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Abstract

We provide several examples of Bayesian semiparametric regression analysis via the
Infer.NET package for approximate deterministic inference in graphical models. The ex-
amples are chosen to encompass a wide range of semiparametric regression situations.
Infer.NET is shown to produce accurate inference in comparison with Markov chain
Monte Carlo via the BUGS package, but is considerably faster. Potentially, this contri-
bution represents the start of a new era for semiparametric regression, where large and
complex analyses are performed via fast graphical models methodology and software,
mainly being developed within Machine Learning.

Keywords: additive mixed models, expectation propagation, generalized additive models,
measurement error models, mean field variational Bayes, missing data models, penalized
splines, variational message passing .

1. Introduction

Infer.NET (Minka et al. 2013) is a relatively new software package for performing approxi-
mate inference in large graphical models, using fast deterministic algorithms such as expec-
tation propagation (Minka 2001) and variational message passing (Winn and Bishop 2005).
We demonstrate its application to Bayesian semiparametric regression. A variety of situ-
ations are covered: non-Gaussian response, longitudinal data, bivariate functional effects,
robustness, sparse signal penalties, missingness and measurement error.

The Infer.NET project is still in its early years and, and at the time of this writing, has not pro-
gressed beyond beta releases. We anticipate continual updating and enhancement for many
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years to come. In this article we are necessarily restricted to the capabilities of Infer.NET at
the time of preparation. All of our examples use Infer.NET 2.5, Beta 2, which was released
in April 2013.

The graphical models viewpoint of semiparametric regression (Wand 2009), and other ad-
vanced statistical techniques, has the attraction that various embellishments of the standard
models can be accommodated by enlarging the underlying directed acyclic graph. For ex-
ample, nonparametric regression with a missing predictor data model involves the addition
of nodes and edges to the graph, corresponding to the missing data mechanism. Figure 4
of Faes et al. (2011) provides some specific illustrations. Marley and Wand (2010) exploited
the graphical models viewpoint of semiparametric regression to handle a wide range of non-
standard models via the Markov chain Monte Carlo inference engine implemented by BUGS
(Lunn et al. 2000). However, many of their examples take between several minutes and hours
to run. The inference engines provided by Infer.NET allow much faster fitting for many
common semiparametric regression models. On the other hand, BUGS is the more versatile
package and not all models that are treated in Marley and Wand (2010) are supported by
Infer.NET.

Semiparametric regression, summarized by Ruppert et al. (2003, 2009), is a large branch of
Statistics that includes nonparametric regression, generalized additive models, generalized
additive mixed models, curve-by-factor interaction models, wavelet regression and geoad-
ditive models. Parametric models such as generalized linear mixed models are special cases
of semiparametric regression. Antecedent research for special cases such as nonparametric
regression was conducted in the second half of the 20th Century at a time when data sets
were smaller, computing power was lower and the Internet was either non-existent or in its
infancy. Now, as we approach the mid-2010s, semiparametric regression is continually being
challenged by the size, complexity and, in some applications, arrival speed of data-sets re-
quiring analysis. Implementation and computational speed are major limiting factors. This
contribution represents the potential for a new era for semiparametric regression — tapping
into 21st Century Machine Learning research on fast approximate inference on large graph-
ical models (e.g. Minka 2001; Winn and Bishop 2005; Minka 2005; Minka and Winn 2008;
Knowles and Minka 2011) and ensuing software development.

Section 2 lays down the definitions and notation needed to describe the models given in
later sections. Each of Sections 3-10 illustrates a different type of semiparametric regression
analysis via Infer.NET. All code is available as web-supplement to this articles. For most of
the examples, we also compare the Infer.NET results with those produced by BUGS. Sec-
tion 11 compares BUGS with Infer.NET in terms of versatility and computational speed. A
summary of our findings on semiparametric analysis via Infer.NET is given in Section 12.
An appendix gives a detailed description of using Infer.NET to fit the simple semiparametric
regression model of Section 3.

2. Preparatory infrastructure

The semiparametric regression examples rely on mathematical infrastructure and notation,
which we describe in this section.
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2.1. Distributional notation

The density function of a random vector « is denoted by p(x). The notation for a set of

independent random variables y; (1 < i < n) with distribution D; is y; < D;. Table 1 lists
the distributions used in the examples and the parametrization of their density functions.

distribution  density function in abbreviation
Normal (2n0?) V2 exp{—(z — p)?/(20%)}; o >0 N(u,0?)
Laplace (20)texp(—|x —pu|/o); o >0 Laplace(p, o)
r (5
t —; o,v>0 t(p, 02, v
Vvl (v/2){1 + L2 ( )
BA l,A—le—Bx
Gamma ——: >0, A, B>0 Gamma(A, B)
I'(A)
20
Half-Cauchy T 1 0?) r>0;0>0 Half-Cauchy/(o)

Table 1: Distributions used in the examples. The density function argument = and parame-
ters range over R unless otherwise specified.

2.2. Standardization and default priors

In real data examples, the measurements are often recorded on several different scales.
Therefore, all continuous variables are standardized prior to fitting analysis using Infer.NET
or Markov Chain Monte Carlo (MCMC) in BUGS. This transformation makes the analyses
scale-invariant and can also lead to better behavior of the MCMC.

Since we do not have prior knowledge about the model parameters in each of the examples,
non-informative priors are used. The prior distributions for a fixed effects parameter vector
B and a standard deviation parameter o are

B~ N(0, TB_II) and o ~ Half-Cauchy(A)
with default hyperparameters
75=10"1" and A=10°

This is consistent with the recommendations given in Gelman (2006) for achieving non-
informativeness for variance parameters. Infer.NET and BUGS do not offer direct specifi-
cation of Half-Cauchy distributions and therefore we use the result:

if z|a ~ Gamma(3,a) and a~ Gamma(},1/A4?)

, M)
then 271/2 ~ Half-Cauchy(A).
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This result allows for the imposition of a Half-Cauchy prior using only Gamma distribution
specifications. Both Infer.NET and BUGS support the Gamma distribution.

2.3. Variational message passing and expectation propagation

Infer.NET has two inference engines, variational message passing (Winn and Bishop 2005) and
expectation propagation (Minka 2001), for performing fast deterministic approximate inference
in graphical models. Succinct summaries of variational message passing and expectation
propagation are provided in Appendices A and B of Minka and Winn (2008).

Generally speaking, variational message passing is more amenable to semiparametric re-
gression than expectation propagation. It is a special case of mean field variational Bayes (e.g.
Wainwright and Jordan 2008). The essential idea of mean field variational Bayes is to approx-
imate joint posterior density functions such as p(61, 62, 03| D), where D denotes the observed
data, by product density forms such as

g0, (61) q0,(62) q05(63), o, 05(01,63) qo,(62) or qg,(61) go,,05(62,03). ()

The choice of the product density form is usually made by trading off tractability against
minimal imposition of product structure. Once this is choice is made, the optimal ¢g-density
functions are chosen to minimize the Kullback-Liebler divergence from the exact joint pos-
terior density function. For example, if the second product form in (2) is chosen then the
optimal density functions g;, ,.(61,03) and gz, (62) are those that minimize

p(61, 02,03 D) }
(01,0 05) 1o dfy dby dbs, 3

where the integrals range over the parameter spaces of 61,62 and #3. This minimization
problem gives rise to an iterative scheme which, typically, has closed form updates and good
convergence properties. A by-product of the iterations is a lower-bound approximation to
the marginal likelihood p(D), which we denote by p(D).

Further details on, and several examples of, mean field variational Bayes are provided by
Section 2.2 of Ormerod and Wand (2010). Each of these examples can also be expressed,
equivalently, in terms of variational message passing.

In typical semiparametric regression models the subscripting on the g-density functions is
quite cumbersome. Hence, it is suppressed for the remainder of the article. For example,
q(61,03) is taken to mean gy, g, (61,03).

Expectation propagation is also based on product density restrictions such as (2), but differs
in its method of obtaining the optimal density functions. It works with a different version
of the Kullback-Leibler divergence than that given in (3) and, therefore, leads to different
iterative algorithms and approximating density functions.

2.4. Mixed model-based penalized splines

Mixed model-based penalized splines are a convenient way to model nonparametric func-
tional relationships in semiparametric regression models, and are amenable to the hierarchi-
cal Bayesian structures supported by Infer.NET. The penalized spline of a regression function
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f, with mixed model representation, takes the generic form
K
ind. —

f@)=Bo+ Bir + Y upzr(z), we < N(0,7,0). (4)

k=1
Here 2(-),...,zk(:) is a set of spline basis functions and 7, controls the amount of penal-
ization of the spline coefficients w1, . . ., ux. Throughout this article, we use O’Sullivan splines

for the z;(-). Wand and Ormerod (2008) provides details on their construction. O’Sullivan
splines lead to (4) being a low-rank version of smoothing splines, which is also used by the
R function smooth.spline ().

The simplest semiparametric regression model is the Gaussian response nonparametric re-
gression model

yi & N(f(zi),02), (5)

where (z;,y;), 1 < i < n are pairs of measurements on continuous predictor and response
variables. Mixed model-based penalized splines give rise to hierarchical Bayesian models
for (5) such as

yilBo, B, w1, - - uk, e o N <ﬂ0 + B+ Y, Ukzk(wi)ﬁ{l) ;

ind.

uk|ru N0, 7;1), o, B N0, 751, 6)
7a '/? ~ Half-Cauchy(A4,), 7 /* ~ Half-Cauchy(A.).

Such models allow nonparametric regression to be performed using Bayesian inference en-
gines such as BUGS and Infer.NET. Our decision to work with precision parameters, rather
than the variance parameters (which are common in the semiparametric regression litera-
ture), is driven by the former being the standard parametrization in BUGS and Infer.NET.

It is convenient to express (6) using matrix notation. This entails putting

Y1 1 @z zi(x1) - zr(z1)
Yn 1 =z, Zl(CEn) ZK(:En)
and
g o
_ 0 _ )
B = { 3 ] and wu = : . (8)
UK

We then re-write (6) as
y|B,u, ii“l’N(XIB+Zu77-;1) ,
ulry ~ N(0,7,1I), B~ N(0,7;'1),

7 '/? ~ Half-Cauchy(4,), 7"/ ~ Half-Cauchy(A.).
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The effective degrees of freedom (edf) corresponding to (6) is defined to be
edf(ry,72) = tr ([CTC + blockdiag{3 15, (.,/7:) I}]—lcTc) )

and is a scale-free measure of the amount of fitting being performed by the penalized splines.
Further details on effective degrees of freedom for penalized splines are given in Section 3.13
of Ruppert et al. (2003).

Extension to bivariate predictors

The bivariate predictor extension of (5) is

yi ~ N(f(x),02), (10)

where the predictors x;, 1 < ¢ < n, are each 2 x 1 vectors. In many applications, the x;s cor-
respond to geographical location but they could be measurements on any pair of predictors
for which a bivariate mean function might be entertained. Mixed model-based penalized
splines can handle this bivariate predictor case by extending (4) to

K
f@)=po+Ble+> wau(x), w = NO7," (11)
k=1

and setting zj, to be appropriate bivariate spline functions. There are several options for do-
ing this (e.g. Ruppert et al. 2009, Section 2.2). A relatively simple choice is described here
and used in the examples. It is based on thin plate spline theory, and corresponds to Section
13.5 of Ruppert et al. (2003). The first step is to choose the number K of bivariate knots and
their locations. We denote these 2 x 1 vectors by k1,...,kg. Our default rule for choos-
ing knot locations involves feeding the ;s and K into the clustering algorithm known as
CLARA (Kaufman and Rousseeuw 1990) and setting the k;, to be cluster centers. Next, form
the matrices

Ty
x=|: 1|
1z
@1 — k1] log @1 — k1 -+ (@1 — Kx|* log|lz: — kx|
Zk = : : ;
lzn — w1]*logllan — &1l - |l2n — k| log|l@n — kK|l
k1 — k1]*log[|lk1 — mall -+ (k1 — ki log|lk1 — ki
and Q= : ) :
ek —g1|*logllkr — k1]l -+ |k — ki[*log[lkx — kx|

Based on the singular value decomposition @ = Udiag(d)V”, compute Q'/? = Udiag(v/d)V"
and then set Z = Z Q" /2. Then

2 (x;) = the (i, k) entry of Z
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with ug = N(0,7,1).

3. Simple semiparametric model
The first example involves the simple semiparametric regression model

ind.

Yi = Bo + B1x1; + B2 wo; + Zszl ug zi(x2;) + i, & ~ N0, 771, 1<i<n, (12

where z;(-) is a set of spline basis functions as described in Section 2.4. The corresponding
Bayesian mixed model can then be represented by

y| B, u, 7o ~ N(XB+ Zu,7.'I), |y ~ N(0,7, 1),
(13)
B~ N(0,7;'1), 7, ~Half-Cauchy(4,), 7"/~ Half-Cauchy(A.),

where 73, A, and A. are user-specified hyperparameters and

Y1 Bo u1
Yy = 7ﬁ|:ﬁ1]7u )

Yn fa UK
1 z11 2z z21(z21) -+ zr(w21)
X = , 4=
1 z1, @2, 21(w2n) -+ 2K (T2n)

Infer.NET 2.5, Beta 2 does not support direct fitting of model (13) under product restriction

q(ﬁ7u77—u77-€) = Q(,B,'U,) Q(TU’TE)‘ (14)

We get around this by employing the same trick as that described Section 3.2 of Wang and
Wand (2011). It entails the introduction of the auxiliary n x 1 data vector a. By setting the
observed data for a equal to 0 and by assuming a very small number for , fitting the model
in (15) provides essentially the same result as fitting the model in (13). The actual model
implemented in Infer.NET is

_ B I 0
y|B,u, 7. ~ N(XB+ Zu,71), a\ﬂ,u,Tu~N<[u ) 60 I )

[ 'S ] ~ N(0,x7 ), 7,|b, ~ Gamma(3,b,), (15)

b, ~ Gamma(3,1/A2%), 7.|b. ~ Gamma(3},b.), b. ~ Gamma(3,1/A42),

with the inputted a vector containing zeroes. While the full Infer.NET code is included in
the Appendix, we will confine discussion here to the key parts of the code that specify (15).
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Specification of the prior distributions for 7, and 7. can be achieved using the following
Infer.NET code:

Variable<double> tauu = Variable.GammaFromShapeAndRate (0.5, (16)
Variable.GammaFromShapeAndRate (0.5, Math.Pow (Au, -2))) .Named ("tauu") ;

Variable<double> tauEps = Variable.GammaFromShapeAndRate (0.5,
Variable.GammaFromShapeAndRate (0.5, Math.Pow (Aeps,—2)) ) .Named ("taukEps") ;

while the likelihood in (15) is specified by the following line:

ylindex] = Variable.GaussianFromMeanAndPrecision ( (17)
Variable.InnerProduct (betauWork, cvec[index]), tauEps);

The variable index represents a range of integers from 1 to n and enables loop-type struc-
tures. Finally, the inference engine is specified to be variational message passing via the
code:

InferenceEngine engine = new InferenceEngine () ; (18)
engine.Algorithm = new VariationalMessagePassing();
engine.NumberOfIterations = nlIterVB;

with nItervB denoting the number of mean field variational Bayes iterations. Note that
this Infer.NET code is treating the coefficient vector

]

as an entity, in keeping with product restriction (14).

Figures 1 and 2 summarize the results from Infer.NET fitting of (15) to a data set on the yields
(g/plant) of 84 white Spanish onions crops in two locations: Purnong Landing and Virginia,
South Australia. The response variable, y is the logarithm of yield, whilst the predictors are
indicator of location being Virginia (x1) and areal density of the plants (plants/m?) (z2). The
hyperparameters were set at 75 = 10719, A, = 105, 4, = 105 and £ = 107!, while the
number of mean field variational Bayes iterations was fixed at 100.

As a benchmark, Bayesian inference via MCMC was performed. To this end, the following
BUGS program was used:

for(i in 1:n) (19)

mul[i] <- (betal0 + betalxx1[i]+ beta2xx2[i] + inprod(ull,z[i,]))
y[i] ~ dnorm(mul[i],tauEps)

for (k in 1:K)

ulk] ~ dnorm(0,tauu)

}

betal0 ~ dnorm(0,1.0E-10) ; betal ~ dnorm(0,1.0E-10)
beta2 ~ dnorm(0,1.0E-10) ;

bu ~ dgamma (0.5,1.0E-10) ; tauu ~ dgamma (0.5,bu)

bEps ~ dgamma (0.5,1.0E-10) ; tauEps ~ dgamma (0.5,bEps)
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A burn-in length of 50000 was used, while 1 million samples were obtained from the poste-
rior distributions. Finally, a thinning factor of 5 was used. The posterior densities for MCMC
were produced based on kernel density estimation with plug-in bandwidth selection via the
R package KernSmooth (Wand and Ripley 2010). Figure 1 displays the fitted regression lines
and pointwise 95% credible intervals. The estimated regression lines and credible intervals
from Infer.NET and MCMC fitting are highly similar. Figure 2 visualizes the approximate
posterior density functions for 3, 7 I and the effective degrees of freedom of the fit. The
variational Bayes approximations for 3; and 7- ! are rather accurate. The approximate pos-
terior density function for the effective degrees of freedom for variational Bayesian inference
was obtained based on Monte Carlo samples of size 1 million from the approximate posterior
distributions of 7! and 7, L.

50 100 150
| | | | | |
Purnong Landing Virginia
— InferNET
-_——- Infer NET 95% credible sets
55 | Y | T —— wmomc 7 |
' = = = MCMC 95% credible sets
—
T 5.0 L
Q
2 45 B
o
o
4.0 — —
3.5 1 ~

density

Figure 1: Onions data. Fitted regression line and pointwise 95% credible intervals for varia-
tional Bayesian inference by Infer NET and MCMC.

4. Generalized additive model

The next example illustrates binary response variable regression through the model

il B, u ™ Bernoulli( F({X B + Zul};)), u|7, ~ N(0,7, 1),
(20)
B ~ N(O, TglI), a2~ Half-Cauchy(A4,), 1<i<n,

where F'(-) denotes an inverse link function and X, Z, 73 and A, are defined as in the previ-
ous section. Typical choices of F(-) correspond to logistic regression and probit regression.
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Figure 2: Variational Bayes approximate posterior density functions produced by Infer.NET
and MCMC posterior density functions of key model parameters for fitting a simple semi-
parametric model to the onions data set.

As before, introduction of the auxiliary variables a = 0 enables Infer.NET fitting of the
Bayesian mixed model

yi|B,u ™ Bernoulli( F({X 3 + Zu},)),

-1 o
a|/8)u7TuNN<|:§:|v|:Tﬁ0 Tu—II:|>7

(21)
[ﬂ ] ~ N(0,571I), 74| by ~ Gamma(Z, by,)
u ) ) u| Yu 2% )
b, ~ Gamma(3,1/42), 1<i<n.
The likelihood for the logistic regression case is specified as follows
VariableArray<bool> y = Variable.Array<bool> (index) .Named ("y") ; (22)
y[index] = Variable.BernoulliFromLogOdds (
Variable.InnerProduct (betauWork, cvec[index]));

while variational message passing is used for fitting purposes. Setting up the prior for 7,
and specifying the inference engine is done as in code chunk (16) and (18), respectively. For
probit regression, the last line of (22) is replaced by

ylindex] = Variable.IsPositive (Variable.GaussianFromMeanAndvVariance( (23)
Variable.InnerProduct (betauWork, cvec[index]), 1));

and expectation propagation is used
engine.Algorithm = new ExpectationPropagation(); (24)

Instead of the half-Cauchy prior in (20), a gamma prior with shape and rate equal to 2 is
used for 7, in the probit regression model

Variable<double> tauU = Variable.GammaFromShapeAndRate (2,2); (25)
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Figure 3 visualizes the results for Infer.NET and MCMC fitting of a straightforward exten-
sion of model (21) with inverse-logit and probit link functions to a breast cancer data set
(Haberman 1976). This data set contains 306 cases from a study that was conducted between
1958 and 1970 at the University of Chicago’s Billings Hospital on the survival of patients who
had undergone surgery for breast cancer. The binary response variable represents whether
the patient died within 5 years after operation (died), while 3 predictor variables are used:
age of patient at the time of operation (age), year of operation (year) and number of posi-
tive axillary nodes (nodes) detected. The actual model is

died;|B,u ~ Bernoulli(F (B + fi(age;) + fa(year;) + fz(nodes;))), 1<i < 306.

Note that all predictor variables were standardized prior to model fitting and the following
hyperparameters were used: 753 = 1071, 4, = 105, k = 107! and the number of variational
Bayes iterations was 100. Figure 3 illustrates that there is good agreement between the results
from Infer.NET and MCMC.

— Infer.NET
— = Infer.NET 95% credible sets

0.5

— McMC [
== MCMC 95% credible sets /

-0.5 0.0

0

-1

-15

logit(prob. patient dies within 5 years)
logit(prob. patient dies within 5 years)
logit(prob. patient dies within 5 years)

-20

t t t
30 40 50 60 70 80 1958 2 1964 1966 1968 0 10 20 30 40 50

age at time of operation year of operation number of positive axillary nodes

(@)

— Infer.NET 4
== Infer.NET 95% credible sets
MCMC

== MCMC 95% credible sets

1(prob. patient dies within 5 years)

-1.0

N
\

Q)”(prob. patient dies within 5 years)
(D“(prob. patient dies within 5 years)

[}
2
L

t t T t T T t t T T
30 40 50 60 70 80 1958 1960 1962 1964 1966 1968 0 10 20 30 40 50

age at time of operation year of operation number of positive axillary nodes

(b)

Figure 3: Breast cancer data. Fitted regression lines and pointwise 95% credible intervals
for logit (a) and probit (b) regression via variational Bayesian inference by InferNET and
MCMC.
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5. Robust nonparametric regression based on the ¢-distribution

A popular model-based approach for robust regression is to model the response variable
to have a t-distribution. Outliers occur with moderate probability for low values of the
t-distribution’s degrees of freedom parameter (Lange et al. 1989). More recently, Stauden-
mayer et al. (2009) proposed a penalized spline mixed model approach to nonparametric
regression using the ¢-distribution.

The robust nonparametric regression model that we consider here is a Bayesian variant of
that treated by Staudenmayer et al. (2009):

yil Bo, B, w, Te, v St (ﬁo B+ e Zk@z‘)ﬁf#) , 1<i<n,

ulm, ~ N(0,7,'I), B~ N(0,75'T), 06
~1/2 ~1/2
7. '~ ~ Half-Cauchy(4,), 7= ’° ~ Half-Cauchy(A;),

p(v) discrete on a finite set N.

Restricting the prior distribution of v to be that of a discrete random variable allows In-
fer.NET fitting of the model using structured mean field variational Bayes (Saul and Jordan
1996). This extension of ordinary mean field variational Bayes is described in Section 3.1 of
Wand et al. (2011). Since variational message passing is a special case of mean field varia-
tional Bayes this extension also applies. Model (26) can be fitted through calls to Infer.NET
with v fixed at each value in N. The results of each of these fits are combined afterwards.
Details are given below.

Another challenge concerning (26) is that Infer.NET does not support ¢-distribution specifi-
cations. We get around this by appealing to the result

1

if z|g~ N(pu(97)"') and g~ Gamma(%,%) then =z~ t(u,7 % v). (27)

As before, we use the a = 0 auxiliary data trick described in Section 3 and the Half-Cauchy
representation (1). These lead to following suite of models, for each fixed v € IV, needing to
be run in Infer.NET:

Y1 8o e ~ N(XB + Zu, - diag(1/g)),
~1y
MAMMNNQB]{WJ7;ID, [ﬁ]wmaﬂm

u
u|7, ~ N(0,7, 1), g v Gamma(},%), B~ N(0,7;'D), (28)
Tu| by ~ Gamma(3,b,), by ~ Gamma(3,1/A42),

7| be ~ Gamma(3,b.), be ~ Gamma(%, 1/A2?),

where the matrix notation of (7), (8) is being used, g = [g1,...,9,]7 and 73, A, and A are
user-specified hyperparameters with default values 753 = 1071%, 4, = A. = 10°. The prior
for v was set to be a uniform distribution over the atom set N, set to be 30 equally-spaced
numbers between 0.05 and 10 inclusive.
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After obtaining fits of (28) for each v € NN, the approximate posterior densities are obtained

from
ZQV /3>U| q ZQV Tu‘
veN veN ( ) ( ’ )
) p(v)p(ylv
=Y 4w q(rlv), with g(v) =p(vly) = T
= > p()p(yl)
v'eN

and p(y|v) denotes the variational lower bound on the conditional likelihood p(y|v).

Specification of the prior distribution for g is achieved using the following Infer.NET code:

VariableArray<double> g = Variable.Array<double> (index) ; (29)
glindex] = Variable.GammaFromShapeAndRate (nu/2,2/nu) .ForEach (index) ;

while the likelihood in (28) is specified by:

ylindex] = Variable.GaussianFromMeanAndPrecision ( (30)
Variable.InnerProduct (betauWork, cvec[index]),g[index]+xtauEps) ;

The lower bound log p(y|v) can be obtained by creating a mixture of the current model with
an empty model in Infer.NET. The learned mixing weight is then equal to the marginal log-
likelihood. Therefore, an auxiliary Bernoulli variable is set up:

Variable<bool> auxML = Variable.Bernoulli (0.5) .Named ("auxML"); (31)
IfBlock model = Variable.If (auxML);

The normal code for fitting the model in (28) is then enclosed with

IfBlock model = Variable.If (auxML); (32)
and
model.CloseBlock () ; (33)

Finally, the lower bound log p(y|v) is obtained from:
double marginallogLikelihood = engine.Infer<Bernoulli>(auxML) .LogOdds; (34)

Figure 4 presents the results of the structured mean field variational Bayes analysis using
Infer.NET fitting of model (28) to a data set on a respiratory experiment conducted by Pro-
fessor Russ Hauser at Harvard School of Public Health, Boston, USA. The data correspond to
60 measurements on one subject during two separate respiratory experiments. The response
variable y; represents the log of the adjusted time of exhalation for x; equal to the time in
seconds since exposure to air containing particulate matter. The adjusted time of exhalation
is obtained by subtracting the average time of exhalation at baseline, prior to exposure to
filtered air. Interest centers upon the mean response as a function of time. The predictor and
response variable were both standardized prior to Infer.NET analysis. The following hyper-
parameters were chosen: 753 = 10719, 4. = 105, 4, = 10° and x = 1071°, while the number
of variational Bayes iterations equaled 100. Bayesian inference via MCMC was performed
as a benchmark.
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Figure 4: Structured mean field variational Bayesian, based on Infer.NET, and MCMC fitting
of the robust nonparametric regression model (26) to the respiratory experiment data. Left:
Posterior mean and pointwise 95% credible sets for the regression function. Right: Approxi-
mate posterior function for the degrees of freedom parameter v.

Figure 4 shows that the variational Bayes fit and pointwise 95% credible sets are close to
the ones obtained using MCMC. Finally, the approximate posterior probability function and
the posterior from MCMC for the degrees of freedom v are compared. The InferNET and
MCMC results coincide quite closely.

6. Semiparametric mixed model

Since semiparametric regression models based on penalized splines fit in the mixed model
framework, semiparametric longitudinal data analysis can be performed by fusion with clas-
sical mixed models (Ruppert et al. 2003). In this section we illustrate the use of Infer.NET for
fitting the class of semiparametric mixed models having the form:

K
vij|B,u, Us, 7= X N (50 + 8% iy + Ui+ ) un zi(sig), Tg1> ,
k=1

(35)

ind.

Ul’TUNN(OaTU_1)7 1§.7§n17 1§Z§m,

for analysis of the longitudinal data-sets such as that described in Bachrach et al. (1999). Here
x;; is a vector of predictors that enter the model linearly and s;; is another predictor that en-
ters the model non-linearly via penalized splines. For each 1 < i < m, U; denotes the random
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intercept for the ith subject. The corresponding Bayesian mixed model is represented by

-1
y|6auvTaNN(Xﬂ+Zust_lI)v uTU’TuNN(O7|:TU ! _01 :|)7
o 7,1

B~ N(0, 7’511), %~ Half-Cauchy(A,), Y2 Half-Cauchy(A,), (36)

7% ~ Half-Cauchy(Ay),

where y, 3 and X are defined in a similar manner as in the previous sections and 73, A, A.
and Ay are user-specified hyperparameters. Introduction of the random intercepts results
in

i ) 1 --- 0 21(511) ZK(Sll)
Uy . :
U: 1L oo 0 zi(stny) - 2r(Siny)
u = " ) Z = : :
ul )
0 -+ 1 zi(sm1) -+ zK(sm1)
UK
L . i o --- 1 Zl(smnm) ce ZK(Smnm) i

We again use the auxiliary data vector a = 0 to allow direct Infer.NET fitting of the Bayesian
longitudinal penalized spline model

ylB,u, 7 ~ N(XB + Zu, 7' I), [ o ] ~ N(0,51T),

Tﬂ_lI 0 0
a|lB,u, 7y, 7y, ~ N s 0 oy 0
7 ) 9 u ) U _1 7 (37)
0 0 Ty I

Tu| by ~ Gamma(3,b,), b, ~ Gamma(i,1/A42), 7.|b. ~ Gamma(3,1/b.),
b. ~ Gamma(3,1/A%), 7y|by ~ Gamma(3,by), by ~ Gamma(z,1/A47).

Specification of the prior distribution for 7y can be achieved in Infer.NET in a similar manner
as prior specification in code chunk (16).

Figure 5 shows the Infer.NET fits of (37) to the spinal bone mineral density data (Bachrach
et al. 1999). A population of 230 female subjects aged between 8 and 27 was followed over
time and each subject contributed either one, two, three, or four spinal bone mineral density
measurements. Age enters the model non-linearly and corresponds to s;; in (35). Data on
ethnicity are available and the entries of x;; correspond to the indicator variables for Black
(x147), Hispanic (x2;;) and White (z3;;), with Asian ethnicity corresponding to the baseline.
The following hyperparameters were chosen: 73 = 10719, A, = 10°, 4, = 10°, Ay = 10°
and = 107!9 while the number of mean field variational Bayes iterations was set to 100.
Figure 5 suggests that there exists a statistically significant difference in mean spinal bone
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Figure 5: Spinal bone mineral density data. Fitted regression line and pointwise 95% credible
intervals based on mean field variational Bayesian inference by Infer.NET and MCMC.

mineral density between Asian and Black subjects. This difference is confirmed by the ap-
proximate posterior density functions in Figure 6. No statistically significant difference is
found between Asian and Hispanic subjects and between Asian and White subjects.
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Figure 6: Variational Bayes approximate posterior density functions produced by Infer.NET
of ethnic group parameters for fitting a simple semiparametric mixed model to the spinal
bone mineral density data set.

7. Geoadditive model

We turn our attention to geostatistical data, for which the response variable is geographically
referenced and the extension of generalized additive models, known as geoadditive models
(Kammann and Wand 2003), applies. Such models allow for a pair of continuous predictors,
typically geographical location, to have a bivariate functional impact on the mean response.
An example geoadditive model is

yi ~ N (fi(z1i) + fo(22) + fao(T3i245), 721, 1< i< (38)
It can be handled using the spline basis described in Section 2.4 as follows:
ind.

yi| B, w1, ug, us°, 7. ~ N(ﬂo + B1x1i + Powoi + B33 + Paxa

ngo (39)
J ) —1 .
+ E Ulk; 21k(714) + E U21<; 2ok (w2;) + E Ui& 25 (w34, a3), 72 >, 1<i<n,

where the 215, and 2y, are univariate spline basis functions as used in each of this article’s
previous examples and the z;” are the bivariate spline basis functions, described in Section
2.4. The corresponding Baye51an mixed model is represented by

y|B,u, 7. ~ N(XB+ Zu,7.'I), B~ N(0,7;'1),

uy I 0 0
u = (23 Tuls Tu2s Tgeo ™ N |0, 0 7-1:211 0 )
uB 0 0 7.0 (40)

7o /% ~ Half- -Cauchy(A4,), 7 12 Half-Cauchy(A.),

_1/2 ~ Half'CauChy(Ageo)7

gO

where y, 3, u and X are defined in a similar manner as in the previous sections and 73, A,,

17
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A. and A,,, are user-specified hyperparameters. The Z matrix is

zi(en) - 2k (en) za1(a) - z2my(w21) 217 (w31, 001) - 2 (231, 741)
Z: . . . . .
21(T1n) o 2 (T1n) 221(wan) o 22k (@) 27 (Tsn, Tan) o0 2R (T3n, Tan)

Infer.NET can be used to fit the Bayesian geoadditive model

y|B,u,7e ~ N(XB+ZU>TE_11)7 [ 1’131/ ] ~ N(0,x7'1),

-1
I 0 0 0

I6; o 7'I o 0
a|67u77-’u77—geo NN |: u ) O u(l) 7__211 0 9
U
0 0 0 7T

Tu1| bur ~ Gamma(i,by1), by ~ Gammal(s,1/A%)),  7u2|bus ~ Gamma(3, buo),

buz ~ Gamma(i,1/A42,), 7.|b. ~ Gamma(}

3.b:),be ~ Gamma(,1/1A2%),

Tyeo| Dgeo ~ Gamma (3, byeo),  byeo ~ Gamma(3,1/A2)

geo

where a = 0 as in all previous examples.

We illustrate geoadditive model fitting in Infer.NET using data on residential property prices
of 37,676 residential properties that were sold in Sydney, Australia, during 2001. The data
were assembled as part of of an unpublished study by A. Chernih and M. Sherris at the Uni-
versity of New South Wales, Australia. The response variable is the logarithm of sale price in
Australian dollars. Apart from geographical location, several predictor variables are avail-
able. For this example we selected weekly income in Australian dollars, the distance from
the coastline in kilometres, the particulate matter 10 level and the nitrogen dioxide level. The
model is a straightforward extension of the geoadditive model conveyed by (38)—(40). In ad-
dition, all predictor variables and the dependent variable were standardized before model
fitting. The hyperparameters set to 75 = 10719, 4. = 10° = A,, = ... = A,, = A, = 105,
while the number of variational message passing iterations was equal to 100 and « set to
10719,

Figure 7 summarizes the housing prices for the Sydney metropolitan area based on the fitted
Infer.NET model, while fixing the four predictor variables at their mean levels. This result
clearly shows that the sale price is higher for houses in Sydney’s eastern and northern sub-
urbs whereas it is strongly decreased for houses in Sydney’s western suburbs.

Figure 8 visualizes the fitted regression line and pointwise 95% credible intervals for income,
distance from the coastline, particulate matter 10 level and nitrogen dioxide level at a fixed
geographical location (longitude = 151.10°, latitude = —33.91°). As expected, a higher in-
come is associated with a higher sale price and houses close to the coastline are more expen-
sive. The sale price is lower for a higher particulate matter 10 level, while a lower nitrogen
dioxide level is generally associated with a lower sale price.
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Figure 7: Sydney real estate data. Estimated housing prices for the Sydney metropolitan area
for variational Bayesian inference by Infer.NET.

8. Bayesian lasso regression

A Bayesian approach to lasso (least absolute shrinkage selection operator) regression was
proposed by Park and Casella (2008). For linear regression, the lasso approach essentially
involves the replacing

Bjl T3 & N(0, TB_I) by ;|73 e Laplace(0, 7'5_1) (41)

where f3; is the coefficient of the jth predictor variable. Replacement (41) corresponds to the
form of the penalty changing from

p p
A B o A Bl
=1 =1
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Figure 8: Sydney real estate data. Fitted regression line and pointwise 95% credible intervals
for variational Bayesian inference by Infer.NET.

For frequentist lasso regression (Tibshirani 1996) the latter penalty produces sparse regres-
sion fits, in that the estimated coefficients become exactly zero. In the Bayesian case the
Bayes estimates do not provide exact annihilation of coefficients, but produce approximate
sparseness (Park and Casella 2008).

At this point we note that, during the years following the appearance of Park and Casella
(2008), several other proposals for sparse shrinkage of the 3; appeared in the literature (e.g.
Armagan et al. 2013; Carvalho et al. 2010; Griffin and Brown 2011). Their accommodation in
Infer.NET could also be entertained. Here we restrict attention to Laplace-based shrinkage.

We commence with the goal of fitting the following model in Infer.NET:

y|Bo. B, 7 ~ N(16o + XB,7-'I), B;| 73~ Laplace(0,7;")
(42)
Bo ~ N (0,74, 1), 75 ~ Half-Cauchy(Ag), 7. ~ Half-Cauchy(A.).
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The current release of Infer.NET does not support the Laplace distribution, so we require an
auxiliary variable representation in a similar vein to what was used for the ¢-distribution in
Section 5. We first note the distributional statement

z|r ~ Laplace(0,7~!) ifand onlyif z|g~ N(0,g), g¢|r ~Gamma(l,37), (43)

which is exploited by Park and Casella (2008). However, auxiliary variable representation
(43) is also not supported by Infer.NET, due to violation of its conjugacy rules. We get around
this by working with the alternative auxiliary variable set-up:

z|lc~ N(0,1/¢c), c|d~ Gamma(M,Md), d|r ~ Gamma(l, % T) (44)

which is supported by Infer.NET, and leads to good approximation to the Laplace(0,771)
distribution when M is large. For any given M > 0, the density function of = satisfying
auxiliary variable representation (44) is

M
p(z|m; M) = / / (2m/c)~Y/? exp (—5 cx) (14/6‘3) M1 exp(—Mdc)
X T exp (—f dT) dedd

r1/2 I‘(M +3 2 L2 2
- Fi (M Fi (M +1;3/2
20 (M) M1/2 11( +2’2’4M> 37 ’ﬂ11< T8/ 4M>

where 1 F denotes the degenerate hypergeometric function (e.g. Gradshteyn and Ryzhik
1994). Figure 9 shows p(x|r; M) for 7 = 1 and M = 1,10, 30. The approximation to the
Laplace(0, 1) density function is excellent for M as low as 10.

~ ~ o ~
f=] o o
exact Laplace
w . . w w
o | —— approximation s 7 S 7
o | 0 | o |
o (=] (=]
—_~ ~~ —_
= 3 = 3 =
N O -] N O
o o o
o~ o o
= s 7 s 7
5 - 5 1 =
o o o |
o o o
I T T T T T T T T T T T T T T T T T T T T
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Figure 9: The exact Laplace(0, 1) density function p(z) =  exp(—|z|) and three approxima-
tions to it based on p(z|7; M) for =1 and M = 1,10, 30.

The convergence in distribution of random variables having the density function p(x|7; M)
to a Laplace(0, 7~!) random variable as M — oo may be established using (27) and the fact
that the family of ¢ distributions tends to a Normal distribution as the degrees of freedom

21
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parameter increases, and then mixing this limiting distribution with a Gamma(1, £ 7) vari-

able.
In lieu of (42), the actual model fitted in Infer.NET is:

y|Bo, B, 7= ~ N(16p + X B, 7. 1),

~1
Bo 8o 0
gl'| O diag (1/¢;)I )

a|ﬁ0,,@,Cl,...,CpNN |:
1<j<p

[ s } ~ Nk, ol d; ™ Gamma(M, M d;), *

dj|ms * Gamma(1, 373), 78lbs ~ Gamma(3,bg), bz ~ Gamma(s, 1/A%),
7:|be ~ Gamma(3,b.), b. ~ Gamma(3,1/A?).

We use k = 10719 M = 100,75, = 10719, Ag = A, = 10°.

Our illustration of (45) involves data from a diabetes study that was also used in Park and
Casella (2008). The sample size is n = 442 and the number of predictor variables is p = 10.
The response variable is a continuous index of disease progression one year after baseline.
A description of the predictor variables is given in Efron et al. (2004). Their abbreviations,
used in Park and Casella (2008), are: (1) age, (2) sex, (3), bmi, (4), map, (5), tc, (6) 1dl, (7), hdl,
(8), tch, (9) ltg, and (10) glu.

Figure 10 shows the fits obtained from both InferNET and MCMC. We see that the corre-
spondence is very good, especially for the regression coefficients.

9. Measurement error model

In some situations some variables may be measured with error, i.e., the observed data are
not the true values of those variables themselves, but a contaminated version of these vari-
ables. Examples of such situations include AIDS studies where CD4 counts are known to
be measured with errors (Wu 2002) or air pollution data (Bachrach et al. 1999). Carroll et al.
(2006) offers a comprehensive treatment of measurement error models. As described there,
failure to account for measurement error can result in biased and misleading conclusions.

Let (z;,vi), 1 <i < n, be a set of predictor/response pairs that are modeled according to

vilzi, Bo, B1, - = N(Bo + Bri, 7Y, 1<i<n. (46)

However, instead of observing the x;s we observe

wilx; N N(z, 7Y, 1<i<n. (47)
In other words, the predictors are measured with error with 7, controlling the extent of the
contamination. In general 7, can be estimated through validation data, where some of the z;
values are observed, or replication data, where replicates of the w; values are available. To
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Figure 10: Approximate posterior density functions of model parameters in fitting (45) to

data from a diabetes study.

simplify exposition we will assume that 7, is known. Furthermore, we will assume that the
x;s are Normally distributed:

Ti| s T ~ N (pte, Tx_l)a

1<1<n,

where i, and 7, are additional parameters to be estimated.

(48)

Combining (46), (47) and (48) and, including aforementioned priors for variances, a Bayesian
measurement error model can be represented by

y’qu?TE ~ N(XB7T;1I)7

B~ N(0,7;'I),

wl|e ~ N(z,7;'),

7= /% ~ Half-Cauchy(A.),

piz ~ N(0,7,.1) and 2~ Half-Cauchy(A,)

w‘ﬂvaw ~ N(M$1, 7_3;11>7

(49)

where 3 = [(o, f1], X = [1,x], 73, 7., A and A, are user-specified constants and the vectors

y and w are observed. We set 75 = 7, = 107!% and 4. = A4, = 10°.
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Invoking (1), we arrive at the model
ylz, 8,7 ~ N(XB,7-'I), wle~N(z,7'I), @|pg, 7~ N(uz1, 7, 1)
B~ N(0,75'I), 7|b.~Gamma(3,1/b;), b ~Gamma(s,1/A2), (50)
pre ~ N0, 7, 1), 7|by ~ Gamma(3,1/b,) and b, ~ Gamma(z,1/A3).

Infer.NET 2.5, Beta 2 does not appear to be able to fit the model (50) under the product
restriction

Q(IB7 Te, b87 Ty gy Ty, b$) = Q(507 ﬂl) Q(IU’JZ) Q(aj) q(T&‘v T$) q(bé‘a bx)
However, Infer.NET was able to fit this model with

Q(/37 Tey bey @, g, o, ba:) = Q(ﬁO)Q(ﬁl) Q(,U:E)Q($> Q(Ts> Tx) Q(b€7 bm) (51)

Unfortunately, fitting under restriction (51) leads to poor accuracy. One possible remedy
involves the centering transformation:

wW; = W; — W.

Under this transformation, and with diffuse priors, the marginal posterior distributions of
Bo and (3 are nearly independent.

Let ¢(0o), ¢(51), @(11a), ¢(x), q(72, 72) and q(b., b, ) be the optimal values of ¢(5o), ¢(51), ¢(pz),
q(x), q(7z,72) and q(be,b;) when the transformed w;s are used in place of the w;s. This
corresponds to the transformation on the X matrix

—w 1

X = XR where R—{ 17 0].

Suppose that
@(Bo) ~ N(Fig(po): asey)s  A(B1) ~ N(Bg(sy), s,)s
(ko) ~ N(figu,)» o) and (@) ~ Nl 0rpy)s 1< i<,
Then we can back-transform approximately using
q4(Bo, B1) ~ Nk Zq@):  alttz) ~ Nlbg(ua) 05 ,0):
(i) ~ N(ftg(a), Oogy)s 1 <0<,

where

~ ~2
= Fq(60) - T4(6o) 0 T
12 =R [ ~ :| , b =R — R7,
q(B) lig(r) q(B) 0 52 50
Hg(pe) = Hq(ps) T Ws Toue) = Oalpia)’
Pa(e) = Pg@) W, gy = 0oy, 1<i<n,

Q(Ta Tac) = (‘7(7_67 T:Jc) and Q(ba bm) = 67(557 bac)
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To illustrate the use of Infer.NET we simulated data according to

ind.

2 % N(1/2,1/36), wi|z; = N(2,1/100) and  y;lz; = N(0.3 +0.72;,1/16)  (52)
for 1 < i < n withn = 50. Results from a single simulation are illustrated in Figure 11.
Similar results were obtained from other simulated data sets. From Figure 11 we see rea-
sonable agreement of posterior density estimates produced by Infer.NET and MCMC for all
parameters. Extension to the case where the mean of the y;s are modeled nonparametrically

is covered in Pham et al. (2013). However, the current version of Infer.NET does not support
models of this type. Such versatility limitations of Infer.NET are discussed in Section 11.1.
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Figure 11: Variational Bayes approximate posterior density functions produced by Infer.NET
for simulated data (52).

25



26 Regression via Infer. NET

10. Missing predictor model

Missing data is a commonly occurring issue in statistical problems. Naive methods for deal-
ing with this issue, such as ignoring samples containing missing values, can be shown to be
demonstrably optimistic (i.e., standard errors are deflated), biased or simply an inefficient
use of the data. Little and Rubin (2002) contains a detailed discussion of the various issues
at stake.

Consider a simple linear regression model with response y; with predictor z;:

yilzi, Bo, B1, 7= = N(Bo + Brai, 72 1), 1<i<n. (53)
Suppose that some of the z;s are missing and let ; be an indicator z; being observed. Specif-
ically,

= { 1 if x; is observed, forl<i<n.

0 if x; is missing

A missing data model contains at least two components:

* A model for the underlying distribution of the variable that is subject to missingness
data. We will use

Ti| s Ta i N(,uw,Tl,_l), 1<:<n. (54)

* A model for the missing data mechanism, which models the probability distribution
of r e

As detailed in Faes et al. (2011), there are several possible models, with varying degrees of
sophistication, for the missing data mechanism. Here the simplest such model, known as
missing completely at random, is used:

yle.B. 7 ~ N(XB,7'I), | pta, 7 ~ N1, 7, I), 73 ™ Bernoulli(p),
8~ N(O,Tﬂ_l_[), 7| be ~ Gamma(3,1/b.), b. ~ Gamma(3, 1/A?), (55)
pz ~ N(0,7,1), Ty |by ~ Gamma(3,b,)  and b, ~ Gamma(3,1/A42),

2

where 3 = [y, £1], X = [1, x|, 73, T4, Ac and A, are user-specified hyperparameters. Again,
we will use 73 = 7, = 107'%and A, = A, = 10°.

The simulated data that we use in our illustration of Infer.NET involves the following sample
size and ‘true values”:

n="50, By=03, B =07 ;=05 7,=36 and p=0.75. (56)

Putting p = 0.75 implies that, on average, 25% of the predictor values are missing completely
at random.

Infer.NET 2.5, Beta 2 is not able to fit the model (50) under the product restriction

q(lgv T€7 b€7 wmisa ,Uam Tx, bm) = q(607 ﬁl) q(wmis) q(T€7 T:E) q(b€7 bm)a (57)
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where z,,;; denotes the vector of missing predictors, but is able to handle

(:Z(/B7 TE? bEv xmisv Nx, Tx’ bSC) = Q(ﬁo) q(/B].) q(wmis) q(TE) 7—1‘) q(baa bI)) (58)

and was used in our illustration of Infer.NET for such models.

We also used BUGS to perform Bayesian inference via MCMC as a benchmark for compari-
son of results. For similar reasons as in the previous section fitting under this restriction (58)
leads to poor results. Instead we perform the centering transformation

€Tq = Tj — fobs

where 7, is the mean of the observed z values. This transformation makes the marginal
posterior distributions of 3y and /3 nearly independent.

Let a(ﬁ())/ a(ﬁl)/ q~(M:v)/ a(mmiS)/ 6(7-677-33) and ?j(b& bﬂv) be the Optimal values of Q(ﬁ())/ Q(ﬁl)/
q(pz), ¢(®ms), q(7e, 7)) and q(be, b;) when the transformed z;s are used in place of the z;s.
This corresponds to the transformation on the X matrix

X =XR where R—{_l 0].

Suppose that
fqv(/BO) ~ N(/jq(ﬁo)v &g(go))7 fd(ﬁl) ~ N(ﬁq(ﬁﬂv &3(/31))7
Zj(,u’l’) ~ N(ﬁq(uz)a 530%))7 and qv(xl) ~ N(ﬁq(xmis,i%5§($mis,i))’ 1 S { S Mmis
then we back-transform approximately using

(6o, B1) ~ N(Bqpy Zq@):  a(ka) ~ Nkg(ua)s Tog)s

q(xmis,i) ~ N(:U’q(a:mis,i)v Ug(mmis,i))7 1 S Z S n7

where
- ~92
_ Hq(Bo) _ 74(50) 0 T
I E T I K e 2
4(8) Hq(B1) a9 0 Tq(81)
Paq(pa) = Ha(pz) + Tobss Ta(uz) = Pqlua)’
o~ - 2 _~2 :
”Q(mmis,i) - ’uq(mmis,i) + xd}s’ O-Q(wmis,i) o O-q(xmis,i)’ 1 S t S n’

q(7e, 72) = q(7, 72) and q(be, by) = q(be, by).

Results from a single simulation are illustrated in Figure 12. Similar results were obtained
from other simulated data sets. From Figure 12 we see reasonable agreement of posterior
density estimates produced by InferNET and MCMC for all parameters. Extension to the
case where the mean of y is modeled nonparametrically is covered in Faes et al. (2011). How-
ever, the current version of Infer. NET does not support models of this type.



28 Regression via Infer. NET

intercept slope mean of x

= InferNET
— MCMC

= Infer NET
—_— WCMC

20

= Infer NET
—_— MCMC

15

15

10
10

05
|

approx. posterior density
2

approx. posterior density

approx. posterior density

00

|
0
I

T T T T I T T T T T T
00 02 04 06 08 00 10 040 045 0.50 055
Po

05
B4 Ly

variance of x error variance Xrnis

= Infer NET
—_— MCMC

= InferNET
—_— MCMC

= Infer NET
—_— WCMC

25

40

60
30
|

15

40
20

1.0

20
|
10

05
I

approx. posterior density

approx. posterior density
approx. posterior density

N\

T T T T T T T T T T T T T
0.02 003 1 0.04 0.05 0.04 0.06 0.08 010 00 02 04 06 08

T. T Xmis1

0
0
0.0

Figure 12: Variational Bayes approximate posterior density functions produced by Infer.NET
data simulated according to (56).

11. Comparison with BUGS

We now make some comparisons between Infer.NET and BUGS in the context of Bayesian
semiparametric regression.

11.1. Versatility comparison

These comments mainly echo those given in Section 5 of Wang and Wand (2011), so are quite
brief. BUGS is much more versatile than Infer.NET, with the latter subject to restrictions such
as standard distributional forms, conjugacy rules and not being able to handle models such
as (13) without the trick manifest in (15). The measurement error and missing data regres-
sion examples given in Sections 9 and 10 are feasible in Infer.NET for parametric regression,
but not for semiparametric regression such as the examples in Sections 4, 5 and 8 of Marley
and Wand (2010). Nevertheless, as demonstrated in this article, there is a wide variety of



Journal of Statistical Software 29

semiparametric regression models that can be handled by Infer.NET.

11.2. Accuracy comparison

In general, BUGS can always be more accurate than Infer.NET since MCMC suffers only
from Monte Carlo error, which can be made arbitrarily small via larger sample sizes. The
Infer.NET inference engines, expectation propagation and variational message passing, have
inherent approximation errors that cannot be completely eliminated. However, our exam-
ples show that the accuracy of Infer.NET is quite good for a wide variety of semiparametric
regression models.

11.3. Timing comparison

Table 2 gives some indication of the relative computing times for the examples in the pa-
per. In this table we report the average elapsed (and standard error) of the computing times
over 100 runs with the number of variational Bayes or expectation propagation iterations
set to 100 and the MCMC sample sizes set at 10000. This was sufficient for convergence in
these particular examples. All examples were run on the third author’s laptop computer (64
bit Windows 8 Intel i7-4930MX central processing unit at 3GHz with 32GB of random ac-
cess memory). We concede that comparison of deterministic and Monte Carlo algorithms is
fraught with difficulties. However, convergence criteria aside, these times give an indication
of the performance in terms of the implementations of each of the algorithms for particular
models on a fast 2014 computer. Note that we did not fit the geoadditive model in Section 7
via BUGS due to the excessive time required.

section semiparametric time in seconds  time in seconds
number regression model for Infer.NET for BUGS
3 Simple semiparametric regression 1.55 (0.01) 8.60 (0.01)
4 Generalized additive model (logistic) 3.09 (0.01) 81.30 (0.13)
4 Generalized additive model (probit) 25.80 (0.07) 79.85 (0.04)
5 Robust nonparametric regression 80.38 (0.03) 22.56 (0.06)
6 Semiparametric mixed model 666.73 (0.56) 477.59 (0.06)
7 Geoadditive model 1231.12 (3.05) _
8 Bayesian lasso regression 1.80 (0.01) 199.59 (0.30)
9 Measurement error model 1.50 (0.01) 7.05 (0.02)
10 Missing predictor model 1.53 (0.01) 5.51 (0.03)

Table 2: Average run times (standard errors) in seconds over 100 runs of the methods for
each of the examples in the paper.

Table 2 reveals that Infer.NET offers considerable speed-ups compared with BUGS for most
of the examples. The exceptions are the robust nonparametric regression model of Section
5 and the semiparametric mixed model of Section 6. The slowness of the robust nonpara-
metric regression fit is mainly explained by the multiple calls to Infer.NET, corresponding to
the degrees of freedom grid. The semiparametric mixed model is quite slow in the current
release of Infer.NET due to the full sparse design matrices being carried around in the calcu-
lations. Recently developed streamlined approaches to variational inference for longitudinal
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and multilevel data analysis (Lee and Wand 2014) offer significant speed-ups. The geoad-
ditive model of Section 7 is also slow to fit, with the large design matrices being a likely
reason.

12. Summary

Through several examples, the efficacy of Infer.NET for semiparametric regression analysis
has been demonstrated. Generally speaking, the fitting and inference is shown to be quite
fast and accurate. Models with very large design matrices are an exception and can take
significant amounts of time to fit using the current release of Infer.NET.

Our survey of Infer.NET in the context of semiparametric regression will aid future analyses
of this type via fast graphical models software, by building upon the examples presented
here. It may also influence future directions for the development of fast graphical models
methodology and software.

Appendix: Details of Infer.NET fitting of a simple semiparametric model

This section provides an extensive description of the Infer.NET program for semiparametric
regression analysis of the Onions data set based on model (15) in Section 3. The data are
first transformed as explained in Section 3 and these transformed versions are represented
by y and C = [X Z]. Thereafter, the text files K. txt, y.txt, Cmat .txt, sigsgBeta.txt,
Au.txt,Aeps.txt and nIterVB. txt are generated. The first three files contain the num-
ber of spline basis functions, y and C, respectively. The following three text files each con-
tain a single number and represent the values for the hyperparameters: 753 = 10710, A, = 10°
and A, = 10°. The last file, nIterVB.txt, contains a single positive number (i.e., 100) that
specifies the number of mean field variational Bayes iterations. All these files were set up in

R.

The actual Infer.NET code is a Cf script, which can be run from Visual Studio 2010 or DOS
within the Microsoft Windows operating system. The following paragraphs explain the dif-
ferent commands in the Cf script. Firstly, all required Cf and Infer.NET libraries are loaded:

using System;

using System.Collections.Generic;

using System.Text;

using System.IO;

using System.Reflection;

using MicrosoftResearch.Infer;

using MicrosoftResearch.Infer.Distributions;
using MicrosoftResearch.Infer.Maths;

using MicrosoftResearch.Infer.Models;

Next, the full path name of the directory containing the above-mentioned input files needs
to be specified:

string dir = "C:\\research\\inferNet\\onions\\";

The values for the hyperparameters, number of variational Bayes iterations and number of
spline basis functions are imported using the commands:
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double tauBeta = new DataTable (dir+"tauBeta.txt") .DoubleNumeric;
double Au = new DataTable (dir+"Au.txt") .DoubleNumeric;

double Aeps = new DataTable (dir+"Aeps.txt") .DoubleNumeric;

int nIterVB = new DataTable (dir+"nIterVB.txt").IntNumeric;

int K = new DataTable (dir+"K.txt") .IntNumeric;

Reading in the data y and C proceeds as follows:

DataTable yTable = new DataTable(dir+"y.txt");
DataTable C = new DataTable (dir+"Cmat.txt");

These commands make use of the Cf object class DataTable. This class, which was written
by the authors, facilitates the input of general rectangular arrays of numbers when in a text
file. The following line extracts the number of observations from the data matrix C:

int n = C.numRow;

The observed values of C and y, which are stored in objects C and yTable, are assigned to
the objects cvec and y via the next set of commands:

Vector[] cvecTable = new Vector([n];
for (int i = 0; i < n; i++)
{
cvecTable[i] =
for (int j = 0
cvecTable[1i

Vector.Zero (3+K) ;
;] < 34K; j++)
1[3j] = C.DataMatrix[i, j];

Range index = new Range (n) .Named ("index");
VariableArray<Vector> cvec = Variable.Array<Vector> (
index) .Named ("cvec") ;
cvec.ObservedValue = cvecTable;
VariableArray<double> y = Variable.Array<double> (index) .Named ("y");
y.ObservedValue = yTable.arrayForIN;

The function arrayForIN is member of the class DataTable and stores the data as an
array to match the type of y.Observedvalue. The resulting objects are now directly used
to specify the prior distributions. First, the commands in code chunk (16) in Section 3 are
used to set up priors for 7, and 7., while the trick involving the auxiliary variable a = 0 in
(15) is coded as:
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Vector zeroVec = Vector.Zero (3+K);
PositiveDefiniteMatrix betauPrecDummy =
new PositiveDefiniteMatrix (3+K, 3+K);
for (int j = 0; j < 3+4K; J++)
betauPrecDummy [, j] = kappa;
Variable<Vector> betauWork =
Variable.VectorGaussianFromMeanAndPrecision (zeroVec,
betauPrecDummy) .Named ("betauWork") ;

Variable<double>[] betauDummy = new Variable<double>[3+K];
for (int j = 0; J < 3+4K; Jj++)
betauDummy [j] = Variable.GetItem(betauWork, j);

Variable<double>[] a = new Variable<double>[3+K];
for (int j = 0; j < 3; j++)
{
alj] = Variable.GaussianFromMeanAndVariance (betauDummy/[j],
tauBeta) ;
aljl.ObservedvValue = 0.0;
}
for (int k = 0 ; k < K; k++)
{
a[3+k] = Variable.GaussianFromMeanAndPrecision (betauDummy[3+k],
taul) ;
a[3+k] .ObservedValue = 0.0;
}

The command to specify the likelihood for model (15) is listed as code chunk (17) in Sec-
tion 3. The inference engine and the number of mean field variational Bayes iterations are
specified by means of code chunk (18). Finally, the following commands write the estimated
values for the parameters of the approximate posteriors to files named mu.q.betau. txt,
Sigma.qg.betau.txt, parms.q.taukEps.txt and parms.qg.tauu.txt:

SaveData.SaveTable (engine.Infer<VectorGaussian> (betauWork) .GetMean (),
dir+"mu.g.betau.txt");

SaveData.SaveTable (engine.Infer<VectorGaussian> (
betauWork) .GetVariance (), dir+"Sigma.g.betau.txt");

SaveData.SaveTable (engine.Infer<Gamma> (taukps),
dir+"parms.q.tauEps.txt");

SaveData.SaveTable (engine.Infer<Gamma> (tauu),dir+"parms.q.tauu.txt");

These commands involve the Cf# function named SaveTable, which is a method in the
class saveData. We wrote SaveTable to facilitate writing the output from Infer.NET to
a text file. Summary plots, such as Figure 1, can be made in R after back-transforming the
approximate posterior density parameters.
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