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ABSTRACT

We demonstrate Percolator, a distributed system for graph pat-

tern discovery in dynamic graphs. In contrast to conventional min-

ing systems, Percolator advocates efficient patternmining schemes

that (1) support pattern detection with keywords; (2) integrate in-

cremental and parallel pattern mining; and (3) support analytical

queries such as trend analysis. The core idea of Percolator is to dy-

namically decide and verify a small fraction of patterns and their

instances that must be inspected in response to buffered updates in

dynamic graphs, with a totalmining cost independent of graph size.

We demonstrate a) the feasibility of incremental pattern mining by

walking through each component of Percolator, b) the efficiency

and scalability of Percolator over the sheer size of real-world dy-

namic graphs, and c) how the user-friendly GUI of Percolator in-

teracts with users to support keyword-based queries that detect,

browse and inspect trending patterns. We demonstrate how our

system effectively supports event and trend analysis in social me-

dia streams and research publication, respectively.
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• Information systems → Data stream mining; • Theory of

computation→ Dynamic graph algorithms;
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1 INTRODUCTION

Discovering emerging events from massive dynamic data is a crit-

ical need in a wide range of applications. Real-world events in dy-

namic networks (e.g., Web, social media and cyber networks) are

often represented as graph patterns. Although desirable, discover-

ing such patterns is more challenging than its counterpart over

item streams [2]. It requires effective querying and mining over

graphs that bear constant changes, while pattern mining is already

expensive over static graphs [5, 8]. Moreover, it is hard to reduce

the computational complexity (NP-hard). Pattern discovery should

also support keyword input, i.e., to discover and track patterns rel-

evant to user-specified keywords.

One approach is to leverage incremental computation that has

been applied to update query results [6]. The idea is to dynami-

cally identify a fraction of data that must be inspected to update

the patterns in response to changes. Another method is to develop

parallel mining [7] to cope with the sheer amount of data. Can we

combine parallel and incremental computation to support scalable

pattern discovery in massive dynamic graphs?

Percolator. This motivates us to develop Percolator, a prototype

system that combines both incrementalmining and parallel mining

for feasible pattern detection over graph streams. It differs from

conventional systems with the following unique new features.

(1) Keyword specified patterns. Percolator supports the discovery of

(general) graph patterns that pertain to user-specified keywords. It

finds informative and concise patterns characterized by maximal

patterns and their activeness measures. It also supports both ad-

hoc top pattern detection and offline trend analysis.

(2) Incrementalmining.Percolator supports incremental patternmin-

ing to avoid rediscover patterns from scratch upon receiving changes.

Given discovered patterns Σ over a graph, and a batch of edge up-

dates, it incrementally updates Σ by automatically tracking and

only re-verifying a set of patterns and matches. This avoids unnec-

essary computation from scratch, with a cost only determined by

the changes of results and data, but independent of the graph size.

(3) Scale-up. Percolator is a parallel system implemented on top

of Apache Spark. It parallelizes the incremental graph mining by

dynamically constructing and exchanging messages that contain

affected patterns and triples needed for incremental verification,

in parallel and only when necessary. This reduces communication

cost and ensures the scalability.
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Figure 1: Emerging event pattern from News data as triples

(4) Easy-to-use. The Percolator system is easy to use. It provides

a user-friendly GUI, a built-in natural-language query constructor

to support keyword-based pattern discovery, a visualization com-

ponent to inspect and interpret the results.

Demo overview. We next demonstrate Percolator as follows. (1)

We walk through each component of Percolator from pattern mod-

els to incremental and parallel mining, to demonstrate the feasibil-

ity of Percolator over massive dynamic graphs. (2)We demonstrate

the applications of Percolator with real-world event analysis sce-

narios in social media (news) and academic data. We demonstrate

its query interface, performance analysis and visual analysis inter-

face to demonstrate emerging events and their text interpretations.

2 PATTERN AND GRAPH STREAMMODELS

We startwith the graph streams and the patternmodel inPercolator.

Dynamic Graph. Percolatormodels a dynamic graph GT as a set

of triples with timestamps. Each triple e=< s,p,o > consists of a

subject s , predicate p (a relation) and an object o, and each of s , p

and o has a label (e.g.,URI). (1) A snapshot of GT at time i is a graph

Gi induced by triples at time i . (2) At each timestamp i , a batch of

triples ∆E updates snapshot Gi to Gi+1.

Patterns. A pattern P is a labeled connected graph (Vp ,Ep , ū)with

a set of labeled pattern nodesVp and a set of labeled pattern edges

Ep ⊆ Vp × Vp . Given a set of keywords K={k1, . . .kn }, a pattern

P pertains to K if for every keyword ki i ∈ [1,n], there exists a

keyword node ui in P such that L(ui )=ki .

Activeness. By default, Percolator characterizes active patternswith

minimum image support [1]. Given a snapshot Gi , a pattern P and

a set of (user-specified) keyword nodes ū in P , the activeness of P

in Gi (Act(P ,Gi )) is quantified as min |{M(u)|u ∈ ū}|, where M(u)

refers to the matches of node u induced by all the subgraph iso-

morphisms from P toGi , and u ranges over ū. Given an activeness

threshold θ , P is active in Gi w.r.t. θ if Act(P ,Gi ) ≥ θ . We remark

that the activeness of P preserves anti-monotonicity [1]w.r.t. a fixed

ū: at any time i , Act(P ,Gi ) ≤ Act(P ′,Gi ) w.r.t. a fixed set of key-

word nodes, if P ′ is obtained by adding edges to P .

Maximal patterns. We are interested in detecting “informative” pat-

terns as maximal ones. Indeed, small patterns may be active, but

usually tend to be trivial ones. A pattern P is maximal in Gi w.r.t.

threshold θ , if (1) P is active w.r.t. θ , and (2) there exists no active

super-pattern P ′ of P . Percolator discovers maximal patterns that

pertain to a set of user-specified keywords K .

Example 1: Figure 1 illustrates an active pattern detected and

tracked by Percolator, specified by keywords “Politician”, “drone”

and “organization”. It is discovered in a dynamic graph (RDF triples)

extracted from news articles by Nous [3], a knowledge graph con-

struction engine. The pattern and its matches reveal events regard-

ing emerging concerns of drone safety. It verifies that politicians

(e.g., “Schumer”) are pressing organizations (e.g., “Federal Aviation

Administration (FAA)”) to regulate drones and provide guidance.

Pattern discovery in dynamic graphs. Given a dynamic graph

GT , a set of keywords K , a set of active patterns Σ pertain to K ,

(obtained by“from-scratch” discovery), Percolator updates Σ in re-

sponse to a set of edge transactions ∆E applied to G, without re-

discovery Σ from scratch, and outputs updated Σ upon request.

3 FOUNDATIONS OF PERCOLATOR

The Percolator system is built on two principles: incremental pat-

tern mining and parallel mining. (1) Instead of discovering patterns

from scratch, each time GT is updated, it performs necessary com-

putation that suffices to update Σ (Section 3.1). (2) To scale the pro-

cess over large GT , it performs incremental mining in parallel, and

aggregates the changes to update Σ (Section 3.2).

3.1 Incremental Discovery

Percolator dynamically identifies and only verifies a set of “affected”

patterns that must be inspected in order to update Σ. This novel

principle is implemented by three core components: Stream Man-

ager, Affected Pattern Detector and Incremental Verifier.

Stream manager. The stream manager of Percolator processes

GT as a triple stream and manages the built-in structures below.

Triple Buffer. Percolator uses a buffer B with a tunable size to cache

the edge updates in batches. (1) It caches the updates ∆E in multiple

batches bounded by the buffer size. It also maintains a buffer map

B.M , which points each triple e ∈ B to a single-edge pattern B.M(e)

having e as a match. A pattern P is “hit” by e if P contains a pattern

edge B.M(e). (2) Percolator applies a novel load shedding strategy

to prune triples in B: only triples with one end node having a key-

word label is cached for processing. Indeed, only these triples may

affect the activeness of patterns by the definition of activeness. All

others are applied to G directly without further processing.

Affected Pattern Detector. The manager maintains the active

events with a lattice T as commonly used in constrained graph

mining. In addition, it tracks the activeness of the patterns. Upon

receiving a batch of triples ∆EB ⊆ ∆E, the affected pattern detector

of Percolator interacts with incremental verifier (to be discussed)

and dynamically identifies a “minimal” set P of patterns that are

necessary to be inspected to update Σ. (1) It initializes P as the pat-

terns “hit” by e .M , and sends P to the incremental verifier to up-

date their activeness. (2) For each verified pattern P ∈ P, it “prop-

agates” P by taking two actions below.

Downward propagation: If Act(P ,Gi ) ≥ θ , it updates P as:

P := P ∪ P+,

where P+ refers to the patterns obtained by adding an edge to P ,

i.e., the possible “children” of P in T . That is, it simulates the ex-

ploration of larger patterns in T as P remains to be active.
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Figure 2: Architecture of Percolator
Upward propagation: If Act(P ,Gi ) < θ (i.e., becomes inactive due

to e.g., decrease in edge frequency ), it updates P as:

P := P ∪ P−,

where P− refers to the “parents” of P inT , obtained by removing an

edge from P . That is, it explores smaller patterns that may become

new maximal ones as P becomes inactive.

Note that both P+ and P− (including new patterns) can be con-

structedwithout reconstructingT from scratch. The detector stops

downward (resp. upward) propagation at pattern P if P+ (resp. P−)

is ∅, and checks whether no child of P is active. If so, it inserts P to

Σ as a newly discovered maximal pattern.

Incremental Verifier. The Incremental Verifier of Percolator up-

dates the activeness of each pattern P ∈ P. If P is affected, it up-

dates Act(P ,Gi ) by “incrementalizing” the conventional subgraph

isomorphism test, which processes single-edge patterns in T hit

by B.M and “percolate-up” to P (see below). (2) Otherwise, P is ob-

tained by either upward or downward propagation, and Act(P ,Gi )

remains to be the same.

Percolate-up. The Incremental Verifier adopts a “percolate-up” strat-

egy to reduce the processing cost of updates. Given ∆EB , it parti-

tions ∆EB into groups by consulting the buffer map B.M , where

each group hits a single-edge pattern P0. For each pattern P ∈ P,

it then evaluates a sequence of patterns {P0, . . . , Pj } sorted by their

size, such that Pi is a sub-pattern of Pi+1 (i ∈ [0, j − 1]), and Pj=P .

That is, it “percolates” the edges up against the affected patterns,

from smaller ones to larger ones. Moreover, it never re-evaluates

a pattern Pi if Pi is verified (in other sequences). This effectively

reduces redundant verifications (especially for “overlapping” pat-

terns that share sub-patterns), and early terminates at inactive pat-

terns, guaranteed by the anti-monotonicity of the activeness.

Upon each batch of updates, Percolator interleaves Affected Pat-

tern Detector and Incremental Verifier to “lazily” perform neces-

sary amount of verification. The interaction repeats until no pat-

tern can be added to P. It then reports updated Σ upon request.

3.2 Parallel mining

To cope with large GT , Percolator parallelizes the incremental min-

ing over a set of distributed, shared-nothing workers.

Parallel mining manager. This component executes the parallel

computation of Percolator. It maintains the following. (1) A frag-

mentation F of dynamic graph GT is a partition of the snapshot

G over n workers {F1, . . . , Fn }, where each workerWj manages a

Figure 3: Percolator GUI

subgraph G j of G. By default, Percolator applies balanced 2D par-

tition. (2) The batch updates ∆Ei is fragmented as {∆E1, . . . ,∆En },

where each∆Ej changes Fi to Fi⊕∆Ej , respectively. (3) The pattern

lattice T is synchronized among all the workers.

Parallel mining. Given F and a batch of updates ∆E, Percolator

“parallelizes” the sequential incremental mining (Section 3.1) fol-

lowing a Bulk Synchronous Parallel model, and runs in supersteps.

(1) Upon receiving ∆Ej , each workerWj invokes Affected Pattern

Detector to identify a local set of affected patterns Pj due to local

changes of Fj , and invokes Incremental Verifier to update their lo-

cal activeness, in parallel. For each pattern P with diameter d that

cannot be verified locally, it extends Fj with d-hop neighbors of

the “border” nodes of Fj in G and performs local verification.

(2) Once all the workers complete the local verification, the coor-

dinatorWo computes affected patterns P=
⋃
j ∈[1,n] Pj , assembles

the local activeness of each pattern in P, and updates Σ when nec-

essary. It then broadcasts P to all workers.

The above two steps repeat until no new affected patterns can

be added to P, and all the affected patterns are verified. Percolator

then returns Σ updated at the coordinatorWo .

4 SYSTEM OVERVIEW

Architecture. Percolator consists of three components (Figure 2).

Online pattern discovery: consists of fourmodules, including Stream

Manager, Affected Pattern Detector, Incremental Verification (Sec-

tion 3.1), and a query execution engine to evaluate ad-hoc queries.

Offline pattern analysis: consists of threemodules, including a trend

analyzer to support trend analysis, a maintenance component to

synchronize the changes to underlying graphs, and the parallel

mining manager to manage the distributed environment, e.g., the

parallel configuration, data partitioning and fault-tolerance.

GUI. The user-friendly Percolator GUI (illustrated in Figure 3) con-

tains a configuration panel to receive configurations (e.g., active-

ness threshold, number of workers). Users can browse and inspect

active patterns in themonitor panel, which includes the activeness

curve, and the details of their matches. The performance panel (not

shown) visualizes performance analysis. Finally, a built-in Query

panel allows users to issue natural-language style queries, supported

by built-in query parsers.
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Figure 4: Top-k Twitter Patterns

Implementation. Percolator is implemented in Scala, and built on

top of Apache Spark and HDFS with core functions in GraphX li-

brary. The graph stream is represented as distributed arrays (RDDs)

managed by Spark. To support fast stream access, it uses in-memory

Elasticsearch1 to manage the intermediate results (e.g., the map-

ping in StreamManager) as key-value pairs. Percolator utilizes our

prior systems for graph construction [3] and querying [4] as input

and verification interfaces, respectively.

5 DEMONSTRATION OVERVIEW

The target audience of the demo includes anyone who is interested

in understanding complex events and trends over data streams.

Our system2 is deployed on a cluster of 16 nodes (with one serv-

ing as the coordinator). Each node is equipped with an Intel Xeon

processor (2.3 GHz) with 16 cores and 64 GB memory.

Settings. We use the following settings.

Datasets. Our real world datasets include: (1) Twitter, a collection

of dynamic knowledge graphs with in total 5 million triples and in

batches of 1.5 million triples per day. (2)MAG, a citation network

with 153.6 million triples. Each batch of triples contains 8 million

nodes and 22 million edges in one year window.

Ad-hoc queries. We invite users to inspect patterns discovered by

the following two classes of ad-hoc queries: (1) Top-k active events:

“What are the current kmost active patterns?” and (2) Targeted trends:

“Tell me emerging patterns pertaining to specified keywords.”

System comparison. We compare Percolator with Arabesque [7], a

state-of-the-art parallel graph mining system. Arabesque does not

support mining over dynamic graphs. Thus we develop a “batch”

version that interleaves buffered updates and from scratch mining.

Scenario. We invite users to experience the following scenarios.

Performance of Percolator. Users are invited to configure Percolator

and compare the performance of Percolator and Arabesque. We

show that Percolator scales well. Over MAG, its performance is

improved by 2.5 times when the number of workers varies from 2

to 8. Percolator is quite efficient: it takes 245 seconds to process 10

million updates per batch with 8 workers in parallel. In contrast,

Arabesque does not run to completion using the same setting.

1https://www.elastic.co/products/elasticsearch
2available at https://github.com/streaming-graphs/NOUS
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Figure 5: Trend of specified research topics (2013-2016)

Top Event Analysis. Using Twitter, we show that given keywords,

Percolator effectively tracks top events and their evolution.

Example 2: A top-1 query with three keywords “twitter”, “MH17”

and “English” finds the most active patterns in English tweets re-

lated to “MH17”. As shown by the two patterns at bottom in Figure

4, Percolator identifies a shift of twitter topics before and after the

event of MH17 plane crash in English tweets. When changing key-

words “English” to “Russian”, it finds that Russian tweets are less

fazed by the event (shown by the two active patterns at the top).

Trend analysis. We next demonstrate that Percolator detects the

trend of specified topics, with trend queries overMAG.

Example 3: Figure 5 illustrates a trend discovered by Percolator

when user specifies trend queries with keywords “Machine Learn-

ing”, “paper” and “NLP”. As verified by thematched triples inMAG,

the trend shows themost active and relevant research topics changes

from “RecursiveNeural Network” (2013-14) to “Deep learning” (2014-

15) and “Memory networks” (2015-16).
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