relevance method on the data set we
used. Additionally, Figure 9 shows the performance
of this approach per endpoint.

However, it should be noted that these results
are not comparable to other results in this review
since this approach is applied to a subset of the data
set. Moreover, there are two main issues with this
approach. First, it is inapplicable to new compounds
for which there is no toxicity information at all. In
this review, we treat the compounds in the testing set
as if they are new compounds. We use the models,
which were trained using the training set, to predict
all toxicity endpoints in the testing set. Then, we use
the known toxicity information of the compounds in
the testing set to verify the predictions. Second, some
compounds in this data set have known toxicity
information for only one endpoint, so there is not
enough data to calculate ‘average’ experimental
values.

Predictability of Endpoints
We analyzed variability in models’ predictive perfor-
mances across endpoints. The heat maps in Figure 10
show models’ performance per endpoint in internal
(Figure 10(a)) and external (Figure 10(b)) validation.
We used mean absolute error metric (MAE),60 which
ranges from 0.0 (perfect performance) to 1.0 (worst
performance), to compare predictions per endpoint
with the true labels. Let y and ŷ denote the vector of
true labels (i.e. the gold standard) and the vector of
predicted labels, respectively, and let n be the number
of samples. The MAE is defined as60

MAE y, ŷð Þ= 1
n

Xn
i =1

yi− ŷij j ð9Þ

We used hierarchal clustering61 to group endpoints
according to models’ performances into two clusters
of endpoints with high predictability and endpoints
with low predictability. Hierarchal clustering is
detailed in Ref 61. Briefly, a hierarchal clustering
algorithm works by grouping data into a hierarchy
of clusters visualized via a dendrogram. The height
of each bar in the dendrogram represents the distance
between the clusters or instances. A short bar in the
dendrogram indicates small distance (i.e., high simi-
larity), while a tall bar indicates large distance
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(i.e., low similarity). We used the correlation dis-
tance37,53 to calculate the distance between pairs of
endpoints. The correlation distance between two end-
points u and v is defined as

1−
u−uð Þ � v−vð Þ
u−uk2 v−vk2

���� ð10Þ

(a)
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where u and v are the means of u and v, respectively.
The distance between pairs of clusters is calculated
using the average linkage method, which is the aver-
age distance between pairs of endpoints from each
cluster.

We consider endpoints to have high predictabil-
ity when a majority of the models achieve high perfor-
mance in predicting them; otherwise, the endpoints
have low predictability. The clusters marked as green
in dendrograms in Figure 10 contain 11 (Figure 10(a))
and 12 (Figure 10(b)) endpoints that have high predict-
ability in internal (Figure 10(a)) and external
(Figure 10(b)) validations, respectively. However, the

clusters marked as orange in dendrograms contain six
(Figure 10(a)) and five (Figure 10(b)) endpoints that
have low predictability in internal (Figure 10(a)) and
external (Figure 10(b)) validations, respectively. These
observations suggest that it is harder to predict some
endpoints than the others. Nonetheless, some models
achieved high performance in predicting endpoints
with low predictability.

Predictability of Compounds
Similarly, we analyzed the predictive performance of
the models across compounds. The heat maps in
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FIGURE 9 | Performance of estimating the toxicity of a given endpoint using average toxicity values of other endpoints in (a) internal and
(b) external validation. Each row corresponds to a performance metric, and each column corresponds to an endpoint. Each cell shows the
calculated scores per endpoint. The scores range from 0.0 (worst performance) to 1.0 (best performance).
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Figure 11 show models’ performances using the
MAE metric, calculated per compound, in internal
(Figure 11(a)) and external (Figure 11(b)) validations.
The compounds were clustered into three groups
with high, medium, and low predictability. We used
the Euclidean distance to calculate the distance
between pairs of compounds. To calculate the dis-
tance between pairs of clusters, we used the average
linkage method, which is the average distance
between pairs of compounds from each cluster. We
considered compounds to have high predictability if
the majority of the models achieved high perfor-
mance in predicting their toxicities; otherwise, the
compounds have low predictability. Some com-
pounds have medium predictability, which are the

compounds that could not be clustered with the com-
pounds with high or low predictability. The green,
purple, and orange clusters in Figure 11 contain com-
pounds with high, medium, and low predictability,
respectively. Nevertheless, some models achieved
high performance in predicting poorly predictable
compounds.

This analysis indicates that it is more challeng-
ing to predict the toxicity of some compounds than
the others. Therefore, we used Chi-square test53 to
identify chemical features that can distinguish
between these three sets of compounds (compounds
with high, medium, or low predictability). Figure S3
shows ranked features according to their Chi-square
scores in internal (Figure S3(a)) and external
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FIGURE 10 | Predictability of endpoints in (a) internal and (b) external validation. The heat maps show models’ performances in predicting
each toxicity endpoint. Each row corresponds to a model, and each column corresponds to a toxicity endpoint. Cells represent model’s
performance in predicting each endpoint. Models are numbered from 0 to 19,185. The performance is calculated using mean absolute error metric
and ranges from 0.0 (best performance) to 1.0 (worst performance). The endpoints were clustered according to models’ performances in predicting
the endpoints into two clusters: endpoints with high predictability (green clusters) and endpoints with low predictability (orange clusters).

Advanced Review wires.wiley.com/compmolsci

20 of 26 © 2017 The Authors. WIREs Computational Molecular Science published by Wiley Periodicals, Inc.



(Figure S3(b)) validations. Features with low ranks
(the rightmost side in each bar graph) are present
with similar frequencies in the three sets of com-
pounds, whereas features with high ranks (leftmost
side) are present with different frequencies in the
three sets of compounds.

Moreover, we analyzed the relationship
between compounds predictability and the number of
known toxicity effects per compound. The histo-
grams in Figure 12 show probability distribution of
the number of toxicity effects for compounds with
high, medium, and low predictability in internal
(Figure 12(a)) and external (Figure 12(b)) validations.
Notably, the number of known toxicity effects for
compounds with high predictability ranges from 1 to
8, and 1 to 10 in internal and external validation,
respectively. Similarly, the number of known toxicity
effects for compounds with low predictability ranges
from 1 to 8, and 1 to 6 in internal and external vali-
dation, respectively. However, compounds with
medium predictability have 1–15, and 1–14 known
toxicity effects per compound for internal and exter-
nal validation, respectively. In the internal validation,
the average number of known toxicity effects for
compounds with high, medium and low predictabil-
ity is 1.66, 4.47, and 1.33, respectively, while it is
1.81, 4.50, and 1.40, respectively, in the external val-
idation. We observe that compounds that have high
and low predictability are associated with a small
number of known toxicity effects. However,

compounds with medium predictability are associ-
ated with a larger number of known toxicity effects.

Effect of Feature Selection on Model
Performance
Figure S4 illustrates the relationship between the
number of selected features and models performance
for five metrics in internal (Figure S4(a)) and external
(Figure S4(b)) validations. While there is no associa-
tion between the number of selected features and
models’ performances, some models achieve high per-
formance using only a small subset of features.
Moreover, Figure 13 shows that no feature selection
method strictly outperformed others, and some
models achieved good performance even when no
feature selection method is applied.

CONCLUSION AND OUTLOOK

We realize that our conclusions are constrained by
the data set and methods that we considered in this
study. However, we believe that the diversity of the
compounds and computational methods are sufficient
to draw meaningful conclusions. This study illus-
trates the advantages of using multi-label models for
toxicity assessment of pharmaceutically, environmen-
tally, and industrially important compounds, even
when toxicity data are partially available. The results
of this comprehensive analysis of the state-of-the-art
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FIGURE 11 | Predictability of compounds’ toxicity in (a) internal and (b) external validations. The heat maps show models performances in
predicting the toxicity of each compound. Each row corresponds to a model, and each column corresponds to a compound. Cells represent each
model’s performance in predicting the toxicity of each compound. Models are numbered from 0 to 19,185. The performance is calculated using
mean absolute error metric and ranges from 0.0 (best performance) to 1.0 (worst performance). The compounds were clustered into three groups
according to models’ performances in predicting the compounds toxicities: compounds with high predictability (green clusters), compounds with
medium predictability (magenta clusters), and compounds with low predictability (orange clusters).
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methods for multi-label classification demonstrates
these models’ abilities to exceed the performance of
binary relevance models, suggesting that combining
endpoints correlations with compound’s features can
increase model performance. Moreover, multi-label
methods can reduce the number of generated models.
When using the binary relevance method, one model
must be created per endpoint (i.e., 17 models for our
data set). However, the best-performing multi-label
classification method in this benchmark study
required generating only five models to predict all of
the 17 endpoints.

We observed variability in models’ predictive
performances across endpoints. A primary factor
influencing their performance could be the ratio of
toxic and nontoxic compounds affiliated with each
endpoint. Figure 4(b) shows five endpoints associated
with a large number of toxic compounds, but a small
number of nontoxic compounds (i.e., unbalanced
endpoints) namely: reproductive paternal toxicity in

rats, reproductive offspring toxicity in rats, maternal
toxicity in rats, maternal toxicity in rabbits, and
developmental toxicity in mice. Notably, Figure 10
shows that these five endpoints have low predictabil-
ity. However, this observation does not hold in the
opposite situation when the number of nontoxic
compounds is much larger than the number of toxic
compounds. Two endpoints fall in this category as
shown in Figure 4(b): genotoxicity in mice and geno-
toxicity in rats. Figure 10 demonstrates that these
two endpoints have high predictability.

Moreover, we recognized that the number of
the compounds associated with each endpoint did
not influence models’ performances based on the
data set we used. Figure 4(b) shows that four toxicity
endpoints namely: developmental toxicity in mice
and rabbits, genotoxicity in rats and maternal toxic-
ity in rabbits, are associated with a small number
compounds (i.e., less than 500 compounds). How-
ever, Figure 10 shows that two of these endpoints
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FIGURE 12 | The relationship between compounds predictability and the number of known toxicity effects per compound. The histograms
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(developmental toxicity in mice and maternal toxicity
in rabbits) have low predictability, but the remaining
two endpoints (developmental toxicity in rabbits and
genotoxicity in rats) have high predictability.

When examining the choices of methods for
multi-label classification, base classifiers and feature
selection with their performances in internal and
external validations, we observe that no single
method strictly outperformed others. Therefore,
models performance is dependent on a strategic
application of combinations of these methods. Addi-
tionally, some models exhibited similar performance,
although they were generated by different combina-
tions of the methods (Table S2). However, the fact
that the top-performing models provided in Table 2

were generated using the Random K Labelset method
suggests that this method is a good candidate for
modeling multi-label toxicity data with missing
labels.

The methods applied in this study will be useful
in future settings to predict narrow toxicity end-
points. In this study, we used broad endpoints of tox-
icity phenotypes in different species. Narrow
endpoints may include strain, gender, age, dose, tis-
sues or organs, and route and duration of exposure.
Figure S5 shows an example of a hierarchy of toxic-
ity endpoints. The broad endpoints (also called com-
posite endpoints14) are at the top of the hierarchy.
However, the lower we go down the hierarchy, the
narrower are the endpoints. Predicting narrow
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endpoints aids in identifying compounds’ toxicity
across different conditions. However, there are sev-
eral challenges in modeling narrow endpoints:

• Few compounds are associated with each nar-
row endpoint. This limitation may inhibit
models ability to identify useful features or
detect outliers. However, broad endpoints
aggregate toxicity data of compounds for all
endpoints at the bottom of the hierarchy.
Therefore, it is plausible that predictive models
can achieve better performance in predicting
broad rather than narrow endpoints.

• The number of narrow endpoints is much larger
than broad endpoints. Developing a model for
each narrow endpoint is infeasible, which ren-
ders the binary relevance method impractical.
Applying multi-label methods will be necessary
to reduce the number of generated models.

• Compounds are not tested for all narrow end-
points resulting in more missing toxicity data
for each compound. Subsequently, identifying
correlations between narrow endpoints, which
is an essential component of multi-label
methods, may become more challenging.

However, these challenges can be overcome once
more data becomes available.

Toxicity endpoints are often measured in con-
tinuous values rather than binary categories. Predict-
ing continuous endpoints can eliminate the
discretization step of toxicity data, which requires
endpoint-specific olds.23 However, it was shown in
another study that predicting exact values of continu-
ous endpoints is harder than predicting binary cate-
gories.14 Some multi-label classification methods,
such as Random K labelset and label powerset, are
not suitable for continuous endpoints. Therefore,
future work should be directed to developing multi-
label methods that can process continuous
toxicity data.

Although the best-performing multi-label model
achieved high performance, it may be useful to utilize
other well-performing models that were generated in
this study. An ensemble consisting of well-performing
models with minimum overlapping of their correct
predictions may outperform any single model.18 On
the other hand, combining predictions of good and
poor models may hinder the performance of good
models. Nevertheless, robust testing should be per-
formed to evaluate the quality of aggregated
predictions.
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