
Access Point Discovery in 802.11 Networks

Andrés Arcia-Moret⇤, Laudin Molina⇤, Nicolas Montavont†, German Castignani‡ and Alberto Blanc†
⇤Networking and Distributed Systems Group, University of Los Andes, {andres.arcia, laudin}@ula.ve

†Institut Mines Telecom/Telecom Bretagne, Irisa, {name.lastname}@telecom-bretagne.eu
‡University of Luxembourg / SnT, german.castignani@uni.lu

Abstract—This paper analyzes the scanning process in IEEE

802.11 networks in an urban setting characterized by a high

Access Point (AP) density. Most of these APs belong to a

community network, known as a collection of APs announcing the

same network name (Service Set Identifier or SSID). The owner

of an AP can optionally configure the community network of

his/her AP, resulting in an irregular topology for each community

network as there is no central planning authority. We investigate

the relationship between the time spent in each channel while

scanning for available APs and the number of AP actually

detected. In particular we show that, in order to discover all

available APs at a given location, we need to combine the results

of multiple scans. Based on this result we argue that the efficiency

of the scanning process could be greatly improved by using

a database shared by all the users of a community network,

containing the available APs at different locations.

I. INTRODUCTION

Given the popularity and omnipresence of low-cost 802.11
networks operating in the free-licensed 2.4GHz band, it is
common to find massive installations of IEEE 802.11 Ac-
cess Points (AP) deployed by independent home users and
organizations in a decentralized manner. This behaviour cre-
ates spontaneous deployments with unpredictable discovery
patterns, i.e., devices operating at different locations, having
different performance in terms of hardware and software,
and having WiFi specific settings [1]. Several authors have
proposed different ways to share these APs among a certain
subset of the users, a notion often described by the Community
Network (CN) term [2]. Some of these solutions are already
deployed, for instance, all the users of an Internet Service
Provider (ISP) can access the APs of any other customer of the
same ISP. Another solution is for users to join a community of
other users (including those in other countries and using other
ISPs) allowing mutual access to their APs (e.g., such is the
case of FON [3]).

In any case, before accessing the network, a mobile station
(MS) must search for available networks and assess their
characteristics during the so-called scanning process. The IEEE
802.11 standard [4] describes two types of scanning, called
passive and active. In the passive scanning an MS hops (and
listens) over each channel, waiting for beacon frames that are
periodically sent by APs. During the active scanning, an MS
actively broadcasts management frames called Probe Requests
over the different channels in a particular order, waiting for
APs response frames (unicast Probe Responses) in the same
channel. Note that an MS may also receive beacon frame
while waiting for Probe Responses. The Probe Request - Probe
Response exchange follows the Distributed Coordination Func-
tion (DCF), which controls the medium access by assigning a
random backoff to each of the contending station. Active and

passive scanning are also confronted to the random variations
in the wireless channel (signal degradation, fading, interference
and noise). All this can lead to an unpredictable scanning
behaviour, especially when the number of APs increases.

Modern devices hide the implementation of the scanning
algorithms. To the best of our knowledge, PCs running Linux
are the best alternative as a research platform since most of the
scanning implementation code is open. Until recently, most of
the IEEE 802.11 Medium Access Control were implemented
within the hardware of the wireless card. Recent versions of
the Linux kernel, instead, use a software implementation of
MAC so that it is possible to modify several of the scan-
ning parameters, by generating a customized mac80211.ko

kernel module. We have implemented a mechanism that can
accurately measure the response delay and that can also modify
the Channel Time parameter (see [5] for more details).

In this paper, using the above mentioned implementation,
we conducted a measurement campaign in a dense network
scenario in the city of Rennes (France). The contribution of this
paper is twofold. First, it shows the dynamics of the scanning

in a crowded scenario. Counter-intuitively, as it seems to be
generally understood (based on existing implementations), we

show that the scanning process may not be as efficient

as supposed when using long values for the timers. Nor
is the opposite true, i.e., short timers report only a partial
view of the network. Second, we analyze the effect of the
aggregated scanning on the AP discovery to finally come up
with a discussion of a collaborative system where a centralized
data base could gather several MS scanning results to build an
accurate view of the network.

The remainder of the paper is organized as follows. In
Section II we present previous work on the IEEE 802.11
network discovery process from two different perspectives,
from the client and from the AP. In Section III we describe the
methodology used for collecting the data and compare Linux
and Android client platforms. In Section IV we highlight the
main parameters that impact the AP discovery. In Section V
we study the effects of repeated scannings and discuss about
the need for a central system for assisted scanning. Finally, in
Section VI we conclude the paper.

II. RELATED WORK

A. Scanning from the MS point of view

Several papers have analyzed the scanning process from the
point of view of the MS and have identified it as the largest
contribution to the handover or the association delay.

Some proposals consider a discontinued scanning from the
MS in order be ahead of the handover event [6]. Authors



consider the MS having enough time to perform the handover
in a make-before-break fashion. Other improvements on this
technique consider dynamically adapting the timers so that the
user perceives no disconnection [7]. Additionally, interruption
phases rely on network buffering of information so as to
minimize the impact of scanning induced cut-off of data
transfers.

Another approach for scanning consists in scanning just
selected channels based on previous experience of the MS [8].
For example, there may be a classification based on previous
signal strength experienced by the MS. Caching information
about the surrounding APs is also used by the MS and
an association of neighboring APs. This approach although
suggested by Shin et al. [8], it has been presented as a system
using neighbour graphs in [9]. By using neighbor graphs the
MS can compute the number of channels to scan and the timer
values by exploring its directly connected nodes in the graph.
The information on the graph can even be used for unicast
Probe Requests as in [10] thereby causing less congestion.

As it has been pointed out by Raghavendra et al. [11],
the crowded nature of existing IEEE 802.11 deployments pro-
duces several problems such as intermittent connectivity, low
throughput and high loss. In particular, high loss in crowded
topologies forces MS to trigger unnecessary handovers (includ-
ing scanning and re-associations), even in absence of mobility.
Authors point out the need for adaptive handovers [12] to
mitigate this performance degradation in crowded topologies.

In [13] the authors have presented an extensive analyzis
of the scanning process in a controlled environment. Their
results are threefold. First, they have identified the trade-offs
between several metrics defining the scanning process: the
full discovery latency, the failure rate and the discovery rate.
Second, they have shown several proposals for improving the
scanning process. Third, authors propose a simple adaptation
method for ramping up from low timers to high timer values
in order to increase the discovery rate and minimize the failure
rate, compared to standard strategies.

Recently, in [14] authors have derived mathematical ex-
pressions for quantifying the discovery rate, failure rate and
the full scanning latency. Moreover, using genetic algorithms
over a large set of collected scanning traces, they have found
an optimal channel sequence and corresponding timers for
achieving high discovery rates and minimum failure rates in a
Community Network scenario. Different from previous work,
proposed timers adapt better in a mobile scenario considering
thousands of APs.

B. Scanning from centralized point of view

As part of a current discussion at the Global Internet
Access for All IETF group [2], by using state-of-the-art open
technologies such as openflow [15], there is a possibility to
implement centralized systems capable of managing several
overlapping APs covering extended areas1. Such centralized
systems can even decide which AP may handle a particular
client, for example, depending on the traffic profile. Sathi-
aseelan et al. [16] proposed sharing home routers creating

1This is the case of PAWS, conceived to crowd-share Internet access in a
neighbourhood [16].

a parallel wireless networks (to existing infrastructure) that
use LEDBAT transport protocol and DTN over WiFi. These
parallel networks (as other CNs) considerably increase the
number of active SSIDs in a region, therefore making the
discovery of the topology a difficult task [14].

In [17] authors propose using a master-client architecture
to centrally manage a group of APs in a region. The 802.11
Probe Requests are handled to the central entity which in turn
commands an appropriate AP for serving certain connection
request. This centralized decision both offers transparency to
clients (as if they were in a regular 802.11 network) and
alleviate the task of programmers by offering a Light Virtual
AP. Although the scanning process may take longer, there is a
better control on the quality of the offered point of attachment
for an MS.

Virtual Public Network [18] (VPuN) is a similar proposal,
for which there is a central entity called the Virtual Network
Operator, capable of remotely managing APs serving the
VPuN clients. In this approach authors propose simple ways
of updating the VPuN scheduling of the APs through the
introduction of a interpreter and easy-to-write rules which
specify the sharing-time for public clients.

III. DISCOVERY EVALUATION METHODOLOGY

A. Methodology and tools

To collect the network deployment information we have
designed and implemented a platform that is able to continu-
ously scan for IEEE 802.11 networks while collecting beacons
and Probe Response frames, together with the following net-
work information: Service Set Identifier (SSID), Basic Service
Set Identifier (BSSID), security mode, operating channel and
signal strength. The main components of this platform are:

• Laptop: Hewlett-Packard, model nc-2400, operating
system Debian GNU/Linux Jessie, with the modified
mac80211.ko (see [5] for details on the configura-
tion).

• NIC: Intel Corporation, model PRO/Wireless
3945ABG-Golan.

• iw tool, version 3.13 [19]

• Mobile: Smartphone Galaxy S3 (GT-I9300) running
Android OS 4.3.1.

We used this platform to collect AP information in several
locations in the downtown area of Rennes, France. Measure-
ments were obtained on city streets and squares surrounded by
mid-size buildings (4 to 10 floors).

During the tests we evaluated different Scanning Timers.
The full campaign consisted in 900 scan trials executed at
each location, 100 scan per Channel Time value. As depicted
in Fig. 1, we triggered sequential scanning, separated by 2 s,
accounting for approximately 45 minutes between the first and
last trial.

When starting a scanning campaign, the topology is first
unknown and progressively obtained through sequential scan-
nings. As observed in our experiments, the more we scan the
higher the number of APs discovered. Fig. 2 shows an example



Trial 1 Trial 2 Trial 100

2 s Channel Time = 5 ms Channel Time = 500 ms

Trial 100Trial 1

t

Fig. 1: Test Methodology

of the discovery dynamics. In scan 0, two APs are detected
and constitutes the known topology at this time. In scan 1, an
extra AP is discovered which decreases the discovery ratio that
was observed in scan 0. In scan 2, only one AP already known
is discovered. We call AP frequency the number of scannings
in which an AP was discovered. In the example of Fig. 2, AP4
was detected in 66% of times.

As we will describe in the rest of the paper, we have
observed that the total number of APs may be fully discovered
only after many scans (see Fig. 8c). Besides, two consecutive
scanning results may have different set of APs.

B. Dependency on the platform

In order to draw better conclusions about the AP discovery,
we made sure that observations were not platform dependent.
While the scanning algorithm is different from one terminal
(i.e., network card and its driver) to another [20], we compare
the scanning results obtained with the Linux platform (see
above) against an Android platform. For the Android client, we
have used an application called Wi2Me [21] which periodically
triggers a scanning and logs their results in a database.

Contrary to the Linux platform, we leaved untouched the
default scanning behaviour in Android. We observed that the
timer is around 250ms per channel, corresponding to a full
scanning latency of 3.5 seconds, for the 13 channels. Once
we got the scanning results, we launched a new scan after an
inactivity timer of 3 seconds. Thus, a new scanning is launched
approximately every 7 seconds. We have noticed that the
Android scanning behaviour is more aggressive than the Linux
one: in Android, several Probe Requests (4 on average) are sent
in a channel, while in Linux a single Probe Request is sent
on each channel. The aggressive sending of Probe Requests
increases the chances for APs to receive them. Furthermore,
this behaviour supports one of our claims in this paper: for
dense topologies, a single scanning is most likely to discover
only part of the available APs.

Fig. 3a and 3b show how many times each AP has been
discovered after 100 scannings. The APs that were discovered
in all scannings are illustrated in black. We can see in both
figures that most of APs are intermittently discovered: only
12% and 20% of the available APs are discovered in all scan-
nings for Android and Linux respectively. The total number of
discovered APs is different between the two platforms: Linux
is able to discover a total of 75 APs, while Android discovers
53 APs. We believe that this may be due to differences in
hardware configuration (such as antenna, chipset, etc.) [20].

In Fig. 4a and 4b we can observe an approximate difference
of 5 dBm favouring the received power on Linux versus
Android. While we can observe that there is a poor correlation

Fig. 2: Sequential Scannings Impact on the Discovery Rate

between the power of an AP and the number of times it
is discovered, some APs have relative good power and still
are discovered a few times, and some other APs have a bad
power, and are often discovered. This is further discussed in
Section IV-D. Fig. 4c finally shows the CDF of the number
of discovered APs per scanning. For each platform, the X-
axis is normalized with the total number of discovered APs.
We can see that in Linux, the number of APs is higher,
and that there is more APs per scanning (in median almost
90% of the APs while around 80% in Android). But these
distributions are close. Also note that both systems almost
reach the total number of APs in one scanning (for few
scannings), which seems to indicate that the memory size may
not be an issue. The Android curve is less exponential than the
Linux one, meaning that there are more scannings with fewer
APs in Android. This may be due to the plaform performance
regarding the radio reception. Globally, we can also say that
the number of APs per scanning has a small variance.

IV. ANALYSIS OF SCANNING CHARACTERISTICS

In this section, we present a detailed analysis of the AP
discovery and highlight the different parameters that impact the
discovery. All the results presented in this section corresponds
to the ones obtained with the Linux platform.

A. Timer impact

Fig. 5a, 5b and 5c show all discovered APs and its
respective appearance frequency, when using timers of 5ms,
20ms, and 100ms respectively. In the abscise we represent
the APs by a unique identifier and ordered by its appearance
frequency. To isolate the effect of active scanning, in these
figures we consider only Probe Responses (i.e., we leave out
passive Beacons). As expected, we can observe that the higher
the timer, the higher the total number of discovered APs. After
100 scannings with a 5ms timer, the client discovered 47 APs,
with 20ms timer, 55 APs, and 67 APs with 100ms timer. As
discussed in next section, we observe that when increasing
the timer above 100ms, there is no more gain on topology
knowledge derived from Probe Responses. However, for the
first time we observed, as in Fig. 5c, that 3 APs appeared in
100% of the scannings. In Fig. 5a, we can see that the most
discovered AP has only been seen 72% of the (scanning) times.



(a) AP frequency (Linux with timer 250ms,
all channels)

(b) AP frequency (Android) (c) AP frequency (Linux with timer 100ms,
channels 1-6-11)

Fig. 3: AP Appearence Frequency - a comparison between Android and Linux. These figures show the proportion of scannings
in which an AP has been seen. In the x-axis, we show each individual AP classified from the least detected to the most
detected. In the y-axis, we present the proportion of scanning in which a given AP has been seen. For example, the AP

indexed 50 in Fig. (a) has been seen in 97% of the scannings. The APs in black have been seen 100% of times.

(a) Median RSSI (Linux - all channels, Timer 250ms) (b) Median RSSI (Android) (c) Number of APs per Scanning

Fig. 4: RSSI and Number of APs per Scanning. Fig (a) and (b) show one RSSI value for each detected AP. When a given AP
has been discovered several times (in multiple scannings), we calculated the median of all observed RSSI. In Fig (c) we show
the CDF of the number of detected APs in each scanning. We normalized the number of APs with the total number of detected
APs after all scannings. For example, if in one scanning the MS discovered 25 APs out of 30 total available APs, we account

that this scanning instance had 83% of APs.

B. Probe Responses versus Beacons for Topology Discovery

A client discovers an AP either by receiving a Probe Re-
sponse or a Beacon. Fig. 6 presents the frequency of received
Beacons and Probe Responses for the longest measured timer
of 500ms, for channels 1, 6 and 11. We clearly see that up to
100ms, the terminal is subject to receiving Probe Responses
in response to its Probe Request. After 100ms, very few or no
Probe Responses were received, while the number of received
Beacons is high and relatively constant up to the expiration of
the timer. Thus Beacons significantly contribute to the AP dis-
covery when using large timers. Even when Beacon reception
is decreased during the reception of Probe Responses, large
timers (greater than 100ms) allow discovering a larger part of
the topology trough passive scanning techniques (e.g., see Fig.
6).

C. Channel overlapping

It is well known that 802.11 b/g available channels are, by
definition, overlapping at worst up to four adjacent channels.

However, channels 1, 6 and 11 are non-overlapping, for which
several studies show that more than 75% of the APs are
deployed on them [22]. Based on this observation, studies
such as [14] or [8] propose to reduce the scannings to those
(crowded) channels to reduce the scanning latency, while still
obtaining a fair discovery ratio or having good chances to
find APs. Despite the benefits of only using non-overlapping
channels, Fig. 3c shows that the scanning performance is lower
when scanning only those channels. We have noticed that when
performing a scanning for all channels (like in Fig. 5c or
3a) the terminal discovers more APs, and a higher number
of APs are present in all scanning trials. This is because,
when scanning all channels, the client probes more often
each channel due to the overlapping nature of channels. For
example, scanning channel 2 probes the overlapping channel 1,
therefore increasing the total number of APs found and coming
from channel 1.

In Fig. 7, we present the ratio of APs that were discovered
on overlapping channels. For example, when the client was in



(a) AP Frequency with Timer 5ms (b) AP Frequency with Timer 20ms (c) AP Frequency with Timer 100ms

Fig. 5: AP Appearance Frequency depending on the Scanning Timers (Linux, scanning all channels)

Channel 1 Channel 6 Channel 11

0

5

10

15

20

25

0

5

10

15

20

25

 b
e

a
co

n
 p

re
sp

o
n

se

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Latency

C
o

u
n

t

Fig. 6: Probe Responses and Beacons Reception Time (Timer
500ms)

channel 2, it discovered 40% of the APs operating on channel
1, 90% of the APs operating on channel 3 and 40% of the
APs operating on channel 4. Note that some channels were
empty, and channels 1, 6 and 11 are more populated than the
others. Channels that are directly adjacent to crowded channels
(channels 2, 5, 7, 10 and 12) usually discovery around 50%
of the APs on channels 1, 6 and 11. Observe also that, in a
given channel, an AP can be discovered even when operating
in up to 3 distant channels.

D. On the quality of APs

The evaluation of the quality of APs is a complex issue,
especially during the scanning phase. Aspects such as the
variability of radio channels, the signal strength, the number of
operating stations and the environment deeply impact the user
quality of experience. When performing an active or passive

1 2 3 4 5 6 7 8 9 10 11 12 13i =

Ch. i + 1

Ch. i + 2

Ch. i + 3

Ch. i � 1

Ch. i � 2

Ch. i � 3

0.7

0.6

0.1

0.4

0.9

0.4

0.4

0.8

0.4

0.2

0.6

0.6

0.3

0.6

0.3

0.1

1.0

1.0

0.5

0.2

0.8

0.7

0.5

0.5

Fig. 7: Percentage of APs detected on a different channel.
Shaded values indicate the channel where the MS did the

scanning. Values above (resp. below) the shaded row give the
percentage of AP detected in upper (resp. lower) channels.

For example, while scanning in channel 1, the MS
discovered 70% of the APs operating in channel 2.

scanning, the client is able to measure the RSSI for each
receveid frame from the APs. Fig. 4a and 4b show the median
RSSI for each received frame from all discovered APs. Fig.
8a shows each RSSI samples from all discovered APs when
scanning with timer 100ms. We can see that there is a general
tendency which indicates that the stronger the signal, the higher
the number of discovered APs. However, this observation is
mitigated, as we have also seen that the signal strength varies
from one sample to another, and we can see APs with good
power signal that respond only a few times. Thus, there is no
straightforward guarantee that all discovered APs (with good
signal strength) will be able to provide data connection for the
client. Interested reader can refer to [23] to see an in depth
discussion of the subject.

Fig. 8b and Table I show the number of frames per AP per
scanning. While an AP may not be discovered in all scanning
attemps as explained up to now, we can also see that the
client may have received multiple responses from the same AP
in one scanning. On average, there are 3.73 frames from the
same AP in one scanning with a maximum of 29 frames. The
reason why multiple beacons are received from the same AP
is that they are sent periodically. Regarding Probe Responses,
there are retransmissions, either because an AP is configured
to send multiple Probe Responses to answer a Probe Request,



TABLE I: Number of frames (Probe Resp. or Beacon) per
AP per scanning

10ms 50ms 250ms

Mean Max Mean Max Mean Max

All Min 0 0 0.13 3 1.23 11
(Probe Resp. Mean 0.69 5.99 1.53 9.2 3.73 20.04
+ Beacon) Max 3.04 13 0.63 14 7.67 29

Beacons
Min 0 0 0.06 3 1.01 10
Mean 0.36 4.12 0.87 7.54 3.11 15.95
Max 1.89 9 2.84 12 6.33 25

Probe Resp.
Min 0 0 0.03 1 0.04 1
Mean 0.34 2.18 0.66 3.71 0.62 5
Max 1.81 9 2.54 12 2.19 15

or because the ACK from the client is not received by the
APs, which causes retransmissions. The number of received
frames may give a hint about the link quality with the AP.
This metric combined with other metrics such as the RSSI
and Probe Response delay may lead the client to better choose
which APs to select in case of a handover.

V. UNDERSTANDING TOPOLOGY DISCOVERY

Fig. 8c shows the dynamics of the independent cumulative
discovery rate for a series of 100 trials for every timer when
accounting Probe Responses only. Observe that none of the
plots reaches the discovery of 100% of the topology since we
account the 100% as the whole set of discovered APs after
the 800 trials. That is, even for the highest timer, there are
some APs (up to 15%) that were not detected after 100 trials,
but that have been detected while using other values for the
Channel Time, suggesting that further scanning will increase
the topology. Nevertheless, this could also be due to new APs
appearing during short periods of time (e.g., tethering with
smart-phones or public transportation APs).

Note that, after every new scanning, the discovered topol-
ogy may increase, thus accounting only the differences for
increasing the knowledge of the topology. See for example,
as indicated by region A within Fig. 8c, how we gain a 4%
of the topology after just a couple of scanning in the middle
of the cumulative scanning process. This effect was found on
trials 44 and 45, when detected a total of 7 and 6 new APs
respectively, reporting 3 new APs during trial numbered 45. We
observe an even more dramatic result for region B, the 20ms
curve around trial numbered 60, in which we gain 10.6% of
the topology after just 4 scanning when more than half of the
discovery process has taken place.

In general, we observe that the discovery ratio after the trial
100 reflects the timer length: shorter timers allow discovering
less APs and vice-versa. However, we observe the case for
50ms and 100ms in which counter-intuitively, the former
discovered more topology than the later. We believe that this
may be because some APs appear only during short periods of
time, or because of the hidden terminal problem in which many
stations are negatively interfering with each other, therefore
increasing the delay of the response or the probe losses.
Yet another reason could be that the intrinsic diversity in
the implementation of the 802.11 devices [20]. As reported
in other papers, DIFS and SIFS may be different, RTS/CTS

mechanism may be activated just in some of the APs and so
on.

A. On the need for a Central Database

Given the results presented in this paper, we argue that an
open data system could opportunistically assist mobile users to
better discover and control the Community Network topology
and determine their link quality. As we saw, within a single
scanning, only a subset of the availabe APs are discovered,
and usually a client does not have the time to scan multiple
times. However, with a centralized database system where
users could share their information about their vision of the
topology, offline servers could compute up-to-date map of the
topology, proposing a global and more precise view of the
AP deployment. Users would act as both data producer and
consumer: user would push their vision of the topology from
time to time, with a simple post on central servers. In situation
of handover or simply when looking for a candidate AP, users
could retrieve this information about the topology by sending
a query to the central server. Information maintained by the
central server can be consolidated by each new user comitting
data, and thus providing users with accurate information about
the topology. A simple round trip between the server and the
client could save several hundred of milliseconds of scanning.

VI. CONCLUSIONS

In this paper we have analysed the dynamics of the topol-
ogy discovery for crowded 802.11 Community Networks. We
have observed that for different client devices, when the num-
ber of APs in high, a single scanning procedure is not enough
for discovering the available topology. Moreover, we have
presented the differences for topology recognition between
active and passive scanning. Although the former contribute
to informing the highest portion of the topology, the later may
be conveniently used for complementing the knowledge of the
topology. We have also observed that Active Scanning can
take advantage of overlapping channels by increasing the total
number of reported APs per scanning.

Finally, obtained results suggest that the information of
the available topology can be stored in a central data base,
and be shared in turn with other users for minimizing its
discovery time. This observation is subject of on-going work.
At this time, we are developing and testing a central system
and related protocols that help in storing a crowded topology
and conveniently informing topology-agnostic clients.

ACKNOWLEDGMENT

The authors would like to thank Tanguy Kerdoncuff and
Nicolas Kuhn for their assistance and valuable comments on
this paper. This project was partially funded by CDCHTA of
University of Los Andes under the code I-1369-13-02-B.

REFERENCES

[1] A. D. Stefano, G. Terrazzino, L. Scalia, I. Tinnirello, G. Bianchi, and
C. Giaconia, “On the anomalous behavior of ieee 802.11 commercial
cards,” in The IFIP Fifth Annual Mediterranean Ad Hoc Networking
Workshop (MED-HOC), Lipari, Italy, June 2006.



●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

0 25 50 75 100
Scan Trial

A
P

−90 −80 −70 −60
Signal strength

(a) RSSI from each AP in each scan (timer
100ms)

(b) Number of Responses per AP per
Scanning (Timer 100ms)

(c) Evolution of the Cumulative Discovery
Rate during the Scanning Process

Fig. 8: RSSI, Number of Response per AP per Scanning and Discovery Rate

[2] J. Saldana, A. Arcia-Moret, B. Braem, L. Navarro,
E. Pietrosemoli, C. Rey-Moreno, A. Sathiaseelan, and M. Zennaro,
“Community Networks. Definition and Taxonomy.” draft-manyfolks-
gaia-community-networks-00, June 2014. [Online]. Available:
http://tools.ietf.org/html/draft-manyfolks-gaia-community-networks-00

[3] “Your global wifi network. https://corp.fon.com/.” [Online]. Available:
https://corp.fon.com/

[4] “Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications,” http://standards.ieee.org/about/get/802/802.11.
html, IEEE, 2007.

[5] A. Arcia-Moret, L. Molina, G. Castignani, and N. Montavont, “Char-
acterizing spontaneous IEEE 802.11 network deployments,” in Network
Games, Control and Optimization (NetGCooP), 2012 6th International
Conference on, Nov 2012, pp. 1–8.

[6] Y. Liao and L. Gao, “Practical schemes for smooth MAC layer
handoff in 802.11 wireless networks,” in Proc. 2006 International
Symposium on on World of Wireless, Mobile and Multimedia
Networks, ser. WOWMOM ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 181–190. [Online]. Available: http:
//dx.doi.org/10.1109/WOWMOM.2006.90

[7] J.-W. Nah, S.-M. Chun, S. Wang, and J.-T. Park, “Adaptive handover
method with application-awareness for multimedia streaming service in
wireless LAN,” in Proc. 23rd international conference on Information
Networking, ser. ICOIN09. Piscataway, NJ, USA: IEEE Press,
2009, pp. 1–7. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1699392.1699393

[8] S. Shin, A. G. Forte, A. S. Rawat, and H. Schulzrinne, “Reducing
MAC layer handoff latency in IEEE 802.11 wireless LANs,”
in Proc. second international workshop on Mobility management
& wireless access protocols, ser. MobiWac ’04. New York,
NY, USA: ACM, 2004, pp. 19–26. [Online]. Available: http:
//doi.acm.org/10.1145/1023783.1023788

[9] M. Shin, A. Mishra, and W. A. Arbaugh, “Improving the latency of
802.11 hand-offs using neighbor graphs,” in Proc. 2nd international
conference on Mobile systems, applications, and services, ser. MobiSys
’04. New York, NY, USA: ACM, 2004, pp. 70–83.

[10] S.-H. Park, H.-S. Kim, C.-S. Park, J.-W. Kim, and S.-J. Ko, “Selective
channel scanning for fast handoff in wireless LAN using neighbor
graph,” in Proc. Personal Wireless Communications, ser. Lecture Notes
in Computer Science, I. Niemegeers and S. de Groot, Eds. Springer
Berlin / Heidelberg, 2004, vol. 3260, pp. 629–629. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30199-8 16

[11] R. Raghavendra, E. M. Belding, K. Papagiannaki, and K. C. Almeroth,
“Understanding handoffs in large ieee 802.11 wireless networks,”
in Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, ser. IMC ’07. New York, NY, USA: ACM, 2007,
pp. 333–338. [Online]. Available: http://doi.acm.org/10.1145/1298306.
1298353

[12] V. Mhatre and K. Papagiannaki, “Using smart triggers for improved user
performance in 802.11 wireless networks,” in Proc. 4th international
conference on Mobile systems, applications and services, ser. MobiSys
’06. New York, NY, USA: ACM, 2006, pp. 246–259.

[13] G. Castignani, A. Arcia, and N. Montavont, “A study of the
discovery process in 802.11 networks,” SIGMOBILE Mob. Comput.
Commun. Rev., vol. 15, pp. 25–36, Mar. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1978622.1978626

[14] N. Montavont, A. Arcia-Moret, and G. Castignani, “On the selection of
scanning parameters in IEEE 802.11 networks,” in Personal Indoor and
Mobile Radio Communications (PIMRC), 2013 IEEE 24th International
Symposium on, 2013, pp. 2137–2141.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[16] A. Sathiaseelan, J. Crowcroft, M. Goulden, C. Greiffenhagen,
R. Mortier, G. Fairhurst, and D. McAuley, “PAWS: Public Access WiFi
Service,” Digital Economy All Hands Meeting, 2012.

[17] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards programmable enterprise wlans with odin,” in Proceedings
of the First Workshop on Hot Topics in Software Defined Networks,
ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 115–120.
[Online]. Available: http://doi.acm.org/10.1145/2342441.2342465

[18] A. Sathiaseelan, C. Rotsos, S. C S, D. Trossen, P. Papadimitriou,
and J. Crowcroft, “Virtual Public Networks,” in 2nd IEEE European
Workshop on Software Defined Networking (EWSDN), Berlin, 2013,
pp. 1–6.

[19] “Linux wireless developer documentation.” [Online]. Available:
https://www.kernel.org/pub/software/network/iw/

[20] A. Di Stefano, A. Scaglione, G. Terrazzino, I. Tinnirello, V. Ammirata,
L. Scalia, G. Bianchi, and C. Giaconia, “On the fidelity of IEEE 802.11
commercial cards,” in Proc. First International Conference on Wireless
Internet, ser. WICON ’05. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 10–17.

[21] G. Castignani, A. M. Lampropulos, A. Blanc, and N. Montavont,
“Wi2Me: A Mobile Sensing Platform for Wireless Heterogeneous
Networks,” in ICDCS 2012: IEEE International Workshop on Sensing,
Networking, and Computing with Smartphones, 2012.

[22] G. Castignani, A. Blanc, A. Lampropulos, and N. Montavont, “Urban
802.11 community networks for mobile users: Current deployments and
prospectives,” in Proc. Mobile Networks and Applications, Aug. 2012.

[23] P. Fuxjager, D. Valerio, and F. Ricciato, “The myth of non-overlapping
channels: interference measurements in IEEE 802.11,” in Proc. Fourth
Annual Conference on Wireless on Demand Network Systems and
Services (WONS’07), 2007, pp. 1–8.


