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Summary

In this thesis, a theory of hierarchical and cooperative feedback control for spatially
distributed, physically interconnected systems is developed. A particular require-
ment is that the resulting control laws are suitable for a distributed implementation,
meaning that the subsystems are equipped with local controllers and exchange in-
formation via a communication network. Distributed control schemes steadily gain
practical significance, since an ever increasing number of technical systems, like
power networks or manufacturing systems, is comprised of an interconnection of
subsystems. In combination with competitive, powerful embedded computers and
modern communication technology, a distributed implementation of control algo-
rithms intuitively makes sense for such types of systems.

When designing distributed control algorithms, an immediate question is how to
select an appropriate communication topology for connecting the local controllers.
While classical approaches typically propose schemes with fixed communication
structures, some modern approaches consider the communication topology under-
lying the distributed controller as an additional degree of freedom for the control
design. However, these approaches often suffer from the combinatorial complexity
arising from the binary decisions whether to activate a link within the communica-
tion topology or not. While some approximation techniques exist in order to deal
with this complexity, the hierarchical control structures have not yet been consid-
ered as a possible remedy. It is the main goal of this thesis to close this gap by
combining ideas from the domains of system decomposition, hierarchical control,
and simultaneous control and communication topology design.

In particular, a two-layer distributed control scheme for time-invariant intercon-
nected dynamic systems is proposed. Prior to the control design, the system struc-
ture is analyzed. Based on the result of this analysis, the structure of the distributed
controller can be adopted to the structure of the interconnected system. Common
control goals are either encoded by a global quadratic cost function or by a system
norm with respect to a global controlled variable, and the local controllers on both
layers are designed to cooperate for optimizing the performance index.

In the above scheme, the controllers on the upper control layer synchronously
operate on a coarser time-scale compared to the lower control layer. In order to im-
prove the distribution of the exchanged data over time, an extension of the scheme
considering asynchronous communication is presented. Distributed frequency con-
trol of a power network serves as an application example for the synchronous and
asynchronous two-layer scheme.

In the last part of this thesis, the approach is extended to a class of uncertain

vii
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interconnected dynamic systems. More precisely, interconnected jump Markov and
jump semi-Markov systems are considered, which allow to model stochastic abrupt
changes of the system behavior. Starting from a monolithic partitioned model,
it is shown how distributed single- and two-layer controllers can be designed for
such types of interconnected systems, where a particular requirement is to respect
information constraints w.r.t. the local Markov states.
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1. Introduction and Literature

Review

1.1. Introduction

In the last decades, the complexity of man-made technical systems has significantly
increased. This trend is not only due to the increasing size and technical capabilities
of large systems like, e.g., production plants in the steel or petrochemical industry
[92], but is mainly driven by recent developments in the area of interconnected
systems1. The term interconnected system refers to technical systems comprised
of a collection of interacting dynamical subsystems P

i [70]. Many interconnected
systems, like electrical power systems or autonomous vehicles, are furthermore char-
acterized by a spatial distribution of the attendant subsystems. The interactions
between the subsystems are typically classified into the following three categories:

• physical interconnections, like the interactions between several loads and gen-
erators in an electrical power network, interactions between reservoirs and
pumps in a water distribution network, or the dependencies of room temper-
atures in a large building.

• information exchange, typically occuring in networked structures like telecom-
munication networks or the internet.

• common control goals, i.e. a desired collective behavior of (possibly autonomous)
subsystems, like a collection of autonomous vehicles that are to follow a lead
vehicle or reference trajectory while maintaining a desired formation.

Naturally, an interconnected system may contain interconnections from all of these
three categories at the same time. A major reason for the increasing number of
interconnected systems is the technological progress in the fields of communication
technology and embedded systems. In this thesis, an embedded system (or embedded
computer) is understood as a compact computer system which is part of a larger
mechanical or electrical system and is designed to accomplish a dedicated task. It is
assumed to be equipped with real-time computing capabilities and with an interface

1In the literature, the terms interconnected system, distributed system, and large-scale system are
often used interchangeably. While many authors generally refer to such systems as complex
systems [13] [140], the term interconnected system is used in this thesis to emphasize their
modular character.

3



1. Introduction and Literature Review

to communicate with similar devices via a wired or wireless network. Products of
both domains, embedded systems and communication technology, have continuously
been improved regarding capability, compactness, reliability, and aquisition costs,
motivating the design of interconnected systems on the one hand and providing more
flexibility for the design process on the other. While communication between the
subsystems may be necessary to create interconnections via information exchange,
it is mostly needed to exchange information for the purpose of controlling an in-
terconnected system, i.e. coordinating the subsystems in order to impose a desired
global behavior. Combined with the broad availability of efficient embedded com-
puters, such a hardware framework allows the implementation of distributed control
algorithms. Not surprisingly, the development of such distributed algorithms has
become one of the major research directions of modern control theory [12] [13] [80].

A recent and concise characterization of the role of modern control methods for
interconnected systems can be found in a topical textbook on Control Theory of
Digitally Networked Dynamic Systems:

“Modern means of communication make it easy to connect system com-
ponents whenever information links may contribute to improving the over-
all system performance. Actuators, sensors and controllers can now ex-
change information from nearly any place within a technological system,
and wireless connections allow to implement advanced control technology
for mobile objects. Due to this flexibility, a new challenge for control
theory is to elaborate systematic ways for the selection of information
structures that are suitable for a given control task.” [80]

Regarding the implementation structure of control algorithms for interconnected
systems, one distiguishes four general structures: centralized, decentralized2, dis-
tributed, and hierarchical control structures. All four of them are exemplarily shown
in Figure 1.1 for the case of Ns = 4 subsystems P

i. The centralized control structure
(top left) is the one typically employed in classical control theory. In a centralized
control structure, all sensors and actuators are connected to a centralized control
device C , which performs all necessary computations. From the viewpoint of in-
terconnected systems, such a control structure can be implemented by establishing
full communication between the subsystems P

i and the centralized controller C ,
gathering all measurements for processing and sending the computed control inputs
back to the actuators. While providing the highest control performance in general,
such a control structure is unfavorable for an actual implementation in an inter-
connected system, especially for subsystems with a distinct spatial distribution, or
for mobile subsystems. Furthermore, the scheme is prone to communication link
failure, requires highly aggregated computational resources, and does not make full

2In some related publications, the term decentralized control actually refers to a control structure
which is called a distributed control structure throughout this thesis and in most of the relevant
literature.
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Figure 1.1.: Classical control structures: centralized (top left), decentralized (top
right), distributed (bottom left), and hierarchical (bottom right).
Solid black lines denote physical interactions or connections, and red
lines indicate networked communication.

use of the potential of distributed computation and embedded hardware. In order to
overcome some of these issues and ease both the implementation and maintenance of
controllers, decentralized control structures (top right) have been extensively devel-
oped since the 1970s [131]. In a decentralized control structure, every subsystem P

i

is equipped with a local controller C
i, which only has access to local measurements.

Consequently, there is no explicit information exchange between the controllers,
which renders the scheme inherently robust against communication failure. How-
ever, decentralized controllers generally either perform worse than their centralized
counterparts, or must possess a very high order to accomplish a similar performance
[69]. Furthermore, some types of interconnected systems can not be stabilized by
purely decentralized feedback [10]. As an attempt to combine the advantages of cen-
tralized and decentralized control at its best, distributed and hierarchical control
structures have been proposed. In a distributed control scheme (bottom left), every
subsystem is equipped with a local controller C

i, similar to a decentralized control
scheme. However, distributed controllers have the ability to exchange information
via a communication network G , which leads to an improved control performance.

5



1. Introduction and Literature Review

Relying on both, distributed computation capacity and information exchange, this
type of controllers fully exploits the capabilities of embedded systems. Since the
communication topology of distributed controllers is often sparse, the scheme is less
prone to communication failures compared to a centralized control scheme. Hier-
archical control schemes (bottom right) can be regarded as a combination of the
former three schemes. A hierarchical control scheme is comprised of two or more
vertically interconnected control layers, where each layer is designed to accomplish
a specific task. In general, when considering the hierarchy from the topmost layer
to the lowest layer3, the layers possess an increasing degree of decentralization,
and the tasks vary from a global planning and coordination perspective to a lo-
cal, rather subsystem-specific, perspective. Depending on the design, hierarchical
control schemes often provide a good trade-off between communication effort and
control performance.

Besides the need for control algorithms which can be implemented in a distributed
manner, the complexity of analysis and synthesis tasks arising in the context of in-
terconnected systems requires special attention. In many cases, classical tools from
control and system theory, which have been developed for the scope of centralized
control systems, can not directly deal with the arising complexity and novel require-
ments like distributed implementation. A famous example is the Riccati equation,
which is involved in solving classical, centralized linear quadratic regulator (LQR)
problems, but becomes inapplicable when structural constraints are to be consid-
ered [107]. In the literature, the complexity of a problem from the domain of system
analysis or control design is often associated with the dimensionality of the under-
lying mathematical model. This point of view can be found in many approaches,
especially from the 1970s to the late 1990s, and researchers at that time coined
the term large-scale system [108] [131] [132]. More recent insights show that struc-
tural constraints on control laws or on state observers, model uncertainties, and
stochastic communication delays likewise render analysis and synthesis problems
complex, even for models with moderate dimension [13] [107]. Hence, the develop-
ment of tractable mathematical and numerical analysis and control design tools for
interconnected systems is another demanding challenge.

Recently, research in the domain of interconnected systems has laid emphasis on
a more comprehensive treatment of the communication network used to exchange
information between local control algorithms. An increasing number of approaches
aims to incorporate more realistic models of the communication network into the
system model. The resulting models are often referred to as networked control
systems (NCS) [12] [80]. By doing so, the impacts of network-induced effects like
variable transmission-delay, jitter, packet dropout, and communication link failure
on the performance of a given control algorithm can either be analyzed, or these

3Throughout this thesis, the lowest control layer (or lower control layer, depending on the number
and corresponding terminology of the layers) is always associated to the control layer that
actually connects to the physical subsystems P i

6



1.1. Introduction

effects can already be taken into account for control synthesis. Another class of
approaches is concerned with the structure of a communication network underlying
a distributed control algorithm. The main line of thought pursued in these studies
is to consider the topology of the underlying communication network as an addi-
tional degree of freedom for the control design, thus performing a co-design of the
distributed control algorithm and the network topology [103] [50]. Throughout this
thesis, these approaches will be referred to as simultaneous control and topology
(SCT) design.

It is needless to say that the incorporation of network-induced effects as well as
SCT design further increases the complexity of the design of distributed controllers.
By summarizing the challenges identified so far, the general problem tackled in
this thesis can be characterized as follows: Given a collection of Ns heterogeneous
interconnected subsystems P

i and a global control objective, develop an offline
control design procedure which:

• yields feedback controllers that are suitable for a distributed implementation
on networked embedded computers,

• seeks for a controller structure that yields a good (preferably parametrizable)
trade-off between control performance and communication effort,

• is numerically tractable for system dimensions (in total) of up to nx ≈ 100
continuous states.

The usage of feedback controllers is mainly motivated with regard to an easy and
reliable implementation of the distributed control algorithm. Since the amount of
required online computations is reduced to a minimum, the hardware requirements
on the embedded systems can be kept low. Furthermore, a quick processing of the
control laws renders feedback controllers particularly suited for the control of fast
dynamics. In particular, no additional software like, e.g., optimization algorithms,
has to be implemented in the embedded control devices, which is typically required
by online control methods like model predictive control (MPC) [51].

It can be observed that most approaches considering similar objectives tackle the
problem either by a decomposition of the overall synthesis problem, or by employing
different kinds of approximations. However, a proper decomposition of a distributed
control design problem into coupled or decoupled subproblems generally requires
rigorous assumptions on the structure of the interconnected system. Furthermore,
there is currently no approach which performs SCT design within a decomposition
scheme. Approximations, on the other hand, are a popular means to decrease the
complexity arising from large system dimensions. However, in the case that the
control objectives are encoded by a (quadratic) cost function, the relation to the
original cost function can only be partially preserved under specific assumptions
[86]. A more thorough discussion on related work is provided in the subsequent
section. Altogether, it can be noticed that the majority of approaches consider

7



1. Introduction and Literature Review

single-layer control structures. Only few results in this direction are available which
propose hierarchical, multi-layer control structures. Such structures are mainly
used in distributed optimization schemes or for the control of discrete-event systems
(DES).

This thesis aims to develop a distributed two-layer control scheme for intercon-
nected dynamic systems. Referring to Figure 1.1, this structure can be interpreted
as a hierarchy (bottom right) which is implemented in a distributed manner (bot-
tom left). The idea behind this structure is as follows: At first, the interconnec-
tion strength and structure of the interconnected system is analyzed. Based on
this information, the communication topology of the local controllers on the lower
control layer is chosen according to the strong interconnections between the sub-
systems. The second, upper control layer accounts for common control goals and
provides global stability and performance guarantees. Here, additional information
is weighted against increased overall performance, such that a trade-off between
performance and communication effort is reached. The control structure will be
explained in more detail in Section 2.1.

The goal of this approach is to break down the complexity of SCT design by
employing ideas from the domains of system decomposition, distributed, and hier-
archical control. Regardless of reducing the complexity of the control design, it is
demanded that the resulting control law guarantees global performance and stabil-
ity properties. Focusing on linear time-invariant dynamics, a particular aim is to
make as few assumptions on the subsystem interconnection structure as possible,
rendering the approach amenable to a preferably broad class of applications.

Furthermore, this thesis aims to extend the aforementioned concepts to a class
of uncertain dynamic systems. The considered systems are comprised of a finite set
of time-invariant dynamics and a stochastic, set-valued switching function which
selects the currently active dynamics. This kind of dynamic models is well suited
to model abrupt changes in the system behavior, like failures of sensors, actuators,
or communication links. In the frequent case that the evolution of the switching
function over time is modeled by a Markov chain, such systems are referred to as
jump Markov systems (JMS) [31]. Most approaches to distributed control can not
be directly extended to this system class. Hence, only few results exists on decen-
tralized or distributed control of jump Markov systems, most of them considering
single-layer control structures.

Outline of this Thesis

This thesis is organised in three parts. In the first part, consisting of Chapters 1 and
2, the contents of this thesis are classified with respect to relevant research. The
general problem setup and theoretical background are presented. In the remainder
of this chapter, a comprehensive review on relevant literature from the field of
decentralized, distributed, and hierarchical control is given. Since a vast number
of publications related to this field have appeared in the last 40 years, the review

8



1.2. Literature Review

focuses on distributed and hierarchical feedback control for linear time-invariant
systems and for jump Markov linear systems. Chapter 2 introduces the notation
and the general problem setup. Furthermore, some theoretical background on the
considered system classes and on the used mathematical tools is provided.

In the second part of this thesis, comprised of Chapter 3 to Chapter 5, two
distributed hierarchical control schemes for interconnected systems modeled by lin-
ear time-invariant dynamic subsystems are presented. The basic principle of these
schemes, which build on an analysis of the interconnection structure of the overall
system, is presented in Chapter 3. The underlying assumption in this chapter is that
all local controllers associated with the upper control layer perform synchronous,
time-triggered updates. In Chapter 4, this assumption is relaxed in the interest
of an equably distributed communication load. In particular, it is shown how the
upper layer controllers can be designed for asynchronous, time-triggered operation
within a periodic sequence. Chapter 5 considers frequency control of an electrical
power network as an application example for the control schemes presented in the
preceding two chapters. After stating the modeling assumptions and principles, the
two-layer schemes are compared with well-established single-layer controllers with
respect to performance and implementation effort.

The third part of this thesis, beginning with Chapter 6, is concerned with extend-
ing the ideas presented in the second part to a class of interconnected systems with
stochastic uncertainty. In particular, a collection of jump Markov linear subsystems
is considered, where the subsystems are interconnected via physical interactions and
a common cost function. Chapter 6 presents the new problem setup and a mod-
eling procedure which allows to consider the overall system as a partioned jump
Markov system similar to the Chapters 3 and 4. In Chapter 7, the hierarchical
two-layer scheme is extended to a class of jump semi-Markov linear systems, where
the continuous dynamics and the underlying Markov chain are defined on different
time-scales. Finally, the thesis is concluded in Chapter 8, and an outlook on further
developments in the field of hierarchical distributed feedback control is given.

1.2. Literature Review

The aim of this section is to provide an overview over relevant literature from the
fields of decentralized, distributed, and hierarchical4 feedback control of intercon-
nected systems. For the sake of completeness, a rough insight is also provided in the
fields of distributed and hierarchical optimization, model predictive control (MPC)
as well as hierarchical control of discrete-event systems (DES). Most work on non-
centralized control schemes focuses on interconnected systems modeled by linear
time-invariant (LTI) differential or difference equations, while rather few results are
available for nonlinear, uncertain, or hybrid dynamics.

4For the sake of brevity, decentralized, distributed, and hierarchical control schemes are often
jointly referred to as non-centralized control schemes.
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In general, approaches to non-centralized control can be classified according to
the following categories:

• modeling domain: typical choices are state-space models (time-domain) or
transfer functions (frequency domain).

• model class: the assumed type of system model, e.g. linear or nonlinear,
time-invariant or time-varying, continuous-time or discrete-time, continuous-
or discrete-valued, possibly uncertain or hybrid.

• model adjustment: the way the original system model is treated, e.g. exact,
or being decomposed, approximated5, or abstracted.

• subsystem interconnections: subsystems can be interconnected, e.g. via inputs,
states, outputs, shared information sets, or a cost function. Furthermore,
specific interconnection structures may be assumed.

• task and specifications: which task should be performed, e.g. stability or
performance analysis, stabilizing control design, H2-, H∞- or multi-objective
control design with guaranteed or optimized performance.

• controller structure: the implementation structure of the controller: central-
ized, decentralized, distributed, hierarchical, where the latter two structures
may be either fixed a-priori or are co-designed with the controller (SCT design)

• control layers: the number of control layers in the case of a hierarchical struc-
ture.

• controller type: the assumed type of controller, e.g. static state-feedback,
static output-feedback, dynamic output-feedback, MPC, or switching control.

• network model: the network effects incorporated in the overall system model,
which is often assumed to be ideal, but may include constant or time-varying
transmission delays, random packet dropouts, quantization effects, jitter, etc.

• network usage: the usage of the communication network, e.g. once or multiple
times per time-step, time- or event-triggered.

The beginning of non-centralized control can be traced back until the late 1960s,
where new control structures where sought for high-dimensional systems, often re-
ferred to as large-scale systems. The work on this emerging line of research was
mainly motivated by the requirement of new concepts for the control of power
systems and digital communication networks [108]. In 1970, first hierachical and

5Although model reduction and system approximation methods are common tools for the anal-
ysis, simulation and control design of complex systems, they are not within the scope of this
thesis. The interested reader is referred to [8] [19] [93].
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multi-layer concepts were formalized and utilized to decompose constrained opti-
mization problems [92]. A milestone in the field of decentralized control is the text-

book of Šiljak [131] published in 1978, which presents graph-theoretic approaches
to the analysis of emerging notions like decentralized reachability and connective
stability, and first approaches to decentralized feedback stabilization. Furthermore,
first approaches to the analysis and classification of the interconnection structure
of interconnected systems are presented. Another early work with large impact is
the survey paper of Sandell et al. [108], in which first state-aggregation techniques
are shown. In addition, a hierarchical filtering approach for systems with separable
slow and fast dynamics is presented. Methods for decentralized stability analysis
are shown which are based on the construction of vector Lyapunov functions or
small gain concepts, both using worst-case bounds of the interconnection signals.
Concerning decentralized control, it is demonstrated that the separation principle
does not hold for non-centralized H2 control design, and that decentralized pole-
placement can be performed by designing auxilliary controllers which render the
system fully reachable from the last decentralized control loop to be closed.

In the sequel, the most relevant recent approaches to non-centralized control of
interconnected systems are grouped according to the proposed controller structure
or the model treatment.

Decentralized Control

The graph-theoretic framework for decentralized control introduced in [131] is fur-
ther developed in [132]. The relations between structural controllability and ob-
servability and structurally fixed modes and the underlying interconnection graph
of a dynamic system are invesigated in more detail. Most notably, first approaches
combining system decomposition and control design are presented. These decom-
position approaches will be described later in more detail. From the viewpoint of
decentralized control, one of the major contributions in [132] is an algorithm for the
sequential design of H2-optimized decentralized state-feedback controllers.

Besides sequential design, another popular approach to the design of decentralized
controllers is to design the local subsystem controllers robustly with respect to the
incoming interconnection signals. This is done in [66] for linear systems intercon-
nected via states and inputs. First, the system is rewritten in input-decentralized
form by using a descriptor system with extended state vector. Then, the local robust
controllers are designed using eigenstructure assignment. A similar approach is pur-
sued in [116] for interconnected homogeneous subsystems, where it is assumed that
magnitude bounds are known for all incoming interconnection signals. The local
controllers are then designed robust w.r.t. these bounds, while imposing magnitude
bounds on the outgoing interconnections themselves. While treating interconnec-
tions as unknown disturbances is a common means to decompose a decentralized
control design problem into local robust control problems, this approach is usually
conservative, especially under the consideration of common control goals.
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In order to reduce the conservativness of decentralized control schemes, the local
controllers require knowledge about the incoming interactions. In [69], a method
is proposed which derives a decentralized controller from a given centralized one.
Therefore, every subsystem is equipped with a copy of the global system dynamics
in order to estimate the full system state. The approach is extended in [70] to
consider steady-state accuracy and suboptimal H2-performance. While being able
to provide the same performance as the centralized controller in the ideal case,
the main drawback of this approach is the high dimensionality of the resulting
controllers.

Decentralized control for nonlinear systems is considered in [93, Chap. 6], where
high feedback gains are used to render the local control inputs dominant w.r.t. the
incoming interconnections, and gain-scheduling is employed to handle the nonlin-
earity of the dynamics. In general, high feedback gains often occur when designing
decentralized controllers for strongly coupled subsystems, which has led to the no-
tion of (block-) diagonal dominance in terms of the system-matrix of linear dynamic
state-space models [131].

Modern approaches to decentralized control increasingly investigate the impacts
of network-induced effects or already incorporate these effects in the control design
problem [14]. A frequently considered setup is a decentralized control structure
where sensors, controllers, and actuators communicate via a shared network. Thus,
besides the design of the actual control algorithm, the scheduling of the shared
network is a typical problem occuring in such setups. An approach based on periodic
scheduling protocols is presented in [18].

In summary, decentralized control is an active line of research for about 50 years,
being an attractive option due to its uncomplicated implementation. However,
especially for a large number of subsystems, it is well known that the performance
of decentralized controllers is limited. This is mainly due to the lack of information
exchange between the controllers, rendering the scheme ineffective for models with
strong interconnections [140]. The work in [15] presents a study of decentralized
distance control of a string of vehicles under the influence of local disturbances. The
simulation results reveal that the coherence of the formation significantly decreases
with an increasing number of vehicles. The lack of coherence manifests itself in the
form of oscillations of the vehicle string, which can only be reduced by increasing
the information set of the local controllers, naturally leading to distributed control
schemes.

In [140], communication links are iteratively added to a decentralized control
law based on a heuristic method. These so called low-rank centralized corrections
increase the performance of the closed-loop system, or may even be required to
render the closed-loop system stable [10].
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Distributed Control

The majority of recent approaches to distributed control assumes the interconnected
system to be modeled by interconnected linear time-invariant differential or differ-
ence equations. In addition, many approaches impose assumptions on the subsystem
structure, like (groups of) homogeneous subsystems which are either decoupled [24]
or possess particular (e.g., symmetric) interconnection patterns [55] [90] [91] [97],
scalar interconnection signals [35], local control inputs [74] [105], or hierarchical
interconnection structures [114] [125]. In many cases, these assumptions allow to
significantly simplify the distributed control design.

One method to synthesize distributed control laws is spatial truncation. This
approach was first introduced in [16] for spatially invariant systems, i.e. subsys-
tem dynamics which do not depend on a spatial variable, typically resulting from
the discretization of partial differential equations (PDE). It is shown that for such
systems, both H2- and H∞-optimal (centralized) controllers are spatially invariant,
and that the magnitudes of the control gains decay with an increasing distance of
the corresponding subsystems. Thus, the concept of spatial truncation is to neglect
all control gains corresponding to subsystems outside a desired radius, leading to a
suboptimal distributed control law accessing the information of neighboring subsys-
tems. In [96], this approach is extended to systems which possess spatially decaying
interconnection strenghts. The controllers resulting from these truncation methods
are not guaranteed to be stabilizing, and no general information structures can be
taken into account.

Most approaches to distributed control assume the underlying communication
topology of the subsystem controllers to be given a-priori. A frequent practice is to
search for a distributed controller which has the same information structure as the
given interconnected system. This is done in [67] for the case of heterogeneous sub-
systems interconnected via states and inputs over a graph with arbitrary structure.
A common control goal is given by a desired H∞-performance of the overall system.
It is shown that the synthesis conditions result in a set of coupled linear matrix
inequalities (LMI). The authors propose to solve these inequalities in a distributed
manner within a two-layer optimization scheme. The approach is extended in [36]
to the case of time-varying linear systems interconnected via an infinite graph with
periodic time and space structure.

A more general problem setup is to assume an arbitrary (but a-priori given)
information structure which may differ from the interconnection structure of the
plant. These approaches are often referred to as structured control design or con-
trol design w.r.t. arbitrary information constraints. A great challenge for solving
these problems is that the feasible set of controllers with respect to an arbitrary
information constraint is generally non-convex [107]. Within the framework of lin-
ear matrix inequalities, this drawback can be circumvented by establishing convex
under-approximations of the feasible set [50]: Structured dynamic output feedback
for LTI systems with local inputs and optimized global H2-performance is consid-

13



1. Introduction and Literature Review

ered in [74] based on LMI-relaxations of Riccati equations. In [140], an approach to
impose structural constraints on a state-feedback gain matrix by constraining the
structure of the Lyapunov matrix in an LMI-constrained optimization problem is
shown.

LMI formulations are widespread in the domain of non-centralized control de-
sign, and only few alternatives exist. One of them is dual decomposition, which
decomposes a global optimization problem into local subproblems, which are cou-
pled and coordinated via a super-ordinated pricing mechanism. In [105], dynamic
dual decomosition is employed to optimize structured state-feedback controllers for
LTI systems with local inputs and local costs, interconnected via states. A second
alternative are distributed gradient methods, which require similar assumptions on
the system structure in order to enable a distributed optimization of the distributed
state-feedback control laws [83]. While both methods enable a decomposition of the
global synthesis problem into coupled subproblems, such distributed optimization
schemes often suffer from slow convergence properties. Finally, a third alternative
is the alternating direction method of multipliers (ADMM), where the augmented
Lagrangian of the structured control problem is decomposed into two coupled sum-
mands by introducing a copy of the feedback gain. Similar to dual decomposition,
those two cost terms are coupled by a price mechanism, and the optimization is
performed by minimizing the first cost function, the second cost function, and the
prices sequentially in an iterative manner. This algorithm is applied to structured
control problems for LTI subsystems interconnected via inputs, states, and a gobal
cost function in [77]. In order to achieve a result in acceptable time, the algorithm
is stopped when the difference between the copies of the control gain is sufficiently
small.

In [107], the convexity of structured optimal control problems is investigated in
a frequency domain setting. A notion of quadratic invariance of the constraint set
w.r.t. the plant is defined, and it is shown that the structured optimal control prob-
lem is convex for all structures belonging to this class. Subsequent results extend
this work by parametrizing all stabilizing controllers subject to any structural con-
straint, using a Youla parametrization [106]. However, these results are not directly
applicable to state-space representations of both system and controller, since the
interpretation of structure differs in both domains. More precisely, a state-space
representation of a dynamic system is considered to carry more strucural informa-
tion than the corresponding transfer function [104]. Indeed, it can be easily verified
that a sparse state-space model may possess a dense (or even full) transfer function
matrix. Vice versa, it is not guaranteed that a sparse transfer function matrix has
a sparse state-space realization. In [104], the dynamical structure function (DSF)
is defined as a stronger notion of structure in the frequency domain. Here, the
plant is represented as an interconnection of two MIMO transfer functions, carry-
ing more structural information than a classical transfer function, but still less than
a state-space representation. Moreover, an algorithm is presented which constructs
a stabilizing distributed controller (in the sense of the DSF) by adding randomly
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picked scalar controller links in a sequential manner.
As mentioned ealier, many approaches to distributed control impose assumptions

on the structure of the interconnected system model. A particular class of inter-
connected systems are multi-agent systems (MAS). MAS are formed by a collection
of autonomous subsystems (agents) like mobile robots, unmanned air vehicles, or
satellites. In general, they are required to show collective or swarm behavior like
flocking, formation keeping, area coverage, or distributed task assignment [7] [115].
Therefore, MAS are typically modelled by dynamically decoupled, often similar or
identical, subsystems, which are interconnected via a global cost function to encode
the common control goals [80, Chap. 6]. Approaches to MAS often make use of
this particular structure to simplify the distributed controller synthesis. A well-
established work is [24], where distributed LQR design for identical dynamically
decoupled systems with a specific structure of the global quadratic cost function is
considered. In this particular case, the global LQR problem can be boiled down
to one subproblem, involving only one subsystem and its neighboring subsystems.
From the result of this subproblem, a distributed controller can be constructed
which relies on information transmitted from neighboring subsystems.

The concept of decomposing a control problem can also be applied for certain
classes of dynamically coupled subsystems. A subset of these classes is described in
[97], where optimal state-feedback design w.r.t. a quadratic cost function is consid-
ered for linear subsystems. In this work, classes of matrices are characterized which
preserve their structural properties under matrix operations like addition, multipli-
cation, and inversion. Hence, if all matrices of the state-space model belong to such
a particular class, this will also hold true for the optimal state-feedback gain, such
that the distributed controller can be found by solving a Riccati equation. In the
case of hierarchically interconnected subsystems and costs, the global LQR problem
is additionally inherently decomposable into LQR subproblems, as shown in [114]
and [125]. The H∞-case is studied in [109]. A more general class of decomposable
systems are systems where all matrices of the state-space representation are of the
form:

M = In ⊗Ma + Pn ⊗Mb, (1.1)

with the same diagonalizable interconnection structure matrix Pn and some ma-
trices Ma and Mb [91]. Here, the first summand corresponds to equal entries on
the block diagonal, and the second one is an interconnection matrix Mb which oc-
curs with a pattern encoded by Pn. If this strong assumption holds, the plant
can be block-diagonalized, and the control synthesis problem can be expressed in
terms of decoupled LMI constraints. However, the resulting controller structure can
not be influenced in this case. In order to design a structured controller with the
same structure as the plant, the indepent LMIs have to be coupled by local con-
trol variables again, which also induces additional conservatism. Accepting further
conservatism, this approach can be extended to linear parameter-varying (LPV)
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decomposable systems [54], or to heterogeneous groups of identical subsystems in-
terconnected via time-varying interconnection topologies. In the latter case, the
controllers can either be designed robust against [90] or depending on the current
interconnection topology [55]. Notably, all the approaches to distributed control
mentioned so far have in common that a single control layer with an a-priori given
communication topology is considered. The potentials of additional control layers
and SCT design are not taken into account.

System Decomposition and Interaction Measures

Besides the procedure to break down a control design problem into subproblems,
system decomposition can also be understood as the problem of finding a parti-
tioning of a holistic dynamic system6 with respect to a given criterion. Suitable
decomposition criteria are often based on interaction measures, quantifying the
interconnection strength between separable elements of a dynamic system, e.g. be-
tween system states or input-output channels.

The history of this field reaches back to the relative gain array (RGA) introduced
by Bristol in 1966. The RGA is a measure of the input-output channel interaction,
based on the steady-state gain of a dynamic MIMO process. Dynamic extensions
of the RGA exist, which are based on the Gramians of a stable system [30] or
on the Hankel-Norm [138], and also take the transient behavior into account. An
energy-based approach to quantify the interconnection strength between subsystems
is taken in [5], where a supply rate to the energy stored by each subsystem is defined
as a function of the incoming and outgoing interconnection signals. However, this
measure strongly depends on the choice of the supply functions.

Approaches to system partitioning which are based on the system matrix of a
state-space representation are proposed in [132] and [140]. The so called ε−decom-
position neglects off-diagonal elements of the system matrix which are small in
magnitude, trying to identify which states are weakly coupled. The hierarchical
UBT decomposition seeks for a hierarchical interconnection structure of the system
matrix by permuting the state vector. For hierarchically interconnected subsystems,
the overall system is stable if and only if every subsystem is stable [132]. Further
partitioning variants are the nested ε−decomposition and the balanced border block-
diagonal decomposition. The main purpose of these algorithms is to find a suitable
partitioning and distributed controller structure for a holistic dynamic system.

Simultaneous Controller and Communication Topology Design

In contrast to conventional distributed control design, SCT design considers the
underlying communication topology of the distributed control law as an additional

6A holistic dynamic system is understood as a centralized dynamic mathematical model without
any information regarding the partitioning of the overall system into subsystems or input-
output pairs.
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degree of freedom. In order to achieve a trade-off between closed-loop performance
and communication effort, costs depending on the topology or usage of the commu-
nication network are introduced. Based on this idea, the communication topology
of a consensus algorithm for multi-agent systems is optimized in [103] via mixed-
integer programming (MIP). In [111], H∞-optimized decentralized dynamic output
feedback controllers with distributed feed-through are designed, where the �0-norm
of the feed-through matrix is penalized to promote its sparsity. The synthesis prob-
lem is formulated subject to non-convex bilinear matrix inequalities (BMI), where
a weighted �1-norm is used as a relaxation of the �0-norm to avoid a mixed-integer
formulation. Hence, an approximate solution is obtained. A re-weighted �1-norm
formulation for semidefinite programming is also proposed in [45], which is used
to optimize sparse interconnection graphs for the synchronization of oscillator net-
works.

The aforementioned ADMM is used in [78] to designH2-optimized sparse feedback
gains, where sparsity is promoted by penalizing the number of non-zero entries in
the feedback gain matrix. A holistic system model is assumed, i.e. no structural
information is contained in the model. Due to the separation of the cost function
by using the ADMM, the subproblem minimizing the communication cost can be
solved analytically. A more general variant of SCT design is proposed in [50], where
individual costs can be assigned to each communication link necessary to implement
the distributed controller. The control synthesis is formulated as a mixed-integer
semidefinite program (MISDP), where the sum of a quadratic performance index
and the communication cost is minimized.

The guiding thoughts of SCT design have also influenced coalitional control schemes.
In these non-centralized control schemes, subsystems form time-varying coalitions
during runtime, which can be interpreted as an online adaption of the communi-
cation structure. This idea is pursued in [84] for linear time-invariant subsystems
interconnected via states and inputs, and with local quadratic cost functions. It is
assumed that the network topology changes every D time-steps, where the topol-
ogy is decentralized w.r.t. the coalitions. The scheme requires to pre-compute a
controller for every admissible set of coalitions. For choosing the optimal topology
online, the effect of each link on the overall performance is approximated by em-
ploying concepts of game theory. However, the performance loss due to switching
the control law is not taken into account.

Hierarchical Feedback Control

Although first schemes were already developed in the 1970s, surprisingly few ap-
proaches to hierarchical feedback control exist. The initial motivation to introduce
a super-ordinated feedback layer was to compensate subsystem interconnections in
order to facilitate ‘decentralized’ control [120] [131]. The disadvantages of these ap-
proaches are that they also compensate supportive interconnections and generally
require full communication between the subsystems. Addressing the first drawback,
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subsequent approaches propose an upper feedback layer with a coordinating, in-
stead of a compensating function, advancing the idea of cooperative control layers
[86]. However, the approach is limited to local cost functions, and the upper control
layer is still considered as a centralized entity, having full information about all
subsystems.

A particular two-layer feedback structure is proposed in [64] for a collection of
actuator subsystems which are connected to a central mechanical or electrical sub-
system, but are decoupled otherwise. Local lower-layer controllers are designed for
these actuator subsystems, which reduce their dynamic order by steering them onto
a sub-manifold of the state-space. Then, an upper-layer controller is designed for
the global system. While using local controllers to reduce the dynamic order of sub-
systems is a suitable means to reduce the complexity of the overall control problem,
the restricting action of the lower control layer generally contradicts common control
goals. Furthermore, the concept is limited to particular subsystem interconnection
topologies.

An application domain where hierarchical feedback control is being employed
successfully since many years is control of power systems. Close to steady-state
operation, power systems seem to be particularly amenable to hierarchical control
structures, since the separate consideration of single control layers, typically de-
fined by the different occuring time-scales, has lead to a desired global behavior
in practice. A distributed hierarchical control architecture for transient dynam-
ics improvement in power systems is proposed in [88]. Local controllers for power
generators are designed robust w.r.t. incoming connections, which are modeled as
quadratically bounded signals. The local controllers are designed as a part of the
classical control hierarchiy for power systems, where the superordinate area gener-
ation control (AGC) layer adjusts the set-points of the generators.

It is important to note that, to the best of the author’s knowledge, no connection
between the fields of SCT design and hierarchical feedback control has been made
so far. However, it is believed that many ideas and benefits from both fields can be
combined within an interdisciplinary approach, which allows to perform SCT design
for a considerably larger number of interconnected subsystems. For this reason, it
is the main goal of this thesis to close this gap by providing algorithms for designing
two-layer feedback structures with a parametrizable trade-off between closed-loop
performance and communication effort.

Hierarchical Optimization and Model Predictive Control

In contrast to hierarchical feedback control, hierachical optimization and hierarchi-
cal MPC schemes have already been investigated to a considerable extent. While
not directly related to this thesis, some relations and analogies to this field exist,
such that the main advances are presented hereafter for the sake of completeness.

Hierarchical optimization schemes can be used to calculate optimal input trajec-
tories or optimal centralized feedback controllers [86] [119]. Recent approaches also
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consider the calculation of optimized distributed feedback controllers [105], which
may be adjusted to a time-varying interconnection structure of the subsystems by
running the optimization online [80, Chap. 3.3]. In general, hierarchical optimiza-
tion is based on the separation of either the Lagrangian or the Lagrangian dual
function, which mostly requires subsystems with local costs and local control in-
puts, and naturally results in a two-layer scheme. Schemes consisting of multiple
layers, like the three-layer scheme presented in [73], are rather seldom.

Likewise, the majority of hierarchical MPC schemes consists of two layers. The
upper layer is typically a centralized, distributed, or decentralized MPC, and the
lower layer may consist of local MPC or local feedback controllers. The lower layer
is typically fed with setpoints or reference trajectories by the upper layer. These
reference values are sometimes calculated on a coarser time-scale, which is often
referred to as multi-rate schemes [17]. Few approaches also consider the idea of
grouping subsystems in order to structure the overall problem. A nested primal
decomposition scheme for model predictive control of linear systems with input
constraints and local costs is presented in [122]. The groups are assumed to be
a-priori given. A coalitional hierarchical MPC scheme is presented in [47], where
the coalitions are chosen on-line, requiring to solve the underlying combinatorial
problem repeatedly during runtime.

Hybrid Hierarchical Control and Hierarchical Discrete Event Control

A popular form of hierarchical controllers are hybrid hierarchical controllers, which
are a combination of a set of continuous control laws and finite state machines
[81]. More precisely, the finite state machine, constituting the upper layer of the
hierarchical scheme, switches between different continuous lower layer control laws in
order to impose a desired overall behavior. In general, the lower layer controllers are
designed to implement elementary maneuvers, which are pre-defined time sequences
of the continuous state. Then, the task of the upper control layer is to plan and
implement a sequence of these elemenary maneuvers such that the system is steered
into the desired region of the state-space [94]. Since the choice of the elementary
maneuvers is not unique and often non-trivial, hybrid hierarchical control requires
intense knowledge about the system characteristics, and is mostly implemented in a
centralized manner. Furthermore, the possibly adverse effects of switching between
different strategies are often neglected.

Similar switching schemes selecting control laws on a lower control layer exist
for the control of interconnected systems with unknown uncertainty. For instance,
decentralized switching control is proposed in [1], where it is assumed that there
exists a known finite set of decentralized controllers containing at least one controller
which is able to stabilize the overall system at any time. The objective is then to
design a decentralized switching strategy for the upper control layer such that the
overall system is stabilized.

Another model class where hierarchical schemes are frequently used for control are
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discrete-event systems. Discrete-event systems are often used to model automated
manufacturing processes by considering the manufacturing process as a collection
of modular production units, which are again described by a discrete set of sub-
processes or events. Due to the discrete state-space and the inherent modularity
of the resulting models, these are particularly amenable to model abstraction and
refinement by accumulating or decomposing possible sequences of discrete events
[124]. Hence, in a first step, lower layer discrete event controllers are typically
designed for the modular units of the overall manufacturing process. In a second
step, a coordinating upper layer discrete event controller is designed based on an
abstracted model [29]. Theoretical research on this field often focuses on the formal
connection and implementation of the single control layers, e.g. by defining standard
interfaces [71].

Non-Centralized Control of Jump Markov and Jump Semi-Markov Systems

In the third part of this thesis, the hierarchical distributed control schemes originally
developed for time-invariant dynamic systems are extended to a class of uncertain
dynamic systems. In particular, interconnected discrete-time jump Markov systems
(JMS) are considered, which have been investigated to a considerable extent in
the context of centralized control schemes [31] [37] [117]. Non-centralized control
schemes for jump Markov systems, however, do barely exist. Most approaches to
non-centralized control of JMS consider decentralized schemes, e.g. [85]. Robust
approaches using only the local continuous state and the global Markov state [75],
the local Markov state [139] [93, Chap. 7], or the Markov states of neighboring
subsystems [82] exist. These robust approaches require to specify infinite horizon
integral quadratic constaints (ICQ) on all disturbance and interconnection signals.
Furthermore, even though [139], [93, Chap. 7], and [82] require communication to
exchange the local Markov states, they do not make use of the ability to exchange
the local measurements of the continuous states.

Distributed control of jump Markov multi-agent systems with identical subsystem
dynamics is considered in [36] and [133]. In [133], distributed output feedback
controllers are designed for the case that all agents possess the same Markov chain,
while the system class is used in [36] to model communication uncertainties in
a string of vehicles. Distributed team-decision strategies for identical, decoupled
JMLS are designed in [134]. Distributed model predictive control for JMS with
polytopic uncertainty is considered in [121]. However, the scheme is computationally
involving, since a series of LMI-constrained optimization problems has to be solved
at each time-step.

Jump Semi-Markov Systems (JSMS) are a natural extension of JMS. They are
obtained from JMS by dropping the assumption of time-invariant transition prob-
abilities, leading to more modeling flexibility regarding the discrete-valued part of
the dynamics. So far, JSMS have mainly been studied in the context of centralized
settings. An overview of several special cases regarding the time-dependency of the
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transition probabilities is provided in [141]. Furthermore, the article presents an
approach to the stabilization of discrete-time JSMS in the case that the probability
density function depends on the current and on the next system mode. In [56], an
approach to the robust stabilization of continuous-time JSMS with polytopic uncer-
tainty in the system matrices is presented, and [112] considers the stabilization of
continuous-time JSMS in the sense of mean-square stability and w.r.t. a quadratic
loss function.

Control of Cyber-Physical Systems and Systems-of-Systems

Cyber-physical systems and systems of systems are relatively new notions of com-
plex systems which emerged in the past decade. While both of them contain many
parallels to other notions of complex systems, they focus on incorporating new tech-
nical aspects and requirements into the system analysis and control design process.
In the sequel, both notions will be described in more detail.

A system of systems (SoS) is a class of complex systems comprised of subsys-
tems which are complex systems themselves. It can be thought of as a collection
of individual, possibly heterogeneous, but functional systems which collaborate for
enhancing the overall robustness, lowering the cost of operation, and increasing the
reliability of the overall complex system [57]. An SoS is often characterized by op-
erational and managerial independence of the single systems, by their geographic
distribution, and by their evolutionary development. From an engineering perspec-
tive, one is typically interested in the emergent behavior of the overall system. A
major goal of SoS research is to design these systems to deliver higher capabilities
and performance than traditional systems. This design process is termed system
of systems engineering, and requires new approaches for a suitable modeling, ar-
chitecture, and simulation frameworks, as well as system identification and control
synthesis algorithms [57]. The system of systems perspective recently has been
applied to system theoretic problems from various application domains, including
networked mircogrids [99], infrastructure planning [98], military defense systems, or
aerospace systems [57], to name a few.

Research on cyber-physical systems (CPS), on the other hand, focuses on inte-
grations of computation and physical processes. The main observation is that the
physical components of these systems introduce safety and reliability requirements
which go far beyond those of general purpose computing. Existing abstractions
and semantics used in computing and networking environments do not take these
requirements into account, since there is a general lack of temporal semantics and
adequate concurrency models [72]. For instance, a perfectly working code writ-
ten in C may still practically fail when executed in a CPS if timing deadlines are
missed. CPS are assumed to be incorporated in networked environments, meaning
that their internal behavior can be influenced by external information. This makes
it hard to verify the correct operation of a CPS, and leaves the system vulnerable
to malicious attacks. Consequently, CPS research has a strong focus on robustness,
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fault-diagnosis, and cyber-security, see for instance [126], [127].

1.3. Contribution of this Thesis

As can also be deduced from the previous section, hierarchical distributed feedback
control schemes are so far not considered as an alternative for non-centralized control
of interconnected systems. It is the aim of this dissertation to close this gap by
developing computationally tractable synthesis procedures for distributed two-

layer feedback control schemes for both time-invariant and uncertain dynamic
systems. In particular, algorithms for a structural analysis of the interconnection
structure are provided, which group strongly coupled subsystems into clusters. It is
shown that this clustering procedure is a productive means to significantly reduce
the computational complexity of solving SCT design problems.

In this thesis, global control goals will be encoded either by a global quadratic
infinite horizon cost function, or by a norm of the system w.r.t. a global controlled
variable. A particular problem that will be addressed in the sequel is to design the
hierarchical distributed controller such that both control layers and all local con-
trollers cooperate for minimizing this cost function or system norm, respectively.

Due to the usage of feedback control laws, the implementation of the proposed
distributed two-layer control scheme is simple compared to, e.g., distributed MPC
schemes, which usually require additional optimization software and hence more
powerful embedded hardware. By adopting the ideas of SCT design for this scheme,
the implementation is furthermore simplified by using only those communication
channels which significantly contribute to the global system performance. In Chap-
ter 4, it is shown how the communication load of the distributed two-layer feedback
scheme can be equably distributed over time by switching from synchronous to
asynchronous operation on the upper control layer.

The control synthesis procedures presented in this thesis are based on the ver-

satile framework of Linear Matrix Inequalities. Such inequalities have a very
natural connection to control synthesis, and allow to incorporate various require-
ments and aspects during control design, such as H2- and H∞-performance, pas-
sivity, time-domain constraints (e.g., peak values of the control input, or of the
impulse- or step-response), minimum decay rate, or pole-placement constraints [25]
[110]. Therefore, the author believes that the results presented in this thesis can be
extended towards many of these features.
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This chapter introduces the problem setup, the basic notation, and the mathe-
matical and methodical preliminaries required for the subsequent chapters. The
first section introduces the considered classes of dynamic systems and two different
notions of closed-loop performance that will be used throughout this thesis. The
problem setup is completed by formalizing the controller structure as well as the
time scales of the hierarchical control scheme. In the second section, a mathematical
model of the available communication network is introduced, and common stability
notions for the considered types of dynamic systems are reviewed in the third sec-
tion. Section 2.4 reviews the definition and several interpretations of the H2-norm
of linear time-invariant dynamic systems and the generalization of these concepts to
jump Markov linear systems. In Section 2.5, some basics of semidefinite program-
ming and linear matrix inequalities are presented, which serve as framework for the
control design process. Finally, Section 2.6 presents some decomposition concepts
that are part of the structural analysis performed prior to the control design.

2.1. General Problem Setup and Notation

The general problem setup is shown in Figure 2.1: Given an interconnection of Ns

dynamic subsystems P
i, determine distributed hierarchical two-layer controllers

C
↓i and C

↑i such that the closed-loop system is stable and an a-priori given global
performance index is optimized. Here, C

↓i denotes the i-th lower-layer controller,
and C

↑i denotes the i-th upper-layer controller. These controllers are distributed
in the sense that they can be locally implemented, i.e. spatially associated to the
subsystems P

i, while exchanging necessary information from other subsystems via
a communication network G . The particular challenge is to design all controllers on
both control layers such that they cooperate for optimizing the global performance
index. Furthermore, a parametrizable trade-off between closed-loop performance
and communication cost is sought.

System Dynamics

In the second part of this thesis, the overall dynamic system is given by the discrete-
time linear time-invariant (LTI) system:

P : xk+1 = Axk + Buk + Ewk, (2.1)
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control layer
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↑2

C
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Figure 2.1.: General setup of a two-layer hierarchical distributed control structure.

where k denotes the discrete time, xk ∈ X ⊆ Rnx and uk ∈ U ⊆ Rnu are the
global state and the input vector of P, respectively, and wk ∈W ⊆ R

nw is a global
disturbance input. The system matrix A ∈ Rnx×nx, the input matrix B ∈ Rnx×nu ,
and the disturbance input matrix E ∈ R

nx×nw parametrize the dynamic behavior
of P. The signals uk and wk are assumed to be piecewise constant and updated at
time t = kΔt, i.e.:

u(t) = u(kΔt) =: uk for kΔt ≤ t < kΔt + Δt, (2.2)

using the example of the input vector uk. Likewise, xk is sampled at time kΔt, i.e.:

x(kΔt) =: xk. (2.3)

Suppose that the vectors xk =
(
x1

k; . . . ; xNs
k

)
, uk =

(
u1

k; . . . ; uNs
k

)
, and wk =(

w1
k; . . . ; wNs

k

)
are partitioned according to the subsystems. Here,

(
y1; . . . ; yN

)
:=[

(y1)T, . . . , (yN)T
]T

with yi ∈ Rni×1 denotes a stacked column vector. Then, the
global system P can be interpreted as an interconnection of Ns ∈ N subsystems:

P
i : xi

k+1 = Ai,ix
i
k + Bi,iu

i
k + Ei,iw

i
k + ri

x,k, (2.4)

with i ∈ Ns := INs = {1, 2, . . . , Ns}, and xi
k ∈ Xi ⊆ Rni

x, ui
k ∈ Ui ⊆ Rni

u, and

wi
k ∈ Wi ⊆ Rni

w being the local state, input, and disturbance input, respectively.

The local matrices Ai,i ∈ Rni
x×ni

x, Bi,i ∈ Rni
x×ni

u , and Ei,i ∈ Rni
x×ni

w denote the

corresponding block entries of the matrices A, B, and E. Furthermore, ri
x,k ∈ Rni

x
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is the interconnection input, which is given by:

ri
x,k =

∑
j∈N i

s

(
Ai,jx

j
k + Bi,ju

j
k + Ei,jw

j
k

)
, (2.5)

with N i
s := Ns \ {i}.

In the third part of this thesis, a class of discrete-time uncertain dynamic systems
Pθ, called jump Markov systems (JMS) [31], is considered. In particular, intercon-
nected jump Markov linear systems are considered, where the i-th subsystem P

i
θ

takes the form:

P
i
θ : xi

k+1 = Ai,i[θ
i
k]xi

k + Bi,i[θ
i
k]ui

k + Ei,i[θ
i
k]wi

k + ri
x,k[θi

k]. (2.6)

In contrast to the LTI subsystems given in (2.4), the local matrices Ai,i[θ
i
k] ∈ Rni

x×ni
x,

Bi,i[θ
i
k] ∈ Rni

x×ni
u, and Ei,i[θ

i
k] ∈ Rni

x×ni
w depend on the discrete state θi

k ∈ Θi of a
local Markov chain:

M
i =

(
Θi, P i, μi

0

)
, (2.7)

with the discrete state space Θi := IN i
θ

and a right-stochastic transition probability

matrix P i = [pi
m,n] ∈ [0, 1]N

i
θ×N i

θ , with entries given by:

pi
m,n := Pr(θi

k+1 = n | θi
k = m). (2.8)

Furthermore, μi
0 ∈ [0, 1]N

i
θ is the initial distribution of the Markov state, i.e.:

μi
0,m := Pr(θi

0 = m), (2.9)

where μi
0,m denotes the m-th component of the vector μi

0. In (2.6), the interconnec-

tion signal ri
x,k[θi

k] takes the general form:

ri
x,k[θi

k] =
∑

j∈N i
s

(
Ai,j[θ

i
k]xj

k + Bi,j[θ
i
k]uj

k + Ei,j[θ
i
k]wj

k

)
. (2.10)

For the case of interconnected jump Markov linear systems, the global uncertain
interconnected system is denoted by {P i

θ}i∈Ns. Furthermore, the tuple ζi
k := (xi

k, θi
k)

is referred to as the hybrid state of subsystem P
i
θ.

Quadratic Performance Indices

In order to prepare specifying the performance of the global system P governed by
a given control law, the controlled variable:

zk = Cxk + Duk + Fwk (2.11)
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is introduced, where zk = (z1
k; . . . ; zNs

k ) ∈ Rnz, and C = [Ci,j] ∈ Rnz×nx, D =
[Di,j] ∈ Rnz×nu, and F = [Fi,j] ∈ Rnz×nw are parameters to be chosen by the
designer. Depending on their non-zero pattern, the matrices C and D may induce
further coupling between the subsystems P

i.
For the uncertain subsystems P

i
θ, the matrices C and D may additionally depend

on the local Markov state θi
k. Consequently, local controlled variables:

zi
k = Ci,i[θ

i
k]xi

k + Di,i[θ
i
k]ui

k +
∑

j∈N i
s

(
Ci,j[θ

i
k]xj

k + Di,j[θ
i
k]uj

k

)
(2.12)

are defined, with zi
k ∈ Rni

z.
In the sequel, the controlled variables zi

k will be used to specify quadratic per-
formance criteria of the closed-loop system with respect to the operating point of
interest. These performance indices can be used to evaluate the transient behav-
ior or the effect of disturbances on the controlled system. The operating point is
assumed to be an equilibrium point of the dynamic system according to:

Definition 2.1. The constant tuple (xeq, ueq, weq) determines an equilibrium point
for the dynamic system P, if the following relations hold:

xeq = Axeq + Bueq + Eweq, (2.13a)

zeq = Cxeq + Dueq + Fweq. (2.13b)

�

For the interconnected jump Markov linear system {P i
θ}i∈Ns, the equilibria xeq

and zeq of the global state and controlled variable are required to be independent
of the local Markov states θi

k. Hence, an equilibrium point for {P i
θ}i∈Ns can be

defined as follows:

Definition 2.2. The set {(xi
eq, ui

eq[θ], wi
eq[θ])}i∈Ns with θ := (θ1; . . . ; θNs) ∈ Θ1 ×

. . . × ΘNs determines an equilibrium point for the uncertain interconnected system
{P i

θ}i∈Ns if the following relations hold for all θi ∈ Θi and all i ∈ Ns:

xi
eq =

∑
j∈Ns

(
Ai,j[θ

i]xj
eq + Bi,j[θ

i]uj
eq[θ] + Ei,j[θ

i]wj
eq[θ]

)
, (2.14a)

zi
eq =

∑
j∈Ns

(
Ci,j[θ

i]xj
eq + Di,j[θ

i]uj
eq[θ]

)
. (2.14b)

�

Here, the input signals uj
eq[θ] and wj

eq[θ] may additionally depend on the aggregate

Markov state θ for xi
eq to be an equilibrium for all θi ∈ Θ. In order to simplify the

presentation in the sequel, it is assumed from now on that the origin of the state
space X is the equilibrium of interest. Note that generality is not lost by imposing
this assumption, since for both, P and {P i

θ}i∈Ns, any equilibrium point can be
shifted to the origin by introducing affine transformations for xi

k, ui
k, wi

k, and zi
k (cf.

[87, p.161] or [9, p.490]).
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Assumption 2.1. Without loss of generality, it is assumed that:

xeq = 0nx×1, ueq = 0nu×1, weq = 0nw×1, zeq = 0nz×1, (2.15a)

for the system P, as well as:

xi
eq = 0ni

x×1, ui
eq[θ] = 0ni

u×1, wi
eq[θ] = 0ni

w×1, zi
eq[θ] = 0ni

z×1, (2.15b)

for all uncertain subsystems P
i
θ with i ∈ Ns and all θ ∈ Θ1 × . . .×ΘNs. �

Next, an admissible control law for P and for {P i
θ}i∈Ns is defined as follows:

Definition 2.3. For the system P, a control law κ : X→ U is called admissible if:

lim
k→∞

‖xk‖2 = 0 (2.16)

whenever wk = 0 for all k ∈ N0.

Definition 2.4. For the uncertain interconnected system {P i
θ}i∈Ns, a control law

κ : X×Θ1 × . . .×ΘNs → U is called admissible if:

lim
k→∞

E(‖xi
k‖2) = 0 ∀i ∈ Ns (2.17)

whenever wi
k = 0 for all i ∈ Ns and all k ∈ N0.

For the definition of the quadratic performance index, the following two cases are
distinguished throughout this thesis:

Case 2.1. The dynamic system P is initialized in the equilibrium point, i.e.:

x0 = xeq = 0nx×1. (2.18)

For all times k ∈ N0, the disturbance inputs wi
k are driven by independent Gaussian

discrete-time white noise processes1, i.e.:

E(wi
k) = 0ni

w×1, E
(
(wi

k(wi
k)T
)

= Ini
w
, E

(
wi

k(wj
l )

T
)

= 0ni
w×n

j
w
, (2.19)

for all (i, j) ∈ Ns × Ns, (k, l) ∈ N0 × N0 which satisfy either i 
= j or k 
= l.
Furthermore, assume that all wi

k are independent of x0 for all i ∈ Ns and all
k ∈ N0. Given an admissible control law uk = κ(xk), the performance of the
closed-loop system is measured by:

J := lim
ke→∞

E

⎛
⎝ 1

ke

ke−1∑
k=0

zT

k zk

⎞
⎠ = z2

RMS. (2.20)

1For details on these noise processes, see e.g. [65, Chap. 6] or [31, Chap. 4].
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For the case of uncertain interconnected systems {P i
θ}i∈Ns, let:

xi
0 = xi

eq = 0ni
x×1 ∀i ∈ Ns, (2.21)

and θi
0 ∈ Θi random according to the initial distribution μi

0. Furthermore, assume
that (2.19) holds and that all wi

k are independent of θj
0 and xj

0 for all (i, j) ∈ Ns×Ns

and all k ∈ N0. Given an admissible control law uk = κ(xk, θk), the performance of
the closed-loop system is measured by:

J := lim sup
ke→∞

E

⎛
⎝ 1

ke

ke−1∑
k=0

zT

k zk

⎞
⎠ . (2.22)

�

Case 2.2. The dynamic system P has an arbitrary initialization x0 ∈ R
nx, and

the disturbance inputs wi
k = 0 for all i ∈ Ns and all k ∈ N0. Given an admissible

control law uk = κ(xk), the performance of the closed-loop system is measured by:

J :=
∞∑

k=0

zT

k zk = ‖z‖2
�2

. (2.23)

For the case of uncertain interconnected systems {P i
θ}i∈Ns, let xi

0 ∈ Xi be arbitrary,
wi

k = 0 for all i ∈ Ns and all k ∈ N0, and θi
0 ∈ Θi random according to the initial

distribution μi
0. Given an admissible control law uk = κ(xk, θk), the performance of

the closed-loop system is measured by:

J :=
∞∑

k=0

E(zT

k zk) = E(‖z‖2
�2

). (2.24)

�

Time Synchronization and Time Scales

Before explaining the intended controller structure, the aspect of time synchro-
nization shall be discussed. Time synchronization is an important aspect in both
distributed control and networked communication. As stated, e.g., in [51, Chap.
2.2], a deterministic transmission of communicated values using protocols with pre-
determined schedules can only be ensured if a time-slot for the transmission is
reserved by a network scheduler. In order to avoid overlaps of these time-slots,
which would result in collisions and packet loss, all terminal points of the commu-
nication network must have knowledge about a common reference time as precise
as possible. Protocols which use arbitration to determine which terminal point gets
access to the communication network, on the other hand, also crucially rely on clock
synchronization [51, Chap. 2.2].

Similarly, the bigger part of distributed and hierarchical control algorithms, be
it from the domain of model predictive control or feedback control, relies on time
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synchronization. A synchronized clock is required for a controller to be able to
interpret a measured state or calculated input received from another controller
correctly, and for all controllers to act synchronously. Furthermore, measurements
may be equipped with absolute time-stamps, which may be used by the receivers
to compensate for transmission delays. Therefore, regarding time synchronization
of the local controllers C

↓i and C
↑i, the following assumption is imposed:

Assumption 2.2. The clocks of the distributed controllers C
↓i and C

↑i are synchro-
nized, and sampling and actuation is performed synchronously by all controllers. �

Multiple control layers also give reason to consider multiple time scales. If those
time scales are different, the corresponding control schemes are sometimes referred
to as multi-rate control schemes [17]. For the hierarchical two-layer control scheme
presented in this thesis, it is assumed that the upper control layer operates on a
coarser time scale than the lower control layer. The motivation for this choice will
become clear when introducing the controller structure in the next subsection.

Figure 2.2 shows the relation between those two time scales. The lower control
layer operates with the sampling frequency 1/Δt already introduced in Eq. (2.2),
and performs zero-order hold in between. Hence, the corresponding signals (·)k are
piecewise constant on the lower layer time-domain:

T
↓ := {tk | tk = kΔt + t0, k ∈ N0, Δt ∈ R>0}, (2.25)

such that the controllers C
↓i sample xi

k and update ui
k at time tk.

The upper control layer is designed to only act every Δk-th time of the lower
layer. Here, Δk ∈ N>1 is a parameter to be chosen by the designer. Given Δk, the
upper layer time-domain can be defined as:

T
↑ := {t̂s | t̂s = sΔkΔt + t0, s ∈ N0, Δt ∈ R>0, Δk ∈ N>1}. (2.26)

The corresponding signals, denoted by (̂·)s, are assumed to be piecewise constant
on T↑, and are related to the lower layer time domain by [58]:

(̂·)s = (·)sΔk, sΔk = k − k mod Δk. (2.27)

In subsequent figures and block diagrams, the sampling time of single components
will be indicated, e.g., by @T↑, if not clear from the context.

Subsystem Clustering and Hierarchical Controller Structure

For the hierarchical two-layer control approach presented in this thesis, the sub-
system structure is analyzed prior to the control design. Figure 2.3, which is an
extension of Fig. 2.1, illustrates the effect of this structural analysis. According
to the interconnection strength and structure, strongly coupled subsystems P

i are
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control layer
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control layer

Figure 2.2.: Relation between the lower layer and upper layer time scales for the
exemplary case Δk = 3.

grouped into clusters. These clusters are described by Nc ∈ N disjoint index sets
Cp ⊆ Ns, with p ∈ Nc := INc and:

⋃
p ∈ Nc

Cp = Ns, Cp ∩ Cq = ∅ ∀ p 
= q. (2.28)

Each cluster can be thought of as a ‘virtual aggregate subsystem’ P̄
p, where the

bar indicates the new partitioning of the interconnected system. In Figure 2.3,

G
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Figure 2.3.: Two-layer hierarchical distributed control structure with clustered
subsystems P̄

p (enframed in yellow).

subsystems P
1 and P

2 form the cluster P̄
1, and subsystems P

3 and P
4 form

the cluster P̄
2, indicated by the yellow boxes. The distributed lower control layer
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accounts for the strong interconnections of the subsystems within the clusters, and
is therefore allowed to exchange information within each cluster only. Hence, from
the viewpoint of the clusters, the lower control layer has a decentralized structure.
Consequently, by the help of the mapping:

p : Ns → Nc, i → p(i) = p ∈ Nc | i ∈ Cp, (2.29)

the lower layer control law takes the general form:

C
↓i : ui

k = κ↓i(x̄
p(i)
k ) + vi

k, (2.30)

with i ∈ Ns. Here, x̄p
k := [xi

k]i∈Cp ∈ Rn̄
p
x denotes the aggregated state of subsystem

P̄
p. The vectors vi

k ∈ Rni
u are external inputs to be chosen by the upper control

layer later. The lower control layer is distributed in the sense that a local input
ui

k is calculated as a function of the local state xi
k and of the states xj

k transmitted

from all subsystems within the same cluster, i.e. all xj
k with j ∈ Cp. These states

are transmitted to the i-th subsystem via the communication network G .
On the upper control layer, distributed controllers C

↑i are designed which have the
task to coordinate the clusters. A coordination of the clusters is necessary to account
for the global character of the performance index J , and to ensure the stability of
the overall system. The coordination is accomplished by exchanging information
between controllers C

↑i in different clusters. Since the fast and strongly coupled
dynamics are already handled by the lower control layer, the upper control layer is
implemented on a coarser time-scale. The positive side-effect of this decision is a
reduced communication and computation load when implementing the distributed
two-layer control scheme. Denote the set of states available to controller C

↑i at time
sΔk by:

ˆ̄X p
s :=

{
ˆ̄xq

s ∈ X̄
q | q ∈ R̄↑p ⊆ Nc

}
, (2.31)

where R̄↑p ⊆ Nc\{p} is the index set of clusters transmitting their local information
sets to cluster Cp. Then, the general form of the upper layer controllers is given by:

C
↑i : v̂i

s = κ↑i(ˆ̄xp(i)
s , ˆ̄X p(i)

s ). (2.32)

Considered Optimal Control Problem

With the notions and notation introduced so far, the general problem of optimized
hierarchical two-layer control design can be summarized as follows: Given Δk > 1,
find admissible distributed control laws κ↓(·) and κ↑(·) for the lower and upper con-
trol layer such that the performance index J +Jcom is minimized. Here, J is chosen
according to Case 2.1 or Case 2.2, and Jcom ∈ R≥0 is a cost term describing the
“quality” of the topology of the communication network G that will be defined in
the next section. By minimizing the sum of the performance index and a commu-
nication cost, a trade-off between control performance and communication load is
attained.
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2.2. Model of the Communication Network

If not specified otherwise, it is generally assumed in this thesis that the communi-
cation network G is ideal in the following sense:

Assumption 2.3. The communication network G is neither subject to failure nor
to time-delay. �

For a practical implementation, this assumption requires the usage of reliable
network protocols like TCP, and a transmission delay which is sufficiently small
compared to the sampling interval Δt of the control system. In fact, similar as-
sumptions are imposed in many current approaches to distributed control, either in
implicit or in explicit form (see, e.g., [50] [75] [76] [111], among many others).

Since the main interest concerning the communication network is the underly-
ing network topology, it is convenient to model the communication network by a
directed graph G = (N , E). Here, the set of nodes N corresponds to the local
controllers, and E ⊆ N × N denotes the set of directed edges. Hence, (i, j) ∈ E if
and only if there exists a communication link from controller C

j to controller C
i.

From the perspective of a practical implementation of distributed control laws, it is
reasonable to assume that (i, i) ∈ E for all i ∈ N , i.e. each controller can access its
local information.

In accordance with the hierarchical two-layer control scheme, this graph can be
associated either with the lower or with the upper control layer, giving rise to the
following definitions:

G
↓ := (Ns, E↓), G

↑ := (Nc, E↑), (2.33)

with E↓ ⊆ Ns ×Ns and E↑ ⊆ Nc ×Nc. Given G
↓ and G

↑, the set of directed edges
E of G can be constructed as follows:

(i, j) ∈ E↓ ⇒ (i, j) ∈ E , (2.34a)

(p, q) ∈ E↑ ⇒ Cp × Cq ⊂ E . (2.34b)

In the remainder of this thesis, directed graphs will be frequently represented by
their adjacency matrix Σ = [σi,j] ∈ BNs×Ns, with B := {0, 1}. The binary entries
σi,j ∈ B are defined as:

σi,j :=

⎧⎨
⎩1 if (i, j) ∈ E ,

0 otherwise.
(2.35)

With a network topology specified by Σ, a communication cost function:

Jcom(Σ) :=
∑

(i,j)∈ E

σi,jc
com
i,j (2.36)
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is associated, where the weights ccom
i,j ∈ R≥0, ccom

i,i = 0 encode the costs for (setting

up) the communication link from C
j to C

i. For instance, the choice of these weights
may be based on hardware cost, or on the spatial distance of the corresponding
subsystems, see [50].

In Chapter 6, Assumption 2.3 is partially relaxed, and a subset of the available
communication links (i, j) ∈ E is assumed to be prone to stochastic link failures
and packet dropouts. Both cases can be modeled by regarding the respective link
to be temporarily unavailable, i.e. by setting σi,j = 0 temporarily [128]. By doing
so, the adjacency matrix Σ becomes a time-varying variable Σ[θΣ,k] ∈ Σ, where
Σ ⊂ B

Ns×Ns denotes the set of possible network topologies. Furthermore, θΣ,k is
the state of a Markov chain:

MΣ := (ΘΣ, PΣ, μΣ,0), (2.37)

modeling the temporal availability of the communication links. Here, ΘΣ = INΣ

is the discrete state-space, PΣ ∈ [0, 1]NΣ×NΣ is the transition probability matrix,
and μΣ,0 ∈ [0, 1]NΣ is the initial distribution of the Markov chain MΣ. Modeling
probabilistic link failures and packet dropouts in communication networks by a
Markov chain is a common means, see e.g. [62] and the references therein.

2.3. Stabilizability Criteria and Stability Notions

One of the major properties required for controlled dynamic systems is stability.
This chapter briefly reviews the notions and conditions for stabilizability and sta-
bility for both linear time-invariant and jump Markov linear systems, which will be
used in the subsequent chapters of this thesis.

Stabilizability and Stability of LTI Systems

The stability of an LTI system P as defined in (2.1) is first defined for the au-
tonomous system, i.e. for uk = 0 and wk = 0 for all k ∈ N0. Recall the definition
of an equilibrium point in Def. 2.1, as well as Assumption 2.1, and consider the
following established definitions:

Definition 2.5 (Lyapunov stability, cf. [31]). The equilibrium point xeq = 0 is said
to be stable in the sense of Lyapunov if for each ε > 0 there exists δ = δ(ε) > 0 such
that ‖xk‖ ≤ ε for all k ∈ N0 whenever ‖x0‖ ≤ δ. �

Definition 2.6 (Asymptotic stability, cf. [31]). The equilibrium point xeq = 0 is
said to be asymptotically stable if it is stable in the sense of Lyapunov and there
exists δ > 0 such that whenever ‖x0‖ ≤ δ, it follows that limk→∞ xk = 0.It is
globally asymptotically stable if it is asymptotically stable and limk→∞ xk = 0 for
any x0 ∈ X. �

33



2. Problem Setup and Preliminaries

The stability of discrete-time dynamic systems is closely related to the eigenvalues
of the system matrix A. The following definition characterizes a subset of square
matrices referred to as Schur matrices based on the corresponding eigenvalues:

Definition 2.7. A matrix A ∈ Rnx×nx is called a Schur matrix if all of its eigen-
values lie in the open unit disc of the complex plane, i.e. if it holds that:

spec(A) < 1, (2.38)

where spec(A) := max{|λ1(A)|, . . . , |λnx(A)|} denotes the spectral radius of A, with
λi ∈ C being the i-th eigenvalue. �

In the light of the above definition, the following holds for the stability of au-
tonomous discrete-time LTI systems:

Theorem 2.1 (cf. [31] [142]). For the dynamic system P, the following statements
are equivalent:

(a) The point xeq = 0 is the only globally asymptotically stable equilibrium point for
the dynamic system P with uk = 0 and wk = 0 for all k ∈ N0.

(b) A is a Schur matrix, i.e. spec(A) < 1.

(c) For some V ∈ S
nx
�0 := {M ∈ Rnx×nx |M = MT, M � 0}, it holds that2:

V − ATV A � 0. (2.39)

(d) There exist constants α ∈ R>1 and β ∈ (0, 1) such that:

‖xk‖2
2 ≤ αβk‖x0‖2

2 ∀ k ∈ N0, x0 ∈ X. (2.40)

�

A proof for statements (a) to (c) can be found in Chapter 2.4 of [31]. Equivalence
of statements (c) and (d) can be deduced from Theorem 3.9 in Chapter 3.3 of the
same reference, considering the special case card(Θ0) = 1.

In the case that the disturbance input wk takes arbitrary values, the following
notion of input-output stability is considered:

Definition 2.8 (BIBO stability [9]). The dynamic system P with input wk and
uk = 0 for all k ∈ N0 is said to be bounded-input/bounded-output (BIBO) stable if
there exists a constant c ∈ R>0 such that x0 = 0 and ‖wk‖ ≤ 1 imply that ‖xk‖ ≤ c
for all k ∈ N0. �

2The symbol � is used to denote inequality of symmetric matrices, e.g. A � B is equivalent to
yTA y > yTA y for all y ∈ Rn.
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Theorem 2.2 ([9]). The dynamic system P with input wk and uk = 0 for all
k ∈ N0 is BIBO stable if xeq = 0 is an asymptotically stable equilibrium for wk = 0.
If, in addition, P is controllable from the origin via the input wk, then the converse
holds. �

A proof for Theorem 2.2 can be found on page 508 in [9]. For more information
about controllability of dynamic systems, the reader is referred to [9] or [142].

Another important notion to be introduced here is stabilizability of a dynamic
system P, which is related to the question if it is possible to stabilize a dynamic
system by a proper choice of the control input uk.

Definition 2.9 (Stabilizability, cf. [9] or [142]). The pair (A, B) and the correspond-
ing dynamic system P are called stabilizable if there exists a matrix K ∈ Rnu×nx

such that (A + BK) is a Schur matrix. �

Stabilizability and Stability of Jump Markov Linear Systems

For generalizing the notions of stability and stabilizability introduced for LTI sys-
tems to jump Markov linear systems, the stochasticity induced by the Markov chain
M has to be taken into account. For presenting the following results, consider the
centralized JMLS:

Pθ :

⎧⎨
⎩xk+1 = A[θk]xk + B[θk]uk + E[θk]wk,

M = (Θ, P, μ0).
(2.41)

As for LTI systems, the autonomous system Pθ with wk = 0 and uk = 0 for
all k ∈ N0 is considered first, such that xeq = 0 is the corresponding equilibrium
point. A common notion of stability of jump Markov linear systems is then given
as follows:

Definition 2.10 (Mean-square stability, cf. [31]). The jump Markov linear system
Pθ with wk = 0 and uk = 0 for all k ∈ N0 is said to be mean-square stable (MSS)
if for any initial condition x0 ∈ X, θ0 ∈ Θ it holds that:

‖E(xk)‖ → 0 as k →∞, (2.42a)

‖E(xkxT

k )‖ → 0 as k →∞. (2.42b)

�

For presenting results related to the mean-square stability of jump Markov linear
systems, it is convenient to define the set HN (Rm×n) of all N -sequences of Rm×n

matrices as:

H
N (Rm×n) := {V = (V [1], . . . , V [N ]) |V [h] ∈ R

m×n, h ∈ IN}. (2.43)
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Furthermore, with V ∈ HN (Rm×n), W ∈ HN (Rm×n), and X ∈ HN (Rn×p), the sum
and product of two N -sequences of matrices are defined as:

V + W := (V [1] + W [1], . . . , V [N ] + W [N ]) ∈ H
N (Rm×n), (2.44)

VX := (V [1]X[1], . . . , V [N ]X[N ]) ∈ H
N (Rm×p). (2.45)

A generalized notion of Schur matrices3 can be obtained for a sequence of system
matrices A = (A[1], . . . , A[Nθ]) ∈ HNθ(Rnx×nx) by defining the spectral radius of A

as follows:

Definition 2.11 (cf. [31]). The spectral radius of a set of matrices A ∈ HNθ(Rnx×nx)
associated with the Markov chain M is defined as:

spec(A) := spec
(
(P T ⊗ I(nx)2) blkdiag(A[θ]⊗ A[θ])

)
, θ ∈ Θ. (2.46)

�

Furthermore, in accordance with [31] and [37], the following operators are intro-
duced, which are related to the stability analysis of a JMLS Pθ. Each of these
operators takes as argument a sequence of matrices V ∈ HNθ(Rnx×nx):

D(·) := (D1(·), . . . ,DNθ
(·)) : H

Nθ(Rnx×nx) → H
Nθ(Rnx×nx), (2.47a)

E(·) := (E1(·), . . . , ENθ
(·)) : H

Nθ(Rnx×nx) → H
Nθ(Rnx×nx), (2.47b)

T (·) := (T1(·), . . . ,TNθ
(·)) : H

Nθ(Rnx×nx) → H
Nθ(Rnx×nx), (2.47c)

where:

Dn(V) :=
Nθ∑

m=1

pm,nV [m], (2.47d)

Em(V) :=
Nθ∑

n=1

pm,nV [n], (2.47e)

Tn(V) :=
Nθ∑

m=1

pm,nA[m]V [m](A[m])T. (2.47f)

With the above definitions, the following result holds for the mean-square stability
of an autonomous jump Markov linear system:

Theorem 2.3 (cf. [31]). The following statements are equivalent:

(a) The system Pθ with uk = 0 and wk = 0 for all k ∈ N0 is MSS.

(b) spec(A) < 1.

3Although the interpretation is similar w.r.t. the spectral radius, a sequence of matrices with
spec(A) < 1 is generally not referred to by a distinctive name.
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(c) For some V, W ∈ HNθ(Snx
�0), either or both of the following inequalities hold:

V [θ]− Tθ(V) � 0 ∀ θ ∈ Θ, (2.48)

W [θ]− (A[θ])TEθ(W)A[θ] � 0 ∀ θ ∈ Θ. (2.49)

(d) There exist constants α ∈ R>1 and β ∈ (0, 1) such that:

E(‖xk‖2
2) ≤ αβk‖x0‖2

2 ∀ k ∈ N0, x0 ∈ X, θ0 ∈ Θ. (2.50)

�

A proof for Theorem 2.3 can be found in Chapter 3.3 of [31].
In the case that the disturbance input wk takes arbitrary values, the notion of

BIBO stability can be extended to JMLS as follows:

Definition 2.12 (BIBO stability in the mean-square sense). The jump Markov
linear system Pθ with input wk and uk = 0 for all k ∈ N0 is said to be bounded-
input/bounded-output (BIBO) stable in the mean-square sense if x0 = 0 and∑

k∈N0
‖wk‖2 < ∞ imply that

∑
k∈N0

E(‖xk‖2) < ∞ for all θ0 ∈ Θ. �

Theorem 2.4 (cf. [31]). The jump Markov linear system Pθ with input wk and
uk = 0 for all k ∈ N0 is BIBO stable in the mean-square sense if and only if
spec(A) < 1. �

The result follows from Thm. 3.34 and Remark 3.5 in [31].
Finally, mean-square stabilizability of JMLS is defined as follows:

Definition 2.13 (Mean-square stabilizability [31]). The jump Markov linear system
Pθ is called mean-square stabilizable if there exists an Nθ-sequence of matrices K ∈
HNθ(Rnu×nx) such that spec(A + BK) < 1. �

2.4. The H2-Norm and its Generalizations

TheH2-norm is one of the most popular norms for dynamic systems. It is frequently
used in the fields of optimal control [3] [37] [38], optimal filtering [4], non-centralized
control [24] [77], model reduction [8] [19], and system decomposition [5]. Originally
defined for LTI systems, the H2-norm has afterwards been generalized to various
classes of dynamic systems, including the jump Markov linear systems considered
in the third part of this thesis [31]. This chapter first presents the basic definition
of the H2-norm for the system classes introduced in Section 2.1. Afterwards, well-
established relations between the norm and the different variants of the performance
index J are presented, which are frequently used in the subsequent chapters. Since
these results are only valid for linear and linear parameter-dependent systems, linear
control laws κ(·) are considered here.
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Consider the system P with controlled variable zk as defined in Equations (2.1)
and (2.11). Additionally, let uk = Kxk with K ∈ Rnu×nx be an admissible control
law, i.e. K is chosen such that (A + BK) is a Schur matrix. Denote the resulting
closed-loop system by:

Pcl :

⎧⎨
⎩xk+1 = (A + BK)xk + Ewk,

zk = (C + DK)xk + Fwk.
(2.51)

The H2-norm of the system Pcl with input wk and output zk is defined as the
�2-norm of its impulse response:

Definition 2.14 (see e.g. [8]). The H2-norm of an asymptotically stable discrete-
time LTI system Pcl is defined as:

‖Pcl‖H2 := ‖z‖�2 =

√√√√ ∞∑
k=0

tr(zT

k zk) =

√√√√ ∞∑
k=0

tr(zkzT

k ). (2.52a)

Here, zk denotes the impulse response matrix of Pcl at time k, given by:

zk =

⎧⎨
⎩F for k = 0,

C(A + BK)k−1E for k > 0.
(2.52b)

�

For an uncertain system Pθ, let uk = K[θk]xk with K ∈ HNθ(Rnu×nx) be an
admissible control law such that spec(A + BK) < 1, and denote the resulting
closed-loop system by:

Pθ,cl :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = (A[θk] + B[θk]K[θk])xk + E[θk]wk,

zk = (C[θk] + B[θk]K[θk])xk,

M = (Θ, P, μ0).

(2.53)

The H2-norm is generalized to Pθ,cl by taking the expected value of the impulse
response with respect to the Markov state θk:

Definition 2.15 (e.g. [31]). The H2-norm of a mean-square stable discrete-time
jump Markov linear system Pθ,cl is defined as:

‖Pθ,cl‖H2 :=

√√√√√ Nθ∑
m=1

∞∑
k=0

μ0,m E
(
tr(zT

k zk) | θ0 = m
)
. (2.54a)

Here, μ0,m denotes the m-th component of the vector μ0, and zk ∈ Rnz×nw denotes
the impulse response matrix at time k. The (i, j)-th entry of zk is given by the i-th
component of zk for w0 = ej, wk = 0 for all k ∈ N, x0 = 0, and θ0 ∈ Θ. �
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A property of the H2-norm that is in great demand is that it has significant
interpretations in the time-domain, in the frequency-domain, and for the case of
stochastic disturbances and initial states. In particular, the H2-norm and the per-
formance indices J defined in Section 2.1 are related as follows:

Lemma 2.1. Consider an asymptotically stable dynamic system Pcl under the con-
ditions described in Case 2.1. Then, the squared H2-norm and the performance
index J as defined in Eq. (2.20) are equal, i.e. it holds that:

‖Pcl‖2
H2

= lim
ke→∞

E

⎛
⎝ 1

ke

ke−1∑
k=0

zT

k zk

⎞
⎠ . (2.55)

�

A proof of Lemma 2.1 can be found in Appendix A.1.
Under some moderate conditions, a similar result holds for the case of jump

Markov linear systems. More precisely, the Markov chain M must possess a limit
probability distribution:

Definition 2.16. (cf. [31, p.48]) The vector μ∞ ∈ [0, 1]Nθ is called limit probability
distribution of a Markov chain M if there exists a unique solution of the linear
system of equations: ⎡

⎣P T − I

11×Nθ

⎤
⎦μ∞ =

⎡
⎣0Nθ×1

1

⎤
⎦ , (2.56)

and if:

‖μk,m − μ∞,m‖ ≤ αβk (2.57)

for some α ∈ R>0 and β ∈ (0, 1) for all k ∈ N0. �

Lemma 2.2 ([31]). Consider a mean-square stable discrete-time jump Markov lin-
ear system Pθ,cl under the conditions described in Case 2.1. Assume that the limit
probability distribution exists, and set μ0 := μ∞. Then, the squared H2-norm and
the performance index J as defined in Eq. (2.22) are equal:

‖Pθ,cl‖2
H2

= lim sup
ke→∞

E

⎛
⎝ 1

ke

ke−1∑
k=0

zT

k zk

⎞
⎠ . (2.58)

�

This relation follows from Theorems 4.6 and 4.10 and Prop. 4.8 of [31]. In
cases where no limit probability distribution exists, an alternative definition of the
performance index can be used instead. For details, the reader is referred to Chapter
4.3 of [31].

As for Case 2.1, similar relations between theH2-norm and the performance index
specified in Case 2.2 exist:
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Lemma 2.3. Consider an asymptotically stable dynamic system Pcl under the con-
ditions described in Case 2.2, and set E := x0 and F := 0nz×nw. Then, the squared
H2-norm and the performance index J as defined in Eq. (2.23) are equal:

‖Pcl‖2
H2

=
∞∑

k=0

zT

k zk. (2.59)

�

A proof of Lemma 2.3 can be found in Appendix A.2. Again, a similar result
holds for jump Markov linear systems:

Lemma 2.4. Consider a mean-square stable discrete-time jump Markov linear sys-
tem Pθ,cl under the conditions described in Case 2.2, and set E[θ] := x0 for all
θ ∈ Θ. Then, the squared H2-norm and the performance index J as defined in Eq.
(2.24) are equal:

‖Pθ,cl‖2
H2

=
∞∑

k=0

E(zT

k zk). (2.60)

�

Lemma 2.4 follows with Thm. 4.5 and Prop. 4.8 of [31], and with their respective
proofs.

In the remaining chapters, the above results are used to relate the optimization of
the performance index J to the optimization of the H2-norm of the dynamic system
under consideration.

2.5. Semidefinite Programming

The hierarchical distributed controllers proposed in this thesis are synthesized by
the help of semidefinite programs (SDP). SDP are a class of constrained continuous
optimization problems, which are widespread in system and control theory (see, e.g.
[25] or [39]). They can be considered as a generalization of linear programs (LP) to
matrix-valued optimization variables and semidefiniteness constraints. Similar to
LP, SDP include a linear objective function, and may additionally be constrained
by linear equality and inequality constraints. An important property of SDP is that
they belong to the class of convex optimization problems [26]. Consequently, any
point that is locally optimal is also globally optimal, and therefore many SDP can
be efficiently and reliably solved, even when their sizes become very large [39].

Definition 2.17 (cf. [26]). The general form of a semidefinite program is:

min
X

tr (WX) (2.61a)

subject to: Lh(X) � 0, h ∈ {1, . . . , Nse}, (2.61b)

tr (Gin[i]X) ≤ hin[i], i ∈ {1, . . . , Nin}, (2.61c)

tr (Geq[j]X) = heq[j], j ∈ {1, . . . , Neq}. (2.61d)
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Here, X ∈ Rm×n is a continuous matrix-valued optimization variable, W ∈ Rn×m is
a weighting matrix, Lh(X) : Rm×n → Sn are linear symmetric matrix functions of
X, and Gin ∈ HNin(Rn×m), Geq ∈ HNeq(Rn×m), hin ∈ HNin(R), and heq ∈ HNeq(R)
are sequences of constant matrices and scalars. �

Linear Matrix Inequalities

A constraint of the form (2.61b) is called a linear matrix inequality. LMI may
be written in different forms, depending, among other things, on the number and
partitioning of the optimization variables. Two particular forms of LMI are the
general form and the standard form. By the help of the operator:

He(M) :=
1

2
(M + MT), (2.62)

they are defined as follows:

Definition 2.18 ([39]). The general form of an LMI is given by:

L(X) = M0 + He
(
MT

1 X
)

+
Ng∑
i=1

He
(
M2[i]

TXM3[i]
)
� 0, (2.63)

with a matrix variable X ∈ Rm×n, constant matrices M0 ∈ Sn and M1 ∈ Rm×n, and
Ng-sequences of constant matrices M2 ∈ HNg(Rm×n) and M3 ∈ HNg(Rn×n). �

Definition 2.19 ([39], [25]). The standard form for an LMI is given by:

L(X) = N0 +
m∑

i=1

n∑
j=1

xi,jN1[i, j] � 0, (2.64)

where X = [xi,j] ∈ Rm×n is a matrix variable, and N0 ∈ Sp, N1[i, j] ∈ Sp are constant
matrices. �

In control theory, LMI are mostly presented as L(X1,X2, . . . ,XN ) � 0, where L(·)
is an affine function of the matrix variables Xi, i ∈ IN [31]. LMI provide a versatile
framework to encode specifications like asymptotic or mean-square stability and
H2- or H∞-performance bounds for a large class of quasi-linear continuous-time
and discrete-time dynamic systems [39]. To this end, LMI are used to establish
convex inner approximations or convex transformations of the original feasible set of
controllers. Many of the mentioned control design problems initially lead to bilinear
matrix inqualities (BMI), which are not jointly convex in all matrix variables Xi.
A very popular result that can be applied to linearize such BMI is the so-called
Schur-complement, which will be frequently used in the remainder of this thesis:
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Lemma 2.5 (cf. [25] or [39]). Let M ∈ Sn
�0 be a symmetric positive definite matrix

partitioned into two-by-two block-matrices Mi,j. Then, the following statements are
equivalent:

(a) M =

⎡
⎣M1,1 M1,2

MT

1,2 M2,2

⎤
⎦ � 0, (2.65a)

(b) M2,2 � 0, M1,1 −M1,2M
−1
2,2 MT

1,2 � 0, (2.65b)

(c) M1,1 � 0, M2,2 −MT

1,2M
−1
1,1 M1,2 � 0. (2.65c)

�

A proof of Lemma 2.5 can be found, for instance, in Chapter 2.2 of [39].
Numerically, SDP are solved by employing either ellipsoid algorithms or interior-

point algorithms [39]. In this thesis, the optimization solvers SeDuMi [123] and
Mosek [95], which belong to the class of interior-point algorithms, are used together
with the Yalmip interface [79] to solve the proposed SDP problems.

Mixed-Integer Semidefinite Programming

In addition to real-valued variables, semidefinite programs may include variables
which are restricted to the set of integers Z. For instance, the general problem
of SCT design includes binary decisions whether to include a communication link
(i, j) ∈ Ns × Ns into the communication graph G or not. This can be encoded
by introducing decision variables σi,j which are restricted to the set of binaries
B = {0, 1}. If Problem (2.61) contains additional integer variables, then it is referred
to as mixed-integer semidefinite program (MISDP). In general, an MISDP is a non-
convex problem which may have multiple global solutions. However, if the integer
variables are either fixed or if they are relaxed to real-valued variables, the resulting
problem becomes convex again. This property is exploited by branch-and-bound
(BnB) and cutting plane methods, which can be employed in combination with
conventional SDP solvers to iteratively solve relaxations of an MISDP. This way,
most MISDP can be solved very efficiently, and the global optimum is guaranteed to
be found [51]. However, in worst-case situations, the computation time for obtaining
the global optimum grows combinatorially with the number of integer variables.

2.6. Decompositions of Matrices and Dynamic

Systems

For the structural analysis and clustering procedure applied prior to the control
design, the interconnection structure and interconnection strength of the subsystems
has to be identified. As already discussed in Section 1.2, various approaches to the
evaluation of interconnection strengths and to system decomposition exist. In the

42



2.6. Decompositions of Matrices and Dynamic Systems

remainder of this section, a selection of these approaches is presented, which serves
as basis for the clustering algorithm to be presented in the subsequent chapter.

The ε-decomposition developed by Šiljak [132] aims to decompose a monolithic
LTI system into weakly coupled subsystems. More precisely, it identifies partitions
of the state vector xk that may be considered as decoupled if some weak inter-
connections between them are neglected. Assuming that the input matrix B of a
dynamic system P is diagonal, the off-diagonal entries of the system matrix A en-
code the interconnections between the components of the state vector xk. In order
to perform an ε-decomposition of such a system, a small positive number ε ∈ R>0

is chosen by the designer, and the system matrix A encoding the interdependencies
of the states is decomposed as:

T T

x ATx = AD + εAE . (2.66)

Here, Tx ∈ Bnx×nx is a permutation matrix, AD ∈ Rnx×nx is a block-diagonal matrix,
and AE ∈ [−1, 1]nx×nx is selected such that none of its elements is larger than one
in absolute value. Hence, the groups of states defined by the diagonal blocks of the
matrix AD can be considered as decoupled if the weak interconnections εAE with
magnitude less than or equal to ε are neglected. Consequently, each of these weakly
coupled groups of states is considered as a subsystem.

The original purpose of the ε-decomposition is to identify weakly-coupled groups
of subsystems for which decentralized control laws can be designed independently.
However, stability of the resulting closed-loop system is not guaranteed, since the
neglected interconnections may render the overall system unstable. Furthermore, an
optimal control law that is designed by the help of the ε-decomposition will not be
optimal when implemented in the actual system (cf. [58]). In particular, there are
numerical examples where weak interconnections may have a quite large influence
on the optimal control law when not considered for the control design [63].

The concept of ε-decomposition can be extended to consider input and output in-
terconnections by forming an extended system matrix, see [132, Chap. 7] for details.
Despite the simple measure of the interconnection strength, the ε-decomposition has
proven to be useful and has received much attention. Indeed, it can still be found
in recent publications, see for instance [140].

Another fundamental decomposition scheme is the hierarchical lower block-trian-
gular (LBT) decomposition of holistic LTI systems [132]. This decomposition takes
advantage of the sparsity that can typically be observed in the state space matrices
of large interconnected systems. Often, this sparsity provides significant numerical
advantage for the control design process, but cannot be exploitet as long as it is
not recognized by the designer or by the design algorithm. The hierarchical LBT
decomposition aims to identify sparse structures by partitioning a system P into
LBT-form, which corresponds to identifying the strongly-coupled components of
the underlying interconnection graph. In terms of the state-space matrices, this
corresponds to permuting the rows and columns of the matrices A and B into LBT
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form, i.e. finding permutation matrices Tx ∈ Bnx×nx and Tu ∈ Bnu×nu such that:

T T

x ATx =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1,1 0 . . . 0

A2,1 A2,2
. . .

...
...

. . . . . . 0

ANs,1 . . . . . . ANs,Ns

⎤
⎥⎥⎥⎥⎥⎥⎦
, T T

x BTu =

⎡
⎢⎢⎢⎢⎢⎢⎣

B1,1 0 . . . 0

B2,1 B2,2
. . .

...
...

. . . . . . 0

BNs,1 . . . . . . BNs,Ns

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.67)

Similar to the ε-decomposition, the states and inputs corresponding to the diagonal
blocks of T T

x ATx and T T

x BTu are interpreted as the subsystems identified by the
decomposition. The particularity of the subsystems identified by the hierarchical

top layer

bottom layer

P
1

P
2

P
3

A2,1x
1
k + B2,1u1

k

A3,2x
2
k + B3,2u2

k

A3,1x
1
k + B3,1u1

k

Figure 2.4.: Three hierarchically interconnected subsystems P
i.

LBT decomposition is that they possess a hierarchical interconnection structure, as
shown in Figure 2.4 for the exemplary case of three subsystems. The first subsystem
P

1 only has outgoing interconnection signals and thus constitutes the top layer of
the hierarchy. On the other hand, the third subsystem P

3 only has incoming
interconnection signals and constitutes the bottom layer of the hierarchy. Due to
the hierarchical interconnection structure, subsystems identified by the hierarchical
LBT decomposition possess particular technical properties, which are summarized
in the following lemma.

Lemma 2.6 (following [132]). Let P be a dynamic system consisting of Ns = 2
interconnected subsystems P

1 and P
2, and let the feedback matrix K ∈ Rnu×nx be

structured accordingly, i.e.:

A =

⎡
⎣A1,1 A1,2

A2,1 A2,2

⎤
⎦ , B =

⎡
⎣B1,1 B1,2

B2,1 B2,2

⎤
⎦ , K =

⎡
⎣K1,1 K1,2

K2,1 K2,2

⎤
⎦ . (2.68)

Furthermore, assume that the closed-loop system has a hierarchical interconnection
structure, i.e. either A1,2 = 0, B1,2 = 0, and K1,2 = 0, or A2,1 = 0, B2,1 = 0, and
K2,1 = 0 holds. Then, the following statements hold:
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(a) The eigenvalues of the closed-loop systems are related according to:

Λ(A + BK) = Λ(A1,1 + B1,1K1,1) ∪ Λ(A2,2 + B2,2K2,2). (2.69)

Here, Λ(M) ⊂ C denotes the set of eigenvalues of a square matrix M ∈ Rn×n.

(b) (A+BK) is a Schur matrix if and only if (A1,1 +B1,1K1,1) and (A2,2 +B2,2K2,2)
are Schur matrices.

(c) The pair (A, B) is stabilizable by decentralized state-feedback if and only if the
pairs (A1,1, B1,1) and (A2,2, B2,2) are stabilizable.

(d) The pair (A, B) is stabilizable if the pairs (A1,1, B1,1) and (A2,2, B2,2) are stabi-
lizable.

Proof. Due to the hierarchical interconnection structure of the closed-loop system,
the matrix A + BK is either in upper or in lower block-triangular form:

A + BK =

⎡
⎣ A1,1 + B1,1K1,1 0

A2,1 + B2,1K1,1 + B2,2K2,1 A2,2 + B2,2K2,2

⎤
⎦ , (2.70)

or rather, for A2,1 = 0, B2,1 = 0, and K2,1 = 0:

A + BK =

⎡
⎣A1,1 + B1,1K1,1 A1,2 + B1,1K1,2 + B1,2K2,2

0 A2,2 + B2,2K2,2

⎤
⎦ . (2.71)

Considering the properties of block-triangular matrices, statement (a) follows im-
mediately, which directly implies (b). For the pair (A, B) to be stabilizable by
decentralized state-feedback, there must exist K with K2,1 = 0 and K1,2 = 0 such
that (A+BK) is a Schur matrix. Assume that (A1,1, B1,1) and (A2,2, B2,2) are stabi-
lizable. Then, there exist K1,1 and K2,2 such that A1,1 +B1,1K1,1 and A2,2 +B2,2K2,2

are Schur matrices. Using (b), this proves sufficiency of (c). On the other hand,
assume that spec(A1,1 + B1,1K1,1) > 1 for all matrices K1,1., i.e. (A1,1, B1,1) is
not stabilizable. Then, using (a), it follows that A + BK can not be stabilized
by decentralized state-feedback. Following a similar argumentation for the second
subsystem proves necessity of (c). By Definition 2.9, the pair (A, B) is stabilizable
if there exists some matrix K such that A + BK is a Schur matrix. Considering a
block-diagonal matrix K as a special case, it follows from (c) that (d) holds.

By the help of Lemma 2.6, it can be deduced that for an arbitrary number of
hierarchically interconnected subsystems P

i, the controllability (stability) of all
subsystems implies the controllability (stability) of the global system P.

Permutation matrices which transform a sparse matrix Γ = [γi,j] ∈ Rm×n with
m ≥ n into block-triangular form can be found by applying the Dulmage-Mendelsohn
decomposition [102]. Dulmage and Mendelsohn discovered that the process of block-
triangularization is equivalent to computing a canonical decomposition of bipartite
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graphs associated with the matrix under consideration. The m + n nodes of this
graph correspond to the rows and columns of the matrix Γ, and the i-th row node
is connected to the j-th column node if and only if γi,j 
= 0. This graph is bipartite
since no connections between any two row nodes or any two column nodes exist.
In the first step of the Dulmage-Mendelsohn decomposition, referred to as coarse
decomposition, a maximum matching of this bipartite graph has to be determined.
A matching is a subset of edges with no common endpoints. A maximum matching
is a matching of maximum cardinality, which, in terms of the matrix Γ, corresponds
to a diagonal with the maximum number of nonzeros in it [102].

In the remainder of this thesis, the special case m = n with γi,i 
= 0 for all
i ∈ In will be considered. In this case, a trivial maximum matching is a-priori
given by the set {(1, 1), (2, 2), . . . , (n, n)}. Hence, the first step of the Dulmage-
Mendelsohn decomposition can be omitted. Then, the second and final step of
the Dulmage-Mendelsohn decomposition, the so-called fine decomposition, can be
solved in an amount of time which grows linear with the number of nonzero entries
of Γ. Furthermore, the resulting row and column permutation will be equal, i.e.
there exists a permutation matrix T ∈ Bn×n with T TT = I such that:

Γ′ = T TΓT, (2.72)

where Γ′ ∈ Rn×n denotes the permuted matrix. For details on the Dulmage-
Mendelsohn decomposition, the reader is referred to [102] and the references therein.
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3. Synchronous Hierarchical Control

This chapter presents a distributed hierarchical two-layer feedback control scheme
for LTI subsystems interconnected via inputs and states and via a common perfor-
mance index. Such control problems occur, for instance, in the control of infrastruc-
ture systems like water [44] or power distribution networks [53], or in the control of
civil structures, e.g. temperature control in large buildings [14]. Furthermore, many
special cases of the problem concerning the interconnection structure of the inputs,
states, and the performance index exist. A frequently occuring case is the class of
formation control problems, which typically considers decoupled systems that are
only interconnected via a common performance index. Formation control problems
occur, for instance, in the context of platooning vehicles or satellite formations [51].
As already stated in Chapter 1, the majority of approaches to distributed control
of such setups considers fixed communication topologies and a single control layer,
or imposes particular assumptions on the interconnection structure of the dynamics
and the performance index. Approaches considering single-layer SCT design can be
found, e.g., in [50] [78] [103] [111]. However, approaches based on Mixed-Integer
Programming suffer from the combinatorial complexity in the number of subsys-
tems [50] [103]. On the other hand, approximations to the SCT design problem,
which are usually based on weighted �1-norm minimization, have to put an addi-
tional cost on the magnitude of the feedback gain matrix to promote its sparsity
[111], and often can not deal with constraints on the communication topology. Even
in re-weighted �1-norm formulations, this cost is similar to a penalty on the magni-
tude of the control inputs, and thus alters the original cost. Existing approaches to
multi-layer feedback control do not consider network topologies at all [86] [131].

This chapter presents an approximate solution to conventional single-layer SCT
design by employing a structural analysis and a two-layer control structure. In large
parts, this chapter is based on the results presented in [58] and [59]. However, while
local control inputs, no bilinear cost terms and undisturbed dynamics are assumed
in [58], a more general formulation is presented here.
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3. Synchronous Hierarchical Control

3.1. Dynamic Model and Problem Setup

In this chapter, an interconnection of Ns discrete-time linear time-invariant systems
P

i of the form:

P
i :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi
k+1 = Ai,ix

i
k + Bi,iu

i
k + Ei,iw

i
k +

∑
j∈N i

s

Ai,jx
j
k + Bi,ju

j
k + Ei,jw

j
k,

zi
k = Ci,ix

i
k + Di,iu

i
k +

∑
j∈N i

s

Ci,jx
j
k + Di,ju

j
k,

(3.1)

is assumed to be given. Each subsystem contains a local state vector xi
k ∈ Xi ⊆ Rni

x,

a local input vector ui
k ∈ Ui ⊆ Rni

u, and a local disturbance input vector wi
k ∈Wi ⊆

Rni
w. Furthermore, zi

k ∈ Rni
z defines a vector of local controlled variables, where

Ci,j ∈ Rni
z×n

j
x and Di,j ∈ Rni

z×n
j
u are matrices to be chosen by the designer.

Global SCT Design Problem

In accordance with Case 2.1 and Case 2.2, the performance of the corresponding
global system P is measured by a global quadratic performance index J depending
on the controlled variables zi

k. Hence, the following optimal control problem can be
associated with the global system P:

min
κ(·)

J (3.2a)

subject to: xk+1 = Axk + Buk + Ewk, (3.2b)

zk = Cxk + Duk, (3.2c)

uk = κ(xk). (3.2d)

For problem (3.2) to possess a unique centralized solution, the following assumptions
are imposed for the global system P:

Assumption 3.1. The global system P described by the matrices A = [Ai,j], B =
[Bi,j], C = [Ci,j], D = [Di,j], and E = [Ei,j] has the following properties:

(a) The pair (A, B) is stabilizable.

(b) The matrix
[
C D

]
has full column rank. �

Note that the second assumption implies that the system P has no invariant
zeros on the unit circle in the complex plane, or respectively:

rank

⎡
⎣A− λInx B

C D

⎤
⎦ = nx + nu ∀λ ∈ C1. (3.3)

Hence, the standard assumptions for the existence of an optimal solution of (3.2)
are satisfied (cf. [142, Sec. 21.7] with y = x).
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It is well-known that under the above assumptions, the optimal control problem
(3.2) has a globally optimal centralized solution of the form uk = K∗xk. Distributed
optimal control design, however, requires to introduce structural constraints on the
control law, rendering the problem far more complex. In general, under the influence
of structural constraints, the globally optimal control law is no longer linear. This
additionally increases the difficulty to synthesize such a control law [97]. As a
partial remedy, linear distributed control laws are considered in the remainder of
this thesis, which is a common assumption in approaches to structured control
and to SCT design (see, e.g. [50] [96] [103] [105] [111], among many others). In
particular, assuming the control law to be linear allows to formulate sufficient convex
synthesis conditions, as will be shown later. Hence, the global SCT design problem
can be stated as follows:

min
K,Σ

J + Jcom(Σ) (3.4a)

subject to: xk+1 = Axk + Buk + Ewk, (3.4b)

zk = Cxk + Duk, (3.4c)

uk = Kxk, (3.4d)

K ∈ S(Σ). (3.4e)

Here, the adjacency matrix Σ ∈ BNs×Ns encodes the topology of the communication
network, Jcom(Σ) ∈ R≥0 is the associated communication cost, and S(Σ) is the set
of admissible control gains that is structurally compatible with the communication
topology Σ.

Hierarchical Approach

The goal of this chapter is to develop a linear hierarchical distributed control struc-
ture as sketched in Section 2.1, where the distributed lower and upper layer con-
trollers take the form:

C
↓i : ui

k = K↓
i,ix

i
k +

∑
j∈Cp(i) K↓

i,jx
j
k + vi

k, (3.5a)

C
↑i : v̂i

s =
∑

j∈Cp(i) K↑
i,jx̂

j
s +

∑
q∈R̄↑p(i)

∑
j∈Cq K↑

i,jx̂
j
s, (3.5b)

with s = s(k) = (k − k mod Δk)/Δk and i ∈ Ns. The approach taken here is to
design the control layers sequentially in three steps: In a first step prior to the design
of the lower control layer, the interconnection strength and interconnection structure
of the interconnected system is analyzed. While neglecting some weak interactions,
strongly connected subsystems are grouped into clusters. In a second step, a control
law which is decentralized with respect to these clusters is synthesized. Establishing
full communication between all subsystems within each cluster, this control law
can be implemented in a distributed manner, and constitutes the lower layer of the
hierarchical control scheme. Finally, in a third step, a model and performance index
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for the design of the upper control layer are established. The task of this upper
control layer is to compensate for the neglected interconnections, and to implement
communication between the clusters on a coarser time-scale.

3.2. Subsystem Clustering

The first step of the hierarchical control design is an analysis of the interconnection
structure between the subsystems P

i. After neglecting those interconnections that
are considered to be weak according to an adjustable threshold, the subsystems
are grouped into hierarchically interconnected clusters by the help of the Dulmage-
Mendelsohn decomposition (see Sec. 2.6). These clusters can be interpreted as an
aggregation of subsystems. After the clustering process, those neglected interactions
which do not affect the hierarchical interconnection structure of the aggregate sub-
systems are restored. The resulting models of the aggregate subsystems P̄

′p serve
as interconnected system model for the design of the distributed lower layer con-
trollers C

↓i, which is presented in the subsequent section. The clustering procedure
consists of the following steps:

(a) The interconnection structure and interconnection strength between the subsys-
tems P

i is mapped into a matrix Γ = [γi,j] ∈ R
Ns×Ns
≥0 . Since the interconnection

signals between the subsystems are, in general, vectors, the scalar entries γi,j of
Γ are chosen according to:

γi,j := ‖Ai,j‖2 + ‖Bi,j‖2 (3.6)

for all (i, j) ∈ Ns ×Ns.

(b) Define small non-negative numbers εw, εn ∈ R≥0 such that εw ≥ εn. These design
parameters determine if an interconnection between two subsystems P

i and P
j

is considered to be weak during the structural analysis (εn < γi,j ≤ εw), or is
even neglected completely for the design of the lower control layer (γi,j ≤ εn).

(c) The interconnection structure resulting from the strong interconnections is
stored in the matrix Γ′ = [γ′

i,j] ∈ R
Ns×Ns
≥0 , which is defined as:

γ′
i,j :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γi,j if γi,j > εw,

2εw if i = j ∧ γi,j = 0,

0 otherwise.

(3.7)

In the case γi,i = 0, the assignment of γ′
i,i to an (arbitrary) positive value will

be important for the subsequent step.

(d) The Dulmage-Mendelsohn decomposition is applied to the matrix Γ′. This
decomposition permutes the rows and columns of Γ′ such that the permuted
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matrix Γ′′ is upper block-triangular (UBT). Since γ′
i,i > 0 ∀i ∈ Ns, the column

permutation and the row permutation are always equal (see Sec. 2.6). Hence,
the permutation may be either described by a permutation matrix T ∈ BNs×Ns

with Γ′′ = T TΓ′T, or by a vector τ ∈ NNs containing the permuted subsystem
indices such that γ′′

i,j = γ′
τi,τj

.

(e) Let the number of blocks on the diagonal of Γ′′ be denoted by Nc ∈ N, which
corresponds to the number of identified clusters. For all p ∈ Nc := INc, the
indices i ∈ Ns of the subsystems that belong to the p-th block are stored in an
index set Cp ⊆ Ns.

(f) As an optional step, clusters may be joined, while respecting a user-defined mini-
mum and maximum cluster size. Denote this design parameters by cmin ∈ N and
cmax ∈ N, with cmin ≤ maxp card(Cp), and cmax ≥ max{cmin, maxp card(Cp)}. In
many cases, cmin = 2 and cmax = Ns/3 are reasonable initial values for the min-
imum and maximum cluster size. In general, clusters may be joined according
to different criteria as long as their hierarchical interconnection structure is pre-
served. A reasonable criterion to join two clusters Cp and Cq is to maximize the
strength of weak and neglected interconnections between the joined clusters,
which can then be reset to their original values. This thought gives rise to the
following optimization problem:

(r∗, q∗) = arg max
r∈Ih, q∈If

∑
p∈Ir

j

∑
i∈Cp

∑
j∈Cq

(γi,j − γ′
i,j) + (γj,i − γ′

j,i) (3.8a)

subject to: Ir
j ∩ {q − 1, q + 1} 
= ∅, (3.8b)∑

p∈Ir
j

card(Cp) + card(Cq) ≤ cmax. (3.8c)

Here, the index set If ⊂ Nc contains the indices of free clusters to be joined,
Ir

j ⊆ Nc denotes the r-th group of joined clusters, and h is an auxiliary vari-
able denoting the number of these groups. The solution (r∗, q∗) corresponds to
a free cluster Cq∗

and to a group of clusters {Cp} with p ∈ Ir∗

j which possess
the largest sum of weak and neglected interconnections. Constraint (3.8b) en-
sures that the hierarchical interconnection structure is preserved, while (3.8c)
limits the number of subsystems contained in the joined clusters to cmax. This
optimization problem can now be embedded into an algorithm for joining the
clusters as follows:

1: Given cmin, cmax,Nc, {Cp}, Γ, Γ′

2: define If := {p ∈ Nc | card(Cp) < cmin}
3: define h := card(Nc \ If)
4: define Ir

j := {vecr(Nc \ If)} ∀ r ∈ Ih

5: while If 
= ∅ do

6: solve optimization problem (3.8) for (r∗, q∗)
7: if (r∗, q∗) 
= ∅ then
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8: set Ir∗

j := Ir∗

j ∪ {q∗}
9: set If := If \ {q∗}

10: else

11: determine q∗ := arg maxq∈If
card(Cq)

12: set Ih+1
j := {q∗}

13: set If := If \ {q∗}
14: set h := h + 1
15: end if

16: end while

17: set Cr :=
⋃

p∈Ir
j
Cp

18: set Nc := Ih

19: set Nc := h
20: return Nc, Nc, {Cp}

(g) All entries of Γ′ that are smaller than or equal to εw but larger than εn are re-
stored to their original values. Likewise, those entries of Γ′ that are smaller than
εn and do not affect the hierarchical interconnection structure of the clusters
are restored, too (cf. [61]):

1: Given Γ, Γ′, Ns, {Cp}
2: set h := 1, p := 1
3: for i = 1 to Ns do

4: if i ≥ h + card(Cp) then

5: set h := i, p := p + 1
6: end if

7: for j = 1 to Ns do

8: if γτi,τj
− γ′

τi,τj
> 0 then

9: if j ≥ h or γτi,τj
> εn then

10: set γ′
τi,τj

:= γτi,τj

11: end if

12: end if

13: end for

14: end for

15: return Γ′

The outcome of the above clustering procedure is the matrix Γ′ ∈ R
Ns×Ns
≥0 char-

acterizing the interconnection strength and interconnection structure of the sub-
systems. The permuted subsystem order is contained in the vector τ ∈ NNs. This
vector can be used to construct the permutation matrices Tx = [Tx i,j] ∈ B

nx×nx,
Tu = [Tu i,j] ∈ Bnu×nu, Tw = [Tw i,j] ∈ Bnw×nw , and Tz = [Tz i,j] ∈ Bnz×nz for the state,
input, disturbance input, and controlled variable, respectively, as follows:

T• i,j =

⎧⎨
⎩

I
n

τj
•

if τj = i,

0
ni

•×n
τj
•

otherwise.
(3.9)
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A further outcome of the clustering procedure are the index sets Cp with p ∈ Nc,
which are constructed such that:

Cp ∩ Cq = ∅ ∀(p, q) ∈ Nc ×Nc, p 
= q, (3.10a)⋃
p∈Nc

Cp = Ns. (3.10b)

The index sets Cp can be used to define the aggregate subsystems:

P̄
p :

⎧⎨
⎩x̄p

k+1 = Āp,px̄p
k + B̄p,pūp

k + Ēp,pw̄p
k +

∑
q∈N p

c
Āp,qx̄

q
k + B̄p,qū

q
k + Ēp,qw̄

q
k,

z̄p
k = C̄p,px̄p

k + D̄p,pū
p
k +

∑
q∈N p

c
C̄p,qx̄

q
k + D̄p,qū

q
k,

(3.11)

where N p
c := Nc \ {p}. Furthermore, x̄p

k ∈ R
n̄

p
x, ūp

k ∈ R
n̄

p
u, w̄p

k ∈ R
n̄

p
w, and z̄p

k ∈ R
n̄

p
z

denote the aggregate state, input, disturbance input, and controlled output vector,
respectively. The matrices Āp,q, B̄p,q, C̄p,q, D̄p,q, and Ēp,q of suitable dimensions are
the respective block-entries of the matrices:

Ā := T T

x ATx, B̄ := T T

x BTu, C̄ := T T

z CTx, D̄ := T T

z DTu, Ē := T T

x ATw. (3.12)

Remark 3.1. The design parameters εw and εn allow to tune the outcome of the
clustering procedure. A reasonable initial choice for these parameters is given by:

εw = εn = min
i,j

γi,j. (3.13)

Afterwards, εw should be increased until a satisfying set of clusters is identified.
Finally, εn may be increased to facilitate the synthesis of the lower layer controller,
since more interconnections will be neglected during control design. This will be
explained in more detail in the upcoming section.

3.3. Lower Layer Control Design

For the design of the lower control layer, the model that has been identified in the
clustering procedure is used. That is, the system matrices of the global system P

are permuted according to the new subsystem order, and neglected interconnections
with γi,j < εn are deleted from the matrices Ā and B̄. Hence, the corresponding
aggregate subsystems for the design of the lower control layer can be defined as
follows:

P̄
′p :

⎧⎨
⎩x̄p

k+1 = Ā′
p,px̄p

k + B̄′
p,pūp

k + Ē′
p,pw̄p

k +
∑

q∈N p
c

Ā′
p,qx̄

q
k + B̄′

p,qū
q
k + Ē′

p,qw̄
q
k,

z̄p
k = C̄ ′

p,px̄
p
k + D̄′

p,pūp
k +

∑
q∈N p

c
C̄ ′

p,qx̄
q
k + D̄′

p,qū
q
k.

(3.14)
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The matrices Ā′
p,q, B̄′

p,q, C̄ ′
p,q, D̄′

p,q, and Ē′
p,q are given by:

Ā′
p,q = [A′

i,j]i∈Cp,j∈Cq , A′
i,j :=

⎧⎨
⎩Ai,j if γ′

i,j > 0,

0ni
x×n

j
x

otherwise,
(3.15a)

B̄′
p,q = [B′

i,j]i∈Cp,j∈Cq , B′
i,j :=

⎧⎨
⎩Bi,j if γ′

i,j > 0,

0ni
x×n

j
u

otherwise,
(3.15b)

C̄ ′
p,q := C̄p,q, D̄′

p,q := D̄p,q, Ē′
p,q := Ēp,q. (3.15c)

Regarding the underlying communication topology of the lower control layer, a
decentralized structure w.r.t. the clusters is assumed. Consequently, the lower layer
communication graph Ḡ

↓ is fixed to the following structure:

Σ̄↓ = [σ̄↓
p,q], (3.16a)

σ̄↓
p,q = [σ↓

i,j]i∈Cp,j∈Cq =

⎧⎨
⎩1N

p
s

if p = q,

0N
p
s ×N

q
s

otherwise,
(3.16b)

where Np
s := card(Cp) denotes the number of subsystems contained in cluster Cp.

The structure of the graph Ḡ
↓ corresponds to the structure of the lower layer control

law as defined in Eq. (3.5a).
The interconnected system P̄

′ = {P̄ ′p}p∈Nc with Σ̄↓ is now used to design the
distributed lower control layer. To this end, the upper layer input v̄k is temporarily
set to zero. The resulting control problem is a structured optimal control problem
which can be solved by the help of a semidefinite program:

Theorem 3.1. Suppose that the matrices G ∈ Rnx×nx, L ∈ Rnu×nx, X ∈ S
nx
�0, and

Z ∈ S
nw
�0 are a solution of the semidefinite program:

min
G,L,X,Z

tr(Z) (3.17a)

subject to:

⎡
⎢⎢⎣
G + GT − X � �

Ā′G + B̄′L X �

C̄ ′G + D̄′L 0 Inz

⎤
⎥⎥⎦ � 0, (3.17b)

⎡
⎣ Z �

Ē′ X

⎤
⎦ � 0, (3.17c)

X = XT � 0, (3.17d)

Z = ZT � 0, (3.17e)

G = blkdiag(Gp,p), Gp,p ∈ R
n̄

p
x×n̄

p
x, (3.17f)

L = blkdiag(Lp,p), Lp,p ∈ R
n̄

p
u×n̄

p
x, (3.17g)

where � is used as an abbreviation for representing symmetric matrices (see p. 203).
Set K̄↓ := LG−1, and denote the closed-loop system consisting of P̄

′ with ūk = K̄↓x̄k

by P̄
′↓
cl . Accordingly, denote the corresponding performance index by J ′. Then, the

following assertions hold:
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3.3. Lower Layer Control Design

(a) The point x̄eq = 0 is the only globally asymptotically stable equilibrium point for
the dynamic system P̄

′
cl with w̄k = 0 for all k ∈ N0.

(b) The dynamic system P̄
′
cl with input w̄k is bounded-input/bounded-output stable.

(c) For J ′ according to Case 2.1, the value of J ′ is upper-bounded by the objective
function (3.17a).

(d) For J ′ according to Case 2.2, and by setting Ē′ := x̄0 = T T

x x0, the value of J ′

is upper-bounded by the objective function (3.17a).

(e) The control law ūk = K̄↓x̄k respects the communication topology given by Σ̄↓.
�

Proof. Assume that the LMI (3.17b) and (3.17d) are feasible. Then, the upper left
entry of LMI (3.17b) implies that:

G + GT � X � 0. (3.18)

Hence, any feasible matrix G must be non-singular. Using:

G + GT − X � GTX−1G (3.19)

(e.g. [33]), and substituting L = K̄↓G, Eq. (3.17b) implies that:

⎡
⎢⎢⎣

GTX−1G � �

Ā′G + B̄′K̄↓G X �

C̄ ′G + D̄′K̄↓G 0 Inz

⎤
⎥⎥⎦ � 0. (3.20)

Factoring out the non-singular matrix T = blkdiag(G, Inx, Inz) on the right-hand
side and its transpose T T on the left-hand side, the above inequality is equivalent
to:

⎡
⎢⎢⎣

X−1 � �

Ā′ + B̄′K̄↓ X �

C̄ ′ + D̄′K̄↓ 0 Inz

⎤
⎥⎥⎦ � 0. (3.21)

Let Ā′
cl := Ā′ + B̄′K̄↓ and C̄ ′

cl := C̄ ′ + D̄′K̄↓. Applying the Schur-complement (see
Lemma 2.5 on page 41) leads to:

X−1 − (Ā′
cl)

TX−1Ā′
cl − (C̄ ′

cl)
T(C̄ ′

cl) � 0. (3.22)

With (C̄ ′
cl)

T(C̄ ′
cl) � 0, it follows that:

X−1 − (Ā′
cl)

TX−1Ā′
cl � (C̄ ′

cl)
TC̄ ′

cl � 0, (3.23)
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3. Synchronous Hierarchical Control

implying that the matrix Ā′
cl is a Schur matrix (see Def. 2.7 and Thm. 2.1). Hence,

assertions (a) and (b) follow from Theorem 2.1 and from Theorem 2.2. Multiplying
inequality (3.22) with (Ā′

cl)
T from the left-hand side and with the transpose Ā′

cl

from the right-hand side, and using (3.22) leads to:

X−1 � ((Ā′
cl)

2)TX−1(Ā′
cl)

2 +
1∑

k=0

((Ā′
cl)

k)T(C̄ ′
cl)

TC̄ ′
cl(Ā

′
cl)

k. (3.24)

Repeating this procedure (n− 2) times leads to:

X−1 � ((Ā′
cl)

n)TX−1(Ā′
cl)

n +
n−1∑
k=0

((Ā′
cl)

k)T(C̄ ′
cl)

TC̄ ′
cl(Ā

′
cl)

k. (3.25)

For n → ∞, the first summand on the right-hand side tends to zero, since Ā′
cl is a

Schur matrix (cf. [50]). Hence, it holds that:

X−1 �
∞∑

k=0

((Ā′
cl)

k)T(C̄ ′
cl)

TC̄ ′
cl(Ā

′
cl)

k. (3.26)

Multiplying the above inequality by (Ē′)T from the left-hand side and by Ē′ from
the right-hand side and taking the trace leads to:

tr
(
(Ē′)TX−1Ē′

)
>

∞∑
k=0

tr
(
(Ē′)T((Ā′

cl)
k)T(C̄ ′

cl)
TC̄ ′

cl(Ā
′
cl)

kĒ′
)

= ‖P̄ ′
cl‖2

H2
. (3.27)

Taking the Schur-complement of the second LMI (3.17c) reveals that:

Z− (Ē′)TX−1Ē′ � 0 ⇔ Z � (Ē′)TX−1Ē′. (3.28)

Assertions (c) and (d) now follow with Lemma 2.1 and with Lemma 2.3, respectively.
Finally, with K̄↓ := LG−1, it follows that constraints (3.17f) and (3.17g) are suffi-
cient to enforce that K̄↓ = blkdiag(K̄↓

p,p) with K̄↓
p,p ∈ Rn̄

p
u×n̄

p
x. Hence, K̄↓ respects

the communication topology encoded by Σ̄↓, such that assertion (e) holds.

It is well-known that some dynamic systems can not be stabilized by decentralized
state-feedback, even though the overall system is stabilizable [32] [135]. This is due
to so-called structurally fixed modes1, i.e. eigenvalues of the dynamic system which
are invariant under structured state-feedback. In principal, such a case may occur
for the design of the lower layer control law. In some cases, it can be circumvented
by altering the design parameters of the clustering procedure such that the pairs
(Āp,p, B̄p,p) are controllable for all p ∈ Nc. Indeed, one can show that for a partic-
ular choice of the clustering parameters εw and εn, this controllability condition is
sufficient for a stabilizing lower layer control law to exist.

1In the context of decentralized control, structurally fixed modes are also referred to as decen-
tralized fixed modes (DFM).
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3.3. Lower Layer Control Design

Lemma 3.1. Let the parameters εw and εn of the clustering procedure be chosen
such that εw = εn, and assume that the set of clusters {Cp} is formed such that
the pair (Āp,p, B̄p,p) is controllable for all p ∈ Nc. Then, there exists a lower layer
control law of the form (3.5a) such that the matrix Ā′ + B̄′K̄↓ is a Schur matrix. �

Proof. For the particular choice εw = εn, the matrices Ā′ and B̄′ are upper block-
triangular, since all weak interconnections are also neglected. Furthermore, only
those interconnections which do not alter the hierarchical interconnection structure
of the clusters are restored in clustering step (g). Hence, applying Lemma 2.6 to the
system P̄

′, there must exist a linear stabilizing control law which is decentralized
from the viewpoint of the clusters, such that the claim holds.

In contrast to classical SCT design, the design of the lower layer control law has
the advantage that no binary decisions regarding the activation of communication
links have to be made. Nonetheless, the communication topology is fitted to the
interconnection structure of the interconnected system based on the results of the
clustering procedure. A further advantage of the subsystem clustering is that in
particular cases, the lower layer controllers can be designed separately. In partic-
ular, when the clusters possess an exact hierarchical interconnection structure, i.e.
εw = εn, the sequential design procedure presented in [132] can be applied. In this
case, it is furthermore possible to optimize the communication topology within each
cluster, as proposed in [59] and [60]. In [59], the key idea for optimizing the topol-
ogy within each cluster is to start with a reference controller which considers full
communication within each cluster. Then, for each cluster, an SCT design prob-
lem is formulated and solved for each cluster independently, while assuming that
the controllers of the remaining clusters are fixed to their reference values. The
performance indices of these local SCT problems are determined by using methods
of inverse optimal control. Due to the hierarchical interconnection structure of the
clusters, the stability of the overall system is preserved by preserving the stabil-
ity of the single clusters. In [60], the inverse optimal control problems formulated
in [59] are investigated more thoroughly. In particular, it is shown that the local
performance indices are not quadratic in the local state and input variables, even
though the global performance index is quadratic and the controllers of the remain-
ing clusters are fixed. In order to circumvent this, an approach for constructing
local quadratic approximations of the true performance indices is presented.

In the frequent case that εn > 0, i.e. some weak interconnections are neglected
for the design of the lower layer control law, no guarantees can be given, neither for
the performance nor for the stability of the original interconnected system under
the control of the lower control layer. Formally, implementing the controllers C

↓i in
the original interconnected system P, the following lower layer closed-loop system
is obtained:

P̄
↓
cl :

⎧⎨
⎩x̄k+1 = (Ā + B̄K̄↓)x̄k + B̄v̄k + Ēw̄k = Ā↓

clx̄k + B̄v̄k + Ēw̄k,

z̄k = (C̄ + D̄K̄↓)x̄k + D̄v̄k = C̄↓
clx̄k + D̄v̄k.

(3.29)
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3. Synchronous Hierarchical Control

Following the original thought of the ε-decomposition, the adverse effects of the
neglected interconnections regarding global system stability and performance should
be small in most cases. Nevertheless, there exist documented special cases where
neglected interconnections of small magnitude may have a significant influence [63].
While this is not taken into account in the classical concept of the ε-decomposition,
the hierarchical two-layer control scheme compensates for the adverse effects of the
neglected interconnections by adding a superordinate control layer to be introduced
in the next section.

3.4. Upper Layer Control Design

For the design of the upper layer controllers C
↑i, two cases are distinguished. At

first, a full communication graph G
↑ is considered, such that any two controllers

C
↑i and C

↑j can communicate bidirectionally. For this case, it is shown how the
controllers C

↑i can be designed such that the global performance index J is min-
imized for a given lower layer control law and given Δk. An improvement of J
by the upper control layer is possible, since the weak interconnections which were
neglected in designing the lower control layer are now taken into account. In addi-
tion, the exchange of state information between the clusters may further improve
the performance.

3.4.1. Full Communication Topology

For a given value of Δk ∈ N>1, the global interconnected system P̄
↓
cl under control

of the lower control layer can be expressed on the upper layer time-domain T↑ as:

P̄
↑ :

⎧⎨
⎩

ˆ̄xs+1 = Ā↑ ˆ̄xs + B̄↑ ˆ̄vs + Ē↑ ˆ̄ws,
ˆ̄zs = C̄↑ ˆ̄xs + D̄↑ ˆ̄vs + F̄ ↑ ˆ̄ws,

(3.30a)

with matrices:

Ā↑ = (Ā + B̄K̄↓)Δk = (Ā↓
cl)

Δk, B̄↑ =
Δk−1∑
h=0

(Ā↓
cl)

hB̄,

C̄↑ =

⎡
⎢⎢⎢⎢⎢⎢⎣

C̄↓
cl

C̄↓
clĀ

↓
cl

...

C̄↓
cl(Ā

↓
cl)

Δk−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, D̄↑ =

⎡
⎢⎢⎢⎢⎢⎢⎣

D̄

D̄ + C̄↓
clB̄

...

D̄ + C̄↓
cl(
∑Δk−1

h=0 (Ā↓
cl)

h)B̄

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.30b)

Ē↑ =
[
(Ā↓

cl)
Δk−1Ē . . . Ā↓

clĒ Ē
]
, F̄ ↑ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

C̄↓
clĒ

. . . . . .
...

...
. . . . . . 0

C̄↓
cl(Ā

↓
cl)

Δk−2Ē . . . C̄↓
clĒ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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3.4. Upper Layer Control Design

The corresponding extended disturbance vector is obtained as:

ˆ̄ws =

⎡
⎢⎢⎢⎣

w̄sΔk
...

w̄(s+1)Δk−1

⎤
⎥⎥⎥⎦ ∈ R

n̄
↑
w, (3.31)

with n̄↑
w := Δk nw. Since the local stochastic processes wi

k satisfy E(wi
k(wj

l )
T) = 0

for either k 
= l, i 
= j, or both (cf. Case 2.1), the stochastic process ˆ̄ws also satisfies
the assumptions of Case 2.1, i.e.:

E( ˆ̄ws) = 0
n̄

↑
w×1, E( ˆ̄ws

ˆ̄wT

s ) = I
n̄

↑
w×n̄

↑
w
, E( ˆ̄ws

ˆ̄wT

r ) = 0
n̄

↑
w
. (3.32)

Partitioning the vectors ˆ̄xs, ˆ̄vs, and ˆ̄ws, as well as the matrices Ā↑ to F̄ ↑ according
to the clusters, the interconnected aggregate upper layer systems P̄

↑p with p ∈ Nc

can be obtained. When considering a full communication graph G
↑ on the upper

control layer, a linear quadratic control problem can be associated with P
↑. In

accordance with Case 2.1, this problem can be stated as follows:

min
κ↑(·)

J↑ = min
κ↑(·)

lim
se→∞

E

⎛
⎝ 1

se

se−1∑
s=0

ˆ̄zT

s
ˆ̄zs

⎞
⎠ (3.33a)

subject to: ˆ̄xs+1 = Ā↑ ˆ̄xs + B̄↑ ˆ̄vs + Ē↑ ˆ̄ws, (3.33b)

ˆ̄zs = C̄↑ ˆ̄xs + D̄↑ ˆ̄vs + F̄ ↑ ˆ̄ws, (3.33c)

ˆ̄vs = κ↑(ˆ̄xs), (3.33d)

where x̄0 = x̄eq = 0nx×1 is independent of ˆ̄ws for all s ∈ N0. For the undisturbed
case ˆ̄ws = 0 for all s ∈ N0 and with ˆ̄x0 
= ˆ̄xeq, it follows similar to Case 2.2:

min
κ↑(·)

J↑ = min
κ↑(·)

∞∑
s=0

ˆ̄zT

s
ˆ̄zs (3.34a)

subject to: ˆ̄xs+1 = Ā↑ ˆ̄xs + B̄↑ ˆ̄vs, (3.34b)

ˆ̄zs = C̄↑ ˆ̄xs + D̄↑ˆ̄vs, (3.34c)

ˆ̄vs = κ↑(ˆ̄xs). (3.34d)

The following theorem states that in both cases, the performance index J↑ maps
the original performance index J considered in Problem (3.33) to the upper layer.
Furthermore, the Theorem addresses the existence conditions for an optimal solu-
tion.

Theorem 3.2. Suppose that a global representation P̄
↓
cl of interconnected systems

P
i with lower layer control law (3.5a) is given. Let Δk ∈ N>1 be such that the pair

(Ā↑, B̄↑) as defined in (3.30b) is stabilizable. Then, the control ˆ̄vs = K̄↑ ˆ̄xs minimizes
the performance index J if it is a stabilizing solution of the optimal control problem
(3.33) / (3.34). Furthermore, provided that Assumption 3.1 holds, a unique optimal
solution is guaranteed to exist in both cases.
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3. Synchronous Hierarchical Control

Proof. Consider the performance index J on the lower layer under the conditions
described in Case 2.2:

J =
∞∑

k=0

z̄T

k z̄k =
∞∑

k=0

‖C̄x̄k + D̄ūk‖2
2 =:

∞∑
k=0

l(x̄k, ūk). (3.35)

Substituting the lower layer control law ūk = K̄↓x̄k + v̄k leads to:

J =
∞∑

k=0

‖(C̄ + D̄K̄↓)x̄k + D̄v̄k‖2
2 =:

∞∑
k=0

l↓cl(x̄k, v̄k). (3.36)

On the upper control layer, the task is to determine v̄k such that J is minimized. Ig-
noring the restriction v̄k = ˆ̄vs for all k ∈ N0 in the first instance, applying Bellman’s
principle of optimality yields the well known expression [38]:

V (x̄k) = min
v̄k

l↓cl(x̄k, v̄k) + V (x̄k+1). (3.37)

Reapplying Eq. (3.37) (Δk − 1)-times yields:

V (x̄k) = min
v̄k

l↓cl(x̄k, v̄k) + . . . + min
v̄k+Δk−1

l↓cl(xk+Δk−1, vk+Δk−1) + V (x̄k+Δk). (3.38)

Without loss of generality, assume that k is chosen such that (k mod Δk) = 0, i.e.
s = s(k) = k/Δk. Setting v̄k = ˆ̄vs(k) leads to:

V (x̄k) = min
v̄k

l↓cl(x̄k, v̄k) + . . . + min
v̄k

l↓cl(x̄k+Δk−1, v̄k) + V (x̄k+Δk)

= min
ˆ̄vs(k)

Δk−1∑
h=0

l↓cl(x̄k+h, ˆ̄vs(k)) + V (x̄k+Δk). (3.39)

Replacing the summed up step cost l↓cl(·) by means of augmented matrices yields:

V (x̄k) = min
ˆ̄vs(k)

∥∥∥
⎡
⎢⎢⎢⎣

(C̄ + D̄K̄↓)x̄k
...

(C̄ + D̄K̄↓)x̄k+Δk−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
D̄ˆ̄vs(k)

...

D̄ˆ̄vs(k)

⎤
⎥⎥⎥⎦
∥∥∥2

2
+ V (x̄k+Δk). (3.40)

Substituting the dynamics x̄k+h = (Ā↓
cl)

hx̄k +
∑h

l=1(Ā↓
cl)

l−1B̄ ˆ̄vs(k), and rearranging
the terms by their dependence on states and inputs leads to:

V (x̄k) = min
ˆ̄vs(k)

‖C̄↑x̄k + D̄↑ˆ̄vs(k)‖2
2 + V (x̄k+Δk). (3.41)

Finally, (3.41) may be expressed for the upper layer time domain T↑, which results
in the standard one-step formulation of Bellman’s principle of optimality:

V (ˆ̄xs) = min
ˆ̄vs

‖C̄↑ ˆ̄xs + D̄↑ ˆ̄vs‖2
2 + V (ˆ̄xs+1) = min

ˆ̄vs

l↑(ˆ̄xs, ˆ̄vs) + V (ˆ̄xs+1). (3.42)
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Hence, the step cost in terms of the upper layer is given by the squared 2-norm of
the controlled variable ˆ̄zs, such that J↑ is equivalent to J . Under the conditions
described in Case 2.1 and with ke = seΔk, the performance index J can be rewritten
as follows:

J = lim
ke→∞

E

⎛
⎝ 1

ke

ke−1∑
k=0

z̄T

k z̄k

⎞
⎠ = lim

se→∞
E

⎛
⎝ 1

seΔk

se−1∑
s=0

(s+1)Δk−1∑
k=sΔk

‖C̄x̄k + D̄ūk‖2
2

⎞
⎠ . (3.43)

Substituting the lower layer control law ūk = K̄↓x̄k + v̄k yields:

J = lim
se→∞

E

⎛
⎝ 1

seΔk

se−1∑
s=0

(s+1)Δk−1∑
k=sΔk

‖(C̄ + D̄K̄↓)x̄k + D̄v̄k‖2
2

⎞
⎠ . (3.44)

Replacing the inner sum in a similar manner as in (3.40) and in (3.41) leads to:

J = lim
se→∞

E

⎛
⎝ 1

seΔk

se−1∑
s=0

‖C̄↑ ˆ̄xs + D̄↑ ˆ̄vs + F̄ ↑ ˆ̄ws‖2
2

⎞
⎠ . (3.45)

Factoring out the constant factor 1/Δk yields:

J =
1

Δk
lim

se→∞
E

⎛
⎝ 1

se

se−1∑
s=0

ˆ̄zT

s
ˆ̄zs

⎞
⎠ =

J↑

Δk
. (3.46)

Hence, minimizing J↑ is equivalent to minimizing J for Case 2.1.
From the structure of D̄↑, it can be deduced that it has full column rank: Due

to Assumption 3.1, the matrix D must have full column rank. Furthermore, the
matrix D̄ is obtained from D by row and column permutations, which do not affect
the rank. Considering the first block-row of the matrix

[
C̄↑ D̄↑

]
, it can be seen

that it can be obtained from the matrix
[
C D

]
via row and column permutations

and elementary column operations. Hence, it holds that:

rank
[
C̄ + D̄K̄↓ D̄

]
= rank

[
C D

]
, (3.47)

such that the matrix
[
C̄↑ D̄↑

]
must have full column rank. Since Δk ∈ N0 is

to be chosen such that the pair (Ā↑, B̄↑) is stabilizable, the existence conditions
for a unique centralized optimal control law are satisfied (see [142, Sec. 21.7]).
Furthermore, since all involved matrices are time-invariant, the optimal centralized
upper layer control law is of the form ˆ̄vs = K̄↑ ˆ̄xs [38].

Assuming full communication on the upper control layer, the optimal upper layer
control gain K̄↑ can be efficiently calculated by the help of an algebraic Riccati
equation (ARE) [38]:

P̄ ↑ := (Ā↑)TP̄ ↑Ā↑ − (B̄↑P̄ ↑Ā↑ + S̄↑)T(R̄↑ + (B̄↑)TP̄ ↑B̄↑)−1(B̄↑P̄ ↑Ā↑ + S̄↑) + Q̄↑,
(3.48a)

K̄↑ := (R̄↑ + (B̄↑)TP̄ ↑B̄↑)−1(B̄↑P̄ ↑Ā↑ + S̄↑), (3.48b)
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3. Synchronous Hierarchical Control

where Q̄↑ := (C̄↑)TC̄↑, S̄↑ := (D̄↑)TC̄↑, and R̄↑ := (D̄↑)TD̄↑. Note that the stability
and implementation of the resulting two-layer control scheme will be discussed after
considering an optimized communication topology on the upper control layer first.

3.4.2. Optimized Communication Topology

As mentioned earlier, the original goal is to perform SCT design on the upper con-
trol layer. Setting up the SCT optimization requires to define additional variables
associated with the topology of the communication network. In particular, a binary
adjacency matrix Σ̄↑ = [σ̄↑

p,q] ∈ BNc×Nc encoding the topology of the communica-

tion graph Ḡ
↑, and a set Σ̄↑ ⊆ BNc×Nc of admissible communication topologies are

required. Furthermore, a matrix C̄↑com = [c̄↑com
p,q ] ∈ R

Nc×Nc
≥0 of costs associated with

the upper layer communication links has to be chosen, such that c̄↑com
p,p = 0 for all

p ∈ Nc. The communication cost can then be defined as:

J↑com :=
Nc∑

p=1

Nc∑
q=1

σ̄↑
p,q c̄

↑com
p,q . (3.49)

The SCT optimization problem for the design of a linear upper layer control law
ˆ̄vs = K̄↑ ˆ̄xs that complies with the communication topology encoded by Σ̄↑ can now
be stated as (exemplarily assuming the conditions of Case 2.2):

min
K̄↑,Σ̄↑

J↑ + J↑com (3.50a)

subject to: ˆ̄xs+1 = Ā↑ ˆ̄xs + B̄↑ ˆ̄vs, (3.50b)

ˆ̄zs = C̄↑ ˆ̄xs + D̄↑ˆ̄vs, (3.50c)

ˆ̄vs = K̄↑ ˆ̄xs, (3.50d)

Σ̄↑ ∈ Σ̄↑, (3.50e)

(σ̄↑
p,q = 0) ⇒ (K̄↑

p,q = 0). (3.50f)

The following Theorem shows how the above problem can be solved by employing
mixed-integer semidefinite programming.
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Theorem 3.3. Suppose that the matrices Σ̄↑ ∈ BNc×Nc, G ∈ Rnx×nx, L ∈ Rnu×nx,

X ∈ S
nx
�0, and Z ∈ S

n̄
↑
w

�0 are a solution of the mixed-integer semidefinite program:

min
Σ̄↑,G,L,X,Z

tr(Z) + J↑com subject to: (3.51a)

⎡
⎢⎢⎣
G + GT − X � �

Ā↑G + B̄↑L X �

C̄↑G + D̄↑L 0 Inz

⎤
⎥⎥⎦ � 0, (3.51b)

⎡
⎢⎢⎣
Z � �

Ē↑ X �

F̄ ↑ 0 I

⎤
⎥⎥⎦ � 0, (3.51c)

X = XT � 0, (3.51d)

Z = ZT � 0, (3.51e)

Σ̄↑ ∈ Σ̄↑, (3.51f)

−Mσ̄↑
p,q1n̄

p
u×n̄

q
x
≤ Lp,q ≤ Mσ̄↑

p,q1n̄
p
u×n̄

q
x
∀ p, q, (3.51g)

−Mσ̄↑
p,q1n̄

p
x×n̄

q
x
≤ Gp,q ≤ Mσ̄↑

p,q1n̄
p
x×n̄

q
x
∀ p, q, (3.51h)

−M(σ̄↑
p,q − σ̄↑

p,r + 1)1n̄r
x×n̄

q
x
≤ Gr,q ≤ M(σ̄↑

p,q − σ̄↑
p,r + 1)1n̄r

x×n̄
q
x
∀ p, q, r, (3.51i)

where p, q, r ∈ Nc, and M ∈ R>0 is a number satisfying M > max{‖G‖1,∞, ‖L‖1,∞}.
Here, ‖·‖1,∞ denotes the 1,∞-induced norm of a matrix, corresponding to its largest
entry in magnitude. Set K̄↑ := LG−1, and denote the closed-loop system consisting
of P̄

↑ with ˆ̄vs = K̄↑ ˆ̄xs by P̄
↑
cl. Then, the following assertions hold:

(a) The point x̄eq = 0 is the only globally asymptotically stable equilibrium point for

the dynamic system P̄
↑
cl with ˆ̄ws = 0 for all s ∈ N0.

(b) The dynamic system P̄
↑
cl with input ˆ̄ws is bounded-input/bounded-output stable.

(c) For J according to Case 2.1, the value of J + J↑com is upper-bounded by the
objective function (3.51a).

(d) For J according to Case 2.2, and by setting Ē↑ := x̄0, F̄ ↑ := 0n̄z×n̄w, the value
of J + J↑com is upper-bounded by the objective function (3.51a).

(e) The control law ˆ̄vs = K̄↑ ˆ̄xs respects the communication topology given by Σ̄↑. �

Proof. Similar to the proof of Theorem 3.1, it can be shown that feasibility of the
LMIs (3.51b) to (3.51e) implies that Ā↑

cl := Ā↑ + B̄↑K̄↑ is a Schur matrix, and that
tr(Z) > J for Case 2.1 and Case 2.2. Hence, with Theorem 2.1 and 2.2, assertions
(a) to (d) follow. The constraints (3.51g) to (3.51i), which have been adopted from
[50], enforce that:

σ̄↑
p,q = 0 ⇒ K̄↑

p,q = 0n̄
p
u×n̄

q
x
. (3.52)
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Hence, the state vector ˆ̄xq
s of the aggregate subsystem P̄

q is not required by the
aggregate subsystem P̄

p to calculate ˆ̄vs. Consequently, the control law ˆ̄vs = K̄↑ ˆ̄xs

respects the communication topology given by Σ̄↑, which proves assertion (e).

The MISDP (3.51) for the design of the upper layer controller in the hierarchical
approach creates Nc

2 −Nc binary variables. Furthermore, one additional SDP has
to be solved in order to obtain the lower layer controller. In contrast, approaches
that assume a single layer controller structure, e.g. [50], create Ns

2 − Ns binary
variables. Since Nc < Ns, the computational time is typically significantly reduced
by the hierarchical approach.

3.4.3. Stability of the Original Interconnected System

If the upper layer control gain K̄↑ is designed such that the upper layer closed-loop
system:

P̄
↑
cl :

⎧⎨
⎩

ˆ̄xs+1 = (Ā↑ + B̄↑K̄↑)ˆ̄xs + Ē↑ ˆ̄ws,
ˆ̄zs = (C̄↑ + D̄↑K̄↑)ˆ̄xs + F̄ ↑ ˆ̄ws,

(3.53)

is asymptotically stable, then the following result holds regarding the stability of
the interconnected system P under the hierarchical control:

ūk = K̄↓x̄k + K̄↑x̄sΔk, (3.54)

with sΔk = k − (k mod Δk):

Theorem 3.4. Suppose that ‖Ā↓
cl‖2

2 is finite, that the closed-loop system P̄
↑
cl is

asymptotically stable, and that the distributed hierarchical control (3.54) is applied
to the interconnected system P. Then, the following assertions hold:

(a) The system P with wk = 0 for all k ∈ N0 is asymptotically stable.

(b) The system P with input wk is bounded-input/bounded-output stable. �

Proof. In order to proof assertion (a), assume that w̄k = 0 for all k ∈ N0, and note
that for every fixed k ∈ N0 and Δk ∈ N>1, there exists a unique combination of
s ∈ N0 and l ∈ {0, 1, . . . , Δk − 1} such that:

x̄k = x̄sΔk+l. (3.55)

From the definition of the induced 2-norm and the submultiplicativity property of
matrix norms [8, p.31], it follows that:

‖x̄k‖2
2 = ‖x̄sΔk+l‖2

2

= ‖((Ā↓
cl)

l +
∑l−1

h=0
(Ā↓

cl)
hB̄K̄↑) x̄sΔk‖2

2

≤ ‖(Ā↓
cl)

l +
∑l−1

h=0
(Ā↓

cl)
hB̄K̄↑‖2

2 ‖x̄sΔk‖2
2. (3.56)
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Since the upper layer closed-loop system P
↑ is asymptotically stable, there exist

constants α↑ ∈ R>1 and β↑ ∈ (0, 1) such that (see Thm. 2.1 on page 34):

‖x̄sΔk‖2
2 = ‖ˆ̄xs‖2

2 ≤ α↑(β↑)s‖ˆ̄x0‖2
2 = α↑(β↑)s‖x̄0‖2

2 ∀ s ∈ N0. (3.57)

Hence, for finite ‖Ā↓
cl‖2

2, one can always find constants α′ ∈ R≥1 and β′ ∈ (β↑, 1)
such that for all l ∈ {0, 1, . . . , Δk − 1}:

‖(Ā↓
cl)

l +
∑l−1

h=0
(Ā↓

cl)
hB̄K̄↑‖2

2 ≤ α′(β′)l, (β′)Δk = β↑. (3.58)

Substituting Eq. (3.58) into Eq. (3.56) and using Eq. (3.57), it follows that:

‖x̄k‖2
2 ≤ α′(β′)l‖x̄sΔk‖2

2 ≤ α′α↑(β↑)s(β′)l‖x̄0‖2
2 = α′α↑(β′)sΔk+l‖x̄0‖2

2. (3.59)

Define:

α := α′α↑ ∈ R>1, β := β′ ∈ (β↑, 1), (3.60)

and recall that x̄k is a permutation of xk. Then, with Eq. (3.59), it is apparent
that:

‖xk‖2
2 = ‖x̄k‖2

2 ≤ αβk‖x̄0‖2
2 ∀ k ∈ N0, (3.61)

meaning that the interconnected system P under the hierarchical control of (3.54) is
asymptotically stable according to Theorem 2.1. Assertion (b) immediately follows
from Theorem 2.2.

3.4.4. Alternative Performance Indices

Under the conditions of Case 2.2, due to setting Ē↑ = x̄0, the LMI (3.51c) depends
on this particular initialization of the interconnected system. While the optimal
upper layer control gain K̄↑ is independent of x̄0 in the case of full communication
on the upper layer, it becomes a function of x̄0 as soon as structural constraints
are imposed. In order to avoid this dependency, it may be convenient to consider
a random initial state and the corresponding expectancy of the performance index
instead. This can be done with minor modifications of the constraint (3.51c) and
the objective function.

Assume that x̄0 is normally distributed with mean μ̄x ∈ Rnx and covariance
Σ̄x ∈ S

nx
�0, i.e. x̄0 ∼ N (μ̄x, Σ̄x). Using the following relation from [113, p.9]:

E(tr(x̄T

0 P x̄0)) = tr(Σ̄xP ) + μ̄T

x Pμ̄x, (3.62)

the MISDP (3.51) can be readily modified in order to minimize an upper bound
on the expected performance. First, set Ē↑ = Inx and adjust the dimension of Z
accordingly to obtain from (3.51c) that:

Z � X−1. (3.63)
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On the other hand, inequality (3.51b) ensures that:

X−1 �
∞∑

s=0

((Ā↑
cl)

s)T(C̄↑
cl)

TC̄↑
cl(Ā

↑
cl)

s =: P̄ ↑. (3.64)

Using P̄ ↑, the performance index can be written as:

J↑ = tr(x̄T

0 P̄ ↑x̄0). (3.65)

Using the above relations, it is easy to see that:

tr(Σ̄xZ) + μ̄T

xZμ̄x > tr(Σ̄xP̄ ) + μ̄T

x P̄ μ̄x = E(J↑). (3.66)

Consequently, the function:

tr(Σ̄xZ) + μ̄T

xZμ̄x + J↑com (3.67)

can be used as an objective function in (3.51) to minimize an upper bound on the
sum of the expected performance index and the communication cost. Since (3.67)
is linear in the matrix variable Z, the optimization problem stays convex when the
integer variables are either all fixed or relaxed to the closed interval [0, 1].

Another possible variant is to assume that the initial state x̄0 is uniformly dis-
tributed over the ellipsoid:

Ex := {x̄0 ∈ R
nx | (x̄0 − μ̄x)TΣ̄−1

x (x̄0 − μ̄x) ≤ 1} ⊆ X̄, (3.68)

which is denoted by x̄0 ∼ U(Ex). Then, the following relation can be exploited,
which is derived in Appendix B:

E(tr(x̄T

0 P x̄0)) =
1

nx + 2
tr(Σ̄xP ) + μ̄T

x Pμ̄x. (3.69)

Using a similar argumentation as before, the function:

1

nx + 2
tr(Σ̄xZ) + μ̄T

xZμ̄x + J↑com (3.70)

can be used as an objective function in (3.51) to minimize an upper bound on the
sum of the expected performance index and the communication cost. Again, the
above function is linear in the matrix variable Z. For both variants, analogous
changes have to be made in the SDP for designing the lower layer controller, too.

3.5. Implementation

From the viewpoint of implementation, the hierarchical two-layer control scheme can
be considered as a time-varying distributed control law. Since the upper control
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layer only exchanges information every Δk-th time-step of the lower layer time-
domain T↓, the two-layer control scheme can actually be implemented as a single
distributed control layer with periodically time-varying communication topology.
The time-varying distributed control units C

i
k consist of both, C

↓i and C
↑i. In the

context of the original subsystem order, the corresponding local control laws are
obtained by first permuting the upper and lower layer control gain matrices and
partitioning them according to the subsystems:

K↓ = [K↓
i,j] := TuK̄↓T T

x , K↑ = [K↑
i,j] := TuK̄↑T T

x . (3.71)

Then, the local control inputs are obtained as:

ui
k =

Ns∑
j=1

K↓
i,jx

j
k + K↑

i,jx
j
sΔk, (3.72)

with sΔk = k − (k mod Δk). The time-varying communication graph Gk can be

constructed from G
↓ and G

↑ as follows: First, define the logical variables l↓i,j ∈ B

and l↑i,j ∈ B as:

l↓i,j := (∃ p ∈ Nc | (i, j) ∈ Cp × Cp ), (3.73a)

l↑i,j := (∃ p, q ∈ Nc | (σ̄↑
p,q = 1) ∧ (i ∈ Cp) ∧ (j ∈ Cq) ). (3.73b)

Assuming that all three graphs are represented by their adjacency matrices, the
time-varying adjacency matrix Σk = [σk,i,j] ∈ BNs×Ns is given by:

σk,i,j =

⎧⎨
⎩1 if (l↓i,j) ∨ ((k mod Δk = 0) ∧ l↑i,j),

0 otherwise.
(3.74)

In each discrete time step tk ∈ T↓, the controllers C
i
k must first measure their

local state vectors xi
k, and transmit this information to all controllers C

j
k with

j ∈ T i
k := {j ∈ Ns |σk,j,i = 1}. On the other hand, each local controller C

i
k receives

the state measurements of all controllers C
j
k with j ∈ Ri

k := {j ∈ Ns |σk,i,j = 1}.
With this information, the local control inputs ui

k are updated according to Eq.
(3.72) and held constant until the next discrete time step tk+1. Introducing the set:

X i
k := {xj

k ∈ X
j | j ∈ Ri

k} (3.75)

of subsystem states available to controller C
i
k at time k, the implementation struc-

ture of the two-layer control scheme is visualized in Fig. 3.1. Note that the physical
interconnection signals are intentionally not tagged by any variables for simplicity.

3.6. Numerical Example

As numerical example, consider the following academic system, which is an inter-
connected system comprising of Ns = 6 subsystems of order 1 or 2, as taken from

69



3. Synchronous Hierarchical Control

Gk

C
1
k =

(C ↓1, C ↑1)

C
2
k =

(C ↓2, C ↑2)

C
3
k =

(C ↓3, C ↑3)

P
1

P
2

P
3

x1
k x2

k x3
ku1

k u2
k u3

k

x1
k x2

k x3
kX 1

k X 2
k X 3

k

Figure 3.1.: Distributed implementation of the hierarchical two-layer control
scheme, exemplarily shown for Ns = 3 subsystems.

[58]. The partitioned matrices A to E comprising the overall system P are given
by:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.4 0.7 0 0 −0.4 −0.6 0.6 0.2 0

0 −0.2 0 0 0.1 0 0 0 0

0.1 0 −0.7 0.2 0 0 0.2 1.1 0.7

−0.1 0 1.2 0.4 0 0.1 −0.1 0 0

0 −0.2 0 0 0.6 0 0 0 0

0.4 0 0.1 0 0.9 1.1 −1.3 0 0

0 0 0 0.2 0.9 0.2 −0.4 0 0

0.1 0 2.0 0.3 0 0 0.2 0.3 0.1

−0.1 0 0 −0.2 0 0.1 −0.1 0 0.3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.76a)

B = blkdiag

⎛
⎝0.4,−1.5,

⎡
⎣ 0.3 0.7

−0.2 0

⎤
⎦ , 1.2,

⎡
⎣ 0

0.6

⎤
⎦ ,

⎡
⎣−0.9

0.3

⎤
⎦
⎞
⎠ , (3.76b)

C = blkdiag

⎛
⎜⎜⎜⎜⎜⎝
⎡
⎣0
1

⎤
⎦ ,

⎡
⎣0
2

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0√
7 0

0
√

10

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎣ 0√

13

⎤
⎦ ,

⎡
⎢⎢⎣
0 0

4 0

0
√

19

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0√
22 0

0 5

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ , (3.76c)
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D = blkdiag

⎛
⎜⎜⎜⎜⎜⎝
⎡
⎣1
0

⎤
⎦ ,

⎡
⎣1
0

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

1 0

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎣1
0

⎤
⎦ ,

⎡
⎢⎢⎣
1

0

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
1

0

0

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ , (3.76d)

E = I9. (3.76e)

With the above parameters, P contains unstable eigenvalues and is fully reachable.

The different stages of the clustering procedure are illustrated in Figure 3.2.
Initially, the sparse interconnection structure of the subsystems does not possess
any particular structure (left). Neglecting the three weakest interconnections by
choosing εw = εn = 0.21 and applying the Dulmage-Mendelsohn decomposition, it
becomes apparent that the overall system can be interpreted as an interconnection
of Nc = 4 hierarchically interconnected clusters, each of them enframed in red
(middle). Finally, the third and fourth cluster may be combined to obtain three
clusters, each containing two subsystems (right). Hence, the final clusters are given
by:

C1 = {3, 6}, C2 = {1, 5}, C3 = {2, 4}. (3.77)

Figure 3.2.: Initial interconnection structure of the plant (left), after DM decom-
position (middle), and after combining clusters C3 and C4 (right).
Black boxes denote strong interconnections, black dots denote ne-
glected interconnections, and the red squares indicate the clusters.

From the lower layer control design using the system P
′ without the weak inter-

connections, the following local control laws are obained:

C
↓1 : u1

k = −2.867x1
k +

[
0.714 −0.658

]
x5

k + v1
k, (3.78a)

C
↓2 : u2

k = 0.002x2
k − 0.078x4

k + v2
k, (3.78b)
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C
↓3 : u3

k =

⎡
⎣ 1.902 0.542

−0.121 −0.502

⎤
⎦x3

k +

⎡
⎣−0.391 −0.231

−1.359 −0.980

⎤
⎦x6

k + v3
k, (3.78c)

C
↓4 : u4

k = −0.533x4
k + 0.080x2

k + v4
k, (3.78d)

C
↓5 : u5

k =
[
0.484 −0.293

]
x5

k + 0.438x1
k + v5

k, (3.78e)

C
↓6 : u6

k =
[
0.296 −0.001

]
x6

k +
[
1.930 0.346

]
x3

k + v6
k, (3.78f)

where vi
k are the inputs for the upper layer control laws. In this case, applying

the lower layer controllers C
↓i to the original interconnected system yields a stable

closed-loop system P
↓
cl. Hence, the hierarchical control scheme would be robust

against failures of communication links related to the upper control layer.
For performing SCT design on the upper control layer, the communication cost

function is parametrized by:

c̄↑com =

⎡
⎢⎢⎣
0 1 5

1 0 5

5 5 0

⎤
⎥⎥⎦ . (3.79)

Solving the SDP (3.51) with Δk = 3 then leads to the optimized upper layer
communication topology:

Σ̄↑ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

1 1 0 1 1 0

0 0 1 0 0 1

1 1 0 1 1 0

1 1 1 1 1 1

0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.80)

The upper layer control laws are given by:

C
↑1 : v1

sΔk = 0.382x1
sΔk − 0.442x2

sΔk +
[
−0.068 0.033

]
x3

sΔk − 0.013x4
sΔk . . .

+
[
−0.239 0.266

]
x5

sΔk −
[
0.106 0.021

]
x6

sΔk, (3.81a)

C
↑2 : v2

sΔk = −0.079x2
sΔk + 0.102x1

sΔk + 0.036x4
sΔk +

[
−0.110 0.133

]
x5

sΔk,

(3.81b)

C
↑3 : v3

sΔk =

⎡
⎣ 0.065 −0.096

−0.030 0.036

⎤
⎦x3

sΔk +

⎡
⎣ 0.004 −0.006

−0.012 0.024

⎤
⎦x6

sΔk, (3.81c)

C
↑4 : v4

sΔk = 0.072x4
sΔk − 0.096x1

sΔk − 0.018x2
sΔk +

[
−0.116 0.124

]
x5

sΔk, (3.81d)

C
↑5 : v5

sΔk =
[
−0.023 0.005

]
x5

sΔk + 0.025x1
sΔk + 0.004x2

sΔk . . .

−
[
0.085 0.149

]
x3

sΔk − 0.178x4
sΔk −

[
0.004 0.007

]
x6

sΔk, (3.81e)

C
↑6 : v6

sΔk =
[
0.017 −0.004

]
x6

sΔk +
[
−0.018 0.014

]
x3

sΔk. (3.81f)
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Notably, many coefficients of the upper layer control laws are considerably smaller
in magnitude than the coefficients of the lower layer control laws. Hence, as ex-
pected, this indicates that the influence of the neglected interconnections is small,
such that only slight corrective actions are required on the upper layer.

Table 3.1.: Performance comparison for different controller structures with J ac-
cording to Case 2.1 and Δk = 3.

Topology
Σ̄↑ n/a n/a

⎡
⎢⎢⎣
1 0 0

1 1 1

0 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1

1 1 1

1 1 1

⎤
⎥⎥⎦

Input vk n/a n/a K↑xsΔk K↑
LQxsΔk

Topology
Σ̄↓

⎡
⎢⎢⎣
1 1 1

1 1 1

1 1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦ n/a

Input uk K↓
LQxk K↓xk K↓xk + vk vk

J 251.72 296.62 280.53 475.06

J↑
com n/a n/a 11 22

Table 3.1 compares the performance of the closed-loop system resulting from P

with different types of controllers. The reference values J = 251.72 and J = 475.06
are obtained with the (centralized) linear quadratic regulators uk = K↓

LQxk and

vk = K↑
LQxsΔk for the lower and for the upper control layer, respectively. Imple-

menting just the lower layer controller uk = K↓xk of the hierarchical two-layer
control scheme yields a performance of J = 296.62. By adding the upper control
layer, the performance is improved to J = 280.53. Considering the additional com-
munication cost J↑

com = 11, the combined performance J + J↑
com is thus improved

from 296.62 to 291.53 by the upper control layer. Regarding the reference values,
it can be seen that the performance J is close to the performance of the central-
ized linear quadratic regulator uk = K↓

LQxk, while clearly outperforming an LQR
designed for the upper layer system.

Since E = I, it follows from Eq. (3.62) that the values of J stated in Table
3.1 can be alternatively interpreted in the sense of Case 2.2 as follows: Assuming
that x0 follows a standard normal distribution, i.e. x0 ∼ N (0, I), the mentioned
performance values correspond to E(J) for J according to Case 2.2. For details, the
reader is referred to Sec. 3.4.4.

Performing the hierarchical control design lasts about 19 seconds on an Intel Core-
i5 3320m with 16 GB of RAM. In contrast, using the design procedure presented
in [50] without hierarchies and clustering takes more than 5.5 hours on the same
machine, showing the significant savings in computational effort.
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3. Synchronous Hierarchical Control

3.7. Discussion

In this chapter, a hierarchical two-layer feedback control scheme for interconnected
linear time-invariant systems was presented. The two-layer control scheme can be
implemented in a distributed manner and provides a tradeoff between performance
and communication effort. This tradeoff depends on the outcome of an initial struc-
tural analysis which is performed prior to the control design, and can additionally
be parametrized by the weights of the upper layer communication cost function.

The main advantage of the proposed scheme regarding existing approaches to
simultaneous communication topology and control design is that the computational
complexity is significantly reduced. This is accomplished by reducing the number
of binary decisions which links to incorporate into the communication topology by
grouping the subsystems into clusters according to their interconnection strength
and structure. A hierarchical two-layer multi-rate control scheme is then employed
to deal with strong interconnections on a lower control layer, and to coordinate the
hierarchically interconnected groups of controlled subsystems on an upper control
layer with lower sampling frequency.

Classical hierarchical feedback control schemes either use the upper control layer
to compensate for subsystem interconnections [132], or result from the decompo-
sition of optimal control problems into subproblems and therefore correspond to
the centralized linear quadratic regulator [86]. In both cases, full communication
is required between all controllers in every time step. In contrast, in the hierarchi-
cal control scheme presented in this chapter, both layers are designed to cooperate
for minimizing a global performance index, and the upper control layer operates
with lower sampling frequency. In particular, due to the multi-rate scheme and the
underlying network topology optimization on the upper control layer, full communi-
cation between the controllers in any time-step is not required. However, numerical
results show that the overall performance is close to the performance of the linear
quadratic regulator.

The proposed clustering procedure is an effective means for decomposing the
interconnected system into strongly coupled groups of subsystems. However, there
are some aspects which may require further investigation. The first aspect is the
influence of the parameters εn and εw on the outcome of the hierarchical control
design procedure. Since no analytic solution of the overall control design problem
is available, the influence can only be characterized in a qualitative manner. In
general, increasing εw will lead to to a finer decomposition, i.e. more clusters are
obtained since an increasing number of interconnections is neglected for finding the
strongly connected components. In combination with a small value for εn, it gets
harder to synthesize the lower control layer, since many interconnections that have
been neglected for the clustering are contained in the lower layer model P̄

′. On
the other hand, a large value of εn typically leads to large deviations of P̄

′↓
cl and

P̄
↓
cl regarding performance and stability, requiring more intense corrective actions

from the upper control layer. In summary, the best overall performance can be
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expected for small values of εn and εw. A second aspect of the clustering procedure
is robustness with respect to parameter uncertainties in the matrices A and B. This
can be handeled by determining worst case interconnection measures, as proposed
in the third part of this thesis. Thirdly, one may scrutinize the suitability of the
proposed interconnection measure. As argued in the detailed discussion presented
in Appendix C, the advantages of the proposed measure are its quick calculation, its
applicability to unstable systems, and its superior performance compared to, e.g.,
system norms based interconnection measures.

From a control theoretic point of view, a further open question is whether the
assumption that

[
C D

]
has full column rank can be relaxed. Although the as-

sumption can always be satisfied by perturbing a given pair of matrices C and
D, the assumptions imposed for the classical LQR Problem are undoubtedly less
restrictive. However, relaxing the assumption is likely to result in additional con-
straints on the lower layer control gain K̄↓, which may be necessary to ensure that
the optimal control problem associated with the upper control layer has a solution
in the case of full communication.

75
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Control

In the previous chapter, it was shown that the combination of a decentralized lower
control layer and a distributed upper control layer acting on a coarser time-scale
yields a good and parametrizable balance between control performance versus re-
quired communication effort. Additionally, the time required to compute the op-
timized control law has been drastically reduced compared to related single-layer
approaches by grouping the subsystems on the lower layer into clusters.

In the synchronous two-layer control scheme, the distributed upper layer con-
trollers update their control inputs simultaneously at time instants k ∈ N0 with
k mod Δk = 0. From the point of view of the global communication network Gk,
this concept leads to periodic peaks in the network load. Clearly, such a load profile
is advantageous to keep the frequency of data exchange between the clusters small.
However, one can think of situations where it is desirable to avoid high peaks in the
number of exchanged messages per time step, and rather distribute the communi-
cation load equably over time. It is the aim of this chapter to address this problem
by establishing asynchronously operating upper layer controllers C

i
k.

The main idea pursued in the sequel is to design distributed upper layer controllers
which are updated sequentially in a periodic fashion. This way, the information
exchange between the upper layer controllers is equably distributed over time, and
the periodic peaks in the network traffic are reduced. It is shown that the synthesis
problem for the distributed upper layer controller can be formulated and solved in
the framework of periodic systems. As in the previous chapter, the performance
of the controlled system is measured by a global performance index J , and both
control layers are designed to cooperate for minimizing this performance measure.
Furthermore, a tradeoff between overall performance and communication cost is
sought for the upper control layer by employing tools from SCT design.

This chapter is organized as follows. First, the problem setup and the underlying
assumptions are stated in Section 4.1. Subsequently, Section 4.2 provides a brief
review of the framework of periodic systems, and summarizes some relevant results.
Section 4.3 first shows the construction of a periodic model for designing the asyn-
chronous controllers, and then presents a tractable algorithm for the actual control
design. Details regarding the implementation of the control algorithm are discussed
in Section 4.4. Finally, a numerical example is presented in Section 4.5, and the
chapter is concluded in Section 4.6.
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4. Asynchronous Hierarchical Control

4.1. Problem Setup

The approach presented in this chapter directly builts on the results of Chapter 3,
and presents an alternative approach for the design of an upper control layer. That
is, an interconnection of Ns discrete-time linear time-invariant systems:

P
i :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi
k+1 = Ai,ix

i
k + Bi,iu

i
k + Ei,iw

i
k +

∑
j∈N i

s

Ai,jx
j
k + Bi,ju

j
k + Ei,jw

j
k,

zi
k = Ci,ix

i
k + Di,iu

i
k +

∑
j∈N i

s

Ci,jx
j
k + Di,ju

j
k,

(4.1)

is taken as starting point for the asynchronous hierarchical control design. As
before, xi

k ∈ Xi ⊆ Rni
x denotes the local state vector, ui

k ∈ Ui ⊆ Rni
u is the local

input vector, wi
k ∈ Wi ⊆ Rni

w is a local disturbance vector, and zi
k ∈ Rni

z defines
a local controlled variable. In contrast to Chapter 3, the assumptions imposed for
the global interconnected system P are relaxed:

Assumption 4.1. The global interconnected system P described by the matrices
A = [Ai,j], B = [Bi,j], C = [Ci,j], and D = [Di,j] has the following properties:

(a) The pair (A, B) is stabilizable.

(b) The matrix D has full column rank.

(c) The system P has no invariant zeros on the unit circle, or equivalently:

rank

⎡
⎣A− λInx B

C D

⎤
⎦ = nx + nu ∀λ ∈ C1. (4.2)

�

For what follows, it is assumed that the clustering procedure of Sec. 3.2 has
already been applied to the interconnected system P, and that a lower control
layer ūk = K̄↓x̄k has been designed according to Section 3.3. That is, the overall
system is given by the lower layer closed-loop system:

P̄
↓
cl :

⎧⎨
⎩x̄k+1 = (Ā + B̄K̄↓)x̄k + B̄v̄k + Ēw̄k = Ā↓

clx̄k + B̄v̄k + Ēw̄k,

z̄k = (C̄ + D̄K̄↓)x̄k + D̄v̄k = C̄↓
clx̄k + D̄v̄k,

(4.3)

where v̄k is the external input to be chosen by the upper control layer. Similar to
Section 3.4, the goal is to design an upper control layer which takes into account
the adverse effects of the interconnections which were neglected for designing the
lower control layer. As before, the upper control layer is supposed to operate on a
coarser time-scale, such that the upper layer controllers C

↑i are updated every Δk-
th time-step of the lower-layer time-domain T↓. However, the upper control layer
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4.1. Problem Setup

should now operate asynchronously, meaning that the controllers C̄
p↑ are updated

periodically in a sequential manner.
Fig. 4.1 shows the difference of synchronous and asynchronous updates of the

upper layer controllers from the viewpoint of the lower layer time-domain T↓. For
simplicity, it is assumed here that Δk = 2, and that the system consists of two
clusters C1 = {1} and C2 = {2}. Consequently, C̄

↑1 = C
↑1 and C̄

↑2 = C
↑2, i.e.

each cluster controller consists of a single subsystem controller on the upper layer.
Furthermore, the lower control layer and the physical subsystems are intentionally
omitted. In the synchronous scheme shown at the top, both upper layer controllers
C

↑i are updated synchronously at time instants k = sΔk, s ∈ N0. Hence, two
messages must be transmitted via the communication network at times k = sΔk,
while no messages are transmitted at times k = sΔk + 1. In the asynchronous
scheme, shown at the bottom, the first controller C

↑1 is updated at time instants
k = sΔk, while the second controller C

↑2 is updated at time instants k = sΔk + 1.
Hence, only one message per time step must be exchanged. In both schemes, the
control input is held constant if no update occurs.

Regarding the sequential update of the upper layer controllers C̄
↑p, the following

assumptions are imposed:

Assumption 4.2. For the updates of the upper control layer, the following holds:

(a) Each cluster controller C̄
↑p is updated separately and exactly once per period.

(b) The length Nϕ of a period equals the number of clusters, i.e. Nϕ = Nc. �

As a consequence, each cluster controller C̄
↑p is updated every Δk = Nc time-

steps. Note that the above assumptions are introduced to ease the presentation of
the asynchronous hierarchical control scheme, and to enable a reasonable compari-
son with the synchronous scheme. More general asynchronous timing schemes, like
multiple updates of several cluster controllers per period, the update of multiple
cluster controllers per time-step, or different period lengths Nϕ 
= Nc, can easily be
considered in the presented framework.

In the light of Assumption 4.2, the update sequence of the cluster controllers can
be encoded by assigning an offset time k̄p

0 ∈ N0 to each cluster such that:⋃
p∈Nc

k̄p
0 = {0, 1, . . . , Nc − 1}. (4.4)

The upper layer controllers then take the following general form:

C
↑i : vi

k =

⎧⎨
⎩
∑

j∈Cp(i) K↑
i,jx

j
k +

∑
q∈R̄↑p(i)

∑
j∈Cq K↑

i,jx
j
k if ∃s ∈ N0 | k = k̄p

0 + sΔk,

vi
k−1 otherwise. (4.5)

Compared with the synchronous scheme, the asynchronous scheme has two main
advantages: Firstly, the periodic peak load of the communication network is dis-
tributed over time, resulting in lower requirements for the communication network.
Secondly, the upper layer can now immediately react to possible disturbances.
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Figure 4.1.: Spatio-temporal information flow on the upper control layer in the
synchronous scheme (top), and in the asynchronous scheme (bottom)
for the exemplary case of Nc = Δk = 2 clusters. The lower control
layer and the physical subsystems are intentionally omitted.

In the sequel, it will be shown that the framework of periodic systems is well suited
for modeling and designing the asynchronous upper layer controllers. Similar to the
synchronous scheme, a particular goal is that both control layers should cooperate
for minimizing the global performance index J . Additionally, the concepts of SCT
design should be employed for designing the upper control layer.

4.2. Fundamentals of Periodic Systems

The purpose of this chapter is twofold: One aim is to introduce the basic notation
used in the context of periodic systems. Additionally, a brief overview over the basic
properties of this system class is provided. In particular, common stability notions
and a generalization of the H2-norm are addressed.
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In discrete-time, a periodic system is equivalent to a discrete-time LTI system
with periodically time-varying system matrices1. The particular time-dependency
of the system matrices is typically modeled by an Nϕ-periodic switching function:

ϕ : N0 → INϕ, (4.6)

which selects the valid system dynamics at each time-instant k ∈ N0. Accordingly,
the state-space parameters of a periodic system are given by the Nϕ-sequences of ma-
trices A ∈ HNϕ(Rnx×nx), B ∈ HNϕ(Rnx×nu), C ∈ HNϕ(Rnz×nx), D ∈ HNϕ(Rnz×nu),
and E ∈ HNϕ(Rnx×nw). Recalling that A = (A[1], . . . , A[Nϕ]), a periodic system
can now be defined as:

Pϕ :

⎧⎨
⎩xk+1 = A[ϕk]xk + B[ϕk]uk + E[ϕk]wk,

zk = C[ϕk]xk + D[ϕk]uk,
(4.7)

with the established interpretations of the signals xk ∈ X ⊆ R
nx, uk ∈ U ⊆ R

nu,
wk ∈W ⊆ Rnw, and zk ∈ Rnz.

The fundamental properties of periodic systems are well understood, see for in-
stance [20], [21], and [130], among many others. Approaches for controller synthesis
consider, e.g., the pure stabilization problem [34], robust analysis and control of lin-
ear periodic systems with polytopic uncertainty [11], as well as H2-control [137] and
robust variants hereof for periodic systems with polytopic uncertainty [46]. A popu-
lar class of controllers used for periodic systems are so-called memory state-feedback
controllers. These controllers compute the current control input based on a linear
combination of the current state and a fixed number of past states. Approaches
to the design of memory controllers for periodic systems consider, e.g., linear dy-
namics with polytopic uncertainty [41], where an a-priori bound on the H2-norm
can be additionally guaranteed [129]. In the domain of networked control systems,
periodic systems are used, for instance, for designing decentralized observer-based
controllers which communicate via a shared communication network [18].

The state-transition matrix ΦA[ϕk1, ϕk0 ] ∈ Rnx×nx and the monodromy matrix
ΨA[ϕk] ∈ Rnx×nx associated with a periodic system Pϕ are frequently used for the
analysis of the inherent properties of these systems. These matrices are defined as
follows:

ΦA[ϕk1 , ϕk0 ] :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A[ϕk1−1] · · ·A[ϕk0 ] if k1 > k0,

Inx if k1 = k0,

0nx×nx if k1 < k0,

(4.8)

ΨA[ϕk] := A[ϕk+Nϕ−1] · · ·A[ϕk+1]A[ϕk] = ΦA[ϕk+Nϕ , ϕk]. (4.9)

It is immediate that ΨA[ϕk] is an Nϕ-periodic matrix. However, the characteristic
polynomial of ΨA[ϕk], and therefore its eigenvalues and spectral radius, do not

1Since only discrete-time periodic systems are considered in this thesis, these are from now on
generally referred to as periodic systems.
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depend on the value of the switching function ϕk, and are therefore time-invariant
[21, p.82]. This property is of particular importance when it comes to the stability
analysis of periodic systems, as will be seen later.

For a more general definition of periodic systems, the dimensions of the vectors
xk, uk, wk, and zk may be considered as periodically time-varying, e.g. nx = nx[ϕk].
In this context, the core spectrum of the monodromy matrix ΨA[ϕk] ∈ Rnx[ϕk]×nx[ϕk]

is defined as follows:

Definition 4.1 (cf. [21, Chap. 3]). Consider the monodromy matrix ΨA[ϕk] as
defined in Eq. (4.9), and suppose that the dimension of the state vector nx[ϕk] is
periodically time-varying. Denote the minimal dimension of the state vector and
the corresponding minimizer by:

nx,min := min
ϕ∈INϕ

nx[ϕ], ϕmin := arg min
ϕ∈INϕ

nx[ϕ], (4.10)

respectively. Then, the core spectrum of ΨA[ϕk] is defined as:

Λcs(ΨA) := Λ(ΨA[ϕmin]). (4.11)

�

For the core spectrum of ΨA[ϕk], the following result holds:

Lemma 4.1 (cf. [21, Chap. 3]). For all ϕ ∈ INϕ, the core spectrum Λcs(ΨA) is a
subset of or equal to the set of eigenvalues of the monodromy matrix ΨA[ϕk]:

Λcs(ΨA) ⊆ Λ(ΨA[ϕ]) ∀ϕ ∈ INϕ. (4.12)

Furthermore, for all ϕ ∈ INϕ \ {ϕmin}, the remaining nx[ϕ]− nx,min eigenvalues are
located at the origin of the complex plane, such that:

Λ(ΨA[ϕ]) = Λcs(ΨA) ∪ {0, . . . , 0} ∀ϕ ∈ INϕ. (4.13)

�

A proof can be found in Chapters 3.1 to 3.3 of [21].
Next, the stability of periodic systems is considered by the help of the previous

definitions. First, introduce the periodically time-varying state-feedback:

uk = K[ϕk]xk, (4.14)

with K[ϕ] ∈ R
nu[ϕ]×nx[ϕ], and define the closed-loop periodic system:

Pϕ,cl :

⎧⎨
⎩xk+1 = (A[ϕk] + B[ϕk]K[ϕk])xk + E[ϕk]wk = Acl[ϕk]xk + E[ϕk]wk,

zk = (C[ϕk] + D[ϕk]K[ϕk])xk = Ccl[ϕk]xk.

(4.15)

Regarding the stability of the autonomous closed-loop periodic system with wk = 0
for all k ∈ N0, the following result holds.
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Theorem 4.1 (cf. [21, Chap. 3]). For the periodic system Pϕ,cl, let wk = 0 for all
k ∈ N0. Then, the following statements are equivalent:

(a) The periodic system Pϕ,cl is exponentially stable.

(b) There exists an Nϕ-sequence of positive semi-definite matrices V [ϕ] ∈ S
nx[ϕ]
�0 ,

such that:

V [ϕl]− (A[ϕl])
TV [ϕl+1]A[ϕl] � 0, (4.16)

for all l ∈ {k, k + 1, . . . , k + Nϕ − 1}, with k ∈ N0 arbitrary.

(c) There exist constants α ∈ R>1 and β ∈ (0, 1) such that:

‖xk‖2
2 ≤ αβk‖x0‖2

2 ∀ k ∈ N0, x0 ∈ X. (4.17)

(d) The core spectrum of the monodromy matrix ΨA[·] is in the open unit disc.

(e) The point xeq = 0 is the only globally asymptotically stable equilibrium point for
the periodic system Pϕ,cl. �

Equivalence of (a), (b), and (d) follows from [21, p.91] and Proposition 3.5 in [21,
p.99]. Additionally, exponential stability of xk as stated in (a) is equivalent to the
existence of an exponentially decaying upper bound as given in (c), see for instance
[40, p.359]. Equivalence of (e) and (c) can be deduced by the help of Theorem 2.1.

In the case that wk ∈W is arbitrary, a notion of bounded-input/bounded-output
(BIBO) stability can be established for periodic systems similar to Definition 2.8.
The following result holds:

Theorem 4.2. The periodic system Pϕ,cl with input wk ∈W is BIBO stable if any
of the statements in Theorem 4.1 holds. The converse does not generally hold. �

The above result follows from [21, Chap. 5.5].
Finally, the H2-norm can be generalized to periodic systems as follows.

Definition 4.2 (cf. [137]). Let zk,l ∈ Rnz[ϕk]×nw[ϕk] denote the impulse response
matrix of the perodic system Pϕ,cl at time k, with the unit pulse applied to the
disturbance input w being shifted by l time-steps to the right. That is, the (i, j)-th
entry of zk,l is given by the i-th component of zk ∈ Rnz[ϕk] for wl = ej, wk = 0 ∀ k ∈
N0 \ {l}, and x0 = 0. Then, the generalized H2-norm of Pϕ,cl is defined as2:

‖Pϕ,cl‖H2 :=

√√√√√ 1

Nϕ

Nϕ−1∑
l=0

∞∑
k=0

tr(zT

k,lzk,l). (4.18)

�

2 In literature, the generalized H2-norm for periodic systems is sometimes defined without the
factor 1/Nϕ, see for instance [21, p.242]. However, the results presented in this thesis generally
assume the definition stated in Eq. (4.18).
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Similar to LTI Systems and to jump Markov linear systems, the H2-norm of Pϕ,cl

is related to the performance index J as follows.

Lemma 4.2. Consider a stable periodic system Pϕ,cl under the conditions described
in Case 2.1 (see page 27). Then, the squared H2-norm and the performance index
J as defined in Eq. 2.20 are equal:

‖Pϕ,cl‖2
H2

= lim
ke→∞

E

⎛
⎝ 1

ke

ke−1∑
k=0

zT

k zk

⎞
⎠ . (4.19)

�

A proof can be found in [21, p.243f].

Lemma 4.3. Consider a stable periodic system Pϕ,cl under the conditions described
in Case 2.2 (see page 28), and set:

E[ϕNϕ−1] :=
√

Nϕ x0 ∈ R
nx[ϕ0], E[ϕl] := 0nx[ϕl+1]×1 ∀ l ∈ {0, . . . , Nϕ − 2}.

(4.20)

Then, the squared H2-norm and the performance index J as defined in Eq. 2.23 are
equal:

‖Pϕ,cl‖2
H2

=
∞∑

k=0

zT

k zk. (4.21)

�

The proof can be found in Appendix D.1 on page 177.

4.3. Upper Layer Control Design

In this section, it is shown how the design problem for the cooperative asynchronous
upper layer controller can be formulated and solved in the framework of periodic
systems.

4.3.1. Modeling as Periodic System

The basic idea for designing asynchronous upper layer controllers is to model the
closed-loop lower layer system P̄

↓
cl from the egocentric viewpoint of the ϕ-th clus-

ter Cϕ at time-instant k ∈ N0. A periodic sequence of these egocentric models,
comprising the periodic system P̄

↑
ϕ, is well-suited to represent the desired situation

of local controllers being updated sequentially. The current modeling viewpoint is
selected by the Nc-periodic switching function:

ϕk : T↓ → INc, ϕk+Nc = ϕk ∀ k ∈ N0, (4.22)
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determined by the choice of the variables k̄p
0 from Eq. (4.4). Due to the Nc-

periodicity, the switching sequence is uniquely defined by ϕ0 and by the ordered
set:

Φ := {ϕk+Nc , . . . , ϕk+2, ϕk+1}, (4.23)

for some k ∈ N0.
The input signal of each cluster controller C̄

p is to be held constant for Δk = Nc

time-steps. Hence, the local control inputs v̄q
k of the Nc − 1 cluster controllers C̄

q,
q ∈ Nc \ {ϕk} which are not updated at time instant k have to be available in each
egocentric model to fully specify the behavior of the overall system. Consequently,
the mentioned control inputs have to become part of the extended state vector x̄↑

k

of the periodic system:

P̄
↑
ϕ :

⎧⎨
⎩x̄↑

k+1 = Ā↑[ϕk]x̄↑
k + B̄↑[ϕk]v̄↑

k + Ē↑[ϕk]w̄k,

z̄k = C̄↑[ϕk]x̄↑
k + D̄↑[ϕk]v̄↑

k.
(4.24)

In the sequel, it will be explained in detail how the vectors and matrices of P̄
↑
ϕ are

constructed from the variables describing P̄
↓
cl. Since the purpose of P̄

↑
ϕ is to model

the controlled lower layer system P̄
↓
cl from the viewpoint of the ϕ-th cluster, its

input signal is selected to be the input signal associated with cluster ϕ, i.e.:

v̄↑
k := v̄ϕk

k . (4.25)

The periodically time-varying dimension of the signal v̄↑
k is denoted by n̄↑

v[ϕk] := n̄ϕk
v .

For what follows, it will be convenient to define the ordered sets:

Φ′[ϕk] := {ϕk−1, ϕk−2, . . . , ϕk−Nc+1}, (4.26)

Φ′′[ϕk] := {ϕk−1, ϕk−2, . . . , ϕk−Nc+2}, (4.27)

corresponding to the (Nc−1) and (Nc−2) previously updated clusters with respect
to ϕk, respectively. In this context, consider the cumulated input dimensions:

n̄↑′
v [ϕk] :=

∑
ϕ ∈ Φ′[ϕk]

n̄↑
v[ϕ], n̄↑′′

v [ϕk] :=
∑

ϕ ∈ Φ′′[ϕk]
n̄↑

v[ϕ]. (4.28)

In general, it may apply that n̄↑
v[ϕk1] 
= n̄↑

v[ϕk2] for some ϕk1 
= ϕk2 . In turn, this
means that the extended state vector:

x̄↑
k := (x̄k; v̄↑

k−1; . . . ; v̄↑
k−Nc+1) (4.29)

has time-varying dimension n̄↑
x[ϕk] = n̄x + n̄↑′

v [ϕk].

The extended state vector x̄↑
k consists of N↑

x := 2Nc−1 component vectors that can
be associated with the Nc clusters. The assignment of these components will play
a key-role when it comes to designing controllers that are structurally compatible
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with P̄
↑
ϕ, as will be explained later. In the sequel, the components v̄↑

k−l of x̄↑
k are

referred to as memory states. At time k, they comprise the virtual quantity:

v̄↑′
k := (v̄↑

k−1; . . . ; v̄↑
k−Nc+1). (4.30)

It is worth noting that v̄↑′
0 provides an additional degree of freedom when it comes

to the initialization of the asynchronous control scheme. While the component x̄0

of x̄↑
0 is uniquely determined by the initial state of the interconnected system P,

the component v̄↑′
k is not. This point will be discussed in more detail in Sec. 4.4.

Before stating the system matrices of P̄
↑
ϕ, a compact colon notation for addressing

full block-rows or full block-columns of a partitioned matrix A = [Ai,j] is introduced.
Let A be comprised of N -by-N block-matrices. Then, for some l ∈ IN , define:

Al,: := [Ai,j]i=l,j∈IN
=
[
Al,1 Al,2 . . . Al,N

]
, A:,l := [Ai,j]i∈IN ,j=l. (4.31)

Furthermore, for an ordered set C ⊆ IN , define:

AC,: := [Ai,j]i∈C,j∈IN
, A:,C := [Ai,j]i∈IN ,j∈C. (4.32)

With the above notation, for x̄↑
k as defined in (4.29), the system and input matrix

of P̄
↑
ϕ are given by:

Ā↑[ϕk] :=

⎡
⎣Ā↓

cl B̄:,Φ′[ϕk]

0 H̄A[ϕk]

⎤
⎦ ∈ R

n̄
↑
x[ϕk+1]×n̄

↑
x[ϕk], (4.33)

B̄↑[ϕk] :=

⎡
⎣ B̄:,ϕk

H̄B[ϕk]

⎤
⎦ ∈ R

n̄
↑
x[ϕk+1]×n̄

↑
v[ϕk], (4.34)

respectively. The auxiliary matrices H̄A[ϕk] and H̄B[ϕk] are defined as:

H̄A[ϕk] :=

⎡
⎣ 0 0

I
n̄

↑′′
v [ϕk] 0

⎤
⎦ ∈ B

n̄
↑′
v [ϕk+1]×n̄

↑′
v [ϕk], (4.35a)

H̄B[ϕk] :=

⎡
⎣In̄

↑
v[ϕk]

0

⎤
⎦ ∈ B

n̄
↑′
v [ϕk+1]×n̄

↑
v[ϕk]. (4.35b)

The pair (Ā↑[ϕk], B̄↑[ϕk]) is constructed such that at time k, only the updated
control input of the ϕk-th cluster controller C̄

ϕk is applied to the plant. At the
same time, a copy of the updated control input v̄↑

k is stored in the corresponding

memory state. The remaining memory states v̄↑
k−1 to v̄↑

k−Nc+1 contain the control
inputs of the (Nc − 1) cluster controllers which are not updated. The influence
of these control inputs on the plant is considered by the upper right block of the
system matrix Ā↑[·], which consists of the respective columns of the input matrix
B̄. The matrix H̄A[ϕk] causes the memory states to be shifted downwards by one

position in the extended state vector x̄↑
k.
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The influence of the disturbance input w̄k on the state equation is described by:

Ē↑[ϕk] :=

⎡
⎣ Ē

0
n̄

↑′
v [ϕk+1]×n̄w

⎤
⎦ ∈ R

n̄
↑
x[ϕk+1]×n̄w, (4.36)

such that wk has no direct influence on the memory states.
Finally, the equivalent description of the controlled variable z̄k in terms of the

state and input of the periodic system P̄
↑
ϕ is parametrized by:

C̄↑[ϕk] :=
[
C̄↓

cl D̄:,Φ′[ϕk]

]
, D̄↑[ϕk] := D̄:,ϕk

, (4.37)

which directly follows from the considerations made so far.
Recall that for the original interconnected system (4.1), Assumption 4.1 guaran-

tees that a unique centralized stabilizing state-feedback exists which minimizes the
performance index J . The following result states that this important property is
always preserved when constructing the periodic system P̄

↑
ϕ.

Lemma 4.4. Suppose that Assumption 4.1 holds. Then, the periodic system P̄
↑
ϕ as

defined in (4.24) has the following properties:

(a) The periodic system P̄
↑
ϕ is stabilizable.

(b) The matrix D̄↑[ϕ] has full column rank for all ϕ ∈ Nc.

(c) The periodic system P̄
↑
ϕ does not have invariant zeros on the unit circle.

Properties (a) to (c) ensure the existence of a unique stabilizing Nc-periodic state-

feedback control law v̄↑
k = K̄↑[ϕk]x̄↑

k for P̄
↑
ϕ, which minimizes the performance index

J (see [21, Prop. 13.8]). �

The proof of Lemma 4.4 can be found in Appendix D.2.
Summed up, the periodic system P̄

↑
ϕ is an equivalent description of the con-

trolled lower layer system P̄
↓
cl, with the asynchronous operation of the upper layer

controllers with sampling time Δk = Nc being already incorporated into the model.
In particular, the modeling viewpoint changes periodically according to the switch-
ing function ϕk. This function determines which cluster controller C̄

↑ϕk is being
updated at time k.

4.3.2. Distributed Control Design

The next step is to design an appropriate controller for P̄
↑
ϕ. Since the goal is to

design a distributed state-feedback control law for each cluster ϕ ∈ Nc, the sought
control law must have the form:

v̄↑
k = K̄↑[ϕk]x̄↑

k =
Nc∑
q=1

K̄↑
1,q[ϕk] x̄q

k +
Nc−1∑
l=1

K̄↑
1,Nc+l[ϕk] v̄

ϕk−l

k . (4.38)
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Here, [K̄1,p[ϕk]] = K̄[ϕk] ∈ Rn̄
↑
v[ϕk]×n̄

↑
x[ϕk] is a periodic gain-matrix, determining the

input for cluster ϕk as a function of the cluster states x̄p
k and the memory states v̄ϕ

k ,
ϕ ∈ Φ′[ϕk] at time k.

The structure of the feedback control law (4.38) reveals another particularity
of the asynchronous scheme: compared with the synchronous scheme, the upper
layer controllers C̄

p may not only access the state information x̄q
k measured and

transmitted by other controllers C̄
q, but may also access their current control inputs

v̄q
k. These (Nc − 1) additional sources of information can be modeled as additional

nodes in the upper layer communication graph Ḡ
↑, which can only send but not

receive information. Thus, the corresponding rectangular adjacency matrix Σ̄↑ =
[σ̄↑

p,q] is of dimension Nc × N↑
x . For q ≤ Nc, similar to the synchronous scheme,

σ̄↑
p,q ∈ B encodes if controller C̄

p has access to the state x̄q
k measured by controller

C̄
q. Likewise, for q > Nc, and with p = ϕk, σ̄↑

p,q encodes if v̄
ϕk−q+Nc

k is accessible by

C̄
p or not.
In order to keep the network structure consistent, the variables σ̄↑

p,q with q > Nc

corresponding to the memory states can be handled in two different ways. The first
way is to grant C̄

p access to the memory state of C̄
q if and only if it has access to

the state vector of C̄
q. This leads to the constraint:

σ̄↑
ϕk,q = σ̄↑

ϕk,ϕk−q+Nc
∀ϕk ∈ Nc, q ∈ {Nc + 1, . . . , N↑

x}. (4.39)

A second variant is to prohibit the exchange of the memory states in general:

σ̄↑
p,q = 0 ∀ p ∈ Nc, q ∈ {Nc + 1, . . . , N↑

x}. (4.40)

In both cases, the matrix Σ̄↑ has ((Nc)
2 − Nc) degrees of freedom, as in the syn-

chronous scheme. The corresponding set Σ̄↑ of admissible communication topologies
can be formed in a similar manner by using the above relations. In general, using
(4.39) will result in a better closed-loop performance than using (4.40), what is
due to the additional information that is being exchanged. However, there exists a
class of network topologies for which both approaches yield the same performance.
Characterizing these topologies by the content of an exchanged message leads to
the following corollary:

Corollary 4.1. Let G
↑ = (Nc, E↑) describe an upper-layer communication graph,

and denote by P↑
p,q the set of all paths in G

↑ from node q ∈ Nc to node p ∈ Nc \{q}.
Assume that for all P↑

p,q 
= ∅, there exists a path in P↑
p,q with length one. Then,

the exchange of the memory states via G
↑ does not provide additional information

compared to the information contained in the exchanged state vectors. �

The result directly follows from analyzing the graph G
↑ with respect to the in-

formation contained in the memory states according to the upper-layer control law
(4.38). Whenever (4.39) and (4.40) yield the same global performance, (4.40) should
be the first choice, since the size of the transmitted messages is smaller than by using
(4.39).
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Periodic state-feedback control laws for periodic systems, which are optimized
with respect to a quadratic performance index, are typically obtained by the help
of periodic Riccati equations [21] or semidefinite programs (SDP) [46] [137]. Since
the control law should respect the constraints imposed by the communication graph
G

↑, an SDP-formulation is used in the sequel. This allows to adopt the sufficient
conditions for imposing the desired controller structure developed in [50]. In the
sequel, the closed-loop system resulting from P̄

↑
ϕ with the periodic state-feedback

control law (4.38) is denoted by:

P̄
↑
ϕ,cl :

⎧⎨
⎩x̄k+1 = (Ā↑[ϕk] + B̄↑[ϕk]K̄↑[ϕk])x̄↑

k + Ē↑[ϕk] = Ā↑
cl[ϕk]x̄↑

k + Ē↑[ϕk]w̄k,

z̄k = C̄↑[ϕk] + D̄↑[ϕk]K̄↑[ϕk] = C̄↑
cl[ϕk]x̄↑

k.

(4.41)

A periodic control gain matrix K̄↑[ϕk] with the desired specifications can be deter-
mined by the help of the following theorem.

Theorem 4.3. Suppose that the matrices Z[ϕl] ∈ S
n̄w
�0, X[ϕl] ∈ S

n̄
↑
x[ϕl]

�0 , G[ϕl] ∈
Rn̄

↑
x[ϕl]×n̄

↑
x[ϕl], L[ϕl] ∈ Rn̄

↑
v[ϕl]×n̄

↑
x[ϕl], and Σ̄↑ ∈ BNc×N

↑
x with l ∈ Nc are a solution of

the optimization problem:

min
Z[ϕ],X[ϕ],G[ϕ],L[ϕ],Σ̄↑

1

Nc

Nc∑
l=1

tr(Z[ϕl]) + J↑com subject to: (4.42a)

⎡
⎢⎢⎣
G[ϕl] + (G[ϕl])

T − X[ϕl] � �

Ā↑[ϕl]G[ϕl] + B̄↑[ϕl]L[ϕl] X[ϕl+1] �

C̄↑[ϕl]G[ϕl] + D̄↑[ϕl]L[ϕl] 0 I

⎤
⎥⎥⎦ � 0 ∀ l, (4.42b)

⎡
⎣ Z[ϕl] �

Ē↑[ϕl] X[ϕl+1]

⎤
⎦ � 0 ∀ l, (4.42c)

Z[ϕl] = (Z[ϕl])
T ∀ l, (4.42d)

X[ϕl] = (X[ϕl])
T � 0 ∀ l, (4.42e)

−Mσ̄↑
ϕl,q

≤ L1,q[ϕl] ≤ Mσ̄↑
ϕl,q

∀ l, q, (4.42f)

−Mσ̄↑
ϕl,q

≤ Gϕl,q[ϕl] ≤ Mσ̄↑
ϕl,q

∀ l, q, (4.42g)

−M(σ̄↑
ϕl,q
− σ̄↑

ϕl,p
+ 1) ≤ Gp,q[ϕl] ≤ M(σ̄↑

ϕl,q
− σ̄↑

ϕl,p
+ 1) ∀ l, p, q, (4.42h)

Σ̄↑ ∈ Σ̄↑, (4.42i)

Eq. (4.39) or Eq. (4.40),

where p ∈ Nc, q ∈ I
N

↑
x
, and M ∈ R

•×•
>0 denotes a matrix of suitable dimensions

with entries Mi,j > max{‖G‖1,∞, ‖L‖1,∞}. Let K̄↑[ϕk] := L[ϕk](G[ϕk])−1. Then,
the following assertions hold:

(a) The periodic system P̄
↑
ϕ,cl with w̄k = 0 for all k ∈ N0 is exponentially stable.

89



4. Asynchronous Hierarchical Control

(b) The periodic system P̄
↑
ϕ,cl with input w̄k is BIBO stable.

(c) For J as defined in Case 2.1, the value of J + J↑com is upper-bounded by the
objective function (4.42a).

(d) For J as defined in Case 2.2, and by setting:

Ē↑[ϕNc−1] =

⎡
⎣x̄0

v̄↑′
0

⎤
⎦ , Ē↑[ϕ] = 0

n̄
↑
x[ϕ]×1 ∀ϕ ∈ Nc \ {ϕNc−1}, (4.43)

the value of J + J↑com is upper-bounded by the objective function (4.42a).

(e) The periodic control law v̄↑
k = K̄↑[ϕk]x̄↑

k respects the communication topology
specified by Σ̄↑. �

Proof. Assume that (4.42b) and (4.42e) are feasible, which implies that:

G[ϕ] + (G[ϕ])T � X[ϕ] � 0 ∀ϕ ∈ Nc, (4.44)

such that any feasible matrix G[ϕ] must be non-singular. Using:

G[ϕ] + (G[ϕ])T − X[ϕ] � (G[ϕ])T(X[ϕ])−1G[ϕ], (4.45)

e.g. from [33], and setting L[ϕ] = K̄↑[ϕ]G[ϕ], Eq. (4.42b) implies that:

⎡
⎢⎢⎣

(G[ϕl])
T(X[ϕl])

−1G[ϕl] � �

Ā↑[ϕl]G[ϕl] + B̄↑[ϕl]K̄
↑[ϕl]G[ϕl] X[ϕl+1] �

C̄↑[ϕl]G[ϕl] + D̄↑[ϕl]K̄
↑[ϕl]G[ϕl] 0 I

⎤
⎥⎥⎦ � 0. (4.46)

Factoring out the regular transformation matrix T [ϕ] = blkdiag(G[ϕ], I, I) on the
right-hand side and its transpose T [ϕ]T on the left-hand side, the above inequality
is equivalent to:

⎡
⎢⎢⎣

(X[ϕl])
−1 � �

Ā↑[ϕl] + B̄↑[ϕl]K̄
↑[ϕl] X[ϕl+1] �

C̄↑[ϕl] + D̄↑[ϕl]K̄
↑[ϕl] 0 I

⎤
⎥⎥⎦ � 0. (4.47)

Using the definitions ˇ̄V ↑
cl [ϕ] := (X[ϕ])−1 as well as Ā↑

cl[ϕ] and C̄↑
cl[ϕ] as defined in

(4.41), and applying the Schur-complement (Lemma 2.5) leads to:

ˇ̄V ↑
cl [ϕl]− (Ā↑

cl[ϕl])
T ˇ̄V ↑

cl [ϕl+1]Ā↑
cl[ϕl]− (C̄↑

cl[ϕl])
TC̄↑

cl[ϕl] � 0. (4.48)

With (C̄↑
cl[ϕ])TC̄↑

cl[ϕ] � 0 and ˇ̄V ↑
cl [ϕ] � 0 for all ϕ ∈ Nc due to constraint (4.42e),

exponential stability of P̄
↑
ϕ,cl follows from Theorem 4.1. Hence, assertion (a) holds,

and assertion (b) directly follows from Theorem 4.2.
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Denote by Φ̄↑
A,cl[ϕk1, ϕk0 ] ∈ Rn̄

↑
x[ϕk1

]×n̄
↑
x[ϕk0

] the state-transition matrix of the closed-

loop system P̄
↑
ϕ,cl, and consider (4.48) for l = k + 1. Multiplying by Ā↑

cl[ϕk] from
the right-hand side and by its transpose from the left-hand site leads to:

(•)T( ˇ̄V ↑
cl [ϕk+1])(Ā↑

cl[ϕk]) � (•)T( ˇ̄V ↑
cl [ϕk+2])(Φ̄↑

A,cl[ϕk+2, ϕk]) + (•)T(C̄↑
cl[ϕk+1]Ā↑

cl[ϕk]),

(4.49)

where the abbreviations (•)T(BA) := ATBTBA and (•)T(Q)(BA) := ATBTQBA
have been used. With (4.48) evaluated for l = k, it follows that:

ˇ̄V ↑
cl [ϕk] � (•)T( ˇ̄V ↑

cl [ϕk+2])(Φ̄↑
A,cl[ϕk+2, ϕk]) +

1∑
l=0

(•)T(C̄↑
cl[ϕk+l]Φ̄

↑
A,cl[ϕk+l, ϕk]). (4.50)

Repeating the previous two steps (Nc − 2) times, exploiting the Nc-periodicity of
ˇ̄V ↑

cl [ϕk], i.e. ˇ̄V ↑
cl [ϕk] = ˇ̄V ↑

cl [ϕk+Nc ], and using the relation Φ̄↑
A,cl[ϕk+Nc , ϕk] = Ψ̄↑

A,cl[ϕk]
leads to:

ˇ̄V ↑
cl [ϕk] � (•)T( ˇ̄V ↑

cl [ϕk])(Ψ̄↑
A,cl[ϕk]) +

Nc−1∑
l=0

(•)T(C̄↑
cl[ϕk+l]Φ̄

↑
A,cl[ϕk+l, ϕk]). (4.51)

Repeatedly multiplying (4.51) by Ψ̄↑
A,cl[ϕk] from the right-hand side and by its

transpose from the left-hand side, and by using (4.51), one obtains for any n ∈ N:

ˇ̄V ↑
cl [ϕk] � (•)T( ˇ̄V ↑

cl [ϕk])(Ψ̄↑
A,cl[ϕk])n +

nNc−1∑
l=0

(•)T(C̄↑
cl[ϕk+l]Φ̄

↑
A,cl[ϕk+l, ϕk]). (4.52)

Due to (4.48) and with Theorem 4.1 and Lemma 4.1, it follows that Ψ̄↑
A,cl[ϕ] is a

Schur matrix for all ϕ ∈ Nc. Hence, for n →∞ one obtains from (4.52):

ˇ̄V ↑
cl [ϕk] �

∞∑
l=0

(Φ̄↑
A,cl[ϕk+l, ϕk])T(C̄↑

cl[ϕk+l])
TC̄↑

cl[ϕk+l]Φ̄
↑
A,cl[ϕk+l, ϕk]. (4.53)

Renaming the indices and summing over a period leads to:

Nc−1∑
l=0

ˇ̄V ↑
cl [ϕl+1] �

Nc−1∑
l=0

∞∑
k=0

(•)T(C̄↑
cl[ϕk+l+1]Φ̄↑

A,cl[ϕk+l+1, ϕl+1]). (4.54)

With the definition of the H2-norm from (4.18) (for details, see also Appendix D.1),
it is now easy to see that:

1

Nc

Nc−1∑
l=0

(Ē↑[ϕl])
T ˇ̄V ↑

cl [ϕl+1]Ē↑[ϕl] � ‖P̄↑
ϕ,cl‖2

H2
. (4.55)

Taking the Schur-complement of LMI (4.42c) and exploiting that ˇ̄V ↑
cl [ϕ] � 0 for all

ϕ ∈ Nc yields:

Z[ϕl] � (Ē↑[ϕl])
T ˇ̄V ↑

cl [ϕl+1]Ē↑[ϕl] � 0, (4.56)
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such that Z[ϕ] � 0 for all ϕ ∈ Nc, and:

1

Nc

Nc∑
l=1

Z[ϕl] =
1

Nc

Nc−1∑
l=0

Z[ϕl] � ‖P̄↑
ϕ,cl‖2

H2
. (4.57)

Assertions (c) and (d) now follow with Lemmas 4.2 and 4.3, respectively.
Concerning assertion (e), recall the definition of Σ̄↑ on page 88, as well as the

structure of the periodic control law from Eq. (4.38). Apparently, the ϕ-th row

of Σ̄↑ dictates the structure of K̄↑[ϕ]. Since v̄↑
k = v̄ϕ

k , K̄↑[ϕ] comprises a single
block-row. Thus, for ensuring structural compatibility, it must hold that:

σ̄ϕ,q = 0 ⇒ K̄↑
1,q[ϕ] = 0

n̄
↑
v[ϕ]×n

↑q
x [ϕ] (4.58)

for all ϕ ∈ Nc and q ∈ I
N

↑
x
. This can be ensured by adopting the sufficient conditions

from [50, Eq. (30)], leading to constraints (4.42f) to (4.42h). The consistency of the
network topology is ensured either by constraint (4.39), or by constraint (4.40).

Regarding the complexity of problem (4.42), it can be observed that the number
of independent continuous optimization variables is:

Ncv =
Nc

2
((n̄w)2 + n̄w) +

Nc−1∑
l=0

((n̄↑
x[ϕl])

2 + n̄↑
x[ϕl] + n̄↑

v[ϕl]n̄
↑
x[ϕl]), (4.59)

whereas the number of independent binary variables is:

Nbv = (Nc)
2 −Nc. (4.60)

Hence, the computational time for solving the optimization problem strongly de-
pends on the result of the clustering procedure, and therefore on the inherent inter-
connection structure of the interconnected system P. With state-of-the-art hard-
ware and software, the proposed method is only tractable for medium scale prob-
lems. Numerical studies showed that dimensions of up to n̄↑

x ≈ 50 and Nc ≈ 5 . . . 8
can be handled satisfactorily. For reducing the computational complexity, heuristics
can be employed. For instance, in the light of Assumption 4.2, an optimized com-
munication topology for the synchronous two-layer control scheme will mostly be
a good (or even optimal) communication topology for the asynchronous two-layer
control scheme. The design of a synchronous upper control layer is less complex
than the design of an asynchronous upper control layer. Thus, the computational
complexity can be reduced by optimizing the communication topology for a syn-
chronous upper control layer, and designing an asynchronous upper control layer
for this fixed communication topology. Another option is to reduce the number
of continuous optimization variables by using a scaled value function instead of a
fully parametrized Lyapunov matrix (X[·])−1. This approach is described in detail
in Section 7.5.
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4.3.3. Optimal Switching Sequence

An aspect of the asynchronous control scheme that has not yet been investigated
closer is the selection of the update order of the cluster controllers, i.e. the se-
lection of the switching sequence Φ. It is a non-trivial problem to verify whether
Assumptions 4.2 guarantee invariance of the optimal value J∗ of the performance
index with respect to Φ or not. Clearly, from a control theoretic point of view, this
would be a favorable property, since it would eliminate the combinatorial problem
of finding an optimal switching sequence Φ∗. However, for the case of full commu-
nication on the upper control layer, it can be verified that this invariance property
does not hold. The sketch for obtaining this result is as follows: Assuming full com-
munication allows to employ Riccati equations for calculating the value function.
In particular, using a cyclic reformulation3 of the periodic system P̄

↑
ϕ, established

tools from the theory of LTI systems can be used. In the cyclic reformulation, the
choice of the switching sequence Φ influences the order in which the periodic system
matrices appear in its time-invariant counterparts. For the case Nϕ = Nc = 3,
it has been verified numerically that there exists no set of permutation matrices
such that the cyclic reformulations of the only two different switching sequences are
equivalent, even though they are comprised of the same set of submatrices. Hence,
the solutions of the corresponding Riccati equations, and therefore the optimal per-
formance, must be different, too. For details, the reader is referred to Sec. 6.3, 9.1,
and 13.5 of [21].

In the case of full communication on the upper control layer and with values
up to n̄↑

x ≈ 50 and Nc ≈ 5 . . . 8 (as in Sec. 4.3), the optimal switching sequence
can be determined by means of an exhaustive search. This is possible since the
control problem can be efficiently solved by employing Riccati equations for time-
invariant reformulations of P̄

↑
ϕ, as sketched above. Indeed, it can easily be verified

that solving a Riccati equation with Matlab takes less than 10 seconds for an LTI
system with up to nx = 400 states. The switching sequence determined by this
approach can then be adopted for the procedure presented in Sec. 4.3. However,
note that the optimal switching sequence for the case of full communication is not
necessarily optimal for an optimized communication topology, even though a good
performance can be expected.

4.4. Implementation

The implementation of the asynchronous hierarchical control scheme is similar to
the implementation of the synchronous hierarchical control scheme: Each time-
varying local control unit C

i
k is comprised of a lower layer part C

↓i and of an upper

3see Eq. (D.19) on page 180, or [21, Chap. 6.3] for details
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layer part C
↑i
k . This leads to local control inputs calculated according to:

C
i
k : ui

k =
Ns∑

j=1

K↓
i,jx

j
k + vi

k, (4.61)

with vi
k being the upper layer input to be specified in the sequel. The exchange of

the local state information is accomplished by the communication network Gk with
periodically time-varying topology Σk = [σk,i,j] ∈ BNs×Ns given by:

σk,i,j =

⎧⎨
⎩1 (p(i) = p(j)) ∨ ((ϕk = p(i)) ∧ (σ̄↑

p(i),p(j) = 1)),

0 otherwise.
(4.62)

Depending on whether constraint (4.39) or (4.40) was used for the control design,
the local controllers C

i must transmit their local control input vi
k in addition to

their local state xi
k.

Similar to the synchronous two-layer control scheme, the periodic upper layer
control gain K̄↑[·] resulting from the MISDP (4.42) corresponds to the new subsys-
tem order that has been identified during the clustering process (see Sec. 3.2). A
reverse transformation to the original subsystem order is obtained by constructing
suitable permutation matrices. Next to the permutation of the states and inputs of
the original interconnected system P due to the clustering procedure, the switching
sequence Φ causes a further permutation of the memory states. While the former
permutation can be inverted by using the permutation matrices Tx and Tu as de-
fined in Eq. (3.9) on page 54, an additional permutation matrix T̄Φ[ϕ] is required
to invert the latter permutation. With p ∈ Nc and r ∈ INc−1, this matrix is given
by:

T̄Φ[ϕ] := [T̄Φ p,r[ϕ]] ∈ B
n̄v×n

↑′
v [ϕ], (4.63a)

T̄Φ p,r[ϕk] :=

⎧⎨
⎩In̄

p
v

if vecr(Φ
′[ϕk]) = p,

0
n̄

p
v×n̄

ϕk−r
v

otherwise.
(4.63b)

By the help of T̄Φ[ϕ], the extended state vector x̄↑
k can be permuted to:⎡

⎣xk

vk

⎤
⎦ =

⎡
⎣Tx 0

0 TuT̄Φ[ϕk]

⎤
⎦
⎡
⎣x̄k

v̄↑′
k

⎤
⎦ =: T ↑

x [ϕk] x̄↑
k. (4.64)

Note that T ↑
x [ϕk] is constructed such that the component vectors vi

k = 0ni
v×1 for all

i ∈ Cϕk . This allows to write (4.64) in its current compact form without excluding
these component vectors from the left-hand side of the equation, avoiding time-
varying dimensions of vk. The upper layer control gain matrix with respect to the
original subsystem order is now obtained as:

[
K↑ K↑

v

]
= Tu

⎡
⎢⎢⎢⎢⎢⎢⎣

K̄↑[1] (T ↑
x [1])T

K̄↑[2] (T ↑
x [2])T

...

K̄↑[Nc] (T ↑
x [Nc])

T

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4.65)
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Here, K↑
v ∈ Rnv×nv denotes the feedback gain associated with the memory states,

whose diagonal blocks are zero due to the aforementioned property of T ↑
x [·]. Due

to the concept of the asynchronous updates, the control gain in (4.65) can not be
interpreted as a conventional state-feedback gain. Instead, it must be fitted into
the general structure introduced in Eq. (4.5), such that:

C
↑i : vi

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑

q∈R̄↑p(i)∪{p(i)}

∑
j∈Cq

[
K↑

i,j K↑
v i,j

] ⎡⎣xj
k

vj
k

⎤
⎦ if ϕk = p(i),

vi
k−1 otherwise.

(4.66)

Coming back to the original motivation for introducting the asynchronous control
scheme, the number Nm,k ∈ N0 of exchanged messages at time k will be analyzed
next. Therefore, every directed information exchange between subsystems is con-
sidered as one message. The number of messages exchanged in both control schemes
is related as follows:

Corollary 4.2. The maximum number of messages exchanged by the asynchronous
two-layer control scheme in one time step is always lower than or equal to the max-
imum number of messages exchanged by the synchronous two-layer control scheme
in one time step. �

Proof. First recall that N̄p
s := card(Cp) and that N p

c := Nc \ {p}. The maximum
number of exchanged messages per time-step for the synchronous and for the asyn-
chronous two-layer control scheme is given by:

N sy
m,max := max

k∈N0

N sy
m,k =

∑
p∈Nc

(N̄p
s )2 − N̄p

s +
∑

ϕ∈Nc

∑
q∈N ϕ

c

σ̄↑
ϕ,qN̄

ϕ
s N̄ q

s , (4.67)

Nas
m,max := max

k∈N0

Nas
m,k =

∑
p∈Nc

(N̄p
s )2 − N̄p

s + max
ϕ∈Nc

(
∑

q∈N ϕ
c

σ̄↑
ϕ,qN̄

ϕ
s N̄ q

s ), (4.68)

respectively. Note that the number of messages exchanged by the lower control
layer, which is given by the sum with summation index p, is equal in both schemes.
Concerning the messages exchanged by the upper control layer, it is easy to see
that:

∑
ϕ∈Nc

∑
q∈N ϕ

c

σ̄↑
ϕ,qN̄

ϕ
s N̄ q

s ≥ max
ϕ∈Nc

(
∑

q∈N ϕ
c

σ̄↑
ϕ,qN̄

ϕ
s N̄ q

s ) ≥ 0 (4.69)

for all ϕ ∈ Nc, which completes the proof.

4.4.1. Optimal Controller Initialization

As already mentioned in Section 4.3, the initial value v̄↑′
0 of the memory states

provides an additional degree of freedom for the control designer. The component
vectors of v̄↑′

0 correspond to the initial control inputs produced by the controllers
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that are not updated at time k = 0. While these signals may be trivially initialized
to zero, it is also possible to determine an optimal initialization (v̄↑′

0 )∗ in terms of
the global performance index J .

Proposition 4.1. Consider the periodic system P̄
↑
ϕ,cl under the conditions described

in Case 2.2. Given x̄0 ∈ Rn̄x, the optimal initialization (v̄↑′
0 )∗ ∈ Rn̄

↑′
v [ϕ0] of the

memory states is the solution of the convex quadratic program:

(v̄↑′
0 )∗ = arg min

v

[
x̄T

0 vT
]
V̄ ↑

cl [ϕ0]

⎡
⎣x̄0

v

⎤
⎦ . (4.70)

Here, V̄ ↑
cl [ϕl] denotes the Nc-periodic positive-semidefinite solution to the periodic

Lyapunov equation (cf. [21, p.239]):

V̄ ↑
cl [ϕl]− (Ā↑

cl[ϕl])
TV̄ ↑

cl [ϕl+1]Ā↑
cl[ϕl]− (C̄↑

cl[ϕl])
TC̄↑

cl[ϕl] = 0 (4.71)

associated with P̄
↑
ϕ,cl, where l ∈ {0, . . . , Nc − 1}. �

Proof. With the Nc-periodic solution V̄ ↑
cl [ϕ] of (4.71), it holds that [21, p.240]:

‖P̄↑
ϕ,cl‖2

H2
=

1

Nc

Nc−1∑
l=0

tr((Ē↑[ϕl])
TV̄ ↑

cl [ϕl+1]Ē↑[ϕl]). (4.72)

Since Ā↑
cl[·] is stable according to Theorem 4.3, V̄ ↑

cl [ϕ] ∈ S
n̄

↑
x[ϕ]

�0 [21, p.239]. Thus, it
can be easily verified that the QP (4.70) is convex [26, p.71, p.152f]. By the help of

Lemma 4.3 and with V̄ ↑
cl [ϕNc] = V̄ ↑

cl [ϕ0], it can be deduced that:

J = (x̄↑
0)

TV̄ ↑
cl [ϕ0]x̄

↑
0. (4.73)

Since the communication cost Jcom does not depend on the initial state x̄↑
0, it suffices

to consider J for minimizing J +Jcom with respect to x̄↑
0. The QP (4.70) now follows

by minimizing (4.73) with:

x̄↑
0 =

⎡
⎣x̄0

v̄↑′
0

⎤
⎦ , (4.74)

considering v̄↑′
0 as optimization variable, and x̄0 as a given parameter.

Note that the optimal initialization (v̄↑′
0 )∗ can be permuted to the original sub-

system order by the help of Eq. (4.64).
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4.4.2. Stability of the Original Interconnected System

The relation between the stability of the periodic system P̄
↑
ϕ,cl and the stability of

the original interconnected system P controlled by the asynchronous hierarchical
control law is as follows:

Theorem 4.4. Suppose that the periodic system P̄
↑
ϕ,cl is exponentially stable, and

that the asynchronous hierarchical control law comprised of (4.61) and (4.66) is
applied to the interconnected system P. Then, the following assertions hold:

(a) The system P with wk = 0 for all k ∈ N0 is asymptotically stable.

(b) The system P with input wk is bounded-input/bounded-output stable. �

Proof. With Theorem 4.1, it follows that exponential stability of P̄
↑
ϕ,cl implies that

there exist constants α↑ ∈ R>1 and β↑ ∈ (0, 1) such that:

‖x̄↑
k‖2

2 ≤ α↑(β↑)k‖x̄↑
0‖2

2. (4.75)

Recall that the periodic system P̄
↑
ϕ,cl models the original interconnected system P

controlled by the asynchronous hierarchical control law. With x̄↑
k =

(
x̄k ; v̄↑′

k

)
and

‖x̄k‖2 = ‖xk‖2 due to x̄k being a permutation of xk, it follows that:

‖x̄↑
k‖2

2 = ‖xk‖2
2 + ‖v̄↑′

k ‖2
2 ≤ α↑(β↑)k(‖x0‖2

2 + ‖v̄↑′
0 ‖2

2). (4.76)

Exploiting that ‖(·)‖2
2 ≥ 0, there always exists some γ ∈ R≥1 such that:

‖x0‖2
2 + ‖v̄↑′

0 ‖2
2 = γ‖x0‖2

2. (4.77)

With (4.76), this leads to:

‖xk‖2
2 ≤ ‖xk‖2

2 + ‖v̄↑′
k ‖2

2 ≤ α↑(β↑)kγ‖x0‖2
2 = (α↑γ)(β↑)k‖x0‖2

2. (4.78)

Hence, by defining:

α := α↑γ ∈ R≥1, β := β↑ ∈ (0, 1), (4.79)

it follows from Theorem 2.1 that the interconnected system P is asymptotically
stable under the control of the asynchronous hierarchical control law, which proves
assertion (a). Assertion (b) directly follows with Theorem 2.2.

4.5. Numerical Example

In order to enable a comparison of the synchronous and the asynchronous two-
layer control scheme, consider again the interconnected system P presented in Sec.
3.6. Consistent to with the presentation of the asynchronous control scheme, the
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controlled lower layer system P
↓
cl resulting from (3.78) is taken as starting point.

Furthermore, the communication cost matrix c̄↑com is adopted from (3.79) without
any change. For constructing the periodic system P̄

↑, the switching sequence is
selected as:

Φ = {ϕk+3, ϕk+2, ϕk+1} = {3, 2, 1}. (4.80)

The time-varying dimensions of P̄
↑
ϕ are given by:

n̄↑
x[1] = n̄x + n̄3

v + n̄2
v = 13, n̄↑

v[1] = n̄1
v = 3,

n̄↑
x[2] = n̄x + n̄1

v + n̄3
v = 14, n̄↑

v[2] = n̄2
v = 2, (4.81)

n̄↑
x[3] = n̄x + n̄2

v + n̄1
v = 14, n̄↑

v[3] = n̄3
v = 2.

The resulting periodic system matrices can be found in Appendix E.1 on p.185.

Table 4.1.: Comparison of the lower layer controller (left) with the synchronous
(middle) and with the asynchronous (right) two-layer control scheme.
For Case 2.2, it is assumed that x0 ∼ N (0, I).

upper control layer none synchronous asynchronous

topology Σ̄↑ n/a

⎡
⎢⎢⎣
1 0 0

1 1 1

0 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0 0

1 1 1 0 0

0 1 1 0 0

⎤
⎥⎥⎦

initialization v̄↑′
0 n/a n/a 0 (v̄↑′

0 )∗

Case 2.1 J 296.62 289.61 290.09 290.09

E(J |ϕ0 = 1) 296.62 280.53 294.60 265.00

Case 2.2 E(J |ϕ0 = 2) 296.62 295.71 287.98 273.96

E(J |ϕ0 = 3) 296.62 292.59 287.69 276.88

Table 4.1 shows the values of the performance index J for different controller
structures. In every case, the lower control layer uk = K↓xk + vk is applied to the
system. For the upper control layer, vk = 0 (left) as well as the synchronous (middle)
and the asynchronous scheme (right) are considered. All controlled systems have
been rewritten as a periodic system with period Nϕ = Nc = 3 to ensure that the
values of the performance index are comparable (see Appendix D.3). Furthermore,
the communication topologies for the synchronous and the asynchronous upper
control layer are chosen to be compatible.

Under the conditions of Case 2.1, both the synchronous and the asynchronous
upper control layer show a very similar performance. Indeed, the performance of
the lower control layer is improved by approximately 2.3 percent using either of
the upper layer control schemes. Since J is a limit value for k approaching infinity
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in this case, the initial values of v̄↑′
0 and ϕ0 have no influence on the performance

index.
For J according to Case 2.2, it is assumed here that x0 ∼ N (I, 0), i.e. that

x0 follows a standard normal distribution. Hence, the concept stated in Section
3.4.4 can be used to optimize the control layers with respect to the expected value
E(J). Applying only the lower control layer to the interconnected system P, a
performance of E(J) = 296.62 is obtained. Adding the synchronous upper control
layer, the performance is improved to E(J) = 280.53 for ϕ0 = 1, which corresponds
to the case of all upper layer controllers being updated simultaneously at time k = 0.
For ϕ0 = 2 and ϕ0 = 3, the performance is degraded, since the first update of the
upper layer controllers takes place at time k = 2 and k = 1, respectively. Note
that in the latter two cases, an optimal initialization of the synchronous upper layer
controllers could be found by using a similar concept as proposed in Proposition
4.1. However, even with the synchronous upper layer controllers being inactive
for up to two time-steps, the performance of the lower control layer is improved
by the synchronous upper control layer. Similar to the synchronous scheme, the
expected performance of the asynchronous scheme also depends on the choice of
ϕ0. Obviously, for v̄↑′

0 = 0, initializing either C̄
↑2 or C̄

↑3 first is beneficial in terms
of the performance measure. Notably, the mean performance over all ϕ0, which
is 290.09, is similar to the mean performance of the synchronous scheme, which is
289.61. When choosing the optimal initialization (v̄↑′

0 )∗ according to Prop. 4.1, the
mean performance is improved to 271.95.

The number of messages exchanged by the hierarchical two-layer control schemes
is illustrated in Figure 4.2. As desired, the maximum number of messages exchanged
in one time-step is reduced from N sy

m,max = 18 to Nas
m,max = 14 by applying the

asynchronous instead of the synchronous scheme. Furthermore, the variance of
the number of messages is reduced from 48 to 16. The total number of messages
exchanged over one period is Nm = 30 for both schemes.

As already mentioned at the very end of Section 4.3.2, the computational com-
plexity for designing asynchronous upper layer controllers is higher than for design-
ing synchronous upper layer controllers, what is due to the increase of the number of
continuous optimization variables. For the proposed example, designing the asyn-
chronous upper layer controllers takes about 212 seconds, including the clustering
procedure and the design of the lower control layer. On the other hand, recall from
Sec. 3.6 that designing the synchronous controllers takes only about 19 seconds of
computation time.

4.6. Discussion

In this chapter, an approach for asynchronously operating upper layer controllers
was presented as an alternative to the synchronously operating upper layer con-
trollers presented in Sec. 3.4. That is, the clustering procedure and distributed
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Figure 4.2.: Total number of messages exchanged per time-step for the syn-
chronous scheme (blue) and for the asynchronous scheme (yellow).
The dashed line shows the average number of exchanged messages
per time-step, which is equal in both schemes.

lower control layer are adopted from Chapter 3. On the upper layer, similar to
the synchronous scheme, each cluster is equipped with a controller that operates
on a coarser timescale compared to the lower layer. However, these controllers are
now updated sequentially instead of simultaneously. The problem of designing such
controllers can be efficiently formulated and solved in the framework of periodic
systems. By carefully selecting the controlled variable of the constructed periodic
system, both control layers can be designed to cooperate for minimizing the global
performance index J .

The major benefit of the asynchronously operating upper layer controllers is a sig-
nificant reduction of the peak traffic in the communication network, while achieving
a similar control performance compared to the synchronous scheme. The reduced
peak traffic is due to the improved distribution of information exchange over time,
compared to a synchronous upper layer controller. Consequently, the hardware
requirements for the communication network to provide a sufficiently small trans-
mission delay are reduced. A disadvantage of the asynchronous scheme compared to
the synchronous one is its increased synthesis complexity, which is due to increased
number of continuous optimization variables. However, the synthesis complexity
can be reduced by employing heuristics, e.g. by adopting an optimized upper layer
communication topology for the synchronous scheme.

In the case that the system under control has an initial deviation from the desired
equilibrium, the performance of the asynchronous upper layer controller can be im-
proved by initializing it in an optimal manner. As has been shown, such an optimal
initialization can be found as solution to a quadratic program, which depends on
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the initial state of the interconnected system. However, calculating a (sub-)optimal
initialization in a distributed manner, respecting local information sets and the
topology of the available communication network, remains an open question. Nat-
urally, this problem could be tackled by using concepts from distributed model
predictive control, which propose ways to solve quadratic programs in a distributed
manner (see, e.g., [51] or [122]). A further aspect that has not yet been investigated
is whether the performance of the closed-loop system could be further improved by
directly incorporating the optimal initialization for the design of the asynchronous
controller. Currently, considering the case of a non-zero initialization and zero dis-
turbances (Case 2.2), setting up the MISDP (4.42) requires to choose a value for

v̄↑′
0 . Since the upper layer control law is yet unknown before solving the MISDP,

the optimal initialization (v̄↑′
0 )∗ according to Prop. 4.1 is likewise undefined. Hence,

an open problem would be to break this cross-dependency, enabling to consider the
option of an optimal initialization already for the control design.

As discussed in Sec. 4.3.2, the asynchronous scheme additionally allows to ex-
change input information between the local controllers C

↑i. For communication
topologies not matching the characterization stated in Corollary 4.1, this additional
information may lead to an improved performance, without affecting the communi-
cation cost J↑com. Thus, a further open question would be how to account for this
additional information in terms of the communication cost. As a consequence, this
would enable to evaluate whether an input information is worth being exchanged
or not.
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This chapter compares the concepts of synchronous and asynchronous hierarchical
control introduced in Chap. 3 and in Chap. 4, respectively, by means of an applica-
tion example from the domain of power systems. Consisting of generator and load
nodes physically interconnected via electrical transmission lines, power systems are
a famous and topic example for complex interconnected systems. Due to the trans-
mission of alternating currents and the conservation of charge and energy within
the electrical network, power systems are mostly modeled by nonlinear differential
algebraic equations [100]. Thus, for being able to apply the control approaches pre-
sented in the preceding chapters, a linearized dynamic model has to be derived first.
Therefore, a modeling scheme originally developed in [53] and [22] is presented in
Sec. 5.1. Under moderate assumptions and by employing appropriate approxima-
tions, this modeling scheme leads to a linearized time-invariant model in continuous
time, which is valid around an equilibrium point. This linearized model can be em-
ployed for frequency control of power systems consisting of loads and synchronous
generators with an arbitrary interconnection graph. In the second section of this
chapter, the results of the synchronous and asynchronous hierarchical control design
are presented. Finally, Sec. 5.3 presents the simulation results, and compares the
performance and design complexity of the hierarchical control schemes with those
of related approaches. Note that notation used so far is sporadically modified in
this chapter to denote the physical quantities of a power system.

5.1. Linearized Power System Model

This section briefly reviews the modeling scheme for frequency control of a power
system, as originally developed in [53] and [22]. For details, the reader is referred
to these publications and the references therein.

Consider a power system consisting of Ns generator buses and N−Ns load buses,
which are interconnected through a network of transmission lines. The topology
of the network of transmission lines is modeled by the weighted adjacency matrix
Δ = ΔT ∈ RN×N of a connected, undirected graph, where the N nodes represent
the buses. Denoting the inductive reactance of the transmission line from the i-th
to the j-th bus of the electrical network by zi,j [Ω], the scalar entries Δi,j of Δ are
defined as (cf. [53]):

Δi,j = Δj,i := − 1

zi,j

= −bi,j [Ω−1], (5.1)

103



5. Application Example

i.e. they correspond to the negative susceptance −bi,j of the respective transmission
line. If there is no transmission line between nodes i and j, then Δi,j = Δj,i = 0. For
the Ns generator buses i ∈ {1, . . . , Ns}, the following linear differential equations
modeling a steam-valve controlled synchronous generator are employed, which is a
standard model for load-frequency control studies [53, Chap. 7.2]:

δ̇i = ωi, (5.2a)

ω̇i =
1

H i

⎛
⎝P i

M −Diωi − P i
L −

∑
{j∈IN | Δi,j<0}

P tie
i,j

⎞
⎠ , (5.2b)

Ṗ i
M =

1

τ i
T

(
P i

G − P i
M

)
, (5.2c)

Ṗ i
G =

1

τ i
G

(
P i

ref − P i
G −

1

ri
ωi

)
. (5.2d)

Here, δi [rad], ωi [rad/s], and P i
M [MW] denote the rotor/voltage phase angle, the

rotor/voltage frequency, and the amount of generated electrical power of the i-th
generator, respectively, with respect to an a-priori scheduled operating point δi

eq,

ωi
eq, P i

M,eq. The deviation of the power demand at bus i from the nominal value is

modeled by the disturbance input P i
L [MW]. Each generator is equipped with a local

turbine governor with state P i
G [MW] (measured w.r.t. P i

G,eq) and with reference

input P i
ref [MW]. Furthermore, H i, Di, τ i

T and τ i
G denote the (normalized) inertia,

the damping coefficient, and the turbine and governor time constants of generator
i, and ri is the regulation constant of the decentralized primary feedback loop. The
values P tie

i,j [MW] represent the power flow from bus i to bus j.

As a first approximation, the required power flow analysis is performed by using
a DC power flow model (cf. [53, Chap 7.2]), which is an acceptable approximation
of a nonlinear AC power flow model for small voltage phase differences. The power
flow from bus i to bus j can then be expressed as:

P tie
i,j = bi,j(δ

i − δj) = −P tie
j,i . (5.3)

As a second approximation, the phase angle dynamics of the load buses are ne-
glected, i.e. it is assumed that their dynamics are sufficiently fast compared to the
phase angle inertia of the generator buses. At the time scale relevant for frequency
control, this is a suitable assumption. The power balance at the N −Ns load buses
can then be expressed as:

0 = −P i
L −

∑
{j∈IN | Δi,j<0}

P tie
i,j , (5.4)

for i ∈ {Ns + 1, . . . , N}. Combining equations (5.2b), (5.3), and (5.4), the power
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flow in the global power network is modeled by:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1ω̇1

...

HNsω̇Ns

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 1
M −D1ω1 − P 1

L
...

P Ns
M −DNsωNs − P Ns

L

−P Ns+1
L
...

−P N
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−
⎡
⎣Δ′

1,1 Δ′
1,2

Δ′
2,1 Δ′

2,2

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1

...

δNs

δNs+1

...

δN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.5)

with Δ′ := Δ − diag(Δ1N×1). Employing a procedure commonly known as Kron
reduction [49], the load voltage phase angles δNs+1 to δN can be eliminated from
(5.5), leading to the reduced power flow model:

⎡
⎢⎢⎢⎣

H1ω̇1

...

HNsω̇Ns

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

P 1
M −D1ω1

...

P Ns
M −DNsωNs

⎤
⎥⎥⎥⎦− A′

c

⎡
⎢⎢⎢⎣

δ1

...

δNs

⎤
⎥⎥⎥⎦− E′

c

⎡
⎢⎢⎢⎣

P 1
L
...

P N
L

⎤
⎥⎥⎥⎦ (5.6)

with A′
c = Δ′

1,1 − Δ1,2Δ
−1
2,2Δ2,1 and E′

c =
[
INs Δ1,2Δ

−1
2,2

]
. The power system can

now be defined as an interconnection of Ns systems by taking (5.6), (5.2a), (5.2c),
and (5.2d), and interpreting each generator bus as a subsystem P

i. Hence, the
state vector xi and input ui of subsystem P

i are given by:

xi =

⎡
⎢⎢⎢⎢⎢⎣

δi

ωi

P i
M

P i
G

⎤
⎥⎥⎥⎥⎥⎦ , ui = P i

ref , (5.7)

such that the global system is of the form:

⎡
⎢⎢⎢⎣

ẋ1

...

ẋNs

⎤
⎥⎥⎥⎦ = Ac

⎡
⎢⎢⎢⎣

x1

...

xNs

⎤
⎥⎥⎥⎦+ Bc

⎡
⎢⎢⎢⎣

u1

...

uNs

⎤
⎥⎥⎥⎦+ Ec

⎡
⎢⎢⎢⎣

w1

...

wN

⎤
⎥⎥⎥⎦ , (5.8)

with wi = P i
L. Note that the additional disturbance inputs wNs+1 to wN may be

associated to the Ns subsystems according to, e.g., spatial criteria.

Model of the 10-bus CIGRÉ Benchmark System

The power system to be modeled in this section is the well-known CIGRÉ bench-
mark system for frequency control [100]. The benchmark system, which is shown
in Fig. 5.1, consists of a total number of N = 10 interconnected load and generator
buses. Buses 1 to 7 are equipped with steam-valve controlled generators and are
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thus interpreted as subsystems P
i with Ns = 7. Buses 8 to 10 are pure load buses.

According to [53, App. E], the parameters of the benchmark system are chosen as:

[
H1 . . . HNs

]
=
[
100 30.3 35.8 28.6 26 34.8 26.6

]
, (5.9a)[

D1 . . . DNs

]
=
[
0.8 0.85 0.8 0.8 0.9 0.7 0.8

]
, (5.9b)[

τ 1
G . . . τNs

G

]
=
[
0.2 0.15 0.2 0.2 0.25 0.2 0.2

]
, (5.9c)[

τ 1
T . . . τNs

T

]
=
[
0.5 0.4 0.5 0.5 0.4 0.5 0.5

]
, (5.9d)[

r1 . . . rNs

]
=
[

1
20

1
23

1
19

1
21

1
21

1
18

1
20

]
, (5.9e)

with transmission line susceptances given by:

Δ = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 24.5 24.5 0 0 0 0 0 0

0 0 62.6 0 0 0 0 0 0 32.3

24.5 62.6 0 39.5 0 0 0 0 28 0

24.5 0 39.5 0 10 10 0 0 97 33

0 0 0 10 0 0 0 0 0 0

0 0 0 10 0 0 0 31.8 0 0

0 0 0 0 0 0 0 39.5 0 0

0 0 0 0 0 31.8 39.5 0 97 0

0 0 28 97 0 0 0 97 0 0

0 32.3 0 33 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.9f)

Figure 5.1.: Single-line representation of the 10-bus CIGRÉ benchmark system
according to [53].

From the eigenvalues of the system matrix Ac of the resulting continous-time
model, the smallest time constant is found to be 0.142 [s]. The model is discretized
using zero-order hold with Δt = 0.1 [s] to capture all dynamic effects, leading
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to the system matrices A, B and E. With these parameters, all subsystems are
controllable. The local controlled variables are chosen as:

zi
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

500 0 0 0

0 500 0 0

0 0 0.01 0

0 0 0 0.01

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

xi
k +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ui
k, (5.10)

for all i ∈ {1, . . . , 7}. Hence, the deviations of the local rotor phase angle and of
the rotor frequency have a considerably larger influence on the global performance
index J than the remaining state and the input variables. Finally, the initialization
of the model is chosen as proposed in [53]:

x1
0 =

⎡
⎢⎢⎢⎢⎢⎣

−0.1

0.025

−0.4

0.1

⎤
⎥⎥⎥⎥⎥⎦ , x2

0 =

⎡
⎢⎢⎢⎢⎢⎣

0.15

−0.035

0.015

0.1

⎤
⎥⎥⎥⎥⎥⎦ , x3

0 =

⎡
⎢⎢⎢⎢⎢⎣

0.05

−0.005

0

0.01

⎤
⎥⎥⎥⎥⎥⎦ , x4

0 =

⎡
⎢⎢⎢⎢⎢⎣

0.1

−0.0025

0.01

0.0005

⎤
⎥⎥⎥⎥⎥⎦ ,

x5
0 =

⎡
⎢⎢⎢⎢⎢⎣

−0.25

0.004

0

0.05

⎤
⎥⎥⎥⎥⎥⎦ , x6

0 =

⎡
⎢⎢⎢⎢⎢⎣

−0.2

0.02

−0.5

0.001

⎤
⎥⎥⎥⎥⎥⎦ , x7

0 =

⎡
⎢⎢⎢⎢⎢⎣

0.25

0.005

0.015

−0.045

⎤
⎥⎥⎥⎥⎥⎦ . (5.11)

5.2. Hierarchical Control Design

As a first step of the hierarchical control design, the clustering procedure presented
in Section 3.2 is applied to the interconnected system P. Setting γi,j = ‖Ai,j‖2 +
‖Bi,j‖, the following interconnection strength matrix is obtained:

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.0671 0.0002 0.1072 0.1071 0.0000 0.0001 0.0001

0.0011 11.4486 1.2962 0.3395 0.0001 0.0003 0.0003

0.2852 0.7262 7.8093 0.6467 0.0002 0.0363 0.0449

0.3920 0.2617 0.8899 8.6701 0.1598 0.3308 0.2125

0.0001 0.0001 0.0003 0.1467 7.1439 0.0001 0.0001

0.0002 0.0002 0.0355 0.2351 0.0001 7.2813 0.1137

0.0002 0.0002 0.0638 0.2197 0.0001 0.1655 8.0566

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.12)

As can be deduced from the interconnection structure matrix Γ, the power system
model possesses many weak interconnections. Choosing εw = εn = 0.25 as threshold
values for weak and negligible interconnections, the following refinement of Γ is
obtained, what shows that the strong interconnections of the model are highly
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structured:

Γ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.0671 0 0 0 0 0 0

0 11.4486 1.2962 0.3395 0 0 0

0.2852 0.7262 7.8093 0.6467 0 0 0

0.3920 0.2617 0.8899 8.6701 0 0.3308 0

0 0 0 0 7.1439 0 0

0 0 0 0 0 7.2813 0

0 0 0 0 0 0 8.0566

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.13)

Applying the Dulmage-Mendelsohn decomposition leads to the permutation order
τT =

(
2 3 4 1 5 6 7

)
, and to the permuted matrix:

Γ′′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11.4486 1.2962 0.3395 0 0 0 0

0.7262 7.8093 0.6467 0.2852 0 0 0

0.2617 0.8899 8.6701 0.3920 0 0.3308 0

0 0 0 8.0671 0 0 0

0 0 0 0 7.1439 0 0

0 0 0 0 0 7.2813 0

0 0 0 0 0 0 8.0566

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.14)

such that Nc = 3 clusters are formed by:

C1 = {2, 3, 4}, C2 = {1, 5, 6}, C3 = {7}. (5.15)

Recalling the physical interconnection structure of the generator nodes shown in
Fig. 5.1, two interesting observations can be made regarding the outcome of the
clustering procedure:

1. Node number 7, which appears to be a separated node, is chosen to form a
separate cluster.

2. Nodes number 1 to number 6, which appear to be strongly coupled by the elec-
trical network, are split into two (approximately) hierarchically interconnected
clusters.

Hence, the algorithm conforms with intuition, and even provides some more insight
into the structure of the control problem which is not obvious at first glance.
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Restoring the weak interconnections that do not affect the hierarchical intercon-
nection structure of the clusters leads to:

Γ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11.4486 1.2962 0.3395 0.0011 0.0001 0.0003 0.0003

0.7262 7.8093 0.6467 0.2852 0.0002 0.0363 0.0449

0.2617 0.8899 8.6701 0.3920 0.1598 0.3308 0.2125

0 0 0 8.0671 0.0000 0.0001 0.0001

0 0 0 0.0001 7.1439 0.0001 0.0001

0 0 0 0.0002 0.0001 7.2813 0.1137

0 0 0 0 0 0 8.0566

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.16)

Applying Theorem 3.1 leads to the lower layer controllers:

C
↓1 : u1

k = −
[
−1.28 22.59 0.12 0.06

]
x1

k −
[
0.50 0.68 0.01 0.01

]
x5

k . . .

−
[
−0.29 1.22 0.02 0.01

]
x6

k + v1
k,

C
↓2 : u2

k = −
[
−11.70 17.87 0.30 0.12

]
x2

k −
[
6.18 10.85 0.16 0.07

]
x3

k . . .

−
[
3.80 4.32 0.09 0.04

]
x4

k + v2
k,

C
↓3 : u3

k = −
[
14.63 14.72 0.19 0.07

]
x2

k −
[
−26.84 17.63 0.33 0.14

]
x3

k . . .

−
[
−2.23 8.02 0.18 0.07

]
x4

k + v3
k,

C
↓4 : u4

k = −
[
14.32 10.22 0.12 0.04

]
x2

k −
[
3.87 15.00 0.20 0.08

]
x3

k . . .

−
[
−41.41 12.44 0.35 0.15

]
x4

k + v4
k,

C
↓5 : u5

k = −
[
1.57 3.85 0.01 0.01

]
x1

k −
[
13.08 45.48 0.75 0.47

]
x5

k . . .

−
[
−0.56 2.32 0.04 0.01

]
x6

k + v5
k,

C
↓6 : u6

k = −
[
8.23 8.73 0.03 0.01

]
x1

k −
[
3.20 2.75 0.03 0.02

]
x5

k . . .

−
[
−10.44 33.15 0.55 0.23

]
x6

k + v6
k,

C
↓7 : u7

k = −
[
−8.52 32.96 0.74 0.30

]
x7

k + v7
k, (5.17)

which do not yet stabilize the plant. Indeed, an eigenvalue of the open-loop system
which is located at λ = 1 is moved to λ = 1.0036 by the lower layer controller,
emphasizing the need for a stabilizing upper control layer. For designing syn-
chronous and asynchronous upper layer controllers, the communication cost function
is parametrized as illustrated in Fig. 5.2. The number assigned to each directed
edge of the graph corresponds to the cost that is charged for activating the commu-
nication link. For enabling a meaningful comparison between both schemes, they
utilize the same upper layer communication topology, which has been optimized by
using Theorem 3.3. The active communication links are illustrated by solid lines in
Fig. 5.2.
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P̄
↑1

P̄
↑2

P̄
↑3

10

10

500

5005000

5000

Figure 5.2.: Upper layer communication graph Ḡ
↑. Solid (dashed) lines denote

active (inactive) communication links, and the numbers indicate the
associated communication link cost.

For the depicted communication toplogy, the synchronous upper layer controllers
are given by:

C
↑1 : v1

sΔk = −
[
8.69 47.36 0.31 0.13

]
x1

sΔk −
[
6.46 5.61 0.10 0.06

]
x5

sΔk . . .

−
[
7.48 10.20 0.19 0.08

]
x6

sΔk,

C
↑2 : v2

sΔk = −
[
7.39 7.06 0 0

]
x1

sΔk −
[
−5.37 12.50 0.19 0.07

]
x2

sΔk . . .

−
[
12.00 9.14 0.11 0.04

]
x3

sΔk −
[
8.63 5.51 0.11 0.05

]
x4

sΔk . . .

−
[
0.93 0.30 0 0

]
x5

sΔk −
[
3.89 1.84 0.03 0.01

]
x6

sΔk,

C
↑3 : v3

sΔk = −
[
16.76 13.25 0 −0.01

]
x1

sΔk −
[
17.63 15.93 0.16 0.05

]
x2

sΔk . . .

−
[
−13.34 11.18 0.23 0.09

]
x3

sΔk −
[
16.22 8.36 0.18 0.08

]
x4

sΔk . . .

−
[
2.03 0.91 0 −0.01

]
x5

sΔk −
[
6.92 4.32 0.07 0.03

]
x6

sΔk,

C
↑4 : v4

sΔk = −
[
18.18 14.57 −0.02 −0.02

]
x1

sΔk −
[
15.02 14.06 0.14 0.05

]
x2

sΔk . . .

−
[
14.37 16.09 0.17 0.06

]
x3

sΔk −
[
−9.41 6.13 0.31 0.14

]
x4

sΔk . . .

−
[
6.13 3.28 0.01 0

]
x5

sΔk −
[
13.27 9.16 0.12 0.05

]
x6

sΔk,

C
↑5 : v5

sΔk = −
[
11.10 24.04 0.13 0.05

]
x1

sΔk −
[
13.02 18.84 0.30 0.18

]
x5

sΔk . . .

−
[
7.05 13.02 0.26 0.11

]
x6

sΔk,

C
↑6 : v6

sΔk = −
[
17.40 37.17 0.19 0.08

]
x1

sΔk −
[
10.22 8.22 0.16 0.11

]
x5

sΔk . . .

−
[
9.66 29.95 0.61 0.26

]
x6

sΔk,

C
↑7 : v7

sΔk = −
[
17.41 9.91 0.08 0.03

]
x2

sΔk −
[
16.83 14.33 0.15 0.05

]
x3

sΔk . . .

−
[
10.88 13.93 0.24 0.09

]
x4

sΔk −
[
20.42 35.00 0.87 0.36

]
x7

sΔk,

(5.18)
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with vi
sΔk+2 = vi

sΔk+1 = vi
sΔk for all i ∈ N . On the other hand, the asynchronous

upper layer controllers are given by:

C
↑1 : v1

sΔk+1 = −
[
10.57 74.14 0.51 0.22

]
x1

sΔk+1 . . .

−
[
9.56 7.36 0.13 0.08

]
x5

sΔk+1 −
[
7.49 12.48 0.26 0.11

]
x6

sΔk+1,

C
↑2 : v2

sΔk = −
[
7.07 11.30 0.03 0.01

]
x1

sΔk −
[
−6.06 19.85 0.32 0.12

]
x2

sΔk . . .

−
[
20.31 14.60 0.20 0.08

]
x3

sΔk −
[
12.57 10.29 0.20 0.09

]
x4

sΔk . . .

−
[
0.98 0.80 0.01 0

]
x5

sΔk −
[
5.64 4.43 0.07 0.02

]
x6

sΔk,

C
↑3 : v3

sΔk = −
[
19.15 20.61 0.05 0.01

]
x1

sΔk −
[
32.28 27.03 0.29 0.10

]
x2

sΔk . . .

−
[
−21.65 19.79 0.45 0.19

]
x3

sΔk −
[
23.75 15.76 0.33 0.15

]
x4

sΔk . . .

−
[
1.96 2.63 0.02 0.01

]
x5

sΔk −
[
8.92 9.29 0.13 0.05

]
x6

sΔk,

C
↑4 : v4

sΔk = −
[
20.34 23.44 0.06 0.01

]
x1

sΔk −
[
27.78 24.63 0.29 0.10

]
x2

sΔk . . .

−
[
25.70 28.90 0.39 0.16

]
x3

sΔk −
[
−21.21 13.05 0.57 0.26

]
x4

sΔk . . .

−
[
7.17 6.92 0.06 0.02

]
x5

sΔk −
[
16.50 16.50 0.18 0.06

]
x6

sΔk,

C
↑5 : v5

sΔk+1 = −
[
13.36 32.10 0.16 0.06

]
x1

sΔk+1 . . .

−
[
15.72 24.17 0.38 0.22

]
x5

sΔk+1 −
[
4.31 16.58 0.33 0.14

]
x6

sΔk+1,

C
↑6 : v6

sΔk+1 = −
[
24.01 49.42 0.24 0.09

]
x1

sΔk+1 . . .

−
[
13.30 9.87 0.22 0.15

]
x5

sΔk+1 −
[
5.95 41.53 0.88 0.37

]
x6

sΔk+1,

C
↑7 : v7

sΔk+2 = −
[
22.92 17.67 0.17 0.06

]
x2

sΔk+2 . . .

−
[
19.21 22.13 0.25 0.09

]
x3

sΔk+2 −
[
14.57 20.15 0.41 0.16

]
x4

sΔk+2 . . .

−
[
19.59 47.72 1.08 0.44

]
x7

sΔk+2, (5.19)

with vi
sΔk+2 = vi

sΔk+1 = vi
sΔk for i ∈ C1, vi

sΔk+3 = vi
sΔk+2 = vi

sΔk+1 for i ∈ C2, and
vi

sΔk+4 = vi
sΔk+3 = vi

sΔk+2 for i ∈ C3. The asynchronous upper layer control law
does not exchange memory states, since according to Corollary 4.1, this would not
lead to a performance improvement with the underlying upper layer communication
graph. Both upper layer controllers have entries of significant magnitude, such that
an observable cooperative influence on the lower layer can be expected.

5.3. Simulation Results and Discussion

With the help of the results presented in Sec. 3.4.4, the performance of the closed-
loop system is measured in the sense of Case 2.2, with x0 ∼ N (0, I). For being
able to compare both, the synchronous and the asynchronous hierarchical control
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scheme with existing approaches, additional controllers have been designed by using
standard methods from optimal control theory.

Table 5.1.: Comparison of different types of controllers applied to the power sys-
tem model for x0 ∼ N (0, I). Even though the lower layer controller
designed with neglected interconnections is unstable, both resulting
hierarchical controllers are stable and yield a performance close to the
(optimal) one of a centralized LQR. Note that the calculation time for
the synchronous scheme includes SCT design, while the time for the
asynchronous scheme does not.

controller design model calc. time time domain E(J) Jcom

lower layer P̄
′ 5 [s] T↓ (unstable) 0

lower layer P̄ 5 [s] T↓ 560632 0

hierarchical

(synchronous) P̄
↑ 143 [s] T↓, T↑ 399866 5010

hierarchical

(asynchronous) P̄
↑
ϕ 96 [s] T↓, T↓ 388512 5010

centralized LQR P̄ < 1 [s] T↓ 360775 11020

centralized LQR P̄
↑ w. K̄↓ = 0 < 1 [s] T

↑ 440853 11020

Table 5.1 shows a comparison of different types of controllers applied to the
discretized power system model. Regarding the expected performance E(J), it is
interesting to see that both hierarchical control schemes yield a good performance,
even though their underlying lower control layer is unstable, when applied to the
original system alone. Indeed, the performance is within an 11 percent range above
the optimal performance obtained with a centralized linear quadratic regulator,
while using only a fraction of the possible communication links. Furthermore, the
performance of both hierarchical schemes is closer to the one of an LQR implemented
on T

↓ than to the one of an LQR implemented on T
↑. Hence, the lower control

layer obviously plays an important part in the two-layer scheme. Additionally, the
performance of a sole lower layer controller that has been designed considering all
plant interconnections is significantly worse than those of the hierarchical control
schemes. Consequently, one can deduce that the presented two-layer concept indeed
makes sense from the viewpoint of closed-loop performance, since both control layers
truly cooperate for maximizing the performance.

Concerning computation time, the LMI-based methods are clearly outperformed
by the LQR design, which is due to the computational efficacy of the Riccati equa-
tion. However, the LQR design is not able to consider communication constraints.
For SCT design, computing the synchronous hierarchical controller takes about 2.5
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minutes, meaning that the approach has the potential to be applied to larger sys-
tems. This computation time is a significant improvement compared to single layer
approaches which rely on mixed-integer programming. For instance, the approach
presented in [50] typically takes several hours for finding a distributed single layer
controller for the power system model. Due to the periodic model, which requires
a larger number of linear matrix inequalities for constructing a suitable Lyapunov
function, the asynchronous hierarchical scheme requires more computation time
than the synchronous approach. However, for the power system example, design-
ing an asynchronous hierarchical controller for a given upper layer communication
topology also just took about 1.5 minutes.

With a parametrization of the communication cost function Jcom as shown in Fig.
5.2, the communication topology that has been optimized within the synchronous
hierarchical control framework only uses one third of the available communication
links. Interestingly, the link σ̄↑

2,1 is not being used, although its cost is very cheap

compared to the other communication links. On the other hand, σ̄↑
3,1 is activated

despite its high cost. Hence, one can deduce that the information transmitted via
σ̄↑

3,1 is far more important for the global closed-loop performance than the informa-

tion transmitted via σ̄↑
2,1. The different contributions of the single communication

links is also emphasized by the following calculation: Recall from Table 5.1 that
the performance when using either all, or none, of the upper layer communication
links is 360755, or 560632, respectively. Assuming that all communication links
equably contribute to the global closed-loop performance, one would expect a per-
formance of about 427381 when using one third of the available links. However, the
performance of the hierarchical control schemes is better than this expectation.

In the sequel, the time behavior of the power system is analyzed for selected
types of controllers. To this end, a series of simulations has been performed with
the power system model, assuming the initial state given in Eq. (5.11). Each of the
following figures shows the trajectories of the local frequencies ωi

k at nodes 1 to 7
for 200 time steps, which is an important indicator for the synchronization of the
generator buses. The finite sum:

J̌ :=
2000∑
k=0

z̄T

k z̄k < J (5.20)

and the largest frequency magnitude for k ≥ 170 are taken as finite horizon perfor-
mance indicators.

Fig. 5.3 shows the frequency trajectories of the uncontrolled system, which is
marginally stable due to a pole at λ = 1. Nevertheless, it can be seen that the
frequencies slowly approach the equilibrium point. After 170 time-steps, the largest
frequency magnitude has a value of 0.0772, and J̌ = 5837. In Fig. 5.4, it is shown
how the performance of the closed-loop system can be improved by a lower layer
controller designed with P̄, i.e. under consideration of all interconnections. The
largest frequency magnitude after 170 time-steps is 0.0498, and J̌ has been decreased
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Figure 5.3.: Trajectories of the frequencies ωi
k for the first 200 time steps of the un-

controlled system. The largest magnitude of the frequency deviation
for k ≥ 170 is 0.0772.

to J̌ = 3.3727.
Figures 5.5 and 5.6 show the frequency trajectories obtained with the synchronous

and the asynchronous hierarchical control scheme, respectively. The largest fre-
quency magnitude after 170 time-steps and the value of J̌ are, respectively, 0.0346
and 0.0268 as well as 3212 and 3109. Hence, the chosen finite horizon performance
indicators qualitatively match the expected infinite horizon performance stated in
Table 5.1. Finally, Fig. 5.7 shows the trajectories obtained with a linear quadratic
regulator implemented on T↓. Here, the largest frequency magnitude after 170
time-steps is 0.0152, and J̌ = 2924.2.

Finally, in Fig. 5.8, the different control schemes are analyzed with consideration
of communication time delay. For simplicity, it is assumed here that the time delay
is constant and equal for all communication links, which suffices to demonstrate that
the hierarchical control schemes possess a certain robustness against communication
time delay. The duration of the delay is varied from zero up to 70 percent of the
discretization time T = 0.1 [s]. As can be seen, all considered control schemes
manage to stabilize the power system model, even under the influence of the largest
time delay1. Furthermore, the finite horizon performance index J̌ increases only
moderately up to 1.7 percent.

1The closed-loop system is still stable for time-delays greater than 0.7 T . The critical value was
not determined here.
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Figure 5.4.: Trajectories of the frequencies ωi
k for the first 200 time steps with the

lower layer controller designed with P̄. The largest magnitude of the
frequency deviation for k ≥ 170 is 0.0498, and J̌ = 3372.7.
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Figure 5.5.: Trajectories of the frequencies ωi
k for the first 200 time steps with

the synchronous hierarchical controller. The largest magnitude of the
frequency deviation for k ≥ 170 is 0.0346, and J̌ = 3212.
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Figure 5.6.: Trajectories of the frequencies ωi
k for the first 200 time steps with the

asynchronous hierarchical controller. The largest magnitude of the
frequency deviation for k ≥ 170 is 0.0268, and J̌ = 3109.
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Figure 5.7.: Trajectories of the frequencies ωi
k for the first 200 time steps with

the centralized linear quadratic regulator implemented on T↓. The
largest magnitude of the frequency deviation for k ≥ 170 is 0.0152,
and J̌ = 2924.2
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6. Distributed Control of

Interconnected Jump Markov

Systems

The second part of this thesis focused on interconnected systems with linear, time-
invariant dynamics. In this chapter, as well as in the subsequent one, the approaches
presented so far are extended to a more general class of dynamic systems, namely
the class of jump Markov systems. These are a class of hybrid dynamic systems,
where the modeling parameters (e.g., the matrices A to E of a linear system) depend
on a time-varying variable which is taken from a discrete finite set. Jump Markov
systems are particularly suited to model abrupt and random changes in system
behavior, like component failures, communication link breakdowns, packet losses,
or environmental changes, to name a few. The probabilistic occurence of such events
is modeled by a Markov chain, which selects the current parameters or mode of the
dynamic model. Thus, in contrast to the periodic systems introduced in Chap. 4,
the temporal evolution of the model parameters is uncertain.

This chapter presents an approach for designing distributed state-feedback con-
trollers for interconnected jump Markov systems with linear dynamics. That is,
each subsystem is modeled by a local Markov chain, determining its stochastic pa-
rameter evolution. In contrast to the second part of this thesis, a notion of different
modeling and control layers is not established here, as a focus is on the treatment
of uncertain communication links. Thus, the layer indicators (·)↓ and (·)↑ are not
required. In large parts, the contents of this chapter are based on results previously
presented in [128]. Starting with a set of interconnected jump Markov systems, the
approach adopts and refines a procedure which was already sketched in [82] and
[139]. The main idea of this first step towards distributed control design is to trans-
form the subsystems into a partitioned centralized model, which is afterwards used
as basis for the actual control design. Furthermore, the stochastic framework un-
derlying the jump Markov systems allows to consider probabilistic communication
uncertainties already in the control design. Together with the basic setup, this will
be explained in more detail in the following section. Afterwards, Sec. 6.2 presents
the construction of the centralized model, which serves as basis for the development
of the control synthesis conditions in Sec. 6.3. Finally, in Sec. 6.4, the effectiveness
of the approach is shown by means of a numerical example, followed by a concluding
discussion in Sec. 6.5.
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6.1. Problem Setup

The class of dynamic models considered in this chapter are interconnected discrete-
time jump Markov linear systems {P i

θ}i∈Ns, consisting of Ns interconnected sub-
systems of the form:

P
i
θ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi
k+1 = Ai,i[θ

i
k]xi

k + Bi,i[θ
i
k]ui

k + Ei,i[θ
i
k]wi

k + ri
x,k[θi

k],

zi
k = Ci,i[θ

i
k]xi

k + Di,i[θ
i
k]ui

k + ri
z,k[θi

k],

M
i = (Θi, P i, μi

0),

(6.1)

with local controlled variables zi
k ∈ R

ni
z and local Markov chains M

i. The states
θi

k ∈ Θi of these Markov chains correspond to the local modes of the subsystems.
The signals ri

x,k[θi
k] and ri

z,k[θi
k] model the interconnections between the subsystems,

and are defined as:

ri
x,k[θi

k] =
∑

j∈N i
s

Ai,j[θ
i
k]xj

k + Bi,j[θ
i
k]uj

k + Ei,j[θ
i
k]wj

k, (6.2a)

ri
z,k[θi

k] =
∑

j∈N i
s

Ci,j[θ
i
k]xj

k + Di,j[θ
i
k]uj

k. (6.2b)

The state of each subsystem is fully described by the local hybrid state ζi
k = (xi

k, θi
k),

which is assumed to be measurable by P
i
θ. Hence, each subsystem must be equipped

with suitable sensing equipment to measure its local state variables. Since the
local mode often models component failures, the subsystems need to perform online
failure detection.

The goal pursued in this chapter is to design a distributed control law for {P i
θ}i∈Ns

which minimizes the performance index J according to Case 2.1 or Case 2.2. In
contrast to Chapters 3 and 4, SCT design will not be considered, such that a
communication cost does not need to be taken into account. The reason for this
will be explained later. Recall that Ri

k ⊆ Ns denotes the index set of subsystems
transmitting their local (hybrid) state ζi

k to the subsystem P
i
θ at time k. With the

help of Ri
k, the general form of an admissible distributed control law can be stated

as:

C
i : ui

k = κi(ζi
k), (6.3)

where

ζi
k := {ζi

k = (xi
k, θi

k) | i ∈ Ri
k} (6.4)

denotes the set of hybrid states available to P
i
θ at time k.

In contrast to the previous approaches, communication uncertainties are explicitly
considered within this approach. To this end, the communication network model
is extended by stochastic communication link failures as explained in detail in Sec.
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2.2. The evolution of the network topology over time is modeled by the state θΣ,k of
a Markov chain MΣ, see Eq. (2.37) on page 33. Hence, the communication network
topology is captured by the time-varying adjacency matrix:

Σ[θΣ,k] ∈ Σ ⊂ B
Ns×Ns , (6.5)

such that:

Ri
k := Ri[θΣ,k] = {j ∈ Ns |σi,j[θΣ,k] = 1}. (6.6)

Focusing on linear control laws as in the previous chapters, the sought local control
laws C

i thus take the specific form:

C
i : ui

k = Ki,i[θ
1
k, . . . , θNs

k , θΣ,k] xi
k +

∑
j∈Ri

k\{i}

Ki,j[θ
1
k, . . . , θNs

k , θΣ,k] xj
k, (6.7)

where Ki,j[·] ∈ Rni
u×n

j
x denotes the block-entries of a matrix K[·] =

[
Ki,j[·]

]
. The as-

sociated time-varying communication graph is denoted by Gk. Figure 6.1 illustrates
the resulting distributed control structure for Ns = 3 interconnected subsystems
P

i
θ.

Gk

C
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C
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C
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P
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θ P
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Figure 6.1.: Implementation of the distributed control scheme for the exemplary
case of Ns = 3 subsystems.

6.2. Centralized Modeling of Interconnected JMLS

In the sequel, a procedure is introduced which allows to model an interconnected
jump Markov linear system {P i

θ}i∈Ns in a centralized manner. In contrast to a
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monolithic JMLS, this modeling procedure leads to a partitioned JMLS Pθ, con-
taining additional information which allow to recover the original subsystem struc-
ture. As a first step of the procedure, a parallel composition of the Markov chains
M

i is performed, resulting in an extended Markov chain M with combined Markov
state θk. Then, in a second step, the matrices describing the partitioned JMLS are
constructed as a function of θk and θΣ,k.

Since the transitions of the single Markov chains M
i may occur independently,

all possible combinations of the elements of the local discrete state-spaces Θi have
to be taken into account when constructing the extended Markov chain M . By the
help of the cartesian product, the state-space Θ of the extended Markov chain can
thus be constructed as:

Θ := Θ1 × . . .×ΘNs =×Ns

i=1
Θi. (6.8)

Consequently, Θ contains Nθ := card(Θ) =
∏Ns

i=1 N i
θ elements. For the construc-

tion of the corresponding transition probability matrix P and initial distribution
μ0, consider the special case Ns = 2 first: In this case, each transition from θk to
θk+1 of the extended Markov state, denoted by θk → θk+1, corresponds to a com-
bination of simultaneous transitions θ1

k → θ1
k+1 and θ2

k → θ2
k+1. The corresponding

transition probabilities for these simultaneous transitions follow from the product
of the corresponding entries of P 1 and P 2. The initial distribution is determined
in a similar manner. For the construction of the extended Markov state given in
Eq. (6.8), the overall transition probability matrix P and the initial distribution μ0

can be conveniently constructed by the help of the Kronecker product. Hence, the
parallel composition of two local Markov chains M

1 and M
2, which is denoted by

M
1 ‖ M

2, is given by:

M
1 ‖ M

2 := (Θ1 ×Θ2, P 1 ⊗ P 2, μ1
0 ⊗ μ2

0). (6.9)

Similar schemes exist for the parallel composition of continuous-time Markov pro-
cesses [68] and of Markov reward chains [89]. For the general case of Ns > 2, simply
letting:

M := (((M 1 ‖ M
2) ‖ M

3) ‖ . . .) ‖ M
Ns, (6.10)

and applying Eq. (6.9) multiple times leads to:

M = (×Ns

i=1
Θi,
⊗Ns

i=1
P i,
⊗Ns

i=1
μi

0). (6.11)

From the definition of the cartesian product, the elements θ of Θ take the form of Ns-
tuples (θ1, . . . , θNs). To conform with the basic definition of a JMLS, the extended
Markov states θ may be relabeled with natural numbers, such that Θ = INθ

. For
being able to recover the original subsystem structure later, a bijective function
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Ψ(·) is introduced as proposed in [139]. This function maps the relabeled extended
Markov state to the corresponding Ns-tuple of local Markov states:

Ψ : Θ → Θ1 × . . .×ΘNs, θ → (θ1, . . . , θNs). (6.12)

In contrast to [139], explicit formulas for constructing Ψ(·) are given in the sequel.
Furthermore, the function:

Ψi : Θ → Θi, θ → θi, (6.13)

with i ∈ Ns is introduced, which extracts the i-th local Markov state from θk.
Both, Ψ and Ψi will be required later for constructing the partitioned JMLS, and
for implementing the distributed control law.

Definition 6.1 ([128]). For M constructed according to Eq. (6.11), and θ ∈ Θ =
INθ

, the function Ψi with i ∈ Ns is given by:

Ψi(θ) :=

⎡
⎢⎢⎢

θ∏Ns
j=i+1 N j

θ

⎤
⎥⎥⎥ mod1 N i

θ. (6.14)

Here, �·� denotes the ceil function, i.e. rounding up to the next integer, and mod1

is a shifted modulus function, defined as:

n mod1 m := ((n− 1) mod m) + 1, (6.15)

such that n mod1 n = n. �

The function Ψi(θ) can be derived as follows: From the definition of the cartesian
product of ordered sets, the local Markov state θNs and the extended Markov state
θ are related according to:

θ = mNNs
θ + θNs (6.16)

for θNs ∈ ΘNs and m ∈ N0. Thus:

θNs = ((θ − 1) mod NNs
θ ) + 1 = θ mod1 NNs

θ . (6.17)

Suppose now that θi is the Markov state to be extracted from θ. Assuming that the
value of θ is increased, it follows from the structure of Θ that one has to traverse
all combinations of Markov states θj with i, j ∈ Ns and j > i, until θi is either
incremented or reset to one. In contrast, recall that for θNs being the state of
interest, every change of θ causes a change of θNs, which allows to extract θNs by
means of Eq. (6.14). Motivated by this observation, consider the virtual extended
Markov state:

θ′(i) :=

⎡
⎢⎢⎢

θ∏Ns
j=i+1 N i

θ

⎤
⎥⎥⎥ , (6.18)
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which changes its value if and only if the value of θi in θ is changed. This is
accomplished by dividing θ by the number of the aforementioned combinations of
Markov states, and by rounding up the resulting quotient to the next integer. In
particular, note that θ′(Ns) = θ. Due to the construction of θ′(i), it holds that:

θ′(i) = mN i
θ + θi (6.19)

for θi ∈ Θi and m ∈ N0. Solving for θi in a similar manner as in Eq. (6.17) leads
to Eq. (6.14).

Since Ψ = (Ψ1, . . . , ΨNs), Definition 6.1 can also be used for calculating Ψ.

Definition 6.2 ([128]). The inverse of the function Ψ(·) is defined as:

Ψ−1 : Θ1 × . . .×ΘNs → Θ, (θ1, . . . , θNs) → θ, (6.20)

and is given by:

Ψ−1(θ1, . . . , θNs) := θNs +
Ns−1∑
i=1

(
(θi − 1)

Ns∏
j=i+1

N j
θ

)
. (6.21)

�

The inverse function Ψ−1(·) is obtained by enumerating the ordered set Θ =
Θ1 × . . .×ΘNs, which leads to the correspondece:

(θ1, . . . , θNs)

= θNs + (θNs−1 − 1)NNs

θ + (θNs−2 − 1)NNs
θ NNs−1

θ + . . .

+ (θ1 − 1)NNs
θ NNs−1

θ · · ·N2
θ = Ψ−1(θ1, . . . , θNs). (6.22)

Rewriting the middle part of the equation directly leads to Eq. (6.21).
For constructing the partitioned JMLS Pθ, introduce the partitioned state vector:

xk := (x1
k; . . . ; xNs

k ) ∈ R
nx, (6.23)

with nx =
∑Ns

i=1 ni
x. The partitioned input vector uk ∈ Rnu , the partitioned distur-

bance vector wk ∈ Rnw, and the partitioned vector of controlled variables zk ∈ Rnz,
as well as their respective dimensions, are analogously defined. Arranging the matri-
ces describing the subsystems P

i
θ according to the definitions of θk and the vectors

xk, uk, wk, and zk, the partitioned JMLS is obtained as:

Pθ :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1 = A[θk]xk + B[θk]uk + E[θk]wk,

zk = C[θk]xk + D[θk]uk,

M = (Θ, P, μ0),

x0 = (x1
0; . . . ; xNs

0 ).

(6.24)
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The corresponding matrices are constructed as:

A[θk] =

⎡
⎢⎢⎢⎣

A1,1[Ψ1(θk)] . . . A1,Ns[Ψ1(θk)]
...

. . .
...

ANs,1[ΨNs(θk)] . . . ANs,Ns[ΨNs(θk)]

⎤
⎥⎥⎥⎦ , (6.25)

with analogous definitions for B[θk] to E[θk].

Remark 6.1. For the subsequent control synthesis, it will be necessary that M is
a homogeneous Markov chain. This is ensured by assuming all local Markov chains
M

i to be homogeneous. However, as stated in [139], this assumption is sufficient but
not necessary for M to be homogeneous. Indeed, there may exist interdependencies
between the local Markov states θi, which can be captured by a homogeneous Markov
chain M . However, in such a case, the construction formulas for the functions Ψ(·)
and Ψ−1(·) will not be valid anymore. �

6.3. Distributed Controller Design

In this section, an approach to the optimization-based design of a distributed, time-
varying state-feedback controller for the interconnected JMLS {P i

θ}i∈Ns will be
presented. To this end, the partitioned JMLS Pθ will be used as an equivalent
description of the interconnected JMLS. In terms of Pθ, the sought linear control
law stated in (6.7) takes the simplified matrix form:

⎡
⎢⎢⎢⎣

u1
k
...

uNs
k

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

K1,1[θk, θΣ,k] . . . K1,Ns[θk, θΣ,k]
...

. . .
...

KNs,1[θk, θΣ,k] . . . KNs,Ns[θk, θΣ,k]

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1
k
...

xNs
k

⎤
⎥⎥⎥⎦ , (6.26)

with gain matrices Ki,j[θk, θΣ,k] ∈ R
ni

u×n
j
x. Hence, the closed-loop system Pθ,cl

resulting from Pθ with controller (6.26) depends on the states of the Markov chains
M and MΣ:

Pθ,cl :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1 = (A[θk] + B[θk]K[θk, θΣ,k])xk + E[θk]wk = Acl[θk, θΣ,k]xk + E[θk]wk,

zk = (C[θk] + D[θk]K[θk, θΣ,k])xk = Ccl[θk, θΣ,k]xk,

M = (Θ, P, μ0), MΣ = (ΘΣ, PΣ, μΣ,0),

x0 = (x1
0; . . . ; xNs

0 ). (6.27)

It will be essential to ensure that the local controllers C
i only use the information

that is actually available to them according to the current topology Σ[θΣ,k] of the
communication network. Hence, each local control input ui

k must only depend on
the set ζi

k of hybrid states that are transmitted to C
i at time k. The dependency
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6. Distributed Control of Interconnected Jump Markov Systems

of ui
k on local states xj

k with j ∈ Ns
i can be restricted to those xj

k with j ∈ Ri[θΣ,k]
by ensuring that:

σi,j[θΣ,k] = 0 ⇒ Ki,j[θk, θΣ,k] = 0ni
u×n

j
x

(6.28)

for all i, j ∈ Ns, θ ∈ Θ, and θΣ ∈ ΘΣ. For restricting the dependency of ui
k on

the local Markov states θj with j ∈ Ns
i to those θj with j ∈ Ri[θΣ,k], temporarily

assume that θΣ,k = θΣ is constant. This assumption will later be dropped again and
thus, does not lead to any restrictions. For any fixed θΣ ∈ ΘΣ, it must be ensured
that:

Ki,:[θk, θΣ] = Ki,:[θk+1, θΣ] (6.29)

for any two extended Markov states θk 
= θk+1 which can not be distinguished by
the local controller C

i. This situation occurs whenever a transition θk → θk+1 does
not affect the local Markov states θj

k with j ∈ Ri[θΣ,k] which are transmitted to the
controller C

i. Thus, the controller C
i is not aware of the transition θk → θk+1. In

this context, consider the following result:

Lemma 6.1. Given a constant communication topology Σ[θΣ] ∈ Σ, the local con-
troller C

i is aware of the transition θk → θk+1 of the extended Markov state, i.e. it
can distinguish θk and θk+1, if and only if:

γi(θk, θk+1, θΣ) :=
Ns∑

j=1

σi,j[θΣ] ‖Ψj(θk)−Ψj(θk+1)‖ > 0. (6.30)

�

Proof. The value of the j-th local Markov state θj
k changes from time k to time k+1

if and only if:

‖θj
k − θj

k+1‖ > 0. (6.31)

Substituting θj
k by Ψj(θk), the above equation can be expressed in terms of the

extended Markov state θk. Hence, a transition θk → θk+1 of the extended Markov
state includes a change of the local Markov state θj

k to θj
k+1 
= θj

k if and only if:

‖Ψj(θk)−Ψj(θk+1)‖ > 0. (6.32)

According to the definition of the adjacency matrix Σ[θΣ], the local Markov state
θj

k can be transmitted to controller C
i if and only if σi,j[θΣ] > 0. Hence, controller

C
i is aware of the transition θk → θk+1 if:

σi,j[θΣ] ‖Ψj(θk)−Ψj(θk+1)‖ > 0, (6.33)
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i.e. if the value of θj
k changes and is transmitted to C

i. Since changes of any local
Markov state received by C

i can be recognized, controller C
i is aware of a transition

θk → θk+1 if (6.30) holds.
To prove necessity, assume that γi(θk, θk+1, θΣ) = 0 and that C

i is aware of
θk → θk+1 with θk+1 
= θk. Since γi(θk, θk+1, θΣ) = 0, either σi,j[θΣ] = 0 or θj

k = θj
k+1

for all j ∈ Ns. Hence, all local Markov states received by C
i (including θi

k) do not
change, which is a contradiction to the assumptions made before.

Lemma 6.1 can now be used to state the condition for requesting constraint (6.29),
leading to the implication:

γi(θ, θ′, θΣ) = 0 ⇒ Ki,:[θ, θΣ] = Ki,:[θ
′, θΣ], (6.34)

which needs to be satisfied by the Ki,j[·] for all i ∈ Ns, θ, θ′ ∈ Θ, and θΣ ∈ ΘΣ.
For restricting the dependency of ui

k on the communication topology Σ[θΣ] to
those communication topologies Σ[θΣ] ∈ Σ which can be distinguished by con-
troller C

i, temporarily assume now that θk = θ is constant. Like the previous
temporary assumption, this assumption will be dropped again in the sequel. From
an implementational viewpoint, it is practical and reasonable to assume that the set
of controllers C

j transmitting information to controller C
i is known by the latter.

Indeed, each controller can easily check if expected information from controller C
j

is available at time k or not, such that each C
i is aware of the index set Ri[θΣ,k].

As a consequence of this assumption, each local control law must not change for
any two values of θΣ,k which do not affect Ri[θΣ,k]. Equivalently, it must hold that:

Ri[θΣ] = Ri[θ′
Σ] ⇒ Ki,:[θ, θΣ] = Ki,:[θ, θ′

Σ] (6.35)

for all i ∈ Ns, θ ∈ Θ, and θΣ, θ′
Σ ∈ ΘΣ.

Dropping the temporary assumptions θk = θ and θΣ,k = θΣ imposed before
means that both Markov states may change in one time step, requiring to consider
combined transitions (θk, θΣ,k) → (θk+1, θΣ,k+1). As before, controller C

i must not
adjust its control law if it is not aware of this combined transition. Note that any
combined transition (θ, θΣ) → (θ′, θ′

Σ) can be interpreted as a sequence of the form:

(θ, θΣ) → (θ′, θΣ) → (θ′, θ′
Σ). (6.36)

It must thus hold that:

(γi(θ, θ′, θΣ) = 0) ∧ (Ri[θΣ] = Ri[θ′
Σ]) ⇒ Ki,:[θ, θΣ] = Ki,:[θ

′, θ′
Σ] (6.37)

for all θ, θ′ ∈ Θ, θΣ, θ′
Σ ∈ ΘΣ, and i ∈ Ns.

Lemma 6.2. For each combined Markov state transition (θ, θΣ) → (θ′, θ′
Σ) of M

and MΣ, the implications (6.34) and (6.35) ensure that implication (6.37) holds. �
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Proof. Assume that both conditions of implication (6.37) are satisfied. Then, it
follows from implication (6.34) and from (6.35) evaluated for θ′ that:

γi(θ, θ′, θΣ) = 0 ⇒ Ki,:[θ, θΣ] = Ki,:[θ
′, θΣ], (6.38)

Ri[θΣ] = Ri[θ′
Σ] ⇒ Ki,:[θ

′, θΣ] = Ki,:[θ
′, θ′

Σ]. (6.39)

Combining the above implications directly leads to (6.37).

6.3.1. Synthesis Problem

By the help of the above considerations, the distributed control design problem can
be transformed into an SDP. To this end, consider the following generalization of
the operator Dn(V) with V ∈ HNθ(Rnx×nx) introduced in Sec. 2.3:

Dθ,θΣ
(V) :=

Nθ∑
m=1

NΣ∑
n=1

pm,θ pΣ,n,θΣ
V [m, n]. (6.40)

Theorem 6.1. Suppose that the matrices Z[θ, θΣ] ∈ S
nw
�0, X[θ, θΣ] ∈ S

nx
�0, G[θ, θΣ] ∈

R
nx×nx, and L[θ, θΣ] ∈ R

nv×nx with θ ∈ Θ and θΣ ∈ ΘΣ are a solution of the
optimization problem:

min
Z[θ,θΣ],X[θ,θΣ],G[θ,θΣ],L[θ,θΣ]

Nθ∑
θ=1

NΣ∑
θΣ=1

tr(Z[θ, θΣ]) subject to: (6.41a)

⎡
⎣X[θ, θΣ]− μ0,θμΣ,0,θΣ

E[θ](E[θ])T A[θ]G[θ, θΣ] + B[θ]L[θ, θΣ]

� G[θ, θΣ] + (G[θ, θΣ])T −Dθ,θΣ
(X)

⎤
⎦ � 0,

(6.41b)⎡
⎣Z[θ, θΣ] C[θ]G[θ, θΣ] + D[θ]L[θ, θΣ]

� G[θ, θΣ] + (G[θ, θΣ])T −Dθ,θΣ
(X)

⎤
⎦ � 0, (6.41c)

X[θ, θΣ] = (X[θ, θΣ])T � 0, (6.41d)

Z[θ, θΣ] = (Z[θ, θΣ])T, (6.41e)

Li,j[θ, θΣ] = 0ni
v×n

j
x

if σi,j[θΣ] = 0, (6.41f)

Gi,j[θ, θΣ] = 0
ni

x×n
j
x

if σi,j[θΣ] = 0, (6.41g)

Gh,j[θ, θΣ] = 0ni
x×n

j
x

if (σi,j[θΣ] = 0) ∧ (σi,h[θΣ] = 1), (6.41h)

Li,:[θ, θΣ] = Li,:[θ
′, θΣ] if γi(θ, θ′, θΣ) = 0, (6.41i)

G[θ, θΣ] = G[θ′, θΣ] if
∏Ns

i=1
γi(θ, θ′, θΣ) = 0, (6.41j)

Li,:[θ, θΣ] = Li,:[θ, θ′
Σ] if Ri[θΣ] = Ri[θ′

Σ], (6.41k)

G[θ, θΣ] = G[θ, θ′
Σ] if ∃i ∈ Ns : Ri[θΣ] = Ri[θ′

Σ], (6.41l)

for all i, j, h ∈ Ns, θ, θ′ ∈ Θ, and θΣ, θ′
Σ ∈ ΘΣ. Let:

K[θ, θΣ] := L[θ, θΣ](G[θ, θΣ])−1. (6.42)

Then, the following assertions hold:
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6.3. Distributed Controller Design

(a) The JMLS Pθ,cl with wk = 0 for all k ∈ N0 is mean-square stable.

(b) The JMLS Pθ,cl with input wk is BIBO stable in the mean-square sense.

(c) The value of the H2-norm as defined in Def. (2.15) is upper-bounded by the
objective function (6.41a).

(d) For J as defined in Case 2.1, and by setting μ0 := μ∞, the value of J is upper-
bounded by the objective function (6.41a).

(e) For J as defined in Case 2.2, and by setting E[θ] := x0 ∀ θ ∈ Θ, the value of J
is upper-bounded by the objective function (6.41a).

(f) The control law uk = K[θk, θΣ,k]xk is consistent to the communication topology
specified by Σ[θΣ,k]. �

Proof. By using the parallel composition according to Eq. (6.9), the Markov chain
governing the combined Markov state (θk, θΣ,k) is obtained as:

M ‖MΣ = (Θ×ΘΣ, P ⊗ PΣ, μ0 × μΣ,0). (6.43)

Hence, the operator Dθ(·) defined in (2.47) naturally extends to (6.40). At this
point, Theorem 6 from [37] can be employed, which states that the SDP comprised
of (6.41a) to (6.41e) ensures mean-square stability of the corresponding closed-
loop system Pθ,cl, and that ‖Pθ,cl‖2

H2
is upper-bounded by the objective function

(6.41a). Hence, assertions (a) and (c) hold, and assertions (b), (d), and (e) follow
with Theorem 2.4, with Lemma 2.2, and with Lemma 2.4, respectively.

Concerning the structure of the distributed control law, implications (6.28), (6.34),
and (6.35) have to be formulated in terms of the nonlinear controller parametriza-
tion given by the matrices G[θ, θΣ] and L[θ, θΣ]. The constraints (6.41f) to (6.41h),
which are sufficient for implication (6.28) to hold, can be adopted from [50]. For
ensuring that Ki,:[θ, θΣ] = Ki,:[θ

′, θ′
Σ] for some θ, θ′ ∈ Θ and θΣ, θ′

Σ ∈ ΘΣ, it suffices
to set [52]:

Li,:[θ, θΣ] = Li,:[θ
′, θ′

Σ], (6.44)

G[θ, θΣ] = G[θ′, θ′
Σ]. (6.45)

Considering the corresponding conditions of implications (6.34) and (6.35) leads to
the constraints (6.41i) to (6.41l).

As already mentioned in Sec. 6.1, SCT design is not considered in this chap-
ter. One reason for this becomes apparent when analyzing Problem (6.41) with
respect to the binary variables σi,j[θΣ]. When implementing constraints (6.41f) to
(6.41l) by the help of the Big-M method [136], the logical conditions for constraints
(6.41j) to (6.41l) become nonlinear in the binary variables σi,j[θΣ]. Consequently,
the problem becomes non-convex if the binary variables are relaxed to the interval
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[0, 1], prohibiting the usage of branch-and-bound techniques for efficiently solving
the MISDP.

The number of continuous optimization variables in Problem (6.41) is:

Ncv =
NθNΣ

2
((nz)

2 + nz + 3(nx)2 + 3nx + 2nunx). (6.46)

Note that no binary variables are required to set up Problem (6.41), since the
set of constraints (6.41f) to (6.41l) is dictated by Σ. Numerical studies revealed
that, besides the number of optimization variables, several other quantities influence
the required time for solving the SDP (6.41). In particular, it was observed that
the calculation time varied up to 20% for two different interconnected JMLS with
identical system dimensions. Hence, besides the number of optimization variables,
the number of constraints which are generated by the adjacency matrices Σ[·] has
a significant impact on the complexity of the optimization problem.

Regarding the scalability of Problem (6.41), the limiting factor is the number of
Markov states N i

θ of the jump Markov linear subsystems P
i
θ. Due to the combi-

natorics of the parallel composition, even moderate changes of the number of local
Markov states may lead to significant changes of the number of extended Markov
states.

6.3.2. Implementation

The distributed control law follows from (6.26) with gain matrix K[θ, θΣ] from the
solution of the SDP (6.41). In the light of Eq. (6.7), the local controller of the i-th
subsystem P

i
θ is given by:

C
i : ui

k =
∑

j∈Ns

Ki,j[Ψ
−1(θ1

k, . . . , θNs
k ), θΣ,k] xj

k. (6.47)

For implementing C
i, every controller C

j with j ∈ Ri[θΣ,k] must transmit its local
hybrid state ζi

k to the controller C
i at time k. Due to constraint (6.34), every

local Markov state θj
k with j ∈ Ns

i \ Ri[θΣ,k] can be set to θj
k = 1 without any

restriction. Concerning θΣ,k, constraint (6.35) ensures that controller C
i may choose

any θ′
Σ,k ∈ ΘΣ with Ri[θ′

Σ,k] = Ri[θΣ,k]. The set Ri[θΣ,k] can easily be determined

by each local controller C
i by tracking the senders of the received hybrid states.

Remark 6.2. The results presented in this chapter can be generalized to the case of
separate communication topologies Σx,k and Σθ,k for the local states xi

k and for the
local Markov states θi

k, respectively. However, it seems more reasonable from the
viewpoint of the implementation to assume that both states, xi

k and θi
k, are always

transmitted together.
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6.4. Numerical Example

6.4. Numerical Example

For showing the effectiveness of the presented approach, consider the following set
of Ns = 3 interconnected jump Markov linear subsystems P

i
θ, parametrized by:

θ1 A1,:[θ
1] B1,:[θ

1] C1,:[θ
1] D1,:[θ

1]

1

⎡
⎣0.2 −1 0.4 1.3 0 0.4

0.2 0.8 1.2 0.1 0.6 0.1

⎤
⎦

⎡
⎣0 0 0

1 0 0.2

⎤
⎦

⎡
⎣8 0 0 0 0 0

0 5 0 0 0 0

⎤
⎦
⎡
⎣ 2 1 1

1.5 0 0

⎤
⎦

2

⎡
⎣0.9 0 0.2 1.3 0.2 0.3

0.4 0.7 1 0.1 1.4 0.1

⎤
⎦
⎡
⎣ 0 0 0

0.1 0.1 0

⎤
⎦
⎡
⎣8 0 0 0 0 0

0 5 0 0 0 0

⎤
⎦
⎡
⎣ 2 1 1

1.5 0 0

⎤
⎦

θ2 A2,:[θ
2] B2,:[θ

2] C2,:[θ
2] D2,:[θ

2]

1

⎡
⎣0.2 0 1 0.3 0 0

0 0.1 0.7 1.8 0 0.1

⎤
⎦

⎡
⎣0 1 0.1

0 2 0

⎤
⎦
⎡
⎣0 0 8 0 0 0

0 0 0 5 0 0

⎤
⎦
⎡
⎣1 2 1

0 1.5 0

⎤
⎦

2

⎡
⎣0.4 0 0.9 1 0.3 −0.2

0.2 0 0.5 −1 0.2 0

⎤
⎦
⎡
⎣0 1 0

0 0.3 0

⎤
⎦
⎡
⎣0 0 8 0 0 0

0 0 0 5 0 0

⎤
⎦
⎡
⎣1 2 1

0 1.5 0

⎤
⎦

θ3 A3,:[θ
3] B3,:[θ

3] C3,:[θ
3] D3,:[θ

3]

1

⎡
⎣0.6 −0.8 0.2 1 1.1 0

0.5 0.3 0 0.1 0.2 0.8

⎤
⎦
⎡
⎣0 0 0

0 0 1

⎤
⎦
⎡
⎣0 0 0 0 8 0

0 0 0 0 0 5

⎤
⎦
⎡
⎣1 1 2

0 0 1.5

⎤
⎦

Furthermore, Ei,i[θ
i] = I2 and Ei,j[θ

i] = 02×2 for all i, j ∈ Ns and all θi ∈ Θi. The
dimensions of the interconnected JMLS are thus given by ni

x = ni
w = ni

z = 2 and
ni

u = 1 for all i ∈ Ns. Note that the third subsystem P
3
θ only has one local Markov

state, such that it is governed by the trivial Markov chain M
3 = ({1}, 1, 1). Hence,

P
3
θ can be interpreted as an LTI subsystem. The Markov chains of subsystems P

1
θ

and P
2
θ are parametrized by:

M
1 =

⎛
⎝{1, 2},

⎡
⎣0.9 0.1

0.9 0.1

⎤
⎦ ,

⎡
⎣0.8

0.2

⎤
⎦
⎞
⎠ , M

2 =

⎛
⎝{1, 2},

⎡
⎣0.6 0.4

0.7 0.3

⎤
⎦ ,

⎡
⎣0.5

0.5

⎤
⎦
⎞
⎠ . (6.48)

The failure prone communication topology is modeled by the following Markov
chain and adjacency matrices:

MΣ =

⎛
⎝{1, 2},

⎡
⎣0.95 0.05

0.95 0.05

⎤
⎦ ,

⎡
⎣1
0

⎤
⎦
⎞
⎠ , Σ[1] =

⎡
⎢⎢⎣
1 1 1

1 1 1

1 0 1

⎤
⎥⎥⎦ , Σ[2] =

⎡
⎢⎢⎣
1 0 1

1 1 1

1 0 1

⎤
⎥⎥⎦ . (6.49)

Thus, at each time instant k ∈ N0, the communication link σ1,2 from controller C
2

to controller C
1 has a five percent likelihood to fail.
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Applying the modeling procedure presented in Sec. 6.2 leads to the extended
Markov chain:

M =

⎛
⎜⎜⎜⎜⎜⎝{1, 2, 3, 4},

⎡
⎢⎢⎢⎢⎢⎣

0.54 0.36 0.06 0.04

0.63 0.27 0.07 0.03

0.54 0.36 0.06 0.04

0.63 0.27 0.07 0.03

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

0.4

0.4

0.1

0.1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ . (6.50)

Furthermore, the mapping Ψ(θ) = (θ1, θ2) from the extended Markov state θ to the
local Markov states θi is given by:

Ψ(1) = (1, 1), Ψ(2) = (1, 2), Ψ(3) = (2, 1), Ψ(4) = (2, 2). (6.51)

The construction of the state-space matrices A[θ] to E[θ] of Pθ is now performed
according to Eq. (6.25), and is exemplarily shown for the following two cases:

A[2] =

⎡
⎢⎢⎣
A1,1[1] A1,2[1] A1,3[1]

A2,1[2] A2,2[2] A2,3[2]

A3,1[1] A3,2[1] A3,3[1]

⎤
⎥⎥⎦ , A[3] =

⎡
⎢⎢⎣
A1,1[2] A1,2[2] A1,3[2]

A2,1[1] A2,2[1] A2,3[1]

A3,1[1] A3,2[1] A3,3[1]

⎤
⎥⎥⎦ . (6.52)

A subset of the optimized gain matrices K[θ, θΣ] obtained for the above parametriza-
tion is:

K[1, 1] =

⎡
⎢⎢⎣

0.45 −1.93 −0.61 1.23 0.20 0.27

0.02 −0.08 −0.29 −0.90 0.02 −0.05

−0.43 −0.13 0 0 −0.12 −0.76

⎤
⎥⎥⎦ , (6.53a)

K[2, 1] =

⎡
⎢⎢⎣

0.38 −1.85 −0.78 1.29 0.16 0.29

−0.58 0.09 −1.14 0.77 −0.55 0.11

−0.43 −0.13 0 0 −0.12 −0.76

⎤
⎥⎥⎦ , (6.53b)

K[1, 2] =

⎡
⎢⎢⎣

0.38 −1.88 0 0 0.21 0.31

0.02 −0.08 −0.29 −0.90 0.02 −0.05

−0.43 −0.13 0 0 −0.12 −0.76

⎤
⎥⎥⎦ , (6.53c)

K[2, 2] =

⎡
⎢⎢⎣

0.38 −1.88 0 0 0.21 0.31

−0.58 0.09 −1.14 0.77 −0.55 0.11

−0.43 −0.13 0 0 −0.12 −0.76

⎤
⎥⎥⎦ . (6.53d)

The above numerical values for K[θ, θΣ] demonstrate that the local controllers C
i

only make use of the state information xj
k available to them at time k according

to the topology of communication network Gk. For instance, K3,2[θ, θΣ] is equal
to 01×2 for all θ ∈ θ and θΣ ∈ ΘΣ, since the corresponding communication link is
unavailable for all θΣ ∈ ΘΣ. For the same reason, controller C

3 is not aware of
the local Markov state θ2

k, which results in K3,:[1, θΣ] = K3,:[2, θΣ]. Thus, controller
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C
3 can always assume an arbitrary value θ2

k ∈ Θ2. The gain matrices K[1, 2]
and K[2, 2] demonstrate the effect of the defective communication link, which is
inactive for θΣ = 2. Hence, the corresponding gain K1,2[θ, 2] is zero for all θ ∈ Θ,
and both the first and the third subsystem can not distinguish the Markov states
θ = 1 = Ψ−1(1, 1) and θ = 2 = Ψ−1(1, 2). Thus, K1,:[1, 2] = K1,:[2, 2], and
K3,:[1, 2] = K3,:[2, 2].

For comparing the performance of the interconnected system {P i
θ}i∈Ns with dif-

ferent controllers, the H2-norm as defined in Def. 2.15 (see p.38) is considered as
performance measure for the resulting closed-loop system. The performance of a
centralized linear quadratic regulator is 30.12. However, this control law can not be
implemented for the considered system, since it ignores the probabilistic informa-
tion constraints imposed by the communication network Gk. Furthermore, stability
of the closed-loop system can not be guaranteed in case of communication link fail-
ure. A stabilizing fully decentralized control law, on the other hand, does not exist
for the considered interconnected system, since subsystem P

3
θ can not be stabilized

with local information only. In contrast, the proposed distributed control scheme
achieves a H2-norm of 36.17, while respecting the communication constraints and
using the information transmitted via the defective communication link whenever it
is available. This clearly demonstrates the advantages of the proposed distributed
control scheme.

The evolution of the state trajectory of the interconnected system {P i
θ}i∈Ns con-

trolled by the presented distributed controllers is characterized in Fig. 6.2. The
figure shows the envelopes and the quadratic mean of the state trajectories of 2500
simulation runs of 60 time-steps each. For each simulation run, the initial state was:

x0 =
[
10 10 −10 −10 −10 10

]T
, (6.54)

and wk was white Gaussian noise. The trajectories of the Markov states θk and θΣ,k

have been sampled according to P , μ0 and PΣ, μΣ,0, respectively. It can be seen
that the state xk is attracted to the equilibrium, indicating that the closed-loop
system is indeed mean-square stable.

6.5. Discussion

An approach to the design of distributed state-feedback controllers for intercon-
nected jump Markov linear subsystems with uncertain communication was pre-
sented in this chapter. In a first step, the interconnected system is recast into
a partitioned centralized jump Markov linear system Pθ, depending on both the
parallel composition of the local Markov chains and a Markov chain governing the
timely evolution of the communication topology. Preserving the structural informa-
tion of the interconnected subsystems, the partitioned jump Markov linear system
allows to formulate an SDP for the design of a distributed, mode-dependent state-
feedback controller. Compared to online methods like model predictive control, a
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Figure 6.2.: Envelopes and quadratic mean of the closed-loop system state xk for

white Gaussian noise wk and x0 =
[
10 10 − 10 − 10 − 10 10

]T
.

particular advantage of such a control law is its low implementation complexity,
making it particularly suited for fast processes.

A special focus was on the derivation of structural constraints which ensure that
the resulting controllers respect the current topology of the communication net-
work. In particular, the local controllers are able to reconfigure themselves when
expected information transmitted over defective communication links is missing or
delayed. However, due to nonlinear dependencies of the binary variables, perform-
ing simultaneous control and communication topology design within the presented
framework is not recommended. Hence, the development of simplified linear syn-
thesis conditions remains an open question.

A further topic of future research would be to make the hierarchical scheme pre-
sented in the second part of this thesis amenable to interconnected jump Markov
systems. In order to get an invariant interconnection measure for the purpose of
structural analysis, one may introduce an interconnection measure which considers,
e.g., the worst case interconnection strength over all extended Markov states θ ∈ Θ.
Similar to the two-layer scheme introduced for LTI systems, a lower control layer
which is decentralized w.r.t. the identified clusters could be designed in a first step.
For the design of an upper control layer, the main challenge will then be to find
an efficient formulation for dealing with the uncertainty induced when considering
a coarser time-scale. Otherwise, the combinatorics would dramatically increase the
synthesis complexity on the upper layer, since any possible Δk- sequence of Markov
states would constitute a new Markov state for the upper layer system. An imagin-
able remedy to this problem would be to derive a polytopic model for each Markov
state, which raises the question of conservativeness of such an approach. Alter-
natively, one may think of an uncertain (e.g., polytopic) system description which
incorporates a probability density function describing the probability distribution
of the model uncertainty.
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Systems

In this chapter, it will be shown how the hierarchical approach developed in Chap.
3 can be extended to a generalized class of jump Markov systems (JMS). Despite
their considerable modeling flexibility, jump Markov systems have limitations con-
cerning the underlying distribution of the events over time. More specifically, using
a Markov chain for modeling the evolution of the events over time requires them to
follow a geometrical distribution, which does not apply for many practical scenarios.
This observation has motivated the development of a more general class of jump
Markov systems, which are called jump semi-Markov systems (JSMS) [141]. While
for classical JMS, it is assumed that the transition probabilities of the Markov chain
are time-invariant, the transition probabilities of a JSMS may vary over time. An
article of Zhang et al. provides a comprehensive overview of several special cases
that have been considered in literature [141]. So far, JSMS have usually been inves-
tigated in the context of centralized settings [56] [112], such that the approach to
be presented next is one of the first dealing with distributed control of this system
class. Note that large parts of this chapter have previously been published in [61].

In the sequel, a scenario is considered in which the semi-Markov chain is modeled
as a global entity, with the global Markov state being measurable by the subsys-
tems. For a practical application, this may be interpreted as a centralized entity
for failure detection, with the resulting information being transmitted to the sub-
systems. A distributed two-layer control structure similar to the one presented in
Chap. 3 will be developed, which is particularly suitable for controlling this type
of dynamic systems. According to the existing hierarchical concept, the structure
of the distributed two-layer controller is adjusted to the inherent interconnection
topology of the plant. In accordance with the hybrid dynamic model, both layers of
the distributed controller operate on different time-scales: fast time constants and
strong subsystem interconnections are managed by local controllers on a lower con-
trol layer, which are coordinated by an upper control layer operating on a coarser
time-scale. Furthermore, the upper control layer accounts for the handling of the
discrete events.
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7.1. Problem Setup

Consider a set of Ns ∈ N interconnected uncertain subsystems P i
θ, i ∈ Ns, where

the dynamics of the i-th subsystem is given by:

P
i
θ =

⎧⎨
⎩xi

k+1 =
∑Ns

j=1 Ai,j[θk]xj
k + Bi,j[θk]uj

k + Ei,j[θk]wj
k,

zi
k =

∑Ns
j=1 Ci,j[θk]xj

k + Di,j[θk]uj
k.

(7.1)

In order to simplify the presentation, it is assumed here that the state-space matrices
Ai,j[·] to Ei,j[·] parametrizing the subsystems depend on the state θk ∈ Θ of a global
Markov chain Mk = (Θ, Pk, μ0). The variable θk will also be called the global mode
of the interconnected system {P i

θ}i∈Ns. In cases where the state-space matrices
depend on local Markov states θi

k, the procedure presented in Sec. 6.2 can be
adopted for combining them to a global Markov chain. As mentioned before, Mk is
evaluated on a coarser time-scale compared to the sampling time of the subsystem
dynamics P

i
θ. This assumption is modeled by a periodically time-varying transition

probability matrix:

Pk =

⎧⎨
⎩P ∃ s ∈ N0 | sΔk = k,

I otherwise,
(7.2)

with a constant Δk ∈ N>1. Hence, the Markov chain Mk basically acts on the upper
layer time-domain T↑. The basic structure of the interconnected system {P i

θ}i∈Ns

is illustrated in Fig. 7.1.

Mk

P
1
θ

P
2
θ P

3
θ

P
4
θ

θk

θk θk

θk

Figure 7.1.: Basic structure of interconnected uncertain subsystems P
i
θ with a

global Markov chain Mk. The solid lines between the subsystems
indicate the physical interconnections, while dashed lines indicate the
influence of the global Markov state θk.
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Within this setting, the two different time-scales are motivated by physical sys-
tems which require a small sampling time Δt to account for all relevant time-
constants, but where discrete events influencing the system dynamics occur (or
can be modeled more accurately) on a coarser time-scale. For instance, referring
to Chap. 5, modeling a power system requires discretization times of fractions
of seconds, while events like power-line failures are rather modeled on a coarser
time-scale.

Applying Equations (6.23) and (6.25) to xi
k, ui

k, wi
k, zi

k, and Ai,j[·] to Ei,j[·],
respectively, the interconnection of the Ns subsystems P i

θ leads to the centralized
partitioned system:

Pθ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1 = A[θk]xk + B[θk]uk + E[θk]wk,

zk = C[θk]xk + D[θk]uk,

Mk = (Θ, Pk, μ0),

x0 = (x1
0; . . . ; xNs

0 ).

(7.3)

Hierarchical Controller Structure

The two different time-scales of the continuous- and the discrete-valued part of the
dynamics, as well as the distributed character of the model, lead to a relatively
high complexity regarding control synthesis. In the sequel, it will be shown how
this complexity can be efficiently managed with an extension of the basic concepts
introduced in Chap. 3.

In a first step prior to the control design, the interconnection structure of the
uncertain plant is analyzed, and strongly coupled subsystems are grouped into clus-
ters. This procedure is an extension of the subsystem clustering presented in Sec.
3.2. As before, each cluster is described by an index set Cp[θ] ⊆ IN with p ∈ INc[θ],
which now additionally depends on the global mode θ ∈ Θ. Hence, the number
Nc[θ] ∈ N≤Ns of identified clusters may be different in each mode. As a conse-
quence, the permutation order of the signal vectors depends on the mode θ. This
is indicated by the following notation:

x̄p
k[θ] := [xi

k]i∈Cp[θ], (7.4)

with analogous definitions for uk, wk, and zk, respectively.
In a second step, a lower control layer is designed, which operates on the time-

domain T
↓ and addresses fast dynamics and strong interconnections between the

subsystems. This lower layer controller is of the form:

ūp
k[θk] = K̄↓

p,p[θk]x̄p
k[θk] + v̄p

k[θk], (7.5)

where v̄k ∈ Rnu denotes the upper layer input to be chosen later. As established in
Chap. 3, the lower layer controller has a decentralized structure w.r.t. the clusters.
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7. Hierarchical Control of Interconnected Semi-Markov Systems

Consequently, full communication between all subsystems i ∈ Cp[θ] belonging to the
same cluster is required, while communication between the clusters is prohibited.
In a third and final step, the upper control layer is chosen as:

v̄p
sΔk[θsΔk] =

∑Nc[θsΔk]

q=1
K̄↑

p,q[θsΔk]x̄q
s[θsΔk]. (7.6)

The task of the upper control layer is to implement communication between the
clusters, and to account for the weak interconnections that have been neglected for
the design of the lower control layer. Additionally, for the present case of jump
semi-Markov systems, the upper control layer is responsible for the handling of the
global mode transitions.

In order to set up the simultaneous controller and communication topology design
on the upper control layer, the mode-dependent directed graph:

G
↑[θ] = (INc[θ], E↑[θ]) (7.7)

is defined, which is associated with the clustered subsystems. As usual, each cluster
represents a node in the graph. However, since the sets Cp[θ] are a function of
θ, the upper layer communication topology also becomes a function of θ. The
corresponding adjacency matrix Σ̄↑[θ] = [σ̄↑

p,q[θ]] ∈ BNc[θ]×Nc[θ] is defined as:

σ̄↑
p,q[θ] :=

⎧⎨
⎩1 if (q, p) ∈ E↑[θ],

0 otherwise.
(7.8)

The quality of a given topology Σ̄↑[θ] is evaluated by the help of a communication
cost function:

J↑com(Σ̄↑[θ]) :=
∑

p∈INc[θ]

∑
q∈INc[θ]

c̄↑com
p,q [θ] σ̄↑

p,q[θ], (7.9)

with parameters c̄↑com
p,q [θ] ∈ R≥0 parametrizing the cost for activating the link from

cluster q to cluster p.

7.2. Subsystem Clustering

The following algorithm analyzes the structure of the interconnected system P i
θ,

i ∈ Ns, allowing to incorporate the interconnection structure for the design of
the distributed control law. The main idea is to apply the clustering procedure
presented in Sec. 3.2 separately for each mode θ ∈ Θ, which results in the following
steps:

(a) The interconnection structure and interconnection strength between the sub-
systems P

i
θ is mapped into an Nθ-sequence of matrices Γ = (Γ[1], . . . , Γ[Nθ]) ∈

HNθ(Rnx×nx
≥0 ). The scalar entries γi,j[θ] of Γ[θ] are chosen according to:

γi,j[θ] := ‖Ai,j[θ]‖2 + ‖Bi,j[θ]‖2 (7.10)

for all i, j ∈ Ns and all θ ∈ Θ.
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(b) Define small non-negative numbers εw, εn ∈ R≥0 such that εw ≥ εn. These
design parameters determine if an interconnection between two subsystems P

i
θ

and P
j
θ is considered to be weak during the structural analysis (γi,j[θ] ≤ εw), or

is even neglected completely for designing the lower control layer (γi,j[θ] ≤ εn).

(c) The interconnection structure resulting from the strong interconnections is
stored in the Nθ-sequence of matrices Γ′ ∈ HNθ(Rnx×nx

≥0 ), which is defined by:

γ′
i,j[θ] :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γi,j[θ] if γi,j[θ] > εw,

2 εw if i = j,

0 otherwise.

(7.11)

(d) The Dulmage-Mendelsohn decomposition [102] is applied separately to each
matrix Γ′[θ], with θ ∈ Θ. The resulting UBT matrix is denoted by Γ′′[θ],
comprising the Nθ-sequence Γ′′. The index vector τ [θ] ∈ N

Ns contains the
permuted subsystem order for each mode, such that:

γ′′
i,j[θ] = γ′

τi[θ],τj[θ][θ] =: γ′
τi,τj

[θ]. (7.12)

The second equality is established as a shorthand for simplifying the notation.

(e) For fixed θ ∈ Θ, denote the number of blocks on the diagonal of the UBT matrix
Γ′′[θ] by Nc[θ]. For all p ∈ Nc[θ] := INc[θ] and all θ ∈ Θ, the indices i ∈ Ns of
the subsystems belonging to the p-th diagonal block of Γ′′[θ] are stored in an
index set Cp[θ] ⊆ Ns.

(f) Optionally, the clusters may be joined for fixed θ, while respecting user-defined
bounds on the cluster size. For details, the reader is referred to step (f) of the
clustering procedure presented in Sec. 3.2 (see p.52).

(g) All entries of Γ′[θ] that are smaller than εw but larger than or equal to εn

are restored to their original values. Similarly, those entries of Γ′[θ] that are
smaller than εn but do not affect the hierarchical interconnection structure of
the clusters, are restored, too:

1: Given: Γ, Γ′, Ns, {C p[θ]}
2: for θ = 1 to Nθ do

3: set: h := 1, p := 1
4: for i = 1 to Ns do

5: if i ≥ h + card(Cp[θ]) then

6: set: h := i, p := p + 1
7: end if

8: for j = 1 to Ns do

9: if (γτi,τj
[θ]− γ′

τi,τj
[θ] > 0) then

10: if (j ≥ h) ∨ (γτi,τj
[θ] ≥ εn) then
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11: set: γ′
τi,τj

[θ] := γτi,τj
[θ]

12: end if

13: end if

14: end for

15: end for

16: end for

17: return Γ′

The outcome of the clustering procedure is the Nθ-sequence of matrices Γ′ ∈
HNθ(RNs×Ns

≥0 ), characterizing the mode-dependent interconnection structure of the
subsystems. The subsystem clusters are defined by the index sets Cp[θ], which are
disjoint for fixed θ ∈ Θ.

The new subsystem order is encoded by the vector τ [θ] ∈ NNs. This vector can
be used for constructing the permutation matrices Tx[θ], Tu[θ], Tw[θ], and Tz[θ] of
dimension T•[θ] = [T• i,j[θ]] ∈ Bn•×n• according to:

T• i,j[θ] =

⎧⎪⎨
⎪⎩

I
n

τj [θ]
•

if τj[θ] = i,

0
ni

•×n
τj [θ]
•

otherwise.
(7.13)

The above variables can be used to construct the aggregate subsystems P̄
p
θ accord-

ing to the index sets Cp[θ]. To this end, define the partitioned matrices:

Ā[θ] = [Āp,q[θ]] := T T

x [θ]A[θ]Tx[θ] ∈ R
nx×nx, (7.14a)

B̄[θ] = [B̄p,q[θ]] := T T

x [θ]B[θ]Tu[θ] ∈ R
nx×nu , (7.14b)

C̄[θ] = [C̄p,q[θ]] := T T

z [θ]C[θ]Tx[θ] ∈ R
nz×nx, (7.14c)

D̄[θ] = [D̄p,q[θ]] := T T

z [θ]D[θ]Tu[θ] ∈ R
nz×nu, (7.14d)

Ē[θ] = [Ēp,q[θ]] := T T

x [θ]E[θ]Tw[θ] ∈ R
nx×nw . (7.14e)

Since the clusters depend on the current Markov state, the state, input, and output
signals of the aggregate subsystems become functions of θk, such that:

P̄
p
θ :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̄p
k+1[θk] =

∑Ns
q=1 Āp,q[θk]x̄q

k[θk] + B̄p,q[θk]ūq
k[θk] + Ēk[θk]wq

k[θk],

z̄p
k[θk] =

∑Ns
q=1 C̄p,q[θk]x̄q

k[θk] + D̄p,q[θk]ūq
k[θk],

x̄p
0[θ0] = [xi

0]i∈Cp[θ0],

(7.15)

for θk ∈ Θ.
In order to ensure that the lower layer control design problem is well-posed, the

following assumption is imposed:

Assumption 7.1. The pair (Āp,p[θ], B̄p,p[θ]) is stabilizable for all p ∈ Nc[θ], θ ∈ Θ.

With Lemma 2.6, it thus follows that the uncertain dynamic system P̄θ is stabi-
lizable by decentralized state-feedback for any fixed mode θ ∈ Θ.
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7.3. Lower Layer Control Design

7.3. Lower Layer Control Design

The design of the lower control layer is performed independently for each mode
θ ∈ Θ. This is motivated by the fact that mode switches may only occur every Δk-th
time-step, such that the overall behavior of the system consists of sequences of fixed
modes. Adverse effects induced by mode-transitions, like performance degradation
or even instability of the controlled system, are handled by the upper control layer.

In order to enable a sequential design of the lower and of the upper control layer,
the upper layer input signal v̄k[θ] is assumed to be zero during the lower layer control
design. For constructing the lower layer synthesis problems, the overall system is
written in terms of the clusters for each mode θ ∈ Θ, and neglected interconnections
are removed from the system matrices. This leads to the aggregate subsystems:

P̄
′p
θ :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̄p
k+1[θk] =

∑Ns
q=1 Ā′

p,q[θk]x̄q
k[θk] + B̄′

p,q[θk]ūq
k[θk] + Ēp,q[θk]w̄q

k[θk],

z̄p
k[θk] =

∑Ns
q=1 C̄p,q[θk]x̄q

k[θk] + D̄p,q[θk]ūq
k[θk],

x̄p
0[θ0] = [xi

0]i∈Cp[θ0],

(7.16)

for p, q ∈ Nc[θ] and with:

Ā′
p,q[θ] := [A′

i,j[θ]]i∈Cp[θ],j∈Cq[θ], A′
i,j[θ] :=

⎧⎨
⎩Ai,j if γ′

i,j[θ] > 0,

0ni
x×n

j
x

otherwise,
(7.17a)

B̄′
p,q[θ] := [B′

i,j[θ]]i∈Cp[θ],j∈Cq[θ], B′
i,j[θ] :=

⎧⎨
⎩Bi,j if γ′

i,j[θ] > 0,

0ni
x×n

j
u

otherwise.
(7.17b)

Applying Theorem 3.1 to the clustered system P̄
′
θ separately for each θ ∈ Θ leads

to the semidefinite programs:

min
G[θ],L[θ],X[θ],Z[θ]

tr(Z[θ]) (7.18a)

subject to:

⎡
⎣Z[θ] �

Ē[θ] X[θ]

⎤
⎦ � 0, (7.18b)

⎡
⎢⎢⎣
G[θ] + (G[θ])T − X[θ] � �

Ā′[θ]G[θ] + B̄′[θ]L[θ] X[θ] �

C̄[θ]G[θ] + D̄[θ]L[θ] 0 I

⎤
⎥⎥⎦ � 0, (7.18c)

X[θ] = (X[θ])T � 0, (7.18d)

G[θ] = blkdiag(Gp,p[θ]), (7.18e)

L[θ] = blkdiag(Lp,p[θ]). (7.18f)

From the solution of Problem (7.18), the lower layer controller gain matrices K̄↓[θ]
are obtained as:

K̄↓[θ] = L[θ](G[θ])−1, θ ∈ Θ. (7.19)
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Under the control of ūp
k[θk] = K̄↓

p,p[θk]x̄p
k[θk] with p ∈ Nc[θk], the clustered system

P̄θ becomes a system with input v̄k:

P̄
↓
θ,cl :

⎧⎪⎨
⎪⎩

x̄k+1[θk] = (Ā[θk] + B̄[θk]K̄↓[θk])x̄k[θk] + B̄[θk]v̄k[θk] + Ē[θk]w̄k[θk],

z̄k[θk] = (C̄[θk] + D̄[θk]K̄↓[θk])x̄k[θk] + D̄[θk]v̄k[θk].

(7.20)

In accordance with established notation, define:

Ā↓
cl[θ] := (Ā[θ] + B̄[θ]K̄↓[θ]), C̄↓

cl[θ] := (C̄[θ] + D̄[θ]K̄↓[θ]). (7.21)

Due to the neglected interconnections in Ā′[·] and B̄′[·] and the neglected mode
transitions, the lower layer controller does neither ensure mean-square stability nor
H2-performance for the lower layer closed-loop system P̄

↓
θ,cl. However, by carefully

designing a suitable upper layer controller, the composite two-layer controller pro-
vides guarantees concerning both, MSS and performance. Furthermore, it offers a
good tradeoff between communication effort and closed-loop performance.

7.4. Upper Layer Control Design

For the design of the upper control layer, the weak interconnections and mode-
transitions are explicitly taken into account. In addition, communication between
the clusters is implemented. Before designing the upper layer control law, the
controlled lower layer system Pθ,cl is first time-lifted to the upper layer time-domain
T

↑, preserving its partitioning with respect to the clusters. To this end, recall the
notation θ̂s = θsΔk, such that the clustered upper layer system can be stated as:

P̄
↑
θ :

⎧⎪⎨
⎪⎩

ˆ̄xs+1[θ̂s] = Ā↑[θ̂s]ˆ̄xs[θ̂s] + B̄↑[θ̂s]ˆ̄us[θ̂s] + Ē↑[θ̂s] ˆ̄ws[θ̂s],

ˆ̄zs[θ̂s] = C̄↑[θ̂s]ˆ̄xs[θ̂s] + D̄↑[θ̂s]ˆ̄us[θ̂s] + F̄ ↑[θ̂s] ˆ̄ws[θ̂s].
(7.22a)
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The matrices Ā↑[·] to F̄ ↑[·] are defined as:

Ā↑[θ̂s] := (Ā↓
cl[θ̂])Δk ∈ R

nx×nx, (7.22b)

B̄↑[θ̂s] :=
∑Δk−1

h=0
(Ā↓

cl[θ̂])hB̄[θ̂] ∈ R
nx×nu, (7.22c)

C̄↑[θ̂s] :=

⎡
⎢⎢⎢⎢⎢⎢⎣

C̄↓
cl[θ̂]

C̄↓
cl[θ̂]Ā↓

cl[θ̂]
...

C̄↓
cl[θ̂](Ā↓

cl[θ̂])Δk−1

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R

n̄
↑
z×nx, (7.22d)

D̄↑[θ̂s] :=

⎡
⎢⎢⎢⎢⎢⎢⎣

D̄[θ̂]

C̄↓
cl[θ̂]B̄[θ̂] + D̄[θ̂]

...

C̄↓
cl[θ̂](

∑Δk−2
h=0 (Ā↓

cl)
h[θ̂])B̄[θ̂] + D̄[θ̂]

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R

n̄
↑
z×nu (7.22e)

Ē↑[θ̂s] :=
[
(Ā↓

cl[θ̂])Δk−1Ē[θ̂] . . . Ā↓
cl[θ̂]Ē[θ̂] Ē[θ̂]

]
∈ R

nx×n̄
↑
w, (7.22f)

F̄ ↑[θ̂s] :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

C̄↓
cl[θ̂]Ē[θ̂]

. . . . . .
...

...
. . . . . . 0

C̄↓
cl[θ̂](Ā↓

cl[θ̂])Δk−2Ē[θ̂] . . . C̄↓
cl[θ̂]Ē[θ̂] 0

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R

nz×n̄
↑
w, (7.22g)

and the lifted disturbance vector is constructed as:

ˆ̄ws[θ̂s] =

⎡
⎢⎢⎢⎣

w̄sΔk[θ̂s]
...

w̄(s+1)Δk−1[θ̂s]

⎤
⎥⎥⎥⎦ ∈ R

n̄
↑
w. (7.23)

For the dimensions, it holds that n̄↑
z = nzΔk and n̄↑

w = nwΔk.
The major advantage of time-lifting the dynamics is that, from the viewpoint of

the upper layer time-domain T↑, the original semi-Markov chain becomes a homo-
geneous Markov chain. Consequently, the upper layer system P̄

↑
θ is a regular jump

Markov system with Markov chain:

M
↑ = (Θ, P, μ0). (7.24)

Adding an upper layer controller of the form (7.6) to the time-lifted system P̄
↑
θ re-

sults in the controlled JMS P̄
↑
θ,cl. The connection between the performance measure

of the lower layer and the upper layer system is as follows:

Proposition 7.1. For system P̄
↑
θ , choose:

Ē↑[θ̂] = (Ā↓
cl[θ̂])Δk−1Ē[θ̂], F̄ ↑[θ̂] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

C̄↓
cl[θ̂]Ē[θ̂]

...

C̄↓
cl[θ̂](Ā↓

cl[θ̂])Δk−2Ē[θ̂]

⎤
⎥⎥⎥⎥⎥⎥⎦

, (7.25)
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for all θ̂ ∈ Θ. Then, it holds that:

‖P̄↑
θ‖H2 = ‖P̄↓

θ,cl‖H2. (7.26)

�

Proof. According to Definition 2.15, the H2-norm of system P̄
↓
θ,cl is defined as:

‖P̄↓
θ,cl‖2

H2
=

Nθ∑
m=1

∞∑
k=0

μ0,m E
(
tr((z̄↓

k)Tz̄
↓
k) | θ0 = m

)
, (7.27)

where z̄
↓
k denotes the corresponding impulse response matrix. Since the right-hand

side of expression (7.27) is summed up from k = 0 to k = ∞, it can be equivalently
expressed in terms of s, leading to:

∞∑
k=0

μ0,m E
(
tr((z̄↓

k)Tz̄
↓
k) | θ0 = m

)
= μ0,m

∞∑
s=0

Δk−1∑
l=0

E
(
tr((•)Tz̄

↓
sΔk+l) | θ0 = m

)
. (7.28)

Due to the execution of the semi-Markov chain according to Eq. (7.2), it holds that

θsΔk = . . . = θ(s+1)Δk−1 = θ̂s. Hence:

Δk−1∑
l=0

E
(
tr((•)T(z̄↓

sΔk+l)) | θ0 = m
)

= E
(
tr(

Δk−1∑
l=0

(•)T(z̄↓
sΔk+l)) | θ0 = m

)
. (7.29)

With the impulse response matrix z̄
↓
k, k ∈ N0 being given by:

z̄
↓
k =

⎧⎨
⎩0 if k = 0,

C[θk]A[θk−1] · · ·A[θ1]E[θ0] otherwise,
(7.30)

it can be deduced that the impulse response matrix ˆ̄z↑
s, s ∈ N0 of system P̄

↑
θ is

given by:

ˆ̄z↑
s =

⎡
⎢⎢⎢⎣

z̄
↓
sΔk
...

z̄
↓
(s+1)Δk−1

⎤
⎥⎥⎥⎦ =

⎧⎨
⎩F̄ ↑[θ̂0] if s = 0,

C̄↑[θ̂s]Ā
↑[θ̂s−1] · · · Ā↑[θ̂1]Ē

↑[θ̂0] otherwise.
(7.31)

Consequently:

E
(
tr(

Δk−1∑
l=0

(•)T(z̄↓
sΔk+l)) | θ0 = m

)
= E

(
tr((ˆ̄z↑

s)
Tˆ̄z↑

s) | θ0 = m)
)
, (7.32)

which completes the proof.

By the help of Proposition 7.1, the synthesis of the upper layer controller can be
formulated as an MISDP. To this end, a binary matrix variable Σ̄↑[θ̂] is introduced,
which accounts for the simultaneous optimization of the network topology.
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Theorem 7.1. Let G[θ̂],X[θ̂] ∈ Rnx×nx, L[θ̂] ∈ Rnu×nx, Z[θ̂] ∈ Rn̄
↑
w×n̄

↑
w, and Σ̄↑[θ̂] ∈

B
Nc[θ̂]×Nc[θ̂] with θ̂ ∈ Θ be the solution of the MISDP:

min
G[θ̂],L[θ̂],Z[θ̂],X[θ̂],Σ̄[θ̂]

Nθ∑
θ̂=1

μ0,θ̂ tr(Z[θ̂]) + Jcom(Σ̄[θ̂]) subject to: (7.33a)

⎡
⎢⎢⎣
Z[θ̂] � �

Ē↑[θ̂] X[θ̂] �

F̄ ↑[θ̂] 0 I

⎤
⎥⎥⎦ � 0 ∀ θ̂, (7.33b)

⎡
⎢⎢⎣

G[θ̂] + (G[θ̂])T − X[θ̂] � �

P ′[θ̂](Ā↑[θ̂]G[θ̂] + B̄↑[θ̂]L[θ̂]) blkdiagh(X[h]) �

C̄↑[θ̂]G[θ̂] + D̄↑[θ̂]L[θ̂] 0 I

⎤
⎥⎥⎦ � 0 ∀ θ̂, (7.33c)

Σ̄↑[θ̂] ∈ Σ̄↑[θ̂] ∀ θ̂, (7.33d)

−Mσ̄↑
p,q[θ̂] ≤ Lp,q[θ̂] ≤ Mσ̄↑

p,q[θ̂] ∀ θ̂, p, q, (7.33e)

−Mσ̄↑
p,q[θ̂] ≤ Gp,q[θ̂] ≤ Mσ̄↑

p,q[θ̂] ∀ θ̂, p, q, (7.33f)

−M(σ̄↑
p,q[θ̂]− σ̄↑

p,r[θ̂] + 1) ≤ Gr,q[θ̂] ≤ M(σ̄↑
p,q[θ̂]− σ̂↑

p,r[θ̂] + 1) ∀ θ̂, p, q, r, (7.33g)

where θ̂ ∈ Θ and p, q, r ∈ Nc[θ̂]. Furthermore, M ∈ R
•×•
>0 denotes a matrix

of suitable dimensions with entries Mi,j > max{‖G‖1,∞, ‖L‖1,∞}, and the matrix

P ′[θ̂] ∈ BNθnx×nx is defined as:

P ′[θ̂] :=

⎡
⎢⎢⎢⎣

T T

x [1]Tx[θ̂]√pθ̂,1
...

T T

x [Nθ]Tx[θ̂]√pθ̂,Nθ

⎤
⎥⎥⎥⎦ . (7.34)

Let K̄↑[θ̂] := L[θ̂](G[θ̂])−1. Then, the following assertions hold:

(a) The jump Markov linear system P̄
↑
θ,cl with w̄k = 0 for all k ∈ N0 is mean-square

stable.

(b) The jump Markov linear system P̄
↑
θ,cl with input w̄k is BIBO stable in the mean-

square sense.

(c) For J as defined in Case 2.1, and by setting μ0 := μ∞ and Ē↑[θ̂], F̄ ↑[θ̂] as stated
in Prop. 7.1, the value of J + J↑com is upper-bounded by the objective function
(7.33a).

(d) For J as defined in Case 2.2, and by setting Ē↑[θ̂] and F̄ ↑[θ̂] as stated in Prop.

7.1 with Ē[θ̂] = x̄0[θ̂], the value of J + J↑com is upper-bounded by the objective
function (7.33a).

(e) The hierarchical two-layer controller comprised of Eq. (7.5) and Eq. (7.6)

respects the communication topology encoded by Σ̄↑[θ̂]. �
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Proof. Assume that a solution to Problem (7.33) exists. The upper left block entry
of (7.33c) implies that:

G[θ̂] + (G[θ̂])T � X[θ̂] � 0 (7.35)

for all θ̂ ∈ Θ, such that any feasible matrix G[θ̂] must be non-singular. Using

relation (4.45) and substituting L[θ̂] = K̄↑[θ̂]G[θ̂] in Eq. (7.33c) leads to:
⎡
⎢⎢⎣

(G[θ̂])T(X[θ̂])−1G[θ̂] � �

P ′[θ̂](Ā↑[θ̂]G[θ̂] + B̄↑[θ̂]K̄↑[θ̂]G[θ̂]) blkdiagh(X[h]) �

C̄↑[θ̂]G[θ̂] + D̄↑[θ̂]K̄↑[θ̂]G[θ̂] 0 I

⎤
⎥⎥⎦ � 0. (7.36)

Factoring out the non-singular matrix T [θ̂] = blkdiag(G[θ̂], Inx, Inx) on the right-

hand side and its transpose (T [θ̂])T on the left-hand side, inequality (7.36) is equiv-
alent to: ⎡

⎢⎢⎣
(X[θ̂])−1 � �

P ′[θ̂](Ā↑[θ̂] + B̄↑[θ̂]K̄↑[θ̂]) blkdiagh(X[h]) �

C̄↑[θ̂] + D̄↑[θ̂]K̄↑[θ̂] 0 I

⎤
⎥⎥⎦ � 0. (7.37)

Forming the Schur-complement and substituting the definitions of Ā↑
cl[θ̂] and C̄↑

cl[θ̂]
leads to:

(X[θ̂])−1 − (•)T(blkdiagh((X[h])−1))(P ′[θ̂]Ā↑
cl[θ̂])− (•)T(C̄↑

cl[θ̂]) � 0. (7.38)

With the help of Eq. (7.34), it can easily be verified that:

(P ′[θ̂])Tblkdiagh((X[h])−1)P ′[θ̂] = T T

x [θ̂]
Nθ∑

h=1

pθ̂,hTx[h](X[h])−1T T

x [h]Tx[θ̂], (7.39)

where the permutation matrices Tx[·] account for the θ̂-dependent permutation of
the state vector. Substituting the above expression into Eq. (7.38) and making use
of the operator E(·) as defined in Eq. (2.47) (see page 36) yields:

(X[θ̂])−1 − (Ā↑
cl[θ̂])TEθ̂(X

−1)Ā↑
cl[θ̂]− (C̄↑

cl[θ̂])TC̄↑
cl[θ̂] � 0, (7.40)

where:

X
−1 := ((X[1])−1, . . . , (X[Nθ])

−1). (7.41)

Making use of Theorems 2.3 and 2.4, assertions (a) and (b) follow.

Multiplying (7.40) by √ph,θ̂ Ā↑
cl[h] from the right-hand side and by its transpose

from the left-hand side and summing up over all θ̂ ∈ Θ leads to:

(Ā↑
cl[h])TEh(X−1)Ā↑

cl[h] � (Ā↑
cl[h])T

∑
θ̂∈Θ

ph,θ̂(Ā
↑
cl[θ̂])TEθ̂(X

−1)Ā↑
cl[θ̂]Ā↑

cl[h] . . .

+ (Ā↑
cl[h])T

∑
θ̂∈Θ

ph,θ̂(C̄
↑
cl[θ̂])TC̄↑

cl[θ̂]Ā↑
cl[h]. (7.42)
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Swapping h and θ̂ in the above inequality and substituting the left-hand side by
inequality (7.40), one obtains:

(X[θ̂])−1 � (Ā↑
cl[θ̂])T

∑
h∈Θ

pθ̂,h(Ā↑
cl[h])TEh(X−1)Ā↑

cl[h]Ā↑
cl[θ̂] . . .

+ (Ā↑
cl[θ̂])T

∑
h∈Θ

pθ̂,h(C̄↑
cl[h])TC̄↑

cl[h]Ā↑
cl[θ̂] + (C̄↑

cl[θ̂])TC̄↑
cl[θ̂]. (7.43)

In terms of expected values, this inequality can equivalently be expressed as:

(X[θ̂0])
−1 � E

(
(Ā↑

cl[θ̂0])
T(Ā↑

cl[θ̂1])
T(X[θ̂2])

−1Ā↑
cl[θ̂1]Ā↑

cl[θ̂0]
)

. . .

+ E
(
(Ā↑

cl[θ̂0])
T(C̄↑

cl[θ̂1])
TC̄↑

cl[θ̂1]Ā
↑
cl[θ̂0]

)
+ (C̄↑

cl[θ̂0])TC̄↑
cl[θ̂0]. (7.44)

Repeating these steps (n− 2) times leads to:

(X[θ̂0])
−1 � E

(
(•)T((X[θ̂n])−1)(Ā↑

cl[θ̂n−1] · · · Ā↑
cl[θ̂0])

)
. . .

+ E
( n−1∑

s=1

(•)T(C̄↑
cl[θ̂s]Ā

↑
cl[θ̂s−1] · · · Ā↑

cl[θ̂0])
)

+ (C̄↑
cl[θ̂0])

TC̄↑
cl[θ̂0]. (7.45)

Taking the limit n → ∞, the first term on the right hand side approaches zero,
since the closed-loop system is mean-square stable (see also [31, Chap. 3]). Hence,
it follows that:

(X[θ̂0])
−1 � E

( ∞∑
s=1

(•)T(C̄↑
cl[θ̂s]Ā

↑
cl[θ̂s−1] · · · Ā↑

cl[θ̂0])
)

+ (C̄↑
cl[θ̂0])

TC̄↑
cl[θ̂0]. (7.46)

Forming the Schur-complement of LMI (7.33b):

Z[θ̂]− (Ē↑[θ̂])T(X[θ̂]−1)Ē↑[θ̂]− (F̄ ↑[θ̂])TF̄ ↑[θ̂] � 0. (7.47)

Evaluating this equation for θ̂ = θ̂0 and rearranging the summands yields:

Z[θ̂0] � (Ē↑[θ̂0])
T(X[θ̂0]

−1)Ē↑[θ̂0] + (F̄ ↑[θ̂0])
TF̄ ↑[θ̂0]. (7.48)

Considering the initial distribution μ0 of θ̂0 leads to:

Nθ∑
θ̂=1

μ0,θ̂ Z[θ̂] �
Nθ∑
θ̂=1

μ0,θ̂ ((Ē↑[θ̂])T(X[θ̂]−1)Ē↑[θ̂] + (F̄ ↑[θ̂])TF̄ ↑[θ̂]). (7.49)

Taking Inequality (7.46) into account and taking the trace of Z[θ̂] reveals that:

Nθ∑
θ̂=1

μ0,θ̂ tr(Z[θ̂]) > ‖P̄↑
θ,cl‖H2, (7.50)
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see Definition 2.15 on page 38. Making use of Prop. 7.1 reveals that if Ē↑[θ̂] and

F̄ ↑[θ̂] are chosen according to Eq. (7.25), it holds that:

Nθ∑
θ̂=1

μ0,θ̂ tr(Z[θ̂]) > ‖P̄↑
θ,cl‖H2 = ‖P̄↓

θ,cl‖H2. (7.51)

Assertions (c) and (d) now follow by establishing the connection between ‖P̄↓
θ,cl‖H2,

J1 and J2 by using Lemmas 2.2 and 2.4, respectively.

Finally, assertion (e) follows by applying the structural constraints presented in

[50] to the matrix variables G[θ̂] and L[θ̂] separately for all θ ∈ Θ, leading to the
constraints (7.33e) to (7.33g).

For implementing the two-layer controller at the original system, the upper layer
and lower layer control gains have to be permuted according to:

K↓[θ] = [K↓
i,j[θ]] = Tu[θ]K̄↓[θ]T T

x [θ], (7.52a)

K↑[θ] = [K↑
i,j[θ]] = Tu[θ]K̄↑[θ]T T

x [θ]. (7.52b)

In terms of the original subsystem order, the hierarchical distributed control law is
then given by:

ui
k =

Ns∑
j=1

K↓
i,j[θk]xj

k + K↑
i,j[θk]xj

sΔk. (7.53)

7.5. Reducing the Synthesis Complexity

Despite the fact that the clustering procedure significantly reduces the combinatorial
complexity of the SCT design on the upper control layer, the problem is still fairly
complex. Therefore, the following approach inspired by [23] and [52] can be used
to further reduce the complexity of the upper layer control design.

The underlying idea is as follows: In a first step, the upper layer control design is
performed without structural constraints. Since the resulting problem is a standard
centralized H2-problem for JMLS, it can be efficiently solved by solving a set of
coupled algebraic Riccati equations (CARE) associated with P̄

↑
θ , see [31, Chap.4].

Scaling the value function that is obtained from the solution of the CARE by a scalar
factor (a[θ̂])−1 ∈ R≥1, it can be used for designing a structured control law with
inferior performance compared to the optimal control law. Denoting the solution of

the CARE by V̄ ↑[θ̂] ∈ S
N̄c[θ̂]
�0 , θ̂ ∈ Θ, and assuming that V̄ ↑[θ̂] is invertible, leads to

the following result:
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Theorem 7.2. Suppose that a[θ̂] ∈ R>0, L[θ̂] ∈ Rnu×nx, Σ̄↑[θ̂] ∈ BN̄c[θ̂]×N̄c[θ̂], and

Z[θ̂] ∈ R
n̄

↑
w×n̄

↑
w with θ̂ ∈ Θ denote the solution of the optimization problem:

min
a[θ̂],L[θ̂],Z[θ̂],Σ̄↑[θ̂]

Nθ∑
θ̂=1

μ0,θ̂ tr(Z[θ̂]) + Jcom(Σ̄↑[θ̂]) subject to: (7.54a)

Σ̄↑[θ̂] ∈ Σ̄↑[θ̂] ∀ θ̂, (7.54b)⎡
⎢⎢⎣
Z[θ̂] � �

Ē↑[θ̂] a[θ̂](V̄ ↑[θ̂])−1 �

F̄ ↑[θ̂] 0 I

⎤
⎥⎥⎦ � 0 ∀ θ̂, (7.54c)

⎡
⎢⎢⎣

a[θ̂]V̄ ↑[θ̂] � �

P ′[θ̂](a[θ̂]Ā↑[θ̂] + B̄↑[θ̂]L[θ̂]) blkdiagh(a[h](V̄ ↑[h])−1) �

a[θ̂]C̄↑[θ̂] + D̄↑[θ̂]L[θ̂] 0 I

⎤
⎥⎥⎦ � 0 ∀ θ̂, (7.54d)

−Mσ̄↑
p,q[θ̂]1n̄

p
u×n̄

q
x
≤ Lp,q[θ̂] ≤ Mσ̄↑

p,q[θ̂]1n̄
p
u×n̄

q
x

∀ θ̂, p, q, (7.54e)

with θ̂ ∈ Θ, p, q ∈ Nc[θ̂], and V̄ ↑[θ̂] � 0. Then, the assertions of Theorem 7.1 also
hold with:

K̄↑[θ̂] := (a[θ̂])−1L[θ̂]. (7.55)

�

Proof. Forming the Schur-complement of LMI (7.54d) and substituting L[θ̂] =

a[θ̂]K̄↑[θ̂] results in:

a[θ̂]V̄ ↑[θ̂]− (a[θ̂])2(•)T(blkdiagh((a[h])−1V̄ ↑[h]))((P ′[θ̂])(Ā↑[θ̂] + B̄↑[θ̂]K̄↑[θ̂])) . . .

− (a[θ̂])2(•)T(C̄↑[θ̂] + D̄↑[θ̂]K̄↑[θ̂]) � 0. (7.56)

Define V̄ ↑
a [θ̂] := (a[θ̂])−1V̄ ↑[θ̂] and V̄ ↑

a := (V̄ ↑
a [1], . . . , V̄ ↑

a [Nθ]). Dividing Eq. (7.56)

by (a[θ̂])2 > 0 and using Eq. (7.39) leads to:

V̄ ↑
a [θ̂]− (•)T(Eθ̂(V̄

↑
a ))(Ā↑[θ̂] + B̄↑[θ̂]K̄↑[θ̂])− (•)T(C̄↑[θ̂] + D̄↑[θ̂]K̄↑[θ̂]) � 0. (7.57)

Since it is assumed that V̄ ↑
a [θ̂] � 0, the argumentation to show that assertions (a)

to (c) hold is now very similar to the one that has been used from Eq. (7.40) to

Eq. (7.50) in the proof of Theorem 7.1. Note that there is no need to constrain a[θ̂]
to positive values, since this is implicitly ensured by the upper left entry of LMI
(7.54d).

The scaling by (a[θ̂])−1 (see Eq. (7.55)) does not influence the structure of the
gain matrix. Hence, the structural constraints can directly be formulated as linear
constraints on L[θ̂], leading to constraint (7.54e).
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Since the precomputed Lyapunov matrix V̄ ↑[θ̂] is only scaled by the factor a[θ],
there is no need for a nonlinear controller parametrization in Theorem 7.2. Com-
pared to Theorem 7.1, this leads to two major advantages: First, a smaller number
of continuous optimization variables is required, which reduces the computational
complexity of the problem. Furthermore, an approximation similar to Eq. (4.45)
is not required for deriving the synthesis conditions. The second major advantage
is that the scaled upper layer control gain matrices L[θ̂] = a[θ̂]K̄↑[θ̂] appear as an
optimization variable. This allows to formulate the necessary and sufficient con-
straints (7.54e) to enforce a controller structure which is compatible with Σ̄↑[θ]. In
contrast, the constraint set (7.33e) to (7.33g) used in Theorem 7.1 is only sufficient

for K̄↑[θ̂] being structurally compatible with Σ̄↑[θ].

7.6. Numerical Example

The following academic example borrowed from [61] illustrates the principles of
the presented approach. The considered interconnected system {P i

θ}i∈Ns consists
of Ns = 5 subsystems with dimensions ni

x = 2 and ni
u = 2 for all i ∈ Ns, and

n1
z = n4

z = 3, n2
z = n3

z = n5
z = 4. The global Markov chain Mk is parameterized by:

P =

⎡
⎢⎢⎣
0.9 0.1 0

0.2 0.5 0.3

0 0.2 0.8

⎤
⎥⎥⎦ , μT

0 =

⎡
⎢⎢⎣
1

0

0

⎤
⎥⎥⎦ , Θ = I3, (7.58)

with Δk = 5. The complete set of system matrices can be found in Appendix E.2.
The uncontrolled interconnected system {P i

θ}i∈Ns is unstable in every single
mode, and is not mean-square stable. The matrices Γ[θ] describing the mode-
dependent interconnection strength and structure are given by:

Γ[1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.43 2.21 0.71 0.20 0.20

3.00 3.08 0.30 0.10 1.73

0 0.10 1.60 4.01 0.50

0 0 1.13 2.45 4.00

0.10 0.46 0.63 0.40 3.24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Γ[2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.14 0.81 1.77 0.20 0.20

0.40 5.11 0.10 0.30 2.14

0 0 6.83 4.01 0.60

0.20 0 1.13 2.45 2.40

0.10 0.42 0.63 1.00 3.24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Γ[3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.74 1.71 2.23 0.50 0.20

0.60 7.74 0.40 0.30 1.38

0 0 3.94 4.01 0.60

0 0.20 1.32 2.48 0.60

0.10 1.15 0.63 1.00 3.24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.59)

At first glance, no particular interconnection structure can be identified from Γ[·].
However, it can be observed that some interconnections are considerably weaker
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7.6. Numerical Example

Figure 7.2.: Results of the clustering procedure visualized for θ = 1 (left) to
θ = 3 (right). Large black squares denote strong interconnections,
medium-sized black squares denote weak interconnections, and small
black squares denote neglected interconnections, respectively. In each
mode, Nc[θ] = 3 clusters are obtained, which are enframed in red.

than others, for instance Γ3,2[1] versus Γ2,1[1]. By the help of the clustering pro-
cedure presented in Sec. 7.2, an approximate hierarchical interconnection struc-
ture of the subsystems can be identified. Fig. 7.2 illustrates the results of the
clustering procedure for εn = 0.5 and εw = 0.65. In the figure, a strong inter-
connection (γi,j[θ] > εw) is represented by a black square, a weak interconnection
(εn < γi,j[θ] ≤ εw) is represented by a medium-sized black square, and a neglected
interconnection (γi,j[θ] ≤ εn) is represented by a small black square. A grey square
represents a non-existing interconnection. In mode θ = 1 and θ = 2, four intercon-
nections are neglected, and one interconnection is considered to be weak in mode
θ = 1. In mode θ = 3, two interconnections are neglected, and three interconnec-
tions are considered to be weak. In all three modes, Nc[θ] = 3 clusters are identified,
which are parametrized by the index sets:

C1[1] = {1, 2}, C2[1] = {3, 4}, C3[1] = {5},
C1[2] = {1}, C2[2] = {2}, C3[2] = {3, 4, 5}, (7.60)

C1[3] = {1}, C2[3] = {2, 5}, C3[3] = {3, 4}.

Since the members of each cluster change as a function of the global mode θ, the
topology of the hierarchical controller also varies over time. Hence, in contrast to
conventional control schemes, not only the controller parametrization, but also the
controller structure reacts to the stochastic changes of the system behavior.

From the viewpoint of SCT design, the clustering procedure has reduced the
number of independent communication links from Nl = 0.5 Nθ(Ns

2 − Ns) = 60

to N↑
l = 0.5

∑
θ∈Θ(Nc[θ])2 − Nc[θ] = 18. As a consequence, the number of possi-

ble communication topologies is reduced from 260 to 218, resulting in an improved
scalability for the hierarchical approach compared to single layer SCT design. By
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7. Hierarchical Control of Interconnected Semi-Markov Systems

employing suitable and efficient algorithms like, e.g., branch-and-bound, the com-
binatorial complexity can be further reduced, since only a subset of the nodes of
the underlying search tree has to be taken into account.

A comparison of the performance measure J according to Case 2.2 and the compu-
tation time of different types of controllers is performed in Table 7.1. The first and
the last row contain the results of centralized controllers that have been separately
designed for a comparison with the hierarchical control scheme. The lower layer
controller in the first row is designed to be robust against the time-varying transi-
tion probabilities, considering the transition probability matrix as a matrix polytope
P (α) = αP + (1 − α)I with α ∈ [0, 1]. For details on this approach, the reader is
referred to [101]. The bad performance of the centralized upper layer controller in
the last row of the table is due to the upper layer model being badly conditioned,
when no lower control layer is present. Concerning overall performance, the pro-
posed hierarchical control scheme outperforms every single-layer control scheme,
while providing a tradeoff between performance and communication cost. As a
drawback, the hierarchical design requires a computation time of almost an hour,
while the design of conventional centralized controllers only takes a few seconds1.
This increase in computation time is mainly due to the incorporated SCT design
and the structural constraints imposing the distributed controller structure. By us-
ing Theorem 7.2 instead of Theorem 7.1, the computation time for the hierarchical
control scheme can be reduced by more than a factor ten. Notably, both Theorems
result in different controller parametrizations with different communication topolo-
gies, although the parametrization of the optimization problem is the same. This
discrepancy is due to the fact that both approaches use different upper bounds on
the performance measure, and that the structural constraints used in Thm. 7.2 are
less conservative than those used in Thm. 7.1. The parameters of the hierarchical
controllers can be found in Appendix E.2.

7.7. Discussion

This chapter considered a class of interconnected semi-Markov jump systems with
fast continuous dynamics and a global Markov chain being evaluated on a coarser
time scale. Thus, spatially distributed subsystems with small time constants and
abrupt changes occuring in larger time intervals can be efficiently modeled in this
framework. Assuming that the Markov chain is evaluated after a fixed number of
discrete time steps, it is shown that a hierarchical two-layer controller structure
similar to the one presented in the second part of this thesis is particularly suited to
control such types of dynamic systems. An algorithm was presented which groups
the subsystems into clusters, depending on the global mode of the system. This re-
sults in a reduced combinatorial complexity when performing simultaneous control

1The computations were performed with an AMD Phenom II X4-920 processor with 4Gb of
RAM, using Matlab, YALMIP [79], and the MOSEK optimization software [95].
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7.7. Discussion

Table 7.1.: Comparison of different controller types for Pθ. The first and the last
row contain separately designed centralized controllers for the lower
layer and for the upper layer time domain, respectively. For the hi-
erarchical design, Thm. 7.1 is used in the third row, and Thm. 7.2
is used in the fourth row. The performance index J is interpreted
according to Case 2.2.

# controller design model calc. time time domain J J↑com

1 lower layer P̄θ 2.5 [s] T↓ 21.97 0

2 lower layer P̄
′
θ 4 [s] T↓ 29.49 0

3 hierarchical P̄
′
θ, P̄

↑
θ 2964 [s] T↓, T↑ 5.52 0.5

4 —, Thm. 7.2 P̄
′
θ, P̄

↑
θ 273 [s] T↓, T↑ 5.50 2.25

5 upper layer P̄
↑
θ w. K̄↓[·] = 0 40 [s] T↑ 10712 3

and network topology design, and furthermore allows to adopt the structure of the
distributed controllers depending on the global system mode. In total, the result-
ing two-layer control scheme provides a good and parametrizable tradeoff between
closed-loop performance and communication effort.

The design of each control layer can be formulated by means of independent
semidefinite programs, which can be solved sequentially. The controller derived from
the solutions of these optimization problems satisfies sufficient conditions regarding
controller structure. Furthermore, it guarantees stability and performance of the
controlled system. For the upper control layer, it was shown that the synthesis
complexity can be further reduced by using a Lyapunov function with a single degree
of freedom. This Lyapunov function is the scaled value function obtained from the
coupled algebraic Riccati equations associated with the centralized optimal control
problem. A particular advantage that comes with this approach is that necessary
and sufficient constraints for enforcing the controller structure can be formulated.
However, the optimization results in a different optimized controller structure, since
an other upper bound for the performance of the controlled system is used.

So far, the hierarchical approach pursued in this chapter is restricted to Δk
being constant. Extending the construction of the upper layer system and the
corresponding synthesis conditions for control design to incorporate time-varying
values of Δk thus remains an open question. Similar to Chap. 6, the main challenge
will be to find an efficient solution for handling the additional source of uncertainty
in the upper layer model.
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8. Discussion and Outlook

In this thesis, different approaches to distributed feedback control of interconnected
discrete-time systems are presented. A special focus is on the development of hier-
archical control structures and the integration of structural analysis and decompo-
sition methods within the control design, which allows to deal with large systems
of high complexity. More specifically, Chapter 3 presents a hierarchical two-layer
feedback control scheme which groups strongly coupled subsystems on a lower con-
trol layer and coordinates these weakly coupled groups on an upper control layer
with lower sampling frequency. This concept is extended in Chapter 4, where the
distributed upper layer controllers are now designed to operate sequentially instead
of simultaneously by employing concepts from periodic system theory. In Chapter
5, both two-layer control schemes are compared and applied to an example system
from the domain of power systems. Chapter 6 presents an approach to distributed
control of jump Markov linear systems with local Markov chains. In particular,
it is shown how uncertain communication links can be taken into account already
during the control design phase. Finally, the hierarchical two-layer control scheme
developed in Chapter 3 and Chapter 4 is extended to a class of jump semi-Markov
linear systems in Chapter 7. In this chapter, the results of the previous chapters
are summarized and discussed. Afterwards, some directions for future research are
presented.

8.1. Summary and Comparison of the Presented

Approaches

The main goal pursued in this thesis is to combine the ideas and advantages from the
fields of system decomposition, hierarchical feedback control, and SCT design for
being able to design distributed control laws for complex interconnected systems.
Instead of designing a single distributed control layer for the overall system, the
idea is to analyse and decompose the system structure in a first step. The actual
control task should be performed by multiple control layers in a cooperative manner,
where a particular goal is that both control layers cooperatively optimize a global
performance index. In the sequel, the developed approaches are summarized and
compared against each other.

In Chapter 3, a distributed hierarchical two-layer control structure is presented as
an alternative to distributed single-layer feedback control structures with optimized
communication network topology. The basic idea is to simplify the communication
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topology optimization performed during the control design by incorporating infor-
mation about the interconnection structure of the dynamical subsystems. To this
end, a structural analysis is performed prior to the control design, which groups
strongly coupled subsystems into clusters. These clusters are controlled by a dis-
tributed lower control layer, which exchanges information only between subsystems
that are in the same cluster. A super-ordinated upper control layer is responsible
for the coordination of the clusters, and accounts for neglected interconnections be-
tween them. Combining the communication topology optimization with the design
of the upper control layer, a tradeoff between global closed-loop performance and
communication effort is achieved. At the same time, the combinatorial complex-
ity of the communication topology optimization is significantly reduced, since the
clustering reduces the number of possible communication topologies. The cluster-
ing procedure does not lead to a pre-determined result, but provides some degrees
of freedom to the control designer. More specifically, the thresholds for classifying
weak and negligible interconnections and the criterion for joining clusters have to be
chosen. These thresholds influence the structure and performance of the resulting
two-layer controller. Therefore, the clustering procedure is seen as a supportive tool
for the control design process. The qualitative influence of the design parameters is
discussed in detail in Sec. 3.2. Since the identified clusters are only weakly coupled,
the upper control layer can be implemented on a coarser time-scale compared to
the lower control layer. This further reduces the communication effort. Numerical
results show that the closed-loop performance of this control scheme is close to the
optimal performance of a linear quadratic regulator, while enabling a distributed
implementation with a sparse communication graph.

Chapter 4 directly builds on the results of Chapter 3, and addresses the distribu-
tion of the communication load within the two-layer scheme. Since the distributed
upper layer controllers proposed in Chapter 3 update their controlled variables syn-
chronously, the amount of data exchanged via the communication network possesses
high periodic peaks. In order to avoid these peaks, upper layer controllers perform-
ing sequential updates are proposed in Chapter 4. This way, the communication
load is equably distributed over time. The main contribution of Chapter 4 is the
development of a modeling scheme which transforms the distributed upper layer
control problem to the framework of periodic systems. This allows to formulate the
control design problem as an optimization problem. Within this new approach, new
questions concerning the upper control layer arise, such as the optimal controller
update sequence, the optimal initialization of the controllers, and the benefits of
exchanging the local controlled variables. Simulation results show that the perfor-
mance of the synchronous and the asynchronous scheme is comparable, while the
latter requires more computational resources.

In Chapter 5, the synchronous and asynchronous hierarchical control scheme are
applied to a dynamic model from the domain of power systems. More specifically,
a linearized model of the popular 10-bus CIGRÉ benchmark system serves as an
application example for both two-layer control schemes. A remarkable result pre-
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sented in this chapter is that even an unstable lower layer controller contributes
to the overall system performance when combined with a stabilizing upper control
layer. Furthermore, the performance of both two-layer control schemes is in be-
tween the optimal performance achieved by an LQR on the lower and on the upper
control layer. Finally, it has been shown that the two-layer control schemes are
robust against communication delays. This has been verified for constant delays of
up to 70 percent of one sampling period.

Chapter 6 deals with distributed control of interconnected jump Markov linear
subsystems. In contrast to the other approaches, a single-layer control scheme is
considered in this chapter, as a special focus is on stability and performance robust-
ness against communication link failures. For developing sufficient conditions for
control synthesis, the subsystems as well as the stochastic model of the availabil-
ity of the communication links are combined to a structured jump Markov system.
The control synthesis results in a set of controllers for each subsystem. During the
execution of the distributed control scheme, the appropriate local control laws are
selected depending on the information that is available to each subsystem at the
current time-step. Thus, in contrast to the hierarchical distributed control schemes
presented in Chapters 3 and 4, the local controllers are able to adapt to time-varying
communication topologies. However, the structure of the optimization problem used
for control synthesis makes it difficult to incorporate SCT design.

Finally, the distributed two-layer control scheme presented in the second part of
this thesis is extended to a class of interconnected jump semi-Markov linear systems
in Chapter 7. It is shown that if the Markov chain is evaluated on a coarser time-
scale than the dynamics, a two-layer control scheme is particularly suited to control
such a semi-Markov system, since each layer handles different control tasks: The
lower control layer is optimized for to perform well for fixed modes and coordinates
the strongly coupled subsystems within each cluster, while the upper control layer
handles the mode transisitions and coordinates the weakly coupled clusters. A
further contribution of Chapter 7 is an optimization-based approach for control
synthesis which reduces the required computation effort. This is accomplished by
scaling the value function obtained from the coupled algebraic Riccati equations
by a scalar factor. This way, the number of continuous optimization variables is
significantly reduced. Furthermore, new constraints on the controller structure can
be formulated which are less restricive compared to the ones used before. Not
surprisingly, different numerical results are obtained with this simplified approach,
which emphasizes the influence of the employed approximation for the closed-loop
performance and the structural constraints.

The contributions of this thesis can be summarized as follows:

• A distributed hierarchical two-layer feedback control scheme for interconnected
LTI systems is developed. It builds on a structural analysis of the intercon-
nected system and groups strongly coupled subsystems into clusters. These
clusters are controlled by a distributed lower control layer, which is designed
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by neglecting the interconnections between the clusters. The coordination of
the clusters is performed by a super-ordinated upper control layer, which coop-
erates with the lower control layer for optimizing a global performance index.
Optionally, the communication topology of the upper control layer can be opti-
mized during the control synthesis, leading to an approximation of single-layer
SCT design problems with reduced combinatorial complexity.

• For interconnected jump Markov linear systems, a synthesis procedure for dis-
tributed state feedback control is presented. In particular, the distributed con-
troller structure respects a given topology of the communication network, and
is able to adapt to stochastic communication link failure or package dropouts
based on locally available information only.

• All presented approaches are provided with rigorous stability and performance
guarantees, which are verified with explicit and detailed mathematical proofs.
The considered performance criteria and optimization problems employed for
control synthesis are presented in a unified and versatile mathematical frame-
work. Furthermore, every control approach is exemplarily applied to a numer-
ical example.

• The synchronous and asynchronous hierarchical two-layer control schemes are
applied to a common benchmark model for the frequency control of power
systems. The proposed control schemes are compared against the optimal
centralized solutions, which reveals that they provide a good tradeoff between
performance and communication effort.

8.2. Outlook

Large parts of the presented approaches are independent of a particular mathemat-
ical framework, and are therefore amenable to various extensions. For instance, the
general concept of two cooperating distributed control layers could be generalized to
further classes of dynamic systems, like nonlinear or parameter-varying dynamics.
On the other hand, when dealing with linear dynamics, the LMI-based synthesis
framework chosen in this thesis also provides much flexibility.

Besides the extension to other classes of dynamic systems, another open problem
is to generalize the presented concepts to the case of static output feedback or
dynamic output feedback. A first step in this direction was taken in the master thesis
[42], which proposes an extension of the LMI-based synthesis framework. However,
it turned out that especially for the case of dynamic output feedback, the state
of the art optimization algorithms suffer from massive numerical problems when
applied to the resulting semidefinite programs. This effect can already be observed
for trivial dynamics with two state variables. The problem is closer investigated in
[118] and in [43], where a direct search algorithm and an approach based on the
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alternating direction method of multipliers (ADMM), respectively, are proposed as
a remedy. Another option could be to use a simplified LMI formulation similar to
the one presented in Sec. 7.5, which may increase the numerical robustness.

A particular question that has not yet been addressed for the proposed hierar-
chical feedback controllers is how to incorporate constraints on the input variables
of the interconnected system. For single-layer state feedback controllers, such con-
straints have already been implemented in the versatile LMI framework, see for
instance [25, Sec. 7.2.3]. That approach, as well as similar ones, could serve well as
a starting point for finding suitable constraints for the case of hierarchical state feed-
back. Similarly, the ideas presented in Chapter 7, namely the explicit consideration
of uncertain communication links during control synthesis, could be generalized to
the hierarchical two-layer concept. Notably, the two-layer scheme already exhibits a
certain degree of robustness against permanent communication link failures: In case
that the lower control layer already stabilizes the interconnected system, the upper
control layer could simply be disabled if some of the associated communication links
fail.

As has already been mentioned in the previous section, the asynchronous hierar-
chical feedback scheme presented in Chapter 4 raised many new questions compared
to the synchronous scheme of Chapter 3. For instance, the distributed computa-
tion of an optimal initialization of the local upper layer controllers is still an open
problem. Here, ideas from distributed optimization or distributed model predictive
control may lead the way towards a solution. From a control theoretic point of view,
another interesting question would be whether the optimal upper layer controllers
depend on their initialization or not.

Another line of thought concerns the clustering procedures presented in Sec. 3.2
and in Sec. 7.2, which is currently limited to the interconnections of the states
and inputs of the dynamics. Thus, it remains an open question if the clustering
could additionally or even completely be performed from the perspective of the
global performance criterion. This would mean to form clusters which are weakly
coupled in terms of the global performance criterion instead of the global closed-loop
stability.
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Appendix A. Equivalance of Output

Variance and H2-Norm

The following proofs belong to Lemma 2.1 and to Lemma 2.3, which can be found
on p.39 and on p.40, respectively.

A.1. Proof of Lemma 2.1

Proof. Recall the closed-loop dynamic system Pcl with input wk and output zk as
stated in Eq. (2.51):

Pcl =

⎧⎨
⎩xk+1 = (A + BK)xk + Ewk = Aclxk + Ewk,

zk = (C + DK)xk + Fwk = Cclxk + Fwk,
(A.1)

and assume that A is a Schur matrix. Next, consider the performance index J as
defined in Eq. (2.20). Exploiting the linearity of the expected value and the basic
properties of the trace leads to:

J = lim
ke→∞

E

⎛
⎝ 1

ke

ke−1∑
k=0

zT

k zk

⎞
⎠ = lim

ke→∞
E

⎛
⎝ 1

ke

ke−1∑
k=0

tr(zT

k zk)

⎞
⎠

= lim
ke→∞

E

⎛
⎝ 1

ke

ke−1∑
k=0

tr(zkzT

k )

⎞
⎠ = lim

ke→∞
tr

⎛
⎝ 1

ke

ke−1∑
k=0

E(zkzT

k )

⎞
⎠ . (A.2)

Recall that wk is assumed to be independent of x0, with E(wk) = 0 and E(wkwT

l ) = 0
for all k, l ∈ N0 with k 
= l. It follows that:

E(xkwT

k ) = E((Aclxk−1 + Ewk−1)wT

k ) = AclE(xk−1wT

k )

= (Acl)
kE(x0wT

k ) = 0. (A.3)

With E(wkwT

k ) = I, it now holds for the covariance of zk that:

E(zkzT

k ) = CclE(xkxT

k )CT

cl + FF T. (A.4)

Defining Xk := E(xkxT

k ), the performance index J is thus equivalent to:

J = lim
ke→∞

tr

⎛
⎝ 1

ke

ke−1∑
k=0

CclXkCT

cl + FF T

⎞
⎠ . (A.5)
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Due to the assumptions on wk, the covariance matrix Xk of the state xk evolves
according to (see [65, Thm. 6.22] or [4, Sec. 4.3]):

Xk+1 = AclXkAT

cl + EET, (A.6)

with X0 = 0nx×nx. For ke →∞, the performance index converges to (see [65, Thm.
6.23, Thm. 6.24] or [4, Thm. 3.1]):

J = tr
(
CclXCT

cl + FF T
)

, (A.7)

with X denoting the unique solution to the Lyapunov equation:

X = AclXAT

cl + EET. (A.8)

It follows from (A.7) and (A.8) that J = ‖Pcl‖2
H2

, see e.g. [142, p.561].

A.2. Proof of Lemma 2.3

Proof. Consider the squared H2-norm of an LTI system Pcl with E := x0 and
F := 0nz×nw :

‖Pcl‖2
H2

=
∞∑

k=0

tr(zT

k zk)

=
∞∑

k=0

tr((Ccl(Acl)
k−1x0)

T(Ccl(Acl)
k−1x0))

=
∞∑

k=0

tr(xT

k CT
clCclxk)

=
∞∑

k=0

tr(zT

k zk)

= J. (A.9)
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Appendix B. Expected Performance

for Stochastic Initial

States

The purpose of this chapter is to proove the following lemma, which can be used
to formulate the expected quadratic cost in the case that the initial state x0 is
uniformly distributed over an ellipsoid, as shown in Sec. 3.4.4 (see p.67).

Lemma B.1. Assume that x ∼ U(Ex) is uniformly distributed over the ellipsoid:

Ex := {x ∈ R
nx | (x− μx)TΣ−1

x (x− μx) ≤ 1}, (B.1)

and let P ∈ Sn
�0. Then, it holds that:

E(xTPx) =
1

nx + 2
tr(ΣxP ) + μT

x Pμx. (B.2)

�

In order to proof the above result, first consider the following two lemmas.

Lemma B.2. Consider the infinite sequence (sn)n∈N defined by:

sn :=
∫ π

0
sinn(ξ)dξ. (B.3)

For all m, n ∈ N, it holds that:

sn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n− 1

n

n− 3

n− 2

n− 5

n− 4
· · · 5

6

3

4

π

2
if n = 2m,

n− 1

n

n− 3

n− 2

n− 5

n− 4
· · · 4

5

2

3
2 if n = 2m− 1,

(B.4)

which implies that 0 < sn ≤ 2 ∀n ∈ N. �

Proof. Exploiting that:

∫ π

0
sinn(ξ)dξ = 2

∫ π
2

0
sinn(ξ)dξ, (B.5)

Eq. (6) of [28, p.1050] can be used to show the claim.
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Lemma B.3. Let P ∈ Sn
�0 be a symmetric positive definite matrix, and let Ē(r, μ, Σ)

with r ∈ R≥0, μ ∈ Rn, and Σ ∈ Sn
�0 denote a closed set defined as:

Ē(r, μ, Σ) := {x ∈ R
n | (x− μ)TΣ−1(x− μ) = r2}. (B.6)

Then, there exist functions:

α(r, n) := rn+1
n∏

j=1

sj ≥ 0, β(r, n) := 2πrn−1
n−2∏
j=1

sj ≥ 0, (B.7)

and a positive definite matrix V ∈ R
n×n
�0 with V V T = Σ such that:∫

Ē(r,μ,Σ)
xTPx dx = det(V )

[
α(r, n) tr(PΣ) + β(r, n) μTPμ

]
. (B.8)

�

Proof. Since Σ ∈ Sn
�0, one can always find V ∈ R

n×n
�0 such that Σ = V V T, e.g. by

applying the Cholesky decomposition to Σ (see [28, p.890]). Using the invertible
linear variable transformation y = V −1(x − μ), the integral in Eq. (B.8) can be
rewritten as:∫

Ē(r,μ,Σ)
xTPx dx = det(V )

∫
Ē(r,0,I)

yTV TPV y + 2yTV TPμ + μTPμ dy, (B.9)

with det(V ) > 0. In the remainder of the proof, the integral on the right-hand side
is split into three summands, each of which are considered separately in the sequel.
Since P ∈ Sn

�0 and V ∈ R
n×n
�0 , it holds that V TPV ∈ Sn

�0. Hence, there always
exists an orthogonal transformation matrix T ∈ R

n×n with T TT = T T T = I and
det(T ) = 1 (see [28, p.257, p.280f]) such that:

T TV TPV T = D, (B.10)

where D = diag(di,i) ∈ Sn
�0 is a diagonal matrix. Letting z = T Ty, it holds that:∫

Ē(r,0,I)
yTV TPV y dy =

∫
Ē(r,0,I)

zTDz det(T ) dz =
∫

Ē(r,0,I)
zTDz dz. (B.11)

Note that the set Ē(r, 0, I) is not altered due to this transformation, since:

yTy = zTT TT z = zTz. (B.12)

Since Ē(r, 0, I) describes the surface of a hyperball, it is convenient to perform
a coordinate transformation for the right-hand side of (B.11) from kartesian into
n-dimensional polar coordinates [2, p.199], which leads to (B.14) (see page 167).
Substituting the absolute value of the functional determinant [2, p.200]:

det(J) =
∂(z1, . . . , zn)

∂(r, ϕ, θ1, . . . , θn−2)
= (−1)nrn−1 sin(θ1) sin2(θ2) · · · sinn−2(θn−2), (B.13)

and excluding the factor rn+1 leads to (B.15).
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(r

,0
,I

)
z

T
D

z
d
z

=
π ∫ −
π

π ∫ 0

π ∫ 0

π ∫ 0

··
·π ∫ 0

π ∫ 0

[ r2
co

s2
(ϕ

)
si

n
2
(θ

1
)
si

n
2
(θ

2
)
si

n
2
(θ

3
)
··
·s

in
2
(θ

n
−

3
)
si

n
2
(θ

n
−

2
)
d

1
,1

..
.

+
r2

si
n

2
(ϕ

)
si

n
2
(θ

1
)
si

n
2
(θ

2
)
si

n
2
(θ

3
)
··
·s

in
2
(θ

n
−

3
)
si

n
2
(θ

n
−

2
)
d

2
,2

..
.

+
r2

co
s2

(θ
1
)
si

n
2
(θ

2
)
si

n
2
(θ

3
)
··
·s

in
2
(θ

n
−

3
)
si

n
2
(θ

n
−

2
)
d

3
,3

..
.

+
r2

co
s2

(θ
2
)
si

n
2
(θ

3
)
··
·s

in
2
(θ

n
−

3
)
si

n
2
(θ

n
−

2
)
d

4
,4

+
..

.

+
..

.
+

..
.

+
r2

co
s2

(θ
n

−
3
)
si

n
2
(θ

n
−

2
)p

n
−

1
,n

−
1

+
r2

co
s2

(θ
n

−
2
)
d

n
,n

] |d
et

(J
)|

..
.

d
θ 1

d
θ 2

d
θ 3
··
·d

θ n
−

3
d
θ n

−
2

d
ϕ

(B
.1

4)

∫ Ē
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Appendix B. Expected Performance for Stochastic Initial States

Exploiting the linearity of integration, the multiple integral is split into a sum of
n multiple integrals, each containing one diagonal element di,i of D. Furthermore,
since the integration limits are constant and the integrand is a product of functions
depending on a scalar variable, each multiple integral can be rewritten as a product
of independent integrals. Altogether, by using the definition (B.3), Equation (B.15)
can be rewritten as (B.16), where the product operator ist defined by:

l∏
i=j

si :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if (l < j),

sj if (l = j),

sjsj+1 · · · sl−1sl if (l > j),

(B.17)

for j, l ∈ N0. It can easily be verified that:

π∫
−π

cos2(ϕ) dϕ =

π∫
−π

sin2(ϕ) dϕ = s1s2 = π, (B.18)

such that the factors of d1,1 and d2,2 in (B.16) are equal to α(r, n). Assume that
the coefficients of the remaining di,i with i ∈ {3, . . . , n} in (B.16) are all equal to
α(r, n), which results in:

rn+1
n∏

j=1

sj
!
= rn+1

i−3∏
j=1

sj

n∏
l=i+1

sl

π∫
−π

π∫
0

cos2(θi−2) sini−2(θi−2) dθi−2 dϕ. (B.19)

Obviously, the above equation holds in the trivial case that rn+1 = 0. In the case
that rn+1 > 0, dividing both sides by:

rn+1
i−3∏
j=1

sj

n∏
l=i+1

sl > 0, (B.20)

changing the integration order, and performing the change of variables ξ := θi−2, it
remains to show that:

si−2si−1si
!
=

π∫
−π

π∫
0

cos2(ξ) sini−2(ξ) dξ dϕ ∀ i ∈ {3, . . . , n}. (B.21)

Consider the following relation, obtained by partial integration of si for i ≥ 2:

si =
∫ π

0
sini−1(ξ) sin(ξ) dξ = (i− 1)

∫ π

0
cos2(ξ) sini−2(ξ) dξ. (B.22)

Substituting (B.22) into (B.19) and integrating the right-hand side:

si−2si−1si
!
=

π∫
−π

si

i− 1
dϕ. (B.23)
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Dividing by si > 0 leads to:

si−2si−1
!
=

2π

i− 1
, (B.24)

which can be easily verified by the help of Lemma B.2. Hence, it holds that:
∫

Ē(r,0,I)
yTV TPV y dy =

∫
Ē(r,0,I)

zTDz = α(r, n)
n∑

i=1

di,i = α(r, n) tr(D). (B.25)

With D = T TV TPV T , T T T = I, and Σ = V V T, as well as with some basic
properties of the trace, it follows that:∫

Ē(r,0,I)
yTV TPV y dy = α(r, n) tr(D) = α(r, n) tr(V TPV ) = α(r, n) tr(PΣ). (B.26)

Performing a coordinate transformation for the second summand in (B.9) into polar
coordinates leads to (B.32) (see page 170). Substituting the functional determinant
det(J) as defined in (B.13) and using definitions (B.3) and:

μ̃i :=
n∑

j=1

p̃i,jμj (B.27)

leads to (B.33). For the coefficients of μ̃1 and μ̃2, it is easily verified that:

π∫
−π

cos(ϕ) dϕ =

π∫
−π

sin(ϕ) dϕ = 0. (B.28)

For i ∈ {3, . . . , n} and ξ := θi−2, the coefficient of μ̃i contains the factor:

π∫
−π

π∫
0

cos(ξ) sini−2(ξ) dξ dϕ = 2π

π∫
0

cos(ξ) sini−2(ξ) dξ = 2π

[
1

i− 1
sini−1(ξ)

]ξ=π

ξ=0

= 0,

(B.29)

where the antiderivative is obtained by means of partial integration. Hence:

2
∫

Ē(r,0,I)
yTV TPμ dy = 0. (B.30)

Transforming the third summand of (B.9) to polar coordinates leads to:

∫
Ē(r,0,I)

μTPμ dy = μTPμ

π∫
−π

π∫
0

· · ·
π∫

0

| det(J)| dθ1 · · · dθn−2 dϕ

= μTPμ

π∫
−π

rn−1s1 · · · sn−2 dϕ

= 2π rn−1
n−2∏
j=1

sj μTPμ

= β(r, n) μTPμ. (B.31)
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Recalling Eq. (B.9) and the results obtained for the three summands:

∫
Ē(r,μ,Σ)

xTPx dx = det(V )
[
α(r, n) tr(PΣ) + β(r, n) μTPμ

]
. (B.34)

Note that α(r, n) > 0, β(r, n) > 0 if and only if r > 0, and α(r, n) = 0, β(r, n) = 0
otherwise, which follows directly with sj > 0 ∀ j ∈ N, cf. Lemma B.2.

By the help of Lemma B.3, it can now be shown that the original claim stated in
Lemma B.1 holds.

Proof. Since the random variable x ∼ U(Ex) is uniformly distributed over the ellip-
soid Ex, the corresponding probability density function is obtained as:

px(x) =

⎧⎪⎪⎨
⎪⎪⎩

px :=
1∫

Ex
1 dx

if x ∈ Ex,

0 otherwise.
(B.35)

In the sequel, the Gamma function1 is denoted by Γ(x) : C \ Z≤0 → C, where
Γ(x + 1) = x! [28, p.459]. With y = V −1(x−μx) and the expression for the integral
over the unit ball E(1, 0, I) from [48, p.620], it holds that:

1

px
=
∫

Ex

1 dx = det(V )
∫

E(1,0,I)
1 dy = det(V )

√
πn

Γ(n
2 + 1)

. (B.36)

Recall the definition of the expected value:

E(xTPx) =
∫
Rn

xTPx px dx = px

∫ 1

0

∫
Ē(r,μx,Σx)

xTPx dx dr. (B.37)

Determine V ∈ R
n×n
�0 such that V V T = Σx. Applying Lemma B.3 to the inner

integral yields:

E(xTPx) = px det(V )
∫ 1

0
rn+1

n∏
j=1

sj tr(PΣx) + 2πrn−1
n−2∏
j=1

sj μT

x Pμx dr. (B.38)

Exploiting that sn−1sn = 2π/n according to (B.24) and performing the integration:

E(xTPx) = 2π px det(V )
n−2∏
j=1

sj

∫ 1

0

rn+1

n
tr(PΣx) + rn−1μT

x Pμx dr (B.39)

=
2π

n
px det(V )

n−2∏
j=1

sj

[
1

n + 2
tr(PΣx) + μT

x Pμx

]
. (B.40)

1The Gamma function is also referred to as Euler Integral of the Second Kind, see [28, p.459] for
a definition.
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Let n = 2m with m ∈ N and consider the following relation, where s2l−1s2l = π/l
is used to establish the following relation (see (B.24)):

n−2∏
j=1

sj =
m−1∏
l=1

s2l−1s2l =
m−1∏
l=1

π

l
=

πm−1

(m− 1)!
=

m

π

√
π2m

m!
=

n

2π

√
πn

Γ(n
2 + 1)

. (B.41)

For n = 2m− 1, m ∈ N, a similar relation can be obtained, starting with:

n−2∏
j=1

sj = s1

m−2∏
l=1

s2ls2l+1 = 2
m−2∏
l=1

2π

2l + 1
= 2

m−2∏
l=1

22πl

2l(2l + 1)
=

22m−3πm−2(m− 2)!

(2m− 3)!
.

(B.42)

Using the following relation for the Gamma function from [28, p.460]:

Γ(m + 1
2) =

(2m)!
√

π

m! 22m
, (B.43)

and n = 2m− 1, Eq. (B.42) can be rewritten as:

22m−3πm−2(m− 2)!

(2m− 3)!
=

√
π2m−1

2π

m! 22m

(2m)!
√

π

2m(2m− 1)(2m− 2)

22m(m− 1)

=

√
π2m−1

2π

1

Γ(m + 1
2
)

(2m− 1)

=
n

2π

√
πn

Γ(n
2 + 1)

. (B.44)

Inserting either (B.41) or (B.44) into (B.40) leads to:

E(xTPx) = px det(V )

√
πn

Γ(n
2 + 1)

[
1

n + 2
tr(PΣx) + μT

x Pμx

]
. (B.45)

Substituting px from Eq. (B.36) into the above relation completes the proof.
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Appendix C. Comparison of

Interconnection

Measures

Concerning the clustering procedure presented in Section 3.2, it seems appropriate
to discuss the suitability of the interconnection measure introduced in Eq. (3.6),
especially since various alternatives exist (e.g. [5] [6] [27] [30] [138]). To this end,
a Monte-Carlo-Simulation has been performed. In each simulation run, a random
stable discrete-time LTI system P is first generated using the function drss pro-
vided by Matlab. Next, this system is partitioned into Ns = 5 subsystems with
ni

x = 4 and ni
u = 3 for all i ∈ Ns. Then, the interconnection matrix Γ ∈ R

Ns×Ns
≥0

is calculated, where six different interconnection measures are used. With Pui,xj

denoting the global system P with input ui and output xj, these measures are
defined as follows:

(I.1) γi,j = ‖Pui,xj‖H∞
, (I.2) γi,j = ‖Pui,xj‖H2,

(I.3) γi,j = ‖Ai,j‖2 + ‖Bi,j‖2, (I.4) γi,j = ‖Ai,j‖∞ + ‖Bi,j‖∞,

(I.5) γi,j = ‖Ai,j‖2, (I.6) γi,j = ‖Ai,j‖∞.

According to these measures, the Nn ∈ N weakest nonzero interconnections are set
to zero. Then, different measures for the quality of the obtained approximation
are evaluated, which enables a comparison of the interconnection measures. The
measures for the quality of the approximation are defined as follows:

(M.1) open-loop eigenvalues: the eigenvalues of the original system matrix A and
of the approximated system matrix A′ are stacked into two separate vectors.
The Euclidean norm of the difference vector serves as approximation measure.

(M.2) closed-loop eigenvalues (1): interconnections are only removed from the sys-
tem matrix A (yielding A′). Next, two linear quadratic regulators are calcu-
lated with respect to the same random controlled variable: K ′ is calculated
using A′, B, C, and D, and K is calculated using A, B, C, and D. Then,
the eigenvalues of the closed-loop system matrices A + BK and A + BK ′ are
compared as described in (M.1).

(M.3) closed-loop eigenvalues (2): like (M.2), but interconnections are removed in
both A and B.
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(M.4) closed-loop performance (1): like (M.2), but closed-loop performance is com-
pared instead of closed-loop eigenvalues.

(M.5) closed-loop eigenvalues (2): like (M.4), but interconnections are removed in
both A and B.

Another criterion used to evaluate the quality of the obtained approximation is the
stability of the resulting closed-loop system:

(S.1) number of simulations where the matrix A+BK ′ as constructed for calculating
(M.2) is a Schur matrix.

(S.2) number of simulations where the matrix A+BK ′ as constructed for calculating
(M.3) is a Schur matrix.

The following tables compare the quality of the approximation obtained for the
different interconnection measures. In order to rate the interconnection measures,
two different rating numbers are employed. As a first rating number, the percentage
of simulation runs at which each interconnection measure performed best is stated in
Tables C.1 and C.4. In Tables C.2 and C.5, a weighted rating number is used instead.
This rating number is calculated as follows: Suppose that for the r-th simulation
run, the quality measure (M.h) obtained for the interconnection measure (I.1) to
(I.6) is contained in a vector m(r, h) ∈ R6

≥0, where the i-th component is denoted
by mi(r, h) ∈ R≥0. Then, the i-th component of the weighted rating number is
obtained as:

100
15000∑
r=1

mi(r, h)−minj mj(r, h)∑6
i=1 mi(r, h)−minj mj(r, h)

. (C.1)

In order to avoid divisions by zero, the contribution of the r-th simulation run is
set to zero if the sum in the denominator is zero.

As can be deduced from Table C.1, the interconnection measures (I.3) and (I.5)
perform very well for a small number of neglected entries. The weighted rating
number stated in Table C.2 confirms this conclusion. Furthermore, both tables
show that the 2-norm and ∞-norm based interconnection measures (I.3) and (I.4)
considerung both the A and B matrix perform better when entries of both matrices
are deleted, as it applies for (M.3) and (M.5). Accordingly, the measures (I.5) and
(I.6) only considering the matrix A perform better in the measures (M.2) and (M.4),
where only the entries of the A matrix are deleted. The values obtained for Nn = 10
neglected entries confirm these observations, see Tables C.4 and C.5.

A further advantage of the measures (I.3) to (I.6) is that they can be applied
to unstable systems without any difficulty. In addition, the computational burden
for calculating these measures is considerably smaller than for calculating the H2-
and H∞-based interconnection measures (I.1) and (I.2). Concerning stability of the
closed-loop systems that is obtained when plugging in the controller designed for the
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approximate system to the original system, Tables C.3 and C.6 state that utilizing
the p-norm based interconnection measures more often leads to stable closed-loop
systems than utilizing the H-norm based interconnection measures.

A drawback of interconnection measures (I.3) to (I.6) is that they depend on the
current state-space representation, particulary on the selected scaling of the state
variables. If necessary, this drawback can be easily circumvented by normalizing the
model parameters before applying the clustering procedure. A suitable procedure
is to apply the Matlab function balance to the system matrix A. This function
returns a similarity transformation such that the transformed system matrix A has
approximately equal row and column norms. Since the corresponding transforma-
tion matrix is diagonal, the structure of the involved state space matrices is not
affected.

input to state state to state

(I.1) (I.2) (I.3) (I.4) (I.5) (I.6)

(M.1) 0.61 0.85 1.51 1.11 68.92 27.00

(M.2) 20.95 12.77 10.21 7.60 27.49 20.98

(M.3) 20.49 19.91 21.69 13.77 13.35 10.78

(M.4) 13.13 9.41 10.50 7.87 34.25 24.83

(M.5) 12.11 18.18 28.65 17.31 13.63 10.11

Table C.1.: Percentage of the best interconnection measure for Nn = 3.

input to state state to state

(I.1) (I.2) (I.3) (I.4) (I.5) (I.6)

(M.1) 6.78 7.82 10.94 11.39 32.97 30.10

(M.2) 17.11 15.07 12.52 12.64 21.28 21.37

(M.3) 16.40 18.70 18.96 18.24 13.91 13.80

(M.4) 13.71 13.26 13.35 13.48 23.46 22.74

(M.5) 12.97 17.93 21.41 20.53 13.75 13.40

Table C.2.: Weighted rating number of interconnection measures for Nn = 3.
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input to state state to state

(I.1) (I.2) (I.3) (I.4) (I.5) (I.6)

(S.1) 14998 14999 14999 14999 15000 15000

(S.2) 14952 14984 14985 14988 14939 14939

Table C.3.: Absolute number of stable closed-loop systems for Nn = 3.

input to state state to state

(I.1) (I.2) (I.3) (I.4) (I.5) (I.6)

(M.1) 0.77 0.73 1.31 1.49 68.82 26.87

(M.2) 17.10 10.49 8.27 7.89 28.89 27.36

(M.3) 17.37 18.88 23.23 18.58 11.05 10.89

(M.4) 11.06 8.00 8.86 8.91 32.90 30.27

(M.5) 11.89 17.80 28.82 22.15 9.30 9.85

Table C.4.: Percentage of the best performing interconnection measure for Nn =
10.

input to state state to state

(I.1) (I.2) (I.3) (I.4) (I.5) (I.6)

(M.1) 5.78 7.58 12.88 12.88 32.80 28.08

(M.2) 15.99 14.37 11.77 11.93 23.22 22.73

(M.3) 15.70 18.61 20.46 19.06 13.15 13.01

(M.4) 13.33 13.25 13.16 13.43 23.88 22.95

(M.5) 14.13 18.22 21.51 20.39 12.77 12.76

Table C.5.: Weighted rating number of interconnection measures for Nn = 10.

input to state state to state

(I.1) (I.2) (I.3) (I.4) (I.5) (I.6)

(S.1) 14963 14969 14983 14980 14991 14992

(S.2) 13883 14205 14430 14376 13792 13725

Table C.6.: Absolute number of stable closed-loop systems for Nn = 10.
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Hierarchical Control

The proofs presented in the following two sections belong to Lemma 4.3 and to
Lemma 4.4 of Chapter 4, which can be found on p.84 and on p.87, respectively.
Finally, Sec. D.3 shows how to formulate a closed-loop system using the synchronous
two-layer control scheme of Chap. 3 as a periodic system. This procedure is used in
Sec. 4.5 to compare the performance of the synchronous and asynchronous two-layer
control scheme (see p.97).

D.1. Proof of Lemma 4.3

Proof. According to Definition 4.2, for k ∈ N0 and with l ∈ {0, . . . , Nc − 1}, the
impulse response matrix of the periodic system Pp,cl is given by (cf. [21, p.242]):

zk,l =

⎧⎨
⎩Ccl[ϕk]Acl[ϕk−1]Acl[ϕk−2] · · ·Acl[ϕl+1]E[ϕl] if k > l,

0nz[ϕk]×nv[ϕl] otherwise.
(D.1)

With E[ϕk] as defined in Eq. (4.20) on p.84, it follows that:

zk,l =

⎧⎨
⎩
√

Nϕ Ccl[ϕk]Acl[ϕk−1] · · ·Acl[ϕNϕ ]x0 if l = Nϕ − 1, k > l,

0nz[ϕk]×1 otherwise.
(D.2)

Let k′ := k −Nϕ to obtain:

zk′+Nϕ,l =

⎧⎨
⎩
√

Nϕ Ccl[ϕk′+Nϕ]Acl[ϕk′+Nϕ−1] · · ·Acl[ϕNϕ]x0 if l = Nϕ − 1, k′ ≥ 0,

0nz[ϕk′+Nϕ
]×1 otherwise. (D.3)

Due to the Nϕ-periodicity of the switching function ϕk, it holds that:

zk′+Nϕ,l =

⎧⎨
⎩
√

Nϕ Ccl[ϕk′ ]Acl[ϕk′−1] · · ·Acl[ϕ0]x0 if l = Nϕ − 1, k′ ≥ 0,

0nz[ϕk′ ]×1 otherwise.
(D.4)

Hence, for all k′ ∈ N0, it holds that:

Nϕ−1∑
l=0

zT

k′+Nϕ,lzk′+Nϕ,l = NϕzT

k′zk′ . (D.5)

The claim now follows with the definition of the H2-norm for periodic systems in
Eq. (4.18) and with zk,l = 0 for all 0 ≤ k < Nϕ and all l ∈ {0, . . . , Nc − 1}.
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D.2. Proof of Lemma 4.4

Claim (a): The periodic system P̄
↑
ϕ is stabilizable

Proof. Recall the structure of the pair (Ā↑[ϕ], B̄↑[ϕ]), where the symbol ∗ denotes
the respective block-columns of the matrix B̄:

Ā↑[ϕ] =

⎡
⎣Ā↓

cl ∗
0 H̄A[ϕ]

⎤
⎦ , B̄↑[ϕ] =

⎡
⎣ B̄:,ϕ

H̄B[ϕ]

⎤
⎦ . (D.6)

Since Ā[ϕ] is in upper block-triangular form and H̄A[ϕ] is a Schur matrix for all
ϕ ∈ Nc, it suffices to show that the reduced periodic system (Ā↑′[ϕ], B̄↑′[ϕ]) with:

Ā↑′[ϕ] := Ā↓
cl, B̄↑′[ϕ] := B̄:,ϕ, ϕ ∈ Nc (D.7)

is stabilizable. According to [21, Prop. 4.11], the pair (Ā↑′[ϕ], B̄↑′[ϕ]) is stabilizable

if and only if for all characteristic multipliers λ ∈ C≥1 of Ā↓
cl and a vector ξ ∈ Rnx,

the conditions:

ξT(Ā↓
cl)

Nc = ξTλ, ξT(Ā↓
cl)

ϕ−1B̄:,ϕ = 0 ∀ ϕ ∈ Nc (D.8)

imply ξ = 0. Recall that the pair (A, B) is assumed to be stabilizable, which implies
that the matrix [A− λI B] has full row rank for all λ ∈ C≥1 [142, Theorem 21.2].
Hence, the matrix:

T T

x

[
A− λI B

] ⎡⎣Tx

Tu

⎤
⎦ =

[
Ā− λI B̄

]
(D.9)

has full row rank for all λ ∈ C≥1, since Tx and Tu are permutation matrices as
defined in (3.9). It follows that the matrix:

[
Ā + B̄K̄↓ − λI B̄

]
=
[
Ā↓

cl − λI B̄
]

(D.10)

has full row rank for all λ ∈ C≥1, since it can be obtained from (D.9) via elementary
column operations. Equivalently, it applies for all λ ∈ C≥1 that:

ξTĀ↓
cl = ξTλ

ξTB̄ = 0

⎫⎬
⎭ ⇒ ξ = 0. (D.11)

Exploiting that a multiplication of B̄ by λ ∈ C≥1 is a collection of elementary
column operations and using the first condition of (D.11) recursively, the latter
equation can be expressed as:

ξT(Ā↓
cl)

h1 = ξTλh1

λh2ξTB̄ = ξT(Ā↓
cl)

h2B̄ = 0

⎫⎬
⎭ ⇒ ξ = 0, (D.12)
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for all h1, h2 ∈ N. The first line implies that a left eigenvector ξ of Ā↓
cl with the

eigenvalue λ ∈ C≥1 is a left eigenvector of (Ā↓
cl)

h1 with the eigenvalue λh1 ∈ C≥1.
The second line of (D.11) is equivalent to:

ξTB̄ = 0 ⇔ ξTB̄:,1 = . . . = ξTB̄:,Nc = 0. (D.13)

Combining (D.12) and (D.13), the conditions (D.11) can be equivalently expressed
as:

ξTĀcl ↓= ξTλ ⇔ ξT(Ā↓
cl)

Nc = ξTλNc

ξTB̄:,1 = 0

ξTB̄:,2 = 0 ⇔ ξT(Ā↓
cl)

NcB̄:,2 = 0
...

ξTB̄:,Nc = 0 ⇔ ξT(Ā↓
cl)

Nc−1B̄:,Nc = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇒ ξ = 0. (D.14)

Since it holds that:

{λ |λ ∈ C≥1} = {λh |λ ∈ C≥1, h ∈ N}, (D.15)

Equation (D.14) implies that the conditions (D.8) hold for all λ ∈ C≥1. Hence, the
pair (Ā↑′[ϕ], B̄↑′[ϕ]) is stabilizable, implying the original claim.

Claim (b): The matrix D̄↑[ϕ] has full column rank for all ϕ ∈ Nc

Proof. This property of D̄↑[ϕ] directly follows from its definition in Eq. (4.37) and
from Assumption 4.1.

Claim (c): The periodic system P̄
↑
ϕ has no invariant zeros on C1

In order to simplify the presentation on the subsequent pages, the forward shift oper-
ator ς for a vector ηT =

[
η1 . . . ηn

]
∈ Cn, or for an ordered set I = {i1, i2, . . . , in}

is defined as follows:

ςη :=
[
ηn η1 η2 . . . ηn−1

]T
, ςI := {in, i1, i2, . . . , in−1}. (D.16)

The following properties of the index shift operator ς will be relevant, where l ∈ Z �=0:

ς lη := ς l−1(ςη), ς0η := η, ς lnη = η, ς lηT := (ς lη)T. (D.17)

Proof. For the system P̄
↑
ϕ to have no invariant zeros on the unit circle, the matrix:

P̊0(λ) :=

⎡
⎣Å− λI B̊

C̊ D̊

⎤
⎦ , (D.18)
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must have full column rank for all λ ∈ C1, see [21, p.215f]. Here, the matrices

denoted by (̊·) are defined as1:

Å :=

⎡
⎣ 0 Ā↑[ϕNc]

blkdiag(Ā↑[ϕ1], . . . , Ā↑[ϕNc−1]) 0

⎤
⎦ , (D.19a)

B̊ :=

⎡
⎣ 0 B̄↑[ϕNc]

blkdiag(B̄↑[ϕ1], . . . , B̄↑[ϕNc−1]) 0

⎤
⎦ , (D.19b)

C̊ := blkdiag(C̄↑[ϕ1], . . . , C̄↑[ϕNc]), (D.19c)

D̊ := blkdiag(D̄↑[ϕ1], . . . , D̄↑[ϕNc]). (D.19d)

The corresponding dimensions are defined as:

n̊x :=
∑Nc

l=1
n̄↑

x[ϕl], n̊v :=
∑Nc

l=1
n̄↑

v[ϕl]. (D.20)

Then, given a vector [ξT χT]T with ξ ∈ Rn̊x and χ ∈ Rn̊v, one has to show that:⎡
⎣Å− λI B̊

C̊ D̊

⎤
⎦
⎡
⎣ξ

χ

⎤
⎦ =

⎡
⎣0
0

⎤
⎦ ⇒

⎡
⎣ξ

χ

⎤
⎦ =

⎡
⎣0
0

⎤
⎦ ∀ λ ∈ C1. (D.21)

Partition both, ξ and χ into Nc subvectors ξ[ϕ] ∈ Rn̄x and χ[ϕ] ∈ Rn̄
↑
v[ϕ], respectively,

with ϕ ∈ Nc. Hence:

ξ =

⎡
⎢⎢⎢⎣

ξ[ϕ1]
...

ξ[ϕNc]

⎤
⎥⎥⎥⎦ , χ =

⎡
⎢⎢⎢⎣

χ[ϕ1]
...

χ[ϕNc]

⎤
⎥⎥⎥⎦ . (D.22)

These subvectors can be associated with the inherent block-structure of the matrix
P̊0(λ). Next, partition each subvector ξ[ϕ] again into two subvectors ξ1[ϕ] ∈ Rn̄x

and ξ2[ϕ] ∈ Rn̄
↑′
v [ϕ], such that:

ξ[ϕ] =

⎡
⎣ξ1[ϕ]

ξ2[ϕ]

⎤
⎦ . (D.23)

For l ∈ Nc, the following equations are obtained from the last n̄↑′
v [ϕl+1] rows of the

l-th block-row of (D.21) when using (4.35) and the periodicity of ϕk, i.e. ϕ0 = ϕNc:

λξ2[ϕl] = H̄A[ϕl−1] ξ2[ϕl−1] + H̄B[ϕl−1] χ[ϕl−1]. (D.24)

Exploiting that λ 
= 0 and starting from l = Nc, induction for (D.24) leads to:

λξ2[ϕ0] =
∑Nc−1

l=2
λ1−lH̄A[ϕNc−1] · · · H̄A[ϕNc−l+1]H̄B[ϕNc−l] χ[ϕNc−l] . . .

+ λ1−NcH̄A[ϕNc−1] · · · H̄A[ϕ1](H̄A[ϕ0] ξ2[ϕ0] + H̄B[ϕ0] χ[ϕ0]) . . .

+ H̄B[ϕNc−1] χ[ϕNc−1]. (D.25)

1The matrices Å to D̊ compose a so-called cyclic reformulation of the periodic system P̄↑, see
[21, Chap. 6.3].
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Taking into account the properties of the matrices H̄A[ϕ] and H̄B[ϕ], it turns out
that the second line in (D.25) equals zero, and that the remaining part of the
equation reduces to:

(λξ2[ϕ0])
T =

[
λ0(χ[ϕNc−1])T . . . λ2−Nc(χ[ϕ1])

T
]
. (D.26)

Recall the definiton of the ordered set Φ′[ϕ] from Eq. (4.26) on page 85, and note
that Φ′[ϕl] = Φ′[ϕl+Nc ]. Substituting (D.26) into (D.24) for l = 1 and solving the
recursion for 2 ≤ l ≤ Nc − 1 leads to:

λ(ξ2[ϕl])
T =

[
λ0(χ[vec1(Φ

′[ϕl])])
T . . . λ2−Nc(χ[vecNc−1(Φ′[ϕl])])

T
]
. (D.27)

In particular, (D.27) equals (D.26) for l = Nc. The main purpose of Eq. (D.27) is
that it decouples the interdependency of the ξ2[ϕl] for 1 ≤ l ≤ Nc given in (D.24),
and relates them to the components of χ instead. Evaluating the first n̄x rows of
the l-th block-row of (D.21) for l ∈ Nc yields:

λξ1[ϕl] = Ā↓
clξ1[ϕl−1] + B̄:,Φ′[ϕl−1]ξ2[ϕl−1] + B̄:,ϕl−1

χ[ϕl−1]. (D.28)

Consider the following circulant matrix:

κ = [κp,q] :=

⎡
⎢⎢⎢⎢⎢⎢⎣

κ0

ς1κ0
...

ςNc−1κ0

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ N

Nc×Nc
0 , κ0 :=

[
Nc − 1 . . . 2 1 0

]
. (D.29)

Using κ, (D.27) and (D.28) leads to:

λξ1[ϕl] = Ā↓
clξ1[ϕl−1] +

∑Nc

q=1
B̄:,ϕqλ

−κl,qχ[ϕq]. (D.30)

A similar approach for the (Nc + l)-th block row of (D.21) for l ∈ Nc yields:

0 = C̄↓
clξ1[ϕl−1] +

∑Nc

q=1
D̄:,ϕqλ

−κl,q χ[ϕq]. (D.31)

Introducing the matrix:

D̄(λ, l) :=
[
D̄:,ϕ1λ

−κl,1 . . . D̄:,ϕNc
λ−κl,Nc

]
, (D.32)

with λ−κl,q ∈ C1 for all l, q ∈ Nc, Eq. (D.31) can equivalently be written as:

0 = C̄↓
clξ1[ϕl−1] + D̄(λ, l)χ. (D.33)

Without loss of generality, assume now that D̄TC̄↓
cl = 0 (see, e.g., Remark 4.1 in

[31, p.74]). With the properties of the scalar product of two vectors in an Euclidean
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vector space, this implies that the column vectors of C̄↓
cl and D̄ are pairwise or-

thogonal. Hence, the column vectors of C̄↓
cl and D̄ are linearly independent. Since

D̄(λ, l) can be obtained from D̄ via elementary column operations for all l ∈ Nc

and all λ ∈ C1, it follows that the same property must hold for the matrix D̄(λ, l),

i.e. (D̄(λ, l))TC̄↓
cl = 0. Consequently, since D̄ has full column rank, D̄(λ, l) has full

column rank for all l ∈ Nc and all λ ∈ C1. Hence, for any l ∈ Nc, Eq. (D.33)
implies that χ = 0.

Combining (D.30) and (D.31) and substituting χ = 0 yields:
⎡
⎣λξ1[ϕl]

0

⎤
⎦ =

⎡
⎣Ā↓

cl

C̄↓
cl

⎤
⎦ ξ1[ϕl−1]. (D.34)

Since λ 
= 0, using induction for (D.34) leads to:

⎡
⎣λNcξ1[ϕl]

0

⎤
⎦ =

⎡
⎣(Ā↓

cl)
Nc

C̄↓
cl

⎤
⎦ ξ1[ϕl]. (D.35)

Due to Assumption 4.1 (see p.78), the matrix:

⎡
⎣A− λI B

C D

⎤
⎦ (D.36)

has full column rank for all λ ∈ C1. Hence, the matrix:
⎡
⎣Ā + B̄K̄↓ − λI B̄

C̄ + D̄K̄↓ D̄

⎤
⎦ =

⎡
⎣Ā↓

cl − λI B̄

C̄↓
cl D̄

⎤
⎦ (D.37)

must have full column rank for all λ ∈ C1, since it can be obtained from (D.36) via
elementary row and column operations. This implies that the first block column of
(D.37) must have full column rank, leading to:

⎡
⎣λξ1[ϕl]

0

⎤
⎦ =

⎡
⎣Ā↓

cl

C̄↓
cl

⎤
⎦ ξ1[ϕl] ⇒ ξ1[ϕl] = 0. (D.38)

The first block row of (D.38) claims ξ1[ϕl] to be an eigenvector of Ā↓
cl with cor-

responding eigenvalue λ ∈ C1. Similar to (D.12), it is easy to show that for any
h ∈ N:

(Ā↓
cl)

hξ1[ϕl] = λhξ1[ϕl], (D.39)

i.e. if ξ1[ϕl] is a right eigenvector of Ā↓
cl with the eigenvalue λ ∈ C1, then, at the

same time, ξ1[ϕl] is a right eigenvector of (Ā↓
cl)

h with the eigenvalue λh ∈ C1. It
directly follows that (D.35) implies ξ1[ϕl] = 0 for all l ∈ Nc, which completes the
proof.
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D.3. Numerical Example

Formulation of a system P controlled by a synchronous two-layer controller with
Δk = 3 as a periodic system:

P̄
↑
p,cl :

⎧⎨
⎩x̄↑

k+1 = Ā↑
cl[ϕk]x̄↑

k + Ē↑w̄k,

z̄k = C̄↑
cl[ϕk]x̄↑

k,
(D.40)

with state vector:

x̄↑
k :=

⎡
⎣x̄k

v̄k

⎤
⎦ , (D.41)

switching sequence:

Φ = {ϕk+3, ϕk+2, ϕk+1} = {3, 2, 1}, (D.42)

and matrices:

Ā↑
cl[1] =

⎡
⎣Ā↓

cl + B̄K̄↑ 0

K̄↑ 0n̄v×n̄v

⎤
⎦ , Ā↑

cl[2] = Ā↑
cl[3] =

⎡
⎣Ā↑

cl B̄

0 In̄v

⎤
⎦ , Ē↑ =

⎡
⎣Ē

0

⎤
⎦ ,

C̄↑
cl[1] =

[
C̄↓

cl + D̄K̄↑ 0n̄z×n̄v

]
, C̄↑

cl[2] = C̄↑
cl[3] =

[
C̄↓

cl D̄
]
. (D.43)
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E.1. Numerical Values of Section 4.5

On the following pages, the state-space matrices Ā↑[ϕ] to D̄↑[ϕ] corresponding to
the periodic system P̄

↑
ϕ constructed in Sec. 4.5 are shown. These matrices are

obtained by applying the modeling procedure described in Sec. 4.3.1 and using the
numerical values stated in Sec. 3.6. The remaining matrices Ē↑[ϕ] are obtained as:

Ē↑[1] =

⎡
⎣ I9

05×9

⎤
⎦

Ē↑[2] =

⎡
⎣ I9

05×9

⎤
⎦

Ē↑[3] =

⎡
⎣ I9

04×9

⎤
⎦ .
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E.1. Numerical Values of Section 4.5
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Appendix E. Numerical Values

[ Ā
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E.2. Numerical Values of Section 7.6

E.2. Numerical Values of Section 7.6

E.2.1. Subsystem Dynamics

Subsystem dynamics and controlled variables for mode θ = 1:
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Appendix E. Numerical Values
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0 2

0 0

⎤
⎥⎥⎦x3

k +

⎡
⎢⎢⎣
2 3

0 0

0 0

⎤
⎥⎥⎦ x4

k . . .

+

⎡
⎢⎢⎣
0

0

6

⎤
⎥⎥⎦ u1

k +

⎡
⎢⎢⎣

0 0

0 0

0.1 0

⎤
⎥⎥⎦u2

k +

⎡
⎢⎢⎣

0 0

0 0

0.3 0

⎤
⎥⎥⎦u3

k +

⎡
⎢⎢⎣

0 0

0.2 0

0 0.1

⎤
⎥⎥⎦u4

k,

z5
k =

⎡
⎢⎢⎢⎢⎢⎣

2 0

0 2

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦x1

k +

⎡
⎢⎢⎢⎢⎢⎣

1 −1

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ x2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 1

0 2

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦x5

k +

⎡
⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎦ u1

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

4 0

0 2

⎤
⎥⎥⎥⎥⎥⎦u2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

0.3 0

0 2

⎤
⎥⎥⎥⎥⎥⎦u5

k.

Subsystem dynamics and controlled variables for mode θ = 2:

x1
k+1 =

⎡
⎣0.2 0.8

0.4 0.7

⎤
⎦x1

k +

⎡
⎣0.1 0.6

0.4 0

⎤
⎦ x2

k +

⎡
⎣0.4 1.1

0.6 0.5

⎤
⎦x3

k +

⎡
⎣0.2 0

0 0

⎤
⎦x4

k . . .

+

⎡
⎣3
0

⎤
⎦ u1

k +

⎡
⎣0.2 0

0 0

⎤
⎦u2

k +

⎡
⎣0 0

0 0.4

⎤
⎦u3

k +

⎡
⎣0 0.2

0 0

⎤
⎦ u5

k +

⎡
⎣1 0

0 1

⎤
⎦w1

k,

x2
k+1 =

⎡
⎣0 0.4

0 0

⎤
⎦ x1

k +

⎡
⎣2.8 0.3

0.1 0.7

⎤
⎦ x2

k +

⎡
⎣0.1 0

0 0

⎤
⎦x3

k +

⎡
⎣0.3 0

0 0

⎤
⎦ x4

k +

⎡
⎣0.7 0.2

0 0.1

⎤
⎦x5

k . . .

+

⎡
⎣1 0

1 2

⎤
⎦ u2

k +

⎡
⎣0 0

1 1

⎤
⎦u5

k +

⎡
⎣1 0

0 1

⎤
⎦w2

k,

x3
k+1 =

⎡
⎣0.9 0.2

0 1.7

⎤
⎦x3

k +

⎡
⎣0.2 0.2

2 0

⎤
⎦ x4

k +

⎡
⎣ 0 0

0.4 0

⎤
⎦x5

k . . .

+

⎡
⎣5 1

0 2

⎤
⎦ u3

k +

⎡
⎣0 0

2 0

⎤
⎦u4

k +

⎡
⎣0 0.2

0 0

⎤
⎦ u5

k +

⎡
⎣1 0

0 1

⎤
⎦w3

k,

x4
k+1 =

⎡
⎣0 0.2

0 0

⎤
⎦ x1

k +

⎡
⎣0.6 0.2

0 1.1

⎤
⎦ x3

k +

⎡
⎣ 1 0.1

0.2 0.3

⎤
⎦x4

k +

⎡
⎣ 0 0

0.4 0

⎤
⎦x5

k . . .

+

⎡
⎣ 1 −1

0.2 0

⎤
⎦ u4

k +

⎡
⎣0 2

0 0

⎤
⎦u5

k +

⎡
⎣2 1

1 2

⎤
⎦w4

k,
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x5
k+1 =

⎡
⎣0.1 0

0 0

⎤
⎦x1

k +

⎡
⎣0 0.1

0 0.3

⎤
⎦ x2

k +

⎡
⎣0.6 0.2

0 0

⎤
⎦x3

k +

⎡
⎣ 0 1

0.1 0

⎤
⎦x4

k +

⎡
⎣0.3 1.2

0.4 0

⎤
⎦x5

k . . .

+

⎡
⎣0.1 0

0 0

⎤
⎦u2

k +

⎡
⎣0 2

1 0

⎤
⎦ u5

k +

⎡
⎣1 1

0 1

⎤
⎦w5

k,

z1
k =

⎡
⎢⎢⎣
4 0

0 2

0 0

⎤
⎥⎥⎦ x1

k +

⎡
⎢⎢⎣
1 3

0 0

0 0

⎤
⎥⎥⎦x2

k +

⎡
⎢⎢⎣
0

0

6

⎤
⎥⎥⎦ u1

k +

⎡
⎢⎢⎣

0 0

0 0

0.1 0

⎤
⎥⎥⎦u2

k,

z2
k =

⎡
⎢⎢⎢⎢⎢⎣

2 0

0 2

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ x1

k +

⎡
⎢⎢⎢⎢⎢⎣

5 −1

0 4

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦x2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ x4

k +

⎡
⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎦u1

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

4 0

0 2

⎤
⎥⎥⎥⎥⎥⎦ u2

k,

z3
k =

⎡
⎢⎢⎢⎢⎢⎣

2 0

0 2

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ x1

k +

⎡
⎢⎢⎢⎢⎢⎣

1 −1

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦x2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 4

5 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ x3

k +

⎡
⎢⎢⎢⎢⎢⎣

0

0

2

0

⎤
⎥⎥⎥⎥⎥⎦u1

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

0.4 0

0 1

⎤
⎥⎥⎥⎥⎥⎦ u2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

4 0

0 3

⎤
⎥⎥⎥⎥⎥⎦u3

k,

z4
k =

⎡
⎢⎢⎣
4 0

0 2

0 0

⎤
⎥⎥⎦ x1

k +

⎡
⎢⎢⎣
1 3

0 0

0 0

⎤
⎥⎥⎦x2

k +

⎡
⎢⎢⎣
0 1

0 2

0 0

⎤
⎥⎥⎦ x3

k +

⎡
⎢⎢⎣
2 3

0 0

0 0

⎤
⎥⎥⎦x4

k . . .

+

⎡
⎢⎢⎣
0

0

6

⎤
⎥⎥⎦u1

k +

⎡
⎢⎢⎣

0 0

0 0

0.1 0

⎤
⎥⎥⎦ u2

k +

⎡
⎢⎢⎣

0 0

0 0

0.3 0

⎤
⎥⎥⎦u3

k +

⎡
⎢⎢⎣

0 0

0.2 0

0 0.1

⎤
⎥⎥⎦u4

k,

z5
k =

⎡
⎢⎢⎢⎢⎢⎣

2 0

0 2

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ x1

k +

⎡
⎢⎢⎢⎢⎢⎣

1 −1

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦x2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 1

0 2

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ x5

k +

⎡
⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎦u1

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

4 0

0 2

⎤
⎥⎥⎥⎥⎥⎦ u2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

0.3 0

0 2

⎤
⎥⎥⎥⎥⎥⎦u5

k.

Subsystem dynamics and controlled variables for mode θ = 3:

x1
k+1 =

⎡
⎣1.2 1.8

0.4 1.7

⎤
⎦ x1

k +

⎡
⎣0.2 1.6

0.1 0

⎤
⎦x2

k +

⎡
⎣0.1 2.1

0.6 0.3

⎤
⎦x3

k +

⎡
⎣0.2 0

0 0

⎤
⎦ x4

k . . .

+

⎡
⎣ 1

0.1

⎤
⎦u1

k +

⎡
⎣0.1 0

0 0

⎤
⎦u2

k +

⎡
⎣0 0

0 0.1

⎤
⎦u3

k +

⎡
⎣0.3 0

0 0

⎤
⎦ u4

k +

⎡
⎣0 0.2

0 0

⎤
⎦u5

k +

⎡
⎣1 0

0 1

⎤
⎦w1

k,

x2
k+1 =

⎡
⎣0 0.6

0 0

⎤
⎦x1

k +

⎡
⎣1.8 0.3

0.7 0.9

⎤
⎦x2

k +

⎡
⎣0.4 0

0 0

⎤
⎦ x3

k +

⎡
⎣0.3 0

0 0

⎤
⎦x4

k +

⎡
⎣0.3 0.2

0 0.1

⎤
⎦x5

k . . .
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+

⎡
⎣2 0

5 2

⎤
⎦ u2

k +

⎡
⎣ 0 0

0.2 1

⎤
⎦u5

k +

⎡
⎣1 0

0 1

⎤
⎦w2

k,

x3
k+1 =

⎡
⎣1.9 0.2

0 1.7

⎤
⎦x3

k +

⎡
⎣0.2 0.1

2 0

⎤
⎦x4

k +

⎡
⎣ 0 0

0.4 0

⎤
⎦ x5

k . . .

+

⎡
⎣1 0

0 2

⎤
⎦ u3

k +

⎡
⎣0 2

2 0

⎤
⎦u4

k +

⎡
⎣0 0.2

0 0

⎤
⎦u5

k +

⎡
⎣1 0

0 1

⎤
⎦w3

k,

x4
k+1 =

⎡
⎣0.6 0.2

0 1.3

⎤
⎦x3

k +

⎡
⎣ 1 0.1

0.2 0.3

⎤
⎦x4

k +

⎡
⎣ 0 0

0.4 0

⎤
⎦ x5

k . . .

+

⎡
⎣0.2 0

0 0

⎤
⎦u2

k +

⎡
⎣ 1 −1

0.4 0

⎤
⎦ u4

k +

⎡
⎣0 0.2

0 0

⎤
⎦u5

k +

⎡
⎣2 1

1 2

⎤
⎦w4

k,

x5
k+1 =

⎡
⎣0.1 0

0 0

⎤
⎦x1

k +

⎡
⎣0 0.4

1 0.3

⎤
⎦ x2

k +

⎡
⎣0.6 0.2

0 0

⎤
⎦x3

k +

⎡
⎣ 0 1

0.3 0

⎤
⎦x4

k +

⎡
⎣0.3 1.2

0.4 0

⎤
⎦ x5

k . . .

+

⎡
⎣0.1 0

0 0

⎤
⎦u2

k +

⎡
⎣0 2

1 0

⎤
⎦u5

k +

⎡
⎣1 1

0 1

⎤
⎦w5

k,

z1
k =

⎡
⎢⎢⎣
4 0

0 4

0 0

⎤
⎥⎥⎦x1

k +

⎡
⎢⎢⎣
1 3

0 0

0 0

⎤
⎥⎥⎦x2

k +

⎡
⎢⎢⎣
0

0

6

⎤
⎥⎥⎦u1

k +

⎡
⎢⎢⎣

0 0

0 0

0.1 0

⎤
⎥⎥⎦u2

k,

z2
k =

⎡
⎢⎢⎢⎢⎢⎣

2 0

0 2

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦x1

k +

⎡
⎢⎢⎢⎢⎢⎣

5 −1

0 4

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ x2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦x4

k +

⎡
⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎦ u1

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

4 0

0 2

⎤
⎥⎥⎥⎥⎥⎦u2

k,

z3
k =

⎡
⎢⎢⎢⎢⎢⎣

2 0

0 2

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦x1

k +

⎡
⎢⎢⎢⎢⎢⎣

1 −1

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ x2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 4

5 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦x3

k +

⎡
⎢⎢⎢⎢⎢⎣

0

0

2

0

⎤
⎥⎥⎥⎥⎥⎦ u1

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

0.4 0

0 1

⎤
⎥⎥⎥⎥⎥⎦u2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

4 0

0 3

⎤
⎥⎥⎥⎥⎥⎦u3

k,

z4
k =

⎡
⎢⎢⎣
4 0

0 2

0 0

⎤
⎥⎥⎦x1

k +

⎡
⎢⎢⎣
1 3

0 0

0 0

⎤
⎥⎥⎦x2

k +

⎡
⎢⎢⎣
0 1

0 2

0 0

⎤
⎥⎥⎦x3

k +

⎡
⎢⎢⎣
2 3

0 0

0 0

⎤
⎥⎥⎦ x4

k . . .

+

⎡
⎢⎢⎣
0

0

6

⎤
⎥⎥⎦ u1

k +

⎡
⎢⎢⎣

0 0

0 0

0.1 0

⎤
⎥⎥⎦u2

k +

⎡
⎢⎢⎣

0 0

0 0

0.3 0

⎤
⎥⎥⎦u3

k +

⎡
⎢⎢⎣

0 0

0.2 0

0 0.1

⎤
⎥⎥⎦u4

k,
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z5
k =

⎡
⎢⎢⎢⎢⎢⎣

2 0

0 2

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ x1

k +

⎡
⎢⎢⎢⎢⎢⎣

1 −1

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦x2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 1

0 2

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ x5

k +

⎡
⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎦u1

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

4 0

0 2

⎤
⎥⎥⎥⎥⎥⎦ u2

k +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

0.3 0

0 2

⎤
⎥⎥⎥⎥⎥⎦u5

k.

E.2.2. Lower Layer Controllers

Lower layer controllers of the hierarchical control scheme. When used separately,
as in the second row of Table 7.1, set vi

k = 0 for all i ∈ Ns.

Values for mode θ = 1:

u1
k =

[
−0.9893 −0.3475

]
x1

k +
[
0.0399 −0.0646

]
x2

k + v1
k,

u2
k =

⎡
⎣−0.1305 −0.3363

2.8591 −0.0460

⎤
⎦x1

k +

⎡
⎣−1.9142 −0.1058

−1.0192 0.5105

⎤
⎦ x2

k + v2
k,

u3
k =

⎡
⎣ 0.1051 −0.1905

−0.8820 −0.4904

⎤
⎦x3

k +

⎡
⎣ 0.0860 −0.0670

−0.1431 0.0337

⎤
⎦ x4

k + v3
k,

u4
k =

⎡
⎣−0.1684 −0.2197

−0.0092 0.2578

⎤
⎦x3

k +

⎡
⎣−1.0597 −0.1383

−0.0170 −0.5246

⎤
⎦ x4

k + v4
k,

u5
k =

⎡
⎣−0.1136 0.1240

−0.1604 −0.6237

⎤
⎦x5

k + v5
k.

Values for mode θ = 2:

u1
k =

[
−0.1000 −0.3163

]
x1

k + v1
k,

u2
k =

⎡
⎣−2.6036 −0.3292

1.2245 −0.2155

⎤
⎦x2

k + v2
k,

u3
k =

⎡
⎣−0.1463 0.1295

−0.3498 −0.9669

⎤
⎦x3

k +

⎡
⎣ 0.0223 −0.0410

−0.3233 0.0288

⎤
⎦x4

k +

⎡
⎣ 0.0499 −0.0186

−0.3348 −0.0421

⎤
⎦ x5

k + v3
k,

u4
k =

⎡
⎣0.3272 0.0554

0.0479 0.6036

⎤
⎦x3

k +

⎡
⎣−0.6474 −0.0056

0.5238 −0.8738

⎤
⎦x4

k +

⎡
⎣0.2355 0.1617

0.4814 −0.2274

⎤
⎦x5

k + v4
k,

u5
k =

⎡
⎣−0.1315 −0.3156

−0.3093 −0.0059

⎤
⎦x3

k +

⎡
⎣ 0.0790 0.2827

−0.0292 −0.5119

⎤
⎦x4

k +

⎡
⎣−0.3155 0.0594

−0.1208 −0.4748

⎤
⎦ x5

k + v5
k.

Values for mode θ = 3:

u1
k =

[
−1.7375 −5.3393

]
x1

k + v1
k,
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u2
k =

⎡
⎣−0.5691 −0.0799

0.6473 −0.4932

⎤
⎦ x2

k +

⎡
⎣−0.1747 0.0173

0.5382 0.1485

⎤
⎦x5

k + v2
k,

u3
k =

⎡
⎣−0.4280 1.0858

1.4602 0.7431

⎤
⎦ x3

k +

⎡
⎣−0.0893 −0.1605

−0.1229 0.0017

⎤
⎦x4

k + v3
k,

u4
k =

⎡
⎣−1.3536 −1.5917

−0.8908 −0.7188

⎤
⎦ x3

k +

⎡
⎣−0.8398 −0.0695

−0.0946 0.0801

⎤
⎦x4

k + v4
k,

u5
k =

⎡
⎣−0.6098 0.3488

0.1269 0.0271

⎤
⎦ x2

k +

⎡
⎣−0.8478 −0.2842

−0.2417 −0.5499

⎤
⎦x5

k + v5
k,

E.2.3. Upper Layer Controllers

Upper layer controllers designed with Theorem 7.1.

Values for mode θ = 1:

v1
sΔk =

[
0.0863 0.0515

]
x1

sΔk +
[
0.0793 0.0213

]
x2

sΔk,

v2
sΔk =

⎡
⎣−0.0121 −0.0110

−0.2561 0.0209

⎤
⎦ x1

sΔk +

⎡
⎣0.0084 −0.0066

0.2196 0.0517

⎤
⎦x2

sΔk,

v3
sΔk =

⎡
⎣ 0.1264 0.0721

−0.0979 −0.0191

⎤
⎦ x1

sΔk +

⎡
⎣ 0.0896 0.0198

−0.1912 0.0274

⎤
⎦x2

sΔk . . .

+

⎡
⎣ 0.1009 0.0594

−0.0043 0.0024

⎤
⎦x3

sΔk +

⎡
⎣0.0408 0.0147

0.0010 −0.0517

⎤
⎦ x4

sΔk,

v4
sΔk =

⎡
⎣0.0646 0.0081

0.1289 0.0140

⎤
⎦x1

sΔk +

⎡
⎣−0.0712 −0.0031

0.0694 −0.0250

⎤
⎦ x2

sΔk . . .

+

⎡
⎣0.0008 0.0005

0.0014 −0.0009

⎤
⎦x3

sΔk +

⎡
⎣−0.0005 0.0130

−0.0017 0.0275

⎤
⎦ x4

sΔk,

v5
sΔk =

⎡
⎣−0.0372 −0.0238

0.0092 0.0008

⎤
⎦ x1

sΔk +

⎡
⎣−0.0717 −0.0378

0.0987 −0.0060

⎤
⎦x2

sΔk +

⎡
⎣−0.0095 0.0311

0.0007 −0.0028

⎤
⎦x5

sΔk,

with vi
sΔk+l = vi

sΔk for all i ∈ Ns and l ∈ {1, 2, 3, 4}.

Values for mode θ = 2:

v1
sΔk =

[
−0.1181 −0.0787

]
x1

sΔk,
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v2
sΔk =

⎡
⎣−0.0070 −0.0015

0.0253 0.0051

⎤
⎦ x2

sΔk,

v3
sΔk =

⎡
⎣ 0.1178 0.0361

−0.5952 −0.2281

⎤
⎦ x3

sΔk +

⎡
⎣ 0.0298 −0.0503

−0.1570 0.2394

⎤
⎦x4

sΔk . . .

+

⎡
⎣ 0.0509 −0.0117

−0.2433 0.0692

⎤
⎦ x5

sΔk,

v4
sΔk =

⎡
⎣0.5325 0.2835

0.2705 0.3478

⎤
⎦ x3

sΔk +

⎡
⎣0.1571 −0.1890

0.1283 −0.1086

⎤
⎦x4

sΔk . . .

+

⎡
⎣0.1978 −0.0868

0.0602 −0.1477

⎤
⎦ x5

sΔk,

v5
sΔk =

⎡
⎣−0.1189 −0.2514

−0.0531 0.0153

⎤
⎦ x3

sΔk +

⎡
⎣−0.0715 −0.0401

−0.0050 0.0062

⎤
⎦x4

sΔk . . .

+

⎡
⎣ 0.0022 0.0497

−0.0267 −0.0161

⎤
⎦ x5

sΔk,

with vi
sΔk+l = vi

sΔk for all i ∈ Ns and l ∈ {1, 2, 3, 4}.

Values for mode θ = 3:

v1
sΔk =

[
0.0831 0.2525

]
x1

sΔk +
[
0.1460 −0.0677

]
x2

sΔk . . .

+
[
−0.2532 −0.2286

]
x3

sΔk +
[
−0.0725 0.0943

]
x4

sΔk . . .

+
[
−0.1221 0.0660

]
x5

sΔk,

v2
sΔk =

⎡
⎣−0.0547 −0.2167

0.1992 0.7280

⎤
⎦ x1

sΔk +

⎡
⎣−0.1844 −0.0361

0.6393 0.1018

⎤
⎦x2

sΔk . . .

+

⎡
⎣ 0.0474 0.0454

−0.2370 −0.2301

⎤
⎦ x3

sΔk +

⎡
⎣ 0.0267 −0.0386

−0.1192 0.1837

⎤
⎦x4

sΔk . . .

+

⎡
⎣ 0.0982 −0.0514

−0.3525 0.1926

⎤
⎦ x5

sΔk,

v3
sΔk =

⎡
⎣−0.0200 −0.2158

−0.0292 −0.2180

⎤
⎦ x1

sΔk +

⎡
⎣−0.0840 0.0720

0.0522 0.0458

⎤
⎦x2

sΔk . . .

+

⎡
⎣−0.6426 0.3384

−0.3716 −0.0040

⎤
⎦ x3

sΔk +

⎡
⎣ 0.0000 −0.1536

−0.0077 −0.0741

⎤
⎦x4

sΔk . . .
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+

⎡
⎣ 0.0806 −0.0099

−0.1081 0.0254

⎤
⎦x5

sΔk,

v4
sΔk =

⎡
⎣0.0266 0.2008

0.0023 0.0766

⎤
⎦x1

sΔk +

⎡
⎣−0.0156 −0.0405

0.0175 −0.0441

⎤
⎦x2

sΔk . . .

+

⎡
⎣0.3484 −0.0412

0.3227 −0.1728

⎤
⎦x3

sΔk +

⎡
⎣0.0058 0.0702

0.0040 0.0715

⎤
⎦x4

sΔk . . .

+

⎡
⎣ 0.0617 −0.0142

−0.0299 −0.0007

⎤
⎦x5

sΔk,

v5
sΔk =

⎡
⎣0.0738 −0.0487

0.0270 0.2120

⎤
⎦x1

sΔk +

⎡
⎣0.1804 −0.0107

0.0811 0.0216

⎤
⎦x2

sΔk . . .

+

⎡
⎣−0.1510 −0.3933

0.0173 0.0827

⎤
⎦x3

sΔk +

⎡
⎣−0.1649 0.3810

0.0235 −0.0690

⎤
⎦x4

sΔk . . .

+

⎡
⎣−0.1647 0.1060

−0.0136 0.0054

⎤
⎦x5

sΔk,

with vi
sΔk+l = vi

sΔk for all i ∈ Ns and l ∈ {1, 2, 3, 4}.

Upper layer controllers designed with Theorem 7.2.

Values for mode θ = 1:

v1
sΔk =

[
0.1323 0.0534

]
x1

sΔk +
[
0.0674 0.0190

]
x2

sΔk +
[
0.1241 −0.0326

]
x3

sΔk . . .

+
[
0.0037 0.0166

]
x4

sΔk +
[
0.0380 0.0661

]
x5

sΔk,

v2
sΔk = −

⎡
⎣0.0495 0.0165

0.2625 0.0749

⎤
⎦x1

sΔk −
⎡
⎣0.0163 0.0071

0.0121 0.0073

⎤
⎦x2

sΔk +

⎡
⎣−0.0713 0.0212

−0.1524 0.2127

⎤
⎦x3

sΔk . . .

+

⎡
⎣−0.0140 −0.0128

−0.0325 0.0729

⎤
⎦ x4

sΔk −
⎡
⎣0.0490 0.0416

0.1152 0.1612

⎤
⎦x5

sΔk,

v3
sΔk =

⎡
⎣0.1142 0.0697

0.0205 −0.0348

⎤
⎦x1

sΔk +

⎡
⎣ 0.0845 0.0076

−0.1638 0.0298

⎤
⎦ x2

sΔk +

⎡
⎣−0.0000 0.0750

0.1798 −0.0380

⎤
⎦x3

sΔk . . .

+

⎡
⎣0.0129 0.0152

0.0349 0.0325

⎤
⎦x4

sΔk +

⎡
⎣0.0175 −0.0397

0.0158 0.0655

⎤
⎦ x5

sΔk,
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v4
sΔk =

⎡
⎣0.0760 −0.0072

0.0370 0.0193

⎤
⎦x1

sΔk +

⎡
⎣−0.0967 0.0258

0.0327 −0.0070

⎤
⎦ x2

sΔk +

⎡
⎣ 0.0860 0.0022

−0.0812 0.0026

⎤
⎦x3

sΔk . . .

+

⎡
⎣ 0.0128 0.0521

−0.0290 −0.0181

⎤
⎦x4

sΔk −
⎡
⎣0.1390 0.0322

0.1188 0.0582

⎤
⎦ x5

sΔk,

v5
sΔk =

⎡
⎣−0.0628 −0.0309

−0.0395 0.0211

⎤
⎦x1

sΔk +

⎡
⎣−0.0659 −0.0363

0.1121 −0.0238

⎤
⎦ x2

sΔk −
⎡
⎣0.0137 0.0427

0.1083 0.0050

⎤
⎦x3

sΔk . . .

+

⎡
⎣−0.0124 0.0174

−0.0225 −0.0603

⎤
⎦x4

sΔk +

⎡
⎣−0.0306 0.0253

0.0853 0.0104

⎤
⎦ x5

sΔk,

with vi
sΔk+l = vi

sΔk for all i ∈ Ns and l ∈ {1, 2, 3, 4}.

Values for mode θ = 2:

v1
sΔk =

[
0.0084 −0.0423

]
x1

sΔk +
[
−0.0628 −0.1172

]
x3

sΔk . . .

+
[
−0.0333 0.0394

]
x4

sΔk +
[
−0.0408 0.0216

]
x5

sΔk,

v2
sΔk =

⎡
⎣0.0034 −0.0006

0.0124 0.0003

⎤
⎦ x2

sΔk +

⎡
⎣−0.0393 0.0100

0.1057 −0.0258

⎤
⎦x3

sΔk . . .

+

⎡
⎣−0.0107 −0.0431

0.0483 0.1154

⎤
⎦ x4

sΔk +

⎡
⎣−0.1227 −0.0751

0.3201 0.2038

⎤
⎦x5

sΔk,

v3
sΔk =

⎡
⎣ 0.0430 0.0847

−0.2182 −0.4335

⎤
⎦ x1

sΔk +

⎡
⎣ 0.0273 −0.0479

−0.1451 0.2173

⎤
⎦x3

sΔk . . .

+

⎡
⎣−0.0161 −0.0150

0.0737 0.0681

⎤
⎦ x4

sΔk +

⎡
⎣−0.0293 −0.0057

0.1215 0.0255

⎤
⎦x5

sΔk,

v4
sΔk =

⎡
⎣0.1774 0.3836

0.0203 0.0865

⎤
⎦ x1

sΔk +

⎡
⎣ 0.1336 −0.1276

−0.0193 0.0046

⎤
⎦x3

sΔk . . .

+

⎡
⎣−0.0440 −0.0622

0.0171 −0.0734

⎤
⎦ x4

sΔk −
⎡
⎣0.0909 0.0532

0.2804 0.2297

⎤
⎦x5

sΔk,

v5
sΔk = −

⎡
⎣0.0195 0.0969

0.0327 0.0739

⎤
⎦ x1

sΔk +

⎡
⎣−0.0635 −0.0849

−0.0402 0.0029

⎤
⎦x3

sΔk . . .

+

⎡
⎣−0.0788 −0.0382

0.0149 0.0028

⎤
⎦ x4

sΔk −
⎡
⎣0.1235 0.0238

0.0604 0.0357

⎤
⎦x5

sΔk,

with vi
sΔk+l = vi

sΔk for all i ∈ Ns and l ∈ {1, 2, 3, 4}.
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Values for mode θ = 3:

v1
sΔk =

[
0.0710 0.1947

]
x1

sΔk +
[
0.1341 −0.0644

]
x2

sΔk −
[
0.2604 0.2218

]
x3

sΔk . . .

+
[
−0.0818 0.1039

]
x4

sΔk +
[
−0.1191 0.0636

]
x5

sΔk,

v2
sΔk =

⎡
⎣−0.0369 −0.1602

0.1379 0.5267

⎤
⎦ x1

sΔk +

⎡
⎣−0.1892 −0.0444

0.6533 0.1332

⎤
⎦x2

sΔk . . .

+

⎡
⎣ 0.0445 0.0336

−0.2263 −0.1845

⎤
⎦ x3

sΔk +

⎡
⎣ 0.0258 −0.0335

−0.1192 0.1696

⎤
⎦x4

sΔk . . .

+

⎡
⎣ 0.1005 −0.0532

−0.3595 0.1980

⎤
⎦ x5

sΔk,

v3
sΔk =

⎡
⎣0.0198 −0.0508

0.0012 −0.1153

⎤
⎦x1

sΔk +

⎡
⎣−0.0744 0.0779

0.0514 0.0510

⎤
⎦ x2

sΔk +

⎡
⎣−0.5371 0.3233

−0.3258 −0.0050

⎤
⎦x3

sΔk . . .

+

⎡
⎣ 0.0043 −0.1427

−0.0121 −0.0583

⎤
⎦ x4

sΔk +

⎡
⎣ 0.0717 −0.0137

−0.1123 0.0212

⎤
⎦x5

sΔk,

v4
sΔk =

⎡
⎣−0.0016 0.1031

−0.0154 0.0020

⎤
⎦x1

sΔk +

⎡
⎣−0.0157 −0.0448

0.0124 −0.0484

⎤
⎦x2

sΔk +

⎡
⎣0.3024 −0.0383

0.2698 −0.1670

⎤
⎦x3

sΔk . . .

+

⎡
⎣0.0089 0.0566

0.0022 0.0662

⎤
⎦x4

sΔk +

⎡
⎣ 0.0657 −0.0105

−0.0251 0.0010

⎤
⎦ x5

sΔk,

v5
sΔk =

⎡
⎣0.0543 −0.1499

0.0173 0.1864

⎤
⎦x1

sΔk +

⎡
⎣0.1812 0.0243

0.0812 0.0173

⎤
⎦ x2

sΔk +

⎡
⎣−0.1534 −0.3345

0.0142 0.0748

⎤
⎦x3

sΔk . . .

+

⎡
⎣−0.1811 0.3930

0.0263 −0.0737

⎤
⎦ x4

sΔk +

⎡
⎣−0.1643 0.1047

−0.0146 0.0066

⎤
⎦x5

sΔk,

with vi
sΔk+l = vi

sΔk for all i ∈ Ns and l ∈ {1, 2, 3, 4}.
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Equalities, Inequalities and Definitions

A := B A is defined to be B

A = B, A 
= B A is equal to B, A is not equal to B

A ∈ B, A /∈ B A is an element of a set B, A is not an element of a set B

A ⊂ B, A ⊆ B a set A is a subset of a set B, A is a subset of or equal to the
set B

A < B, A ≤ B component wise inequality of matrices A = [ai,j] ∈ Rm×n and
B = [bi,j] ∈ Rm×n: ai,j < bi,j for all (i, j) ∈ {1, . . . , m} ×
{1, . . . , n}, ai,j ≤ bi,j for all (i, j) ∈ {1, . . . , m} × {1, . . . , n}

A ≺ B, A � B inequality of symmetric positive definite matrices A ∈ Rn×n and
B ∈ Rn×n: yT

A y < yT
By for all y ∈ Rn, yT

A y ≤ yT
By for all

y ∈ Rn

(•)T(BA ) Abbreviation of symmetric products of matrices A ∈ Rm×n and
B ∈ Rp×m: •T(A B) := A

T
B

T
BA

(•)T(R)(BA ) Abbreviation of symmetric products of matrices A ∈ R
m×n,

B ∈ Rp×m, and R ∈ Rp×p: (•)T(R)(BA ) := A
T
B

T
RBA

Functions

�·� : R→ Z ceil function, �y� := mini∈Z i ≥ y

!·" : R→ Z floor function, !y" := maxi∈Z i ≤ y

p : Ns → Nc cluster Cp containing subsystem P
i: p(i) := q ∈ Nc | i ∈ Cq

ϕ : T→ INϕ Nϕ-periodic switching function

sgn : R→ {±1} signum function

V : X→ R≥0 Lyapunov function
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General

(·)k piecewise-constant signal sampled at time t = kΔt: ωk = ω(kΔt)

(·)[k1:k2] time sequence from k1 to k2: ωT

[k1:k2] =
[
ωT

k1
, . . . , ωT

k2

]

(·)i value associated with subsystem P
i or controller C

i

(̄·)p
value associated with cluster P̄

p or cluster controller C̄
p

(·)↓ value associated with the lower control layer

(·)↑ value associated with the upper control layer

(̄·) permuted and/or re-partitioned vector, matrix, or set

(̌·) lower or upper bound of a value

(̂·) piecewise-constant signal defined on the upper layer time-domain

(·)[ϕ] value depending on a periodic switching function ϕ

(̂·)s piecewise-constant signal sampled at time t = sΔkΔt:
ωs = ω(sΔkΔt)

(·)∗ optimal value, e.g. optimal value of the performance index: J∗

(·)[θ] value depending on a Markov state θ ∈ Θ ⊂ N

C
i controller of subsystem i

Δk multiple of the sampling time Δt

Δt sampling time, i.e. time increment for each time step k

E edges of the communication graph G : E ⊆ N ×N
G communication graph: G = (N , E)

J performance index

k discrete time k

M Markov chain: M = (Θ, P, μ0)

n• dimension of a signal vector, e.g. state dimension nx

ni
• dimension of a signal vector of subsystem i, e.g. subsystem state

dimension ni
x
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Nc number of clusters

Ns number of subsystems

Np
s number of subsystems contained in cluster Cp: Np

s := card(Cp)

P
i subsystem i

t continuous time t

θ Markov state θ ∈ Θ ⊂ N

ζ hybrid state of an uncertain system Pθ: ζ := (x, θ)

Operators

He(A ) Hermitian matrix associated with a matrix A :
He(A ) := 1

2A + 1
2A

T

A ⊗B Kronecker product of matrices A =∈ R
m×n and B ∈ R

q×p:
A ⊗B := [Ai,jB] ∈ Rmq×np

ς forward shift operator: ςη :=
[
ηn η1 η2 . . . ηn−1

]T
vec(A ), vecr(A ) column vector associated with a discrete ordered set, r-th ele-

ment of a discrete ordered set A = {a1, a2, . . . , an}:
vec(A ) :=

[
a1 a2 . . . an

]T
, vecr(A ) = ar.

Scalars and Constants

M scalar or matrix of sufficiently large positive real numbers

Sets

{·} a discrete set, e.g. {1, 2, 3}

\ relative complement: S1 \ S2 := {y ∈ S1 | y /∈ S2}

× cartesian product of sets: S1 × S2 := {(y1; y2) | y1 ∈ S1, y2 ∈ S2}

∩ intersection of sets: S1 ∩ S2 := {y | y ∈ S1 and y ∈ S2}

∪ union of sets: S1 ∪ S2 := {y | y ∈ S1 or y ∈ S2}

B set of binary numbers: B := {0, 1}
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HN (Rm×n) Set of all N -sequences of Rm×n matrices:
HN(Rm×n) :=

{
V = (V [1], . . . , V [N ]) |V [o] ∈ Rm×n, o ∈ IN

}
.

N, N0 set of natural numbers, set of natural numbers including zero

R>0, R≥0 set of positive real numbers, set of non-negative real numbers

Rn set of real vectors with n elements

Sn set of symmetric matrices: Sn := {M ∈ Rn×n |M = MT}
S

n
�0 set of symmetric positive definite matrices:

Sn
�0 := {M ∈ Sn |M � 0}

Z set of integers

Bn
r (y) closed ball of dimension n ∈ N, radius r ∈ R>0, and with center

y ∈ Rn: Bn
r (y) := {ȳ ∈ Rn | ‖ȳ − y‖ ≤ r}

card(S) cardinality of a set S, e.g. card({0, 2, 4}) = 3

C set of complex numbers

C1,C<1 unit circle and open unit disc in the complex plane:
C1 := {y ∈ C | |y| = 1}, C<1 := {y ∈ C | |y| < 1}

In ordered index set: In := {1, . . . , n}
Nc set of cluster indices: Nc := {1, . . . , Nc}
Ns set of subsystem indices: Ns := {1, . . . , Ns}
N i

s set of subsystem indices without i: N i
s := Ns \ {i}

Φ switching sequence of a periodic system: Φ := {ϕNϕ−1, . . . , ϕ1, ϕ0}
Ri subset of controller indices j ∈ Ns with C

i receiving information
to C

j

T discrete time domain:
T := {tk | tk = kΔt + t0, Δt ∈ R>0, t0 ∈ R≥0, k ∈ N0}

T i subset of controller indices j ∈ Ns with C
i transmitting infor-

mation to C
j

Θ discrete, ordered set of Markov states: Θ := {1, . . . , Nθ}
U continuous input space: U ⊆ R

nu

W set of disturbances
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List of Symbols

X continuous state space: X ⊆ Rnx

X subset of or equal to the set of local state vectors:
X ⊆ {xi | i ∈ N}

Vectors and Matrices

0m×n zero matrix 0m×n ∈ Rm×n of dimension m× n, with 0n := 0n×n

1m×n matrix or vector of ones of dimension m× n, with 1n := 1n×n

(·)T transpose of a vector or matrix

A:,C subset C of block-columns of a partitioned matrix A = [Ai,j]

� abbreviation of entries in symmetric matrices:

[
A B

� C

]
:=

[
A B

BT C

]

A, B, E matrices defining linear dynamics

A, B, E N -sequences of matrices defining linear hybrid dynamics, with,
e.g., A ∈ HN(Rn×n)

Γ subsystem interconnection structure matrix: Γ ∈ R
Ns×Ns
≥0

In identity matrix In ∈ R
n×n of dimension n

K feedback matrix

λmin(·), λmax(·) smallest and largest eigenvalue of a matrix

Λ(·) set of eigenvalues of a quadratic matrix

μk probability distribution of the Markov state θk at time k:
μk,m := Pr(θk = m)

‖·‖ Euclidean norm of a matrix or vector

‖·‖∞ infinity norm of a matrix or vector

‖·‖1,∞ induced 1,∞-norm of a matrix: ‖A ‖1,∞ = maxi,j |Ai,j|
P transition probability matrix of the Markov chain M :

P = [pm,n], pm,n := Pr(θk+1 = n | θk = m)

ΦA[ϕk1 , ϕk0 ] state-transition matrix associated with a periodic system Pp,
see p.81 for a definition

ΨA[ϕk] monodromy matrix associated with a periodic system Pp, see
p.81 for a definition
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List of Symbols

‖·‖Q weighted norm with weight Q, e.g.: ‖x‖2
Q := xTQx

Σ adjacency matrix associated with the communication graph G

T• transformation or permutation matrix, e.g. Tx

uk input of the overall system P at time k

ui
k input of subsystem P

i at time k

wk disturbance acting on the dynamic system P at time k

wk disturbance acting on subsystem P
i at time k

xk state of the overall system P at time k

xi
k state of subsystem P

i at time k

zk controlled variable of the overall system P at time k

zi
k controlled variable of subsystem P

i at time k
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List of Abbreviations

ADMM alternating direction method of multipliers

AGC area generation control

ARE algebraic Riccati equation

BIBO bounded-input/bounded-output

BMI bilinear matrix inequality

BnB branch-and-bound

CALE coupled algebraic Lyapunov equation

CARE coupled algebraic Riccati equation

DES discrete-event system

DM Dulmage-Mendelsohn

DSF dynamical structure function

IQC integral-quadratic constraint

JMS jump Markov system

JMLS jump Markov linear system

JSMS jump semi-Markov system

LBT lower block-triangular

LTI linear time-invariant

LMI linear matrix inequality

LP linear program

LPV linear parameter-varying

LQ linear quadratic

LQR linear quadratic regulator

LSS large-scale system

MAS multi-agent system

MIMO multi-input/multi-output

MIP mixed-integer program

MISDP mixed-integer semidefinite program

MPC model predictive control

MSS mean-square stability
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List of Abbreviations

NCS networked control system

PDE partial differential equation

QP quadratic program

RGA relative gain array

SCT design simultaneous control and network topology design

SDP semidefinite program

TCP transmission control protocol

UBT upper block-triangular

w.r.t. with respect to
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