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ABSTRACT 

 
In order to bridge between fractional-order and integer order nonlinear dynamical system, in this letter, we 
brings attention to synchronization and anti-synchronization between fractional-order chaotic system and 
integer-order chaotic system by using back-stepping method. And the sufficient conditions for achieving 
the synchronization and anti-synchronization of a class of fractional-order nonlinear system and integer-
order nonlinear system are derived based on Lyapunov stability theory. Moreover, a new back-stepping 
control law with only one term is introduced such that a typical example can be realized successfully, which 
is easier to be applied to industry for its only one controller term. Finally, numerical simulations are 
provided to verify the effectiveness and feasibility of the proposed control scheme, which are in agreement 
with theoretical analysis. 
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1. INTRODUCTION  
 

Fractional calculus is a much older classical 
mathematical notion with the same three-hundred 
year history as integer calculus. In recent years, it, 
however, has found application in many areas of 
physics and engineering [1-2]. Fractional-order 
chaotic systems are an extension of integer-order 
chaotic systems developed by mathematicians, and 
are more universal. As for synchronization, it is 
based on the closeness of the frequencies of 
periodic oscillations in two systems, one of which 
is the drive system, and the other is the response 
system. Since Chen et al. [3] pioneered that 
synchronization is a generalized concept of control, 
study of synchronization is more valuable. Now, 
the concept of synchronization has been extending 
to the scope. Anti phase synchronization (APS) [4] 
is one of the most important conceptions, which can 
also be interpreted as anti-synchronization (AS). It 
is a phenomenon that the state vectors of the slave 
system and the master system are expected to 
converge to zero when AS appears [5]. In other 
words, it is the vanishing the sum of the two 
relevant state variables of the drive system and 
response system and prevails in symmetrical 
oscillators. Therefore, it is also challenging and 
attractive to realize anti-synchronization of two 
chaotic systems. And some papers have been 
published [6-9]. 

Examples of the synchronization of integer-order 
chaotic systems and the synchronization of 
fractional-order chaotic systems have been widely 
reported. Many methods have been used to 
synchronize chaotic systems including sliding mode 
control [10-12], linear feedback control [13-14], 
adaptive control theory, back-stepping control [15-
16], active control [17-18], and fuzzy control [19-
20]. More specially, some remarkable contributions 
should be presented again here. For example, Chen 
et al. [21] investigated the control of a class of four-
dimensional chaotic systems with system 
parameters varying randomly under the condition 
of noise, which is a typical master work of the 
control of a class of nonlinear systems. His team 
also unified the concept of synchronization and 
anti-synchronization together for a novel class of 
chaotic systems with different structure and 
dimensions, although it is suitable for only integer 
order nonlinear system [22]. Similar result is that 
Zhou et al. [23] resolve this problem via a novel 
passive control technique. There are, however, few 
results on the synchronization between a fractional-
order chaotic system and an integer-order chaotic 
system [24], to our best knowledge.  

Motivated by the above discussion, this paper 
focuses on the synchronization and anti-
synchronization between a class of fractional-order 
chaotic system and integer-order chaotic systems to 
expand the applicability of the theory. A new back 
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stepping control method with only one controller is 
proposed to illustrate the effectiveness of the 
scheme. We report results from numerical 
computations and theoretical analysis which are a 
perfect bridge between fractional-order chaotic 
systems and integer-order chaotic systems. As the 
synchronization of integer-order chaotic systems 
and fractional-order chaotic systems are employed 
extensively in research and engineering 
applications, we expect our theory to be potentially 
useful. 

2. PRIMARY 
 

The popular definition of fractional derivatives is 
given by  

( )
* ( ) ( )n nD x t J x tα α−=  

where : [ ]n α=  is the first integer which is not 
less than α  and 0α >  but not necessarily Nα ∈ , 

( ) ( )nx t  is the ordinary nth derivative of ( )x t .  

Here, we consider the fractional differential 
equation with initial conditions 
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This is called the Adams-Bashforth-Moulton 
predictor-corrector scheme, which is a time-domain 
approach, and is effective for investigating the 
dynamics of fractional-order systems.  

3. MAIN RESULTS 
In this letter, we consider a class of three-

dimensional fractional-order chaotic drive system, 
which is described as follows: 
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where q is fractional order satisfying 0<q<1; 1x , 
2x  and 3x  are state variables. And α  is any 

negative or positive value; β  and γ  are non-

negative constants. The three functions ( ( )f ⋅ , ( )g ⋅  

and ( )h ⋅ ) are regarded as smooth functions which 
all belong to 

3R R→  space.  

Remark 1. Note that many fractional-order 
chaotic systems belong to the class of system 
characterized by Eq. (1). Examples include the 
unified chaotic system of fractional-order version 
and fractional-order Qi system, and so on. 

And the response system can be described as 
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Here, if rq =1, system (2) is an integer-order 
system. Otherwise, if 0< rq <1, system (2) is a 
fractional-order system. 

Remark 2. If system (2) is an integer-order 
system, synchronization between a novel class of 
fractional-order system and its integer-order system 
is realized. On the other hand, if system (2) is a 
fractional-order system, synchronization between 
fractional-order chaotic systems can be also 
realized. 
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One adds the controller u( t ) R∈  into the 
integer-order system, which is given by 
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(3) 
where 2 ( )u t R∈  is a vector control function that 
will be designed later. The 1( ) nu t R∈  is a 
compensation controller, which is 
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Moreover, 1( )u t  and 2 ( )u t  are independent with 
each other. To achieve the control law 2 ( )u t  . 

3.1 Synchronization 

First, we bring attention to the synchronization in 
this subsection. Therefore, the synchronization 
error is usually defined as 

i i ie y x= − .                               (5) 
According to Eq. (4), the response system (3) can 

be rewritten as 
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where ( )φ ⋅ , ( )p ⋅  and ( )q ⋅  are regarded as smooth 
functions which belong to 3R R→  space. 
Theorem 1. As to the fractional-order system, if 
there is a real symmetric positive definite matrix P 

satisfying the equation 0
q

T
q

d yJ y P
dt

= ≤  with any 

state variables y ( 1 2 3( , , )Ty y y y= ), the system is 
asymptotically stable. 

Theorem 2. According to the back-stepping 
method, the error dynamics on is asymptotically 
stable, as long as the vector controller is designed 
as  
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Proof . Based on back-stepping method, 
function J  is designed as follows  

Step 1: Define 1 1s e= , one has 
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Step 3: Define 3 3s e= , one has 

1

1

31 2
3 1 2 3

2
1 1 2 3 1 1 2

2 2
2 1 2 3 2 3 1 2 3 3

2 2 2
1 2 3 1 1 2 3

2 1 2 3 3 1 2 3 1 2

( , , ) ( )

( , , ) ( , , )

( , , )
( , , ) ( , , ) ( )

qq q

q q q

y

y

d sd s d sJ s s s
dt dt dt

e e e e e e u t

e p e e e e e q e e e e

e e e e e e e
e p e e e e q e e e e u t

φ α

β γ

α β γ φ

= + +

= ⋅ − +

+ ⋅ − + ⋅ −

= − − − + ⋅
+ ⋅ + ⋅ +

    

(9) 
According to theorem 2, the vector controller is 

designed as  
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From the Eq.(9) and (10), one has 
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Therefore, the synchronization between system 
(2) and system (1) is realized. 

In the follow-up content, we present an 
illustrative example to verify and demonstrate the 
effectiveness of the proposed control scheme. The 
simulation results are carried out using Adams-
Bashforth-Moulton scheme with time step size 
0.01. 

Case: Synchronization between fractional-order 
and integer-order Lorenz systems  

The fractional-order Lorenz system, which is 
shown in Fig. 1a, is described as 
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The integer-order Lorenz system, which is 
shown in Fig. 1b, with controllers are described as 
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where 1y , 2y  and 3y  are state variables, and b, c 
are non-negative constants. With the parameters 
a=10, b=28, c=8/3 and q=0.9, the fractional-order 
system exhibits chaotic attractors.  
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a. Integer-order chaotic system.  
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b. Fractional-order system  

Fig. 5. Chaotic attractors of integer-order and 
fractional-order chaotic Lorenz systems with initial 

conditions (x1, y1, z1) = (1, 0, 9) and (x2, y2, z2) = (1, 1, 
1) respectively. 

Regarding (10), the control law is given as 
follows 

12 1 3 2 2 3( ) ( 1) ( )yu t a e a b y e y e= − ⋅ − + − ⋅ −    （14

） 
One has 
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The error dynamics under the controller (14) can 

be written as 
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Without loss of generality, in the simulation we 
choose the initial conditions of the system [0.1, 0.1, 
0.1]. The error dynamics (16) are illustrated in Fig. 
2, which shows that the control law guarantees 
finally synchronization and stabilization. Similarly, 
we can also get the phase trajectories of 
synchronization, which is in detail shown in Fig. 3. 
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Fig. 2. Synchronization Errors Between Fractional-

Order Lorenz Chaotic System And Integer-Order Lorenz 
Chaotic System. 
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Fig. 3. Trajectories Of The State Variables In Drive 
And Response Systems In Process Of Synchronization. 

3.2 Anti-synchronization  

In this subsection, we mainly concern anti-
synchronization. Actually, the main difference 
between synchronization and anti-synchronization 
is the error system. Therefore, the error system of 
anti-synchronization can be defined as follows, 
according the definition of anti-synchronization. 

i i ie y x= +                                       (17) 
 Thus, the anti-synchronization between the 
response system and drive system can be converted 
to the stability of error system. In other words, we 
should design a suitable controller 

12 ( )yu t  to 
control the error system to (0, 0, 0). 
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According to Theorem 1 and Theorem 2, we can 
easily get the generalized controller for anti-
synchronization of this class of chaotic system 
described in Eq. (1), which is 
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And similar proof process, we can also get the 
conclusion 
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e e eβ γ
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Therefore, the anti-synchronization between 
system (2) and system (1) is strictly realized. 

For a specific example, anti-synchronization 
between fractional-order and integer-order Lorenz 
systems, the control law is given as follows 

12 1 3 2 2 3( ) ( 1) ( )yu t a e a b y e y e= − ⋅ − + − ⋅ −        (11) 
The numerical results can be easily got, which is 

shown in Fig. 4 and Fig. 5. From Fig. 4, the 
Trajectories of anti-synchronization of the state 
variables in drive and response systems can 
effectively prove the validity of the proposed 
control method for anti-synchronization between 
fractional-order and integer order chaotic system. 
Furthermore, Fig. 5 is a perfect complement.  
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Fig. 4. Trajectories Of Anti-Synchronization Of The 
State Variables In Drive And Response Systems. 
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Fig.5. Anti-Synchronization Errors Between Integer-
Order And Fractional-Order Chaotic Lorenz Systems. 
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4 CONCLUSION 
 
In summary, the synchronization and anti-

synchronization of a class of fractional-order 
systems and integer-order systems is investigated. 
And a new back-stepping method with only one 
term is presented. More importantly, it is rigorously 
proven that the proposed synchronization approach 
can be achieved between fractional-order and 
integer-order systems with only one controller. 
Numerical simulations are presented to show the 
applicability and feasibility of the proposed scheme. 
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