
Multimedia Contents Motion Plan
139

Part
A
|7.1

7. Motion Planning

Lydia E. Kavraki, Steven M. LaValle

This chapter first provides a formulation of the
geometric path planning problem in Sect. 7.2
and then introduces sampling-based planning
in Sect. 7.3. Sampling-based planners are general
techniques applicable to a wide set of problems
and have been successful in dealing with hard
planning instances. For specific, often simpler,
planning instances, alternative approaches exist
and are presented in Sect. 7.4. These approaches
provide theoretical guarantees and for simple
planning instances they outperform sampling-
based planners. Section 7.5 considers problems
that involve differential constraints, while Sect. 7.6
overviews several other extensions of the basic
problem formulation and proposed solutions. Fi-
nally, Sect. 7.8 addresses some important andmore
advanced topics related to motion planning.

7.1 Robotics Motion Planning 139

7.2 Motion Planning Concepts 140
7.2.1 Configuration Space 140
7.2.2 Geometric Path Planning Problem . 141
7.2.3 Complexity of Motion Planning 141

7.3 Sampling-Based Planning 141
7.3.1 Multi-Query Planners:

Mapping the Connectivity of Cfree ... 142

7.3.2 Single-Query Planners:
Incremental Search 143

7.4 Alternative Approaches. 144
7.4.1 Combinatorial Roadmaps.............. 145
7.4.2 Roadmaps in Higher Dimensions ... 146
7.4.3 Potential Fields 146

7.5 Differential Constraints. 148
7.5.1 Concepts and Terminology 148
7.5.2 Discretization of Constraints 149
7.5.3 Decoupled Approach 149
7.5.4 Kinodynamic Planning 150

7.6 Extensions and Variations 151
7.6.1 Closed Kinematic Chains 151
7.6.2 Manipulation Planning. 151
7.6.3 Time-Varying Problems 151
7.6.4 Multiple Robots 152
7.6.5 Uncertainty in Predictability 153
7.6.6 Sensing Uncertainty 153
7.6.7 Optimal Planning 154

7.7 Advanced Issues.................................... 154
7.7.1 Topology of Configuration Spaces .. 154
7.7.2 Sampling Theory 155
7.7.3 Computational Algebraic

Geometry Techniques 156
7.8 Conclusions and Further Reading........... 157
Video-References . .. 158
References ... 158

7.1 Robotics Motion Planning

A fundamental robotics task is to plan collision-free
motions for complex bodies from a start to a goal
position among a collection of static obstacles. Al-
though relatively simple, this geometric path planning
problem is computationally hard [7.1]. Extensions of
this formulation take into account additional problems

that are inherited from mechanical and sensor limi-
tations of real robots such as uncertainties, feedback,
and differential constraints, which further complicate
the development of automated planners. Modern al-
gorithms have been fairly successful in addressing
hard instances of the basic geometric problem and

http://handbookofrobotics.org/view-chapter/7

Part
A
|7.2

140 Part A Robotics Foundations

a lot of effort has been devoted to extend their ca-
pabilities to more challenging instances. These algo-
rithms have had widespread success in applications
beyond robotics, such as computer animation, vir-

tual prototyping, and computational biology. There
are many available surveys [7.2–4] and books [7.5–
7] that cover modern motion planning techniques and
applications.

7.2 Motion Planning Concepts

This section provides a description of the fundamental
motion planning problem or the geometric path plan-
ning problem. Extensions of this basic formulation to
more complicated instances will be discussed later in
the chapter and will be revisited throughout this book.

7.2.1 Configuration Space

In path planning, a complete description of the geom-
etry of a robot A and of a workspace W is provided.
The workspace W DRN , in which N D 2 or N D 3, is
a static environment populated with obstacles. The goal
is to find a collision-free path for A to move from an
initial position and orientation to a goal position and
orientation.

To achieve this, a complete specification of the
location of every point on the robot geometry, or
a configuration q, must be provided. The configura-
tion space, or C-space (q 2 C), is the space of all
possible configurations. The C-space represents the set
of all transformations that can be applied to a robot
given its kinematics as described in Chap. 2 (Kine-
matics). It was recognized early on in motion planning
research [7.8, 9] that the C-space is a useful way to
abstract planning problems in a unified way. The ad-
vantage of this abstraction is that a robot with a com-
plex geometric shape is mapped to a single point in
the C-space. The number of degrees of freedom of
a robot system is the dimension of the C-space, or
the minimum number of parameters needed to specify
a configuration.

Let the closed setO �W represent the (workspace)
obstacle region, which is usually expressed as a collec-
tion of polyhedra, three-dimensional (3-D) triangles, or
piecewise-algebraic surfaces. Let the closed setA.q/�
W denote the set of points occupied by the robot when
at configuration q 2 C; this set is usually modeled using
the same primitives as used forO. TheC-space obstacle
region, Cobs, is defined as

Cobs D fq 2 C jA.q/\O 6D ;g: (7.1)

Since O and A.q/ are closed sets in W , the obstacle
region is a closed set in C. The set of configurations
that avoid collision is Cfree D C nCobs, and is called the
free space.

Simple Examples of C-spaces
Translating Planar Rigid Bodies. The robot’s con-
figuration can be specified by a reference point .x; y/ on
the planar rigid body relative to some fixed coordinate
frame. Therefore the C-space is equivalent to R2. Fig-
ure 7.1 gives an example of a C-space for a triangular
robot and a single polygonal obstacle. The obstacle re-
gion in the C-space can be traced by sliding the robot
around the workspace obstacle to find the constraints on
all q 2 C. Motion planning for the robot is now equiva-
lent to motion planning for a point in the C-space.

Planar Arms. Figure 7.2 gives an example of a two-
joint planar arm. The bases of both links are pinned, so
that they can only rotate around the joints, and there are
no joint limits. For this arm, specifying the rotational
parameters �1 and �2 provides the configuration. Each
joint angle �i corresponds to a point on the unit circle
S1 and the C-space is S1�S1 D T2, the two-dimensional
(2-D) torus shown in Fig. 7.2. For a higher number of

Obstacle

Configuration space obstacle

Robot (x, y)
(x, y)

a) b)

Fig.7.1a,b A robot translating in the plane: (a) a triangu-
lar robot moves in a workspace with a single rectangular
obstacle. (b) The C-space obstacle

θ2

θ2

θ1

θ1

a) b)

Fig. 7.2 (a) A two-joint planar arm in which the links are
pinned and there are no joint limits. (b) The C-space

http://dx.doi.org/10.1007/978-3-319-32552-1_2

Motion Planning 7.3 Sampling-Based Planning 141
Part

A
|7.3

links without joint limits, the C-space can be similarly
defined as

C D S1�S1� � � � �S1 : (7.2)

If a joint has limits, then each corresponding S1 is often
replaced with R, even though it is a finite interval. If
the base of the planar arm is mobile and not pinned,
then the additional translation parameters must also be
considered in the arm’s configuration

C DR2�S1�S1� � � � �S1 : (7.3)

Additional examples of C-spaces are provided in
Sect. 7.7.1, where topological properties of configura-
tion spaces are discussed.

7.2.2 Geometric Path Planning Problem

The basic motion planning problem, also known as the
piano mover’s problem [7.1], is defined as follows.
Given:

1. A workspace W , where either W DR2 or
W DR3.

2. An obstacle region O �W .
3. A robot defined in W . Either a rigid body A or

a collection of m links: A1;A2; : : : ;Am.
4. The configuration space C (Cobs and Cfree are then

defined).
5. An initial configuration qI 2 Cfree.
6. A goal configuration qG 2 Cfree. The initial and goal

configuration are often called a query (qI; qG).

Compute a (continuous) path, � W Œ0; 1�! Cfree,
such that �.0/D qI and �.1/D qG.

7.2.3 Complexity of Motion Planning

The main complications in motion planning are that it
is not easy to directly compute Cobs and Cfree, and the
dimensionality of the C-space is often quite high. In
terms of computational complexity, the piano mover’s
problem was studied early on and it was shown to be
PSPACE-hard by Reif [7.1]. A series of polynomial-

time algorithms for problems with fixed dimension
suggested an exponential dependence on the problem
dimensionality [7.10, 11]. A single exponential-time al-
gorithm in the C-space dimensionality was proposed by
Canny and showed that the problem is PSPACE-com-
plete [7.12]. Although impractical, the algorithm serves
as an upper bound on the general version of the basic
motion planning problem. It applies computational al-
gebraic geometry techniques for modeling the C-space
in order to construct a roadmap, a one-dimensional
(1-D) subspace that captures the connectivity of Cfree.
Additional details about such techniques can be found
in Sect. 7.7.3.

The complexity of the problem motivated work in
path planning research. One direction was to study sub-
classes of the general problem for which polynomial
time algorithms exist [7.13]. Even some simpler, spe-
cial cases of motion planning, however, are at least
as challenging, for example, the case of a finite num-
ber of translating, axis-aligned rectangles in R2 is
PSPACE-hard as well [7.14]. Some extensions of mo-
tion planning are even harder. For example, a certain
form of planning under uncertainty in 3-D polyhedral
environment is NEXPTIME-hard [7.15]. The hardest
problems in NEXPTIME are believed to require dou-
bly exponential time to solve.

A different direction was the development of al-
ternative planning paradigms that were practical under
realistic assumptions. Many combinatorial approaches
can efficiently construct 1-D roadmaps for specific 2-D
or 3-D problems. Potential field-based approaches de-
fine vector fields which can be followed by a robot
towards the goal. Both approaches, however, do not
scale well in the general case. They will be described
in Sect. 7.4. An alternative paradigm, sampling-based
planning, is a general approach that has been shown to
be successful in practice for many challenging prob-
lems. It avoids the exact geometric modeling of the C-
space but it cannot provide the guarantees of a complete
algorithm. Complete and exact algorithms are able to
detect that no path can be found. Instead sampling-based
planning offers a lower level of completeness guarantee.
This paradigm is described in the following section.

7.3 Sampling-Based Planning

Sampling-based planners are described first because
they are the method of choice for a very general class
of problems. The following section will describe other
planners, some of which were developed before the
sampling-based framework. The key idea in sampling-
based planning is to exploit advances in collision
detection algorithms that compute whether a single con-

figuration is collision free. Given this simple primitive,
a planner samples different configurations to construct
a data structure that stores 1-D C-space curves, which
represent collision-free paths. In this way, sampling-
based planners do not access the C-space obstacles
directly but only through the collision detector and the
constructed data structure. Using this level of abstrac-

Part
A
|7.3

142 Part A Robotics Foundations

tion, the planners are applicable to a wide range of
problems by tailoring the collision detector to specific
robots and applications.

A standard for sampling-based planners is to pro-
vide a weaker, but still interesting, form of com-
pleteness: if a solution path exists, the planner will
eventually find it. Giving up on the stronger form of
completeness, which also requires failure to be reported
in finite time, these techniques are able to solve in prac-
tice problems with more than three degrees of freedom
that complete approaches cannot address. More details
on this weaker form of completeness are provided in
Sect. 7.7.2.

Different planners follow different approaches on
how to sample configurations and what kind of
data structures they construct. Section 7.7.2 provides
a deeper insight on sampling issues. A typical classi-
fication of sampling-based planners is between multi-
query and single-query approaches:

� In the first category, the planners construct a road-
map, an undirected graph G that is precomputed
once so as to map the connectivity properties
of Cfree. After this step, multiple queries in the same
environment can be answered using only the con-
structed roadmap. Such planners are described in
Sect. 7.3.1.� Planners in the second category build tree data
structures on the fly given a planning query. They at-
tempt to focus on exploring the part of the C-space
that will lead to solving a specific query as fast as
possible. They are described in Sect. 7.3.2.

Both approaches, however, make similar use
of a collision checking primitive. The objective of
a collision detector is to report all geometric contacts
between objects given their geometries and transforma-
tions [7.16–18]. The availability of packages that were
able to answer collision queries in a fraction of a sec-
ond was critical to the development of sampling-based
planners. Modern planners use collision detectors as
a black box. Initially the planner provides the geome-
tries of all the involved objects and specifies which
of them are mobile. Then, in order to validate a robot
configuration, a planner provides the corresponding
robot transformation and a collision detector responds
on whether the objects collide or not. Many packages
represent the geometric models hierarchically, avoid
computing all-pairwise interactions, and conduct
a binary search to evaluate collisions. Except from
configurations, a planner must also validate entire
paths. Some collision detectors return distance-from-
collision information, which can be used to infer that
entire neighborhoods in C are valid. It is often more
expensive, however, to extract this information; instead

paths are usually validated point by point using a small
stepping size either incrementally or by employing
binary search. Some collision detectors are incremental
by design, which means that they can be faster by
reusing information from a previous query [7.16].
Examples of problems solved by sampling-based
planners are shown in VIDEO 24 and VIDEO 17 .

7.3.1 Multi-Query Planners:
Mapping the Connectivity of Cfree

Planners that aim to answer multiple queries for a cer-
tain static environment use a preprocessing phase dur-
ing which they attempt to map the connectivity proper-
ties of Cfree onto a roadmap. This roadmap has the form
of a graph G, with vertices as configurations and edges
as paths. A union of 1-D curves is a roadmap G if it
satisfies the following properties:

1. Accessibility: From any q 2 Cfree, it is simple and
efficient to compute a path � W Œ0; 1�! Cfree such
that �.0/D q and �.1/D s, in which s may be any
point in S.G/. S.G/ is the swath of G, the union of
all configurations reached by all edges and vertices.
This means that it is always possible to connect
a planning query pair qI and qG to some sI and sG,
respectively, in S.G/.

2. Connectivity preserving: The second condition re-
quires that, if there exists a path � W Œ0; 1�! Cfree

such that �.0/D qI and �.1/D qG, then there also
exists a path � 0 W Œ0; 1�! S.G/, such that � 0.0/D sI
and � 0.1/D sG. Thus, solutions are not missed be-
cause G fails to capture the connectivity of Cfree.

The probabilistic roadmap method (PRM) ap-
proach [7.19] attempts to approximate such a road-
map G in a computationally efficient way. The pre-
processing phase of PRM, which can be extended
to sampling-based roadmaps in general, follows these
steps:

1. Initialization: Let G.V;E/ represent an undirected
graph, which is initially empty. Vertices of G
will correspond to collision-free configurations, and
edges to collision-free paths that connect vertices.

2. Configuration sampling: A configuration ˛.i/ is
sampled from Cfree and added to the vertex set V.
˛.�/ is an infinite, dense sample sequence and ˛.i/
is the i-th point in that sequence.

3. Neighborhood computation: Usually, a metric is
defined in the C-space, 	 W C �C! R. Vertices q
already in V are then selected as part of ˛.i/’s neigh-
borhood if they have small distance according to 	.

4. Edge consideration: For those vertices q that do not
belong in the same connected component of G with

http://handbookofrobotics.org/view-chapter/07/videodetails/24
http://handbookofrobotics.org/view-chapter/07/videodetails/17

Motion Planning 7.3 Sampling-Based Planning 143
Part

A
|7.3

˛.i/ the algorithm attempts to connect them with an
edge.

5. Local planning method: Given ˛.i/ and q 2 Cfree

a module is used that attempts to construct
a path �s W Œ0; 1�! Cfree such that �.0/D ˛.i/ and
�.1/D q. Using collision detection, �s must be
checked to ensure that it does not cause a collision.

6. Edge insertion: Insert �s into E, as an edge from ˛.i/
to q.

7. Termination: The algorithm is typically terminated
when a predefined number of collision-free vertices
N has been added in the roadmap.

The algorithm is incremental in nature. Computa-
tion can be repeated by starting from an already existing
graph. A general sampling-based roadmap is summa-
rized in Algorithm 7.1.

Algorithm 7.1 Sampling-Based Roadmap
N: number of nodes to include in the roadmap
1: G.init(); i 0;
2: while i < N do
3: if ˛.i/ 2 Cfree then
4: G.add_ vertex.˛.i//; i iC 1;
5: for q 2 NEIGHBORHOOD.˛.i/,G/ do
6: if CONNECT .˛.i/; q/ then
7: G.add_ edge .˛.i/; q/;
8: end if
9: end for
10: end if
11: end while

An illustration of the algorithm’s behavior is de-
picted in Fig. 7.3. To solve a query, qI and qG
are connected to the roadmap, and graph search is
performed.

For the original PRM [7.19], the configuration ˛.i/
was produced using random sampling. For the connec-

Cobs

α (i) Cobs

Fig. 7.3 The sampling-based roadmap is constructed in-
crementally by attempting to connect each new sam-
ple, ˛.i/, to nearby vertices in the roadmap

tion step between q and ˛.i/, the algorithm used straight
line paths in the C-space. In some cases a connection
was attempted if q and ˛.i/ were in the same connected
component in order to improve path quality. There have
been many subsequent works that try to improve the
roadmap quality while using fewer samples. Methods
for concentrating samples at or near the boundary of
Cfree are presented in [7.20, 21]. Methods that move
samples as far from the boundary as possible appear
in [7.22, 23]. Deterministic sampling techniques, in-
cluding grids, appear in [7.24]. A method of pruning
vertices based on mutual visibility that leads to a dra-
matic reduction in the number of roadmap vertices
appears in [7.25]. Theoretical analysis of sampling-
based roadmaps appears in [7.24, 26, 27] and is briefly
discussed in Sect. 7.7.2. An experimental comparison
of sampling-based roadmap variants appears in [7.28].
One difficulty in these roadmap approaches is identify-
ing narrow passages. One proposal is to use the bridge
test for identifying these [7.29]. For other PRM-based
works, see [7.30–34]. Extended discussion of the topic
can be found in [7.5, 7].

7.3.2 Single-Query Planners:
Incremental Search

Single-query planning methods focus on a single
initial–goal configuration pair. They probe and search
the continuous C-space by extending tree data struc-
tures initialized at these known configurations and
eventually connecting them. Most single-query meth-
ods conform to the following template:

1. Initialization: Let G.V;E/ represent an undirected
search graph, for which the vertex set V contains
a vertex for one (usually qI) or more configura-
tions in Cfree, and the edge set E is empty. Vertices
of G are collision-free configurations, and edges are
collision-free paths that connect vertices.

2. Vertex selection method: Choose a vertex qcur 2 V
for expansion.

3. Local planning method: For some qnew 2 Cfree,
which may correspond to an existing vertex in V
but on a different tree or a sampled configuration,
attempt to construct a path �s W Œ0; 1�! Cfree such
that �.0/D qcur and �.1/D qnew. Using collision
detection, �s must be checked to ensure that it does
not cause a collision. If this step fails to produce
a collision-free path segment, then go to Step 2.

4. Insert an edge in the graph: Insert �s into E, as an
edge from qcur to qnew. If qnew is not already in V,
then it is inserted.

5. Check for a solution: Determine whetherG encodes
a solution path.

Part
A
|7.4

144 Part A Robotics Foundations

6. Return to Step 2: Iterate unless a solution has been
found or some termination condition is satisfied, in
which case the algorithm reports failure.

During execution, G may be organized into one or
more trees. This leads to:

1. Unidirectionalmethods, which involve a single tree,
usually rooted at qI [7.35],

2. Bidirectional methods, which involve two trees,
typically rooted at qI and qG [7.35], and

3. Multidirectional methods, which may have more
than two trees [7.36, 37].

The motivation for using more than one tree is that
a single tree may become trapped trying to find an exit
through a narrow opening. Traveling in the opposite
direction, however, may be easier. As more trees are
considered it becomes more complicated to determine
which connections should be made between trees.

Rapidly Exploring Dense Trees
The important idea with this family of techniques is that
the algorithm must incrementally explore the properties
of the C-space. An algorithm that achieves this objec-
tive is the rapidly exploring random tree (RRT) [7.35],
which can be generalized to the rapidly exploring dense
tree (RDT) for any dense sampling, deterministic or
random [7.7]. The basic idea is to induce a Voronoi bias
in the exploration process by selecting for expansion the
point in the tree that is closest to ˛.i/ in each iteration.
Using random samples, the probability that a vertex is
chosen is proportional to the volume of its Voronoi re-
gion. The tree construction is outlined as:

Algorithm 7.2 Rapidly Exploring Dense Trees
k: the exploration steps of the algorithm
1: G.init.qI/;
2: for iD 1 to k do
3: G.add_ vertex.˛.i//;
4: qn NEAREST.S.G/;˛.i//;
5: G.add_ edge.qn; ˛.i//;
6: end for

The tree starts at qI, and in each iteration, an edge and
vertex are added (Fig. 7.4).

α (i)

Cobs

q0

qn
qs

Fig. 7.4 If there is an obstacle, the edge travels up to the
obstacle boundary, as far as allowed by the collision detec-
tion algorithm

So far, the problem of reaching qG has not been
explained. There are several ways to use RDTs in
a planning algorithm. One approach is to bias ˛.i/ so
that qG is frequently chosen (perhaps once every 50
iterations). A more efficient approach is to develop
a bidirectional search by growing two trees, one from
each of qI and qG. Roughly half of the time is spent
expanding each tree in the usual way, while the other
half is spend attempting to connect the trees. The sim-
plest way to connect trees is to let the newest vertex of
one tree be a substitute for ˛.i/ in extending the other.
This tricks one RDT into attempting to connect to the
other while using the basic expansion algorithm [7.38].
Several works have extended, adapted, or applied RDTs
in various applications [7.37, 39–42]. Detailed descrip-
tions can be found in [7.5, 7].

Other Tree Algorithms
Planners based on the idea of expansive spaces are pre-
sented in [7.43–45]. In this case, the algorithm forces
exploration by choosing vertices for expansion that
have fewer points in a neighborhood around them.
In [7.46], additional performance is obtained by self-
tuning random walks, which focus virtually all of their
effort on exploration. Other successful tree-based al-
gorithms include the path-directed subdivision tree al-
gorithm [7.47] and some of its variants [7.48]. In the
literature, it is sometimes hard to locate tree-based plan-
ners for ordinary path planning problems as many of
them (including RRT) were designed and/or applied
to more complex problems (Sect. 7.5.4). Their perfor-
mance is nevertheless excellent for a variety of path
planing problems.

7.4 Alternative Approaches

Alternative approaches to the sampling-based paradigm
include potential-field-based techniques and combina-
torial methods that also produce roadmaps, such as cell

decompositions. These algorithms are able to elegantly
and efficiently solve a narrow class of problems, and
are much preferred over the algorithms of Sect. 7.3 in

Motion Planning 7.4 Alternative Approaches 145
Part

A
|7.4

these cases. Most of the combinatorial algorithms are
of theoretical interest, whereas sampling-based algo-
rithms are motivated primarily by performance issues
in challenging applications. Nevertheless, given some
abstractions, the combinatorial algorithms can be used
to solve practical problems such as autonomous naviga-
tion of mobile planar robots.

7.4.1 Combinatorial Roadmaps

Several algorithms exist for the case in which C DR2

and Cobs is polygonal. Most of these cannot be di-
rectly extended to higher dimensions; however, some
of the general principles remain the same. The maxi-
mum clearance roadmap (or retraction method [7.49])
constructs a roadmap that keeps paths as far from
the obstacles as possible. Paths are contributed to the
roadmap from the three cases shown in Fig. 7.5, which
correspond to all ways to pair together polygon fea-
tures. The roadmap can be made naively in time O.n4/
by generating all curves shown in Fig. 7.5 for all pos-
sible pairs, computing their intersections, and tracing
out the roadmap. Several algorithms exist that provide
better asymptotic running time [7.50], but they are con-
siderably more difficult to implement. The best-known
algorithm runs in O.n lg n/ time in which n is the num-
ber of roadmap curves [7.51].

An alternative is to compute a shortest-path
roadmap [7.52], as shown in Fig. 7.6. This is differ-
ent than the roadmap presented in the previous section
because paths may actually touch the obstacles, which
must be allowed for paths to be optimal. The roadmap
vertices are the reflex vertices of Cobs, which are ver-
tices for which the interior angle is greater than � . An
edge exists in the roadmap if and only if a pair of ver-
tices is mutually visible and the line through them pokes
into Cfree when extended outward from each vertex
(such lines are called bitangents). An O.n2 lg n/-time
construction algorithm can be formed by using a radial
sweep algorithm from each reflex vertex. It can theoret-
ically be computed in timeO.n2Cm/, in whichm is the
total number of edges in the roadmap [7.53].

Vertex–vertexEdge–edge Vertex–edge

Fig. 7.5 Voronoi roadmap pieces are generated in one of
three possible cases. The third case leads to a quadratic
curve

Figure 7.7 illustrates the vertical cell decomposition
approach. The idea is to decompose Cfree into cells that
are trapezoids or triangles. Planning in each cell is triv-
ial because it is convex. A roadmap is made by placing
a point in the center of each cell and each boundary be-
tween cells. Any graph search algorithm can be used
to find a collision-free path quickly. The cell decom-
position can be constructed in O.n lg n/ time using the
plane-sweep principle [7.54, 55]. Imagine that a vertical
line sweeps from xD�1 to xD1, stopping at places
where a polygon vertex is encountered. In these cases,
a cell boundary may be necessary above and/or below
the vertex. The order in which segments stab the ver-
tical line is maintained in a balanced search tree. This
enables the determination of the vertical cell boundary
limits in timeO.lg n/. The whole algorithm runs in time
O.n lg n/ because there are O.n/ vertices at which the
sweep line can stop (also, the vertices need to be sorted
at the outset, which requires time O.n lg n/).

Fig. 7.6 The shortest-path roadmap includes edges be-
tween consecutive reflex vertices on Cobs and also bitan-
gent edges

Fig. 7.7 The roadmap derived from the vertical cell de-
composition

Part
A
|7.4

146 Part A Robotics Foundations

7.4.2 Roadmaps in Higher Dimensions

It would be convenient if the methods of Sect. 7.4.1
directly extend into higher dimensions. Although this
unfortunately does not occur, some of the general ideas
extend. To consider a cell decomposition in higher di-
mensions, there are two main requirements: (1) each
cell should be simple enough that motion planning
within a cell is trivial; (2) the cells should fit together
nicely. A sufficient condition for the first requirement
is that cells are convex; more general shapes may be
allowed; however, the cells should not contain holes
under any circumstances. For the second requirement,
a sufficient condition is that the cells can be organized
into a singular complex. This means that for any two
d-dimensional cells for d 	 n, if the boundaries of the
cells intersect, then the common boundary must itself
be a complete cell (of lower dimension).

In two-dimensional polygonal C-spaces, triangula-
tion methods define nice cell decompositions that are
appropriate for motion planning. Finding good trian-
gulations, which for example means trying to avoid
thin triangles, is given considerable attention in com-
putational geometry [7.55]. Determining the decom-
position of a polygonal obstacle region with holes
that uses the smallest number of convex cells is NP-
hard [7.56]. Therefore, we are willing to tolerate nonop-
timal decompositions.

In three-dimensional C-spaces, if Cobs is polyhedral,
then the vertical decompositionmethod directly extends
by applying the plane sweep recursively, for example,
the critical events may occur at each z coordinate, at
which point changes a 2-D vertical decomposition over
the x and y coordinates are maintained. The polyhe-
dral case is obtained for a translating polyhedral robot
among polyhedral obstacles in R3; however, for most
interesting problems, Cobs becomes nonlinear. Suppose
C DR2 �S1, which corresponds to a robot that can
translate and rotate in the plane. Suppose the robot and
obstacles are polygonal. For the case of a line-segment
robot, an O.n5/ algorithm that is not too difficult to im-
plement is given in [7.57]. The approaches for more
general models and C-spaces are extremely difficult to
use in practice; they are mainly of theoretical interest
and are summarized in Sect. 7.7.3.

7.4.3 Potential Fields

A different approach for motion planning is inspired
from obstacle avoidance techniques [7.58]. It does
not explicitly construct a roadmap, but instead con-
structs a differentiable real-valued function U WRm!
R, called a potential function, that guides the mo-
tion of the moving object. The potential is typically

constructed so that it consists of an attractive compo-
nent Ua.q/, which pulls the robot towards the goal,
and a repulsive component Ur.q/, which pushes the
robot away from the obstacles, as shown in Fig. 7.8.
The gradient of the potential function is the vec-
tor rU.q/D DU.q/T D � @U

@q1
.q/; : : : ; @U

@qm
.q/
	T
, which

0
10

20
30

40

a)

b)

c)

50
0

0.5

1

1.5

0
10

20
30

40
50

0
10

20
30

40
50
0

0.5

1

1.5

0
10

20
30

40
50

0
10

20
30

40
50
0

0.5

1

1.5

0
10

20
30

40
50

Fig.7.8a–c An attractive and a repulsive component define
a potential function. (a) An attractive potential, (b) a re-
pulsive potential, (c) an attractive and repulsive component
define a potential function

Motion Planning 7.4 Alternative Approaches 147
Part

A
|7.4

points in the direction that locally maximally in-
creases U. After the definition of U, a path can be
computed by starting from qI and applying gradient de-
scent:

1. q.0/D qI; iD 0;
2. while rU.q.i//¤ 0 do
3. q.iC 1/D q.i/CrU.q.i//
4. iD iC 1

However, this gradient-descent approach does not
guarantee a solution to the problem. Gradient de-
scent can only reach a local minimum of U.q/, which
may not correspond to the goal state qG, as shown
in Fig. 7.9.

A planner that makes uses of potential functions
and attempts to avoid the issue of local minima is
the randomized potential planner [7.59]. The idea is
to combine potential functions with random walks by
employing multiple planning modes. In one mode,
gradient descent is applied until a local minimum is
reached. Another mode uses random walks to try to es-
cape local minima. A third mode performs backtracking
whenever several attempts to escape a local minimum
have failed. In many ways, this approach can be consid-
ered as a sampling-based planner. It also provides the
weaker completeness guarantee but it requires param-
eter tuning. Recent sampling-based methods achieve
better performance by spending more time exploring
the space, rather than focusing heavily on a potential
function.

The gradient of the potential function can be also
used to define a vector field, which assigns a motion

qgoalfatt

frep1

frep2

qgoal

q*

Local minimum

Robot path

a)

b)

Fig.7.9a,b Two examples of the local minimum problem
with potential functions

for the robot at any arbitrary configuration q 2 C. This
is an important advantage of the approach, beyond its
computational efficiency, since it does not only com-
pute a single path, but also a feedback control strategy.
This makes the approach more robust against control
and sensing errors. Most of the techniques in feedback
motion planning are based on the idea of navigation
functions [7.60], which are potential functions properly
constructed so as to have a single minimum. A function
� W Cfree! Œ0; 1� is called a navigation function if it:

� Is smooth (or at least Ck for k � 2),� Has a unique minimum at qG in the connected com-
ponent of the free space that contains qG,� Is uniformly maximal on the free-space boundaries,� and is Morse, which means that all its critical
points, such as saddle points, are isolated and can
be avoided with small random perturbations.

Navigation functions can be constructed for sphere
boundary spaces centered at qI that contain only spher-
ical obstacles, as illustrated in Fig. 7.10. Then they
can be extended to a large family of C-spaces that are
diffeomorphic to sphere spaces, such as star-shaped
spaces, as shown in Fig. 7.10. A more elaborate descrip-
tion of strategies for feedback motion planning will be
presented in Chap. 47.

qI

qG

a)

b)

qI

qG

Fig.7.10a,b Examples of (a) sphere and (b) star spaces

http://dx.doi.org/10.1007/978-3-319-32552-1_47

Part
A
|7.5

148 Part A Robotics Foundations

Putting the issue of local minima aside, another
major challenge for such potential function based ap-
proaches is constructing and representing the C-space

in the first place. This issue makes the applications of
these techniques too complicated for high-dimensional
problems.

7.5 Differential Constraints

Robot motions must usually conform to both global
and local constraints. Global constraints on C have
been considered in the form of obstacles and possi-
bly joint limits. Local constraints are modeled with
differential equations, and are therefore called differen-
tial constraints. These limit the velocities, and possibly
accelerations, at every point due to kinematic consid-
erations, such as wheels in contact, and dynamical
considerations, such as the conservation of angular
momentum.

7.5.1 Concepts and Terminology

Let Pq denote a velocity vector. Differential constraints
on C can be expressed either implicitly in the form
gi.q; Pq/D 0 or parametrically in the form PxD f .q; u/.
The implicit form is more general but often more dif-
ficult to understand and utilize. In the parametric form,
a vector-valued equation indicates the velocity that is
obtained for a given q and u, in which u is an input,
chosen from some input space, U. Let T denote an in-
terval of time, starting at tD 0.

To model dynamics, the concepts are extended into
a phase space X of the C-space. Usually each point
x 2 X represents both a configuration and velocity,
xD .q; Pq/. Both implicit and parametric representa-
tions are possible, yielding gi.x; Px/D 0 and PxD f .x; u/,
respectively. The latter is a common control system
definition. Note that PxD .Pq; Rq/, which implies that ac-
celeration constraints and full system dynamics can be
expressed.

Planning in the state space X could lead to
a straightforward definition of Xobs by declaring x 2
Xobs if and only if q 2 Cobs for xD .q; Pq/. However, an-
other interesting possibility exists which provides some
intuition about the difficulty of planning with dynam-
ics. This possibility is based on the notion of a region of
inevitable collision, which is defined as

Xric D fx.0/ 2 X j for any Qu 2U1; 9t > 0

such that x.t/ 2 Xobsg ; (7.4)

in which x.t/ is the state at time t obtained by integrat-
ing the control function Qu W T! U from x.0/. The set
U1 is a predefined set of all possible control func-
tions. Xric denotes the set of states in which the robot

is either in collision or, because of momentum, it can-
not do anything to avoid collision. It can be considered
as an invisible obstacle region that grows with speed
(Fig. 7.11).

Under the general heading of planning under differ-
ential constraints, there are many important categories
of problems that have received considerable attention
in research literature. The term nonholonomic plan-
ning was introduced for wheeled mobile robots [7.61].
A simple example is that a car cannot move sideways,
thereby making parallel parking more difficult. In gen-
eral, a nonholonomic constraint is a differential equality
constraint that cannot be integrated into a constraint
that involves no derivatives. Typically, nonholonomic
constraints that appear in robotics are kinematic, and
arise from wheels in contact [7.62]. Nonholonomic con-
straints may also arise from dynamics.

If a planning problem involves constraints on at
least velocity and acceleration, the problem is often re-
ferred to as kinodynamic planning [7.63]. Usually, the
model expresses a fully actuated system, which means
that it can be expressed as RqD h.q; Pq; u/, in which U
contains an open set that includes the origin of Rn

(here, n is the dimension of both U and C). It is pos-
sible for a problem to be nonholonomic, kinodynamic,
both, or neither; however, in recent times, the terms are
not used with much precision.

q· = 0
q

Xric Xric

Xric Xric

Xobs

q· > 0

q· < 0

q·

Fig. 7.11 The region of inevitable collision grows quadrat-
ically with the speed

Motion Planning 7.5 Differential Constraints 149
Part

A
|7.5

Trajectory planning is another important term,
which has referred mainly to the problem of deter-
mining both a path and velocity function for a robot
arm (e.g., PUMA 560). In the treatment below, all of
these will be referred to as planning under differential
constraints.

7.5.2 Discretization of Constraints

The only known methods for complete and optimal
planning under differential constraints in the presence
of obstacles are for the double integrator system with
X DR [7.64] and X DR2 [7.65]. To develop planning
algorithms in this context, several discretizations are
often needed. For ordinary motion planning, only C
needed to be discretized; with differential constraints,
T and possibly also U require discretization, in addition
to C (or X).

Discretization of the differential constraints is one
of the most important issues. To solve challenging plan-
ning problems efficiently, it is often necessary to de-
fine motion primitives for the particular dynamical sys-
tem [7.40, 66, 67]. One of the simplest ways to discretize
the differential constraints is to construct a discrete-time
model, which is characterized by three aspects:

1. The time interval T is partitioned into intervals of
length �t. This enables stages to be assigned, in
which stage k indicates that .k� 1/�t time has
elapsed.

2. A finite subset Ud of the action space U is cho-
sen. If U is already finite, then this selection may
be Ud D U.

3. The action u.t/must remain constant over each time
interval.

From an initial state, x, a reachability tree can be
formed by applying all sequences of discretized actions.
Figure 7.12 shows the path of this tree for the Dubins
car, which is a kinematic model of a car that drives in
the plane at unit speed and cannot move in reverse. The
edges of the tree are circular arcs and line segments.
For general systems, each trajectory segment in the tree
is determined by numerical integration of PxD f .x;u/
for a given u. In general, this can be viewed as an in-
cremental simulator that takes an input and produces
a trajectory segment according to PxD f .x;u/.

7.5.3 Decoupled Approach

A popular paradigm for trajectory planning and other
problems that involve dynamics is to decouple the
problem into first planning a path and then computing
a timing function along the path by performing a search
in the space spanned by .s; Ps/, in which s is the path

Two stages

a) b)

Four stages

Fig. 7.12 (a) A reachability tree for the Dubins car with three ac-
tions. (b) A 2-stage tree is shown. The k-th stage produces 3k new
vertices

0 1

s·

s

Sobs

Fig. 7.13 An illustration of the bang–bang approach to
computing a time-optimal trajectory. The solution trajec-
tory is obtained by connecting the dots

parameter and Ps is its first derivative. This leads to a di-
agram such as the one shown in Fig. 7.13, in which
the upper region Sobs must be avoided because the cor-
responding motion of the mechanical system violates
the differential constraints. Most methods are based on
early work in [7.68, 69], and determine a bang–bang
-control, which means that they switch between ac-
celerating and decelerating at full speed. This applies
to determining time-optimal trajectories (optimal once
constrained to the path). Dynamic programming can be
used for more general problems [7.70].

For some problems and nonholonomic systems,
steering methods have been developed to solve the
two-point boundary value problem efficiently [7.62,
71]. This means that, for any pair of states, a trajectory
that ignores obstacles but satisfies the differential con-
straints can be obtained. Moreover, for some systems,

Part
A
|7.5

150 Part A Robotics Foundations

q

q·

Fig. 7.14 Reachability graph from the origin, shown after three
stages (the true edges are actually parabolic arcs when accelera-
tion or deceleration occurs). Note that a lattice is obtained, but the
distance traveled in one stage increases as jPqj increases

the complete set of optimal trajectories has been charac-
terized [7.72, 73]. These control-based approaches en-
able straightforward adaptation of the sampling-based
roadmap approach [7.74, 75]. One decoupled approach
is to first plan a path that ignores differential constraints,
and then incrementally transform it into one that obeys
the constraints [7.62, 76].

7.5.4 Kinodynamic Planning

Due to the great difficulty of planning under differential
constraints, many successful planning algorithms that
address kinodynamic problems directly in the phase
space X are sampling based.

Sampling-based planning algorithms proceed by
exploring one or more reachability trees. Many paral-
lels can be drawn with searching on a grid; however,
reachability trees are more complicated because they do
not necessarily involve a regular lattice structure. The
vertex set of reachability trees is dense in most cases.

a) b)

Fig. 7.15 (a) The first four stages of
a dense reachability graph for the
Dubins car. (b) One possible search
graph, obtained by allowing at most
one vertex per cell. Many branches
are pruned away. In this simple exam-
ple there are no cell divisions along
the �-axis

It is therefore not clear how to search a bounded re-
gion exhaustively at a fixed resolution. It is also difficult
to design approaches that behave like a multiresolution
grid, in which refinements can be made arbitrarily to
ensure resolution completeness.

Many algorithms attempt to convert the reachabil-
ity tree into a lattice. This is the basis of the origi-
nal kinodynamic planning work [7.63], in which the
discrete-time approximation to the double integrator,
RqD u, is forced onto a lattice as shown in Fig. 7.14.
This enables an approximation algorithm to be devel-
oped that solves the kinodynamic planning problem in
time polynomial in the approximation quality 1=� and
the number of primitives that define the obstacles. Gen-
eralizations of the methods to fully actuated systems are
described in [7.7]. Surprisingly, it is even possible to
obtain a lattice for some underactuated, nonholonomic
systems [7.77].

If the reachability tree does not form a lattice, then
one approach is to force it to behave as a lattice by
imposing a regular cell decomposition over X (or C),
and allowing no more than one vertex per cell to be ex-
panded in the reachability graph (Fig. 7.15). This idea
was introduced in [7.78]. In their version of this ap-
proach, the reachability graph is expanded by dynamic
programming. Each cell is initially marked as being in
collision or being collision free, but not yet visited. As
cells are visited during the search, they become marked
as such. If a potential new vertex lands in a visited cell,
it is not saved. This has the effect of pruning the reach-
ability tree.

Other related approaches do not try to force the
reachability tree onto a lattice. RRTs were designed
to expand the tree in a way that is biased toward
covering as much new territory as possible in each it-
eration [7.79]. Planners that are based on the concept
of expansive trees attempt to control the density of ver-

Motion Planning 7.6 Extensions and Variations 151
Part

A
|7.6

tices in the tree by analyzing neighborhoods [7.44]. The
path-directed subdivision tree planner expands a tree,
while building an adaptive subdivision of the state
space, so as to avoid resampling the same regions of the
space [7.47, 80]. Such approaches can be biased to ac-

celerate the expansion of the tree towards a goal, while
still providing the weaker probabilistic completeness
guarantee [7.48]. VIDEO 24 provides an example of
the use of a tree-based planner together with a physics-
engine which accounts for the constraints.

7.6 Extensions and Variations

A brief overview of other important extensions to the
basic motion planning problem are presented in this
section.

7.6.1 Closed Kinematic Chains

In many cases, the robot may be consist of links that
form closed loops. This arises in many important appli-
cations, for example, if two arms grasp an object then
a loop is formed and a humanoid robot forms a loop if
both legs touch the ground. For parallel robots, loops
are intentionally designed into the robot [7.81]; a clas-
sic example is the Stewart–Gough platform. To model
closed-chain problems, the loops are broken so that
a kinematic tree of links is obtained. The main compli-
cation is that constraints on C of the form h.q/D 0 are
introduced, which require that the loops are maintained.
This causes great trouble for most planning algorithms
because without loops a parameterization of C was
available. The closure constraints restrict the planning
to a lower-dimensional subset of C for which no param-
eterization is given. Computing a parameterization is
generally difficult or impossible [7.82], although there
has been recent progress for some special cases [7.83].

Sampling-based approaches can generally be adap-
ted to handle closed chains. The main difficulty is that
the samples ˛.i/ over C are unlikely to be configu-
rations that satisfy closure. In [7.84], both RRTs and
PRMs were adapted to closed chains. RRTs performed
much better because a costly optimization was required
in the PRM to move samples onto the closure sub-
space; RRTs on the other hand do not require samples
to lie in this subspace. By decomposing chains into ac-
tive and passive links, followed by inverse kinematics
computations, performance was dramatically improved
for PRMs in [7.85]. This idea was further improved by
the introduction of the random loop generator (RLG).
Based on this, some of the most challenging closed-
chain planning problems ever solved appear in [7.86].

7.6.2 Manipulation Planning

In most forms of motion planning, the robot is not
allowed to touch obstacles. Suppose instead that it is ex-

pected to interact with its environment by manipulating
objects. The goal may be to bring an object from one
place to another, or to rearrange a collection of objects.
This leads to a kind of hybrid motion planning prob-
lem, which mixes discrete and continuous spaces. There
are discrete modes that correspond to whether the robot
is carrying a part [7.87]. In the transit mode, the robot
moves toward a part. In the transfer mode, it carries the
part. Transitions between modes require meeting spe-
cific grasping and stability requirement. One important
variant of manipulation planning is assembly planning,
in which the goal is to fit a collection of pieces together
to make an assembled product [7.88]. Most motion
planning work makes limiting assumptions on the kinds
of interaction that can occur between the robot and the
objects. For richer models of manipulation, see [7.89].

7.6.3 Time-Varying Problems

Suppose that the workspace contains moving obsta-
cles whose trajectories are specified as a function of
time. Let T � R denote the time interval, which may
be bounded or unbounded. A state X is defined as
X D C�T , in which C is the usual C-space of the robot.
The obstacle region in X is characterized as

Xobs D f.q; t/ 2 X jA.q/\O.t/ 6D ;g ; (7.5)

in which O.t/ is a time-varying obstacle. Many plan-
ning algorithms can be adapted to X, which has only
one more dimension than C. The main complication is
that time must always increase along a path through X.

For the easiest version of the problem, there is no
bound on the robot speed. In this case, virtually any
sampling-based algorithm can be adapted. Incremental
searching and sampling methods apply with little mod-
ification, except that paths are directed so that forward
time progress is made. Using bidirectional approaches
is more difficult for time-varying problems because the
goal is usually not a single point due to the time de-
pendency. Sampling-based roadmaps can be adapted;
however, a directed roadmap is needed, in which every
edge must be directed to yield a time-monotonic path.

http://handbookofrobotics.org/view-chapter/07/videodetails/24

Part
A
|7.6

152 Part A Robotics Foundations

If the motion model is algebraic (i. e., expressed
with polynomials) then Xobs is semi-algebraic. This en-
ables cylindrical algebraic decomposition to apply. If
Xobs is polyhedral, as depicted in Fig. 7.16, then verti-
cal decomposition can be used. It is best to first sweep
the plane along the T-axis, stopping at the critical times
when the linear motion changes.

There has been no consideration so far of the speed
at which the robot must move to avoid obstacles. It is
obviously impractical in many applications if the solu-
tion requires the robot to move arbitrarily fast. One step
towards making a realistic model is to enforce a bound
on the speed of the robot. Unfortunately, the problem
is considerably more difficult. Even for piecewise-lin-
ear motions of obstacles in the plane, the problem has
been established to be PSPACE-hard [7.90]. A com-
plete algorithm based on the shortest-path roadmap is
presented in [7.91].

An alternative to defining the problem in C �T is
to decouple it into a path planning part and a motion
timing part. A collision-free path in the absence of ob-
stacles is first computed. A search in a 2-D space is then
performed to determine the timing function (or time
scaling) for the path.

7.6.4 Multiple Robots

A simple extension to the basic motion planning prob-
lem can be made to handle multibody robots by includ-
ing robot self-intersections; however, it is important to
specify the pairs of bodies for which collision is unac-
ceptable, for example, consecutive links in a robot arm
are allowed to touch.

yt
xt

qG

t

Cfree (t1) Cfree (t2) Cfree (t3)

t1 t2 t3

Fig. 7.16 A time-varying example with linear obstacle motion

Substantial attention has been devoted to the prob-
lem of planning for multiple robots (VIDEO 21 and

VIDEO 22). Suppose there are m robots. A state
space is defined that considers the configurations of all
robots simultaneously,

X D C1 �C2 � � � � �Cm: (7.6)

A state x 2 X specifies all robot configurations, and may
be expressed as xD .q1; q2; : : : ; qm/. The dimension
of X is N, which is N DPm

iD1 dim.Ci/.
There are two sources of obstacle regions in

the state space: (1) robot–obstacle collisions, and
(2) robot–robot collisions. For each i such that 1	 i 	
m, the subset of X that corresponds to robot Ai in col-
lision with the obstacle region O is

Xi
obs D fx 2 X jAi.qi/\O 6D ;g: (7.7)

This models the robot–obstacle collisions.
For each pair, Ai and Aj, of robots, the subset of X

that corresponds to Ai in collision with Aj is

Xij
obs D fx 2 X jAi.qi/\Aj.qj/ 6D ;g: (7.8)

Both (7.7) and (7.8) will be combined in (7.9) to
yield Xobs. The obstacle region in X is

Xobs D

m[
iD1

Xi
obs

! [
0
@ [

ij; i6Dj

Xij
obs

1
A : (7.9)

Once these definitions have beenmade, any general-
purpose planning algorithm can be applied because X
and Xobs appear no different from C and Cobs, except
that the dimension N may be very high. Approaches
that plan directly in X are called centralized. The high
dimensionality of X motivates the development of de-
coupled approaches that handle some aspects of the
planning independently for each robot. Decoupled ap-
proaches are usually more efficient, but this usually
comes at the expense of sacrificing completeness. An
early decoupled approach is prioritized planning [7.92,
93], in which a path and timing function is computed
for the i-th robot while treating the first i� 1 robots as
moving obstacles as they follow their paths. Another
decoupled approach is fixed-path coordination [7.94],
in which the paths are planned independently for each
robot, and then their timing functions are determined
by computing a collision-free path through an m-
dimensional coordination space. Each axis in this space
corresponds to the domain of the path of one robot.
Fig. 7.17 shows an example. The idea has been gen-
eralized to coordination on roadmaps [7.95, 96].

http://handbookofrobotics.org/view-chapter/07/videodetails/21
http://handbookofrobotics.org/view-chapter/07/videodetails/22

Motion Planning 7.6 Extensions and Variations 153
Part

A
|7.6

7.6.5 Uncertainty in Predictability

If the execution of the plan is not predictable, then feed-
back is needed. The uncertainty may be modeled either
implicitly, which means that the plan is able to respond
to unexpected future configurations, or explicitly, which
means that the uncertainty is precisely characterized
and analyzed in the development of a plan. Potential-
function-based approaches are one way of achieving
feedback motion planning.

A plan can be represented as a vector field
over Cfree, in which each vector indicates the required
velocity. The integral curves of the field should flow
into the goal without leaving Cobs. If dynamics are
a concern, then the vector field can be tracked by an ac-
celeration-based control model

uD K.f .q/� Pq/Cr
Pqf .q/ ; (7.10)

in which K is a scalar gain constant. Alternatively,
a vector field may be designed directly on the phase
space, X; however, there are not methods to compute
such fields efficiently under general conditions. This
can also be considered as a feedback control problem
with implicit, nonlinear constraints on X.

If the uncertainty is modeled explicitly, then a game
against nature is obtained, in which the uncertainty
is caused by a special decision maker called nature.
The decisions of nature can either be modeled non-
deterministically, which means that a set of possible
actions is specified, or probabilistically, which means
that a probability distribution or density is specified
over the nature actions. Under nondeterministic un-
certainty, worst-case analysis is usually performed to
select a plan; under probabilistic uncertainty, expected-
case analysis is usually performed. Numerous ap-
proaches exist for such problems, including value itera-
tion, Dijkstra-like algorithms, and reinforcement learn-
ing algorithms [7.7].

7.6.6 Sensing Uncertainty

Consider solving tasks such as localization, map build-
ing, manipulation, target tracking, and pursuit-evasion
(hide-and-seek) with limited sensing. If the current con-
figuration or state is not known during execution, then
the problem may appear quite different. Information is
obtained from sensors, and the planning problem nat-
urally lives in an information space or I-space [7.7,
Chap. 11]. The state may include the configuration,
velocities, or even the map of the environment (e.g.,
obstacles). The most basic I-space is the set of all
histories that can be obtained during execution, based
on all sensing observations, actions previously applied,

s3
s2

s1

s1

s2

s2

s3

s1

s3

Fig. 7.17 The obstacles that arise from coordinating m robots are
always cylindrical. The set of all 1

2m.m� 1/ axis-aligned 2-D pro-
jections completely characterizes Xobs

and the initial conditions. The goal in developing ef-
ficient algorithms in this context is to determine in-
formation mappings that reduce the I-space size or
complexity so that plans that can be computed that
use information feedback. The traditional way to use
the information state is for estimating the state. This
is sufficient for solving many tasks, but it is often not
necessary. It may be possible to design and execute suc-
cessful plans without ever knowing the current state.
This can lead to more robust robot systems which may
also be cheaper to manufacture due to weaker sensing
requirements.

Two important families of I-spaces are nondeter-
ministic and probabilistic. A nondeterministic informa-
tion state (I-state) is a set of states that are possible
given the available history of sensor observations and
actions applied during execution. The nondeterministic
I-space is the set of all possibilities. Similarly, a proba-
bilistic I-state is a probability density function over the
state space, conditioned on the available history. The
probabilistic I-space is often called the belief space,
which represents the set of all probability density func-
tions. Both filtering and planning over these spaces
remains a topic of active research. One of most use-
ful and classical results is the Kalman filter [7.97],
for which the belief space reduces to Gaussians, al-
lowing it to be completely parametrized by mean and
covariance of state. Many approaches to reasoning
in these I-spaces attempt to reduce its complexity,
through combinatorial reasoning in the case of nonde-
terministic I-spaces [7.98] and through approximations,

Part
A
|7.7

154 Part A Robotics Foundations

sampling, and dimensionality reduction techniques in
belief spaces [7.99–103]. For example, a sampling-
based roadmap can be constructed directly in the belief
space [7.104].

7.6.7 Optimal Planning

In most formulations of planning, computing an opti-
mal solution is given little or no importance. Several
factors have contributed to this trend. One of the most
fundamental is that a natural criterion of optimality
often does not exist. Unlike control theory, where op-
timality is a central goal, the main task in planning is
to avoid obstacles. Imagine walking quickly through
a furniture store. Moving along the shortest possible
path would cause you to touch the corners of obsta-
cles, which might not be desirable. You could try to
maximize clearance, but this causes longer paths, which
again might not be desirable. Another factor is that so-
lutions produced by path planning algorithms tend to
not be excessively long, especially after some quick
post-processing in the case of sampling-based planners.
Finally, the computational complexity of the optimal
planning problem is typically worse than its feasible
(not necessarily optimal) counterpart. One of the most
notable exceptions is planning in field robotics (outdoor
vehicles in unstructured terrain), for which cost func-

tion determines navigability at each point, leading to the
well-known family of D* algorithms [7.105, 106].

In spite of these issues, several useful approaches
and interesting ideas have emerged. As mentioned in
Sect. 7.4.1, the shortest-path roadmap is an effective
multiple-query approach in the case of a 2-D, polyg-
onal C-space. Alternatively, the continuous Dijkstra
method provides an effective single-query approach
by propagating wavefronts that correspond to level
sets of the optimal cost from the initial configuration
[7.107, 108]. The wavefronts are propagated combina-
torially, stopping only at critical events, leading to an
exact, optimal solution. In the case of 3-D polyhedral
C-spaces, the shortest path problem already becomes
PSPACE-hard [7.15]. However, algorithms that produce
approximately optimal solutions exist [7.109–111], and
are useful in C-spaces of several dimensions. Dijkstra-
like approaches can be adapted to include various forms
of uncertainty and differential constraints, and are all
derived in some way from value iteration methods
introduced by Bellman in the 1950s. See Chaps. 7,
10, and 14 of [7.7] for more discussion. Pushing into
even higher dimensions, recent sampling-based plan-
ning methods have produced asymptotically optimal
versions RRTs [7.112] and PRMs [7.112, 113], which
have been shown to produce paths that improve in qual-
ity as time progresses.

7.7 Advanced Issues

We cover here a series of more advanced issues, such
as topics from topology and sampling theory, and how
they influence the performance of motion planners. The
last section is devoted to computational algebraic geom-
etry techniques that achieve completeness in the general
case. Rather than being a practical alternative, these
techniques serve as an upper bound on the best asymp-
totic running time that could be obtained.

7.7.1 Topology of Configuration Spaces

Manifolds
One reason that the topology of a C-space is important
is because it affects its representation. Another reason is
that, if a path-planning algorithm can solve problems in
a topological space, then that algorithm may carry over
to topologically equivalent spaces.

The following definitions are important in order to
describe the topology of C-space. A map � W S! T is
called a homeomorphism if � is a bijection and both �
and ��1 are continuous. When such a map exists, S
and T are said to be homeomorphic. A set S is an
n-dimensional manifold if it is locally homeomorphic

to Rn, meaning that each point in S possesses a neigh-
borhood that is homeomorphic to Rn. For more details,
see [7.114, 115].

In the vast majority of motion planning problems,
the configuration space is a manifold. An example
of a C-space that is not a manifold is the closed
unit square: Œ0; 1�� Œ0; 1��R2, which is a manifold
with boundary obtained by pasting the one-dimensional
boundary on the two-dimensional open set .0; 1/�
.0; 1/. When a C-space is a manifold, then we can
represent it with just n parameters, in which n is the
dimension of the configuration space. Although an n-
dimensional manifold can be represented using as few
as n parameters, due to constraints it might be eas-
ier to use a representation that has higher number of
parameters, e.g., the unit circle S1 can be represented
as S1 D f.x; y/jx2C y2 D 1g by embedding S1 in R2.
Similarly, the torus T2 can be embedded in R3.

Representation
Embeddings into higher-dimensional spaces can facili-
tate many C-space operations. For example, the orien-
tation of a rigid body in space can be represented by

Motion Planning 7.7 Advanced Issues 155
Part

A
|7.7

a n� n matrix of real numbers. The n2 matrix entries
must satisfy a number of smooth equality constraints,
making the manifold of such matrices a submanifold
of Rm2

. One advantage is that these matrices can be
multiplied to get another matrix in the manifold. For ex-
ample, the orientation of a rigid-body in n-dimensional
space (nD 2 or 3) is described by the set SO.n/, the set
of all n� n rotation matrices. The position and orienta-
tion of a rigid body is represented by the set SE.n/, the
set of all n� n homogeneous transformation matrices.
These matrix groups can be used to (1) represent rigid-
body configurations, (2) change the reference frame for
the representation of a configuration, and (3) displace
a configuration.

There are numerous parameterizations of SO.3/
[7.116] but unit quaternions correctly preserve the C-
space topology as S1 represents 2-D rotations. Quater-
nions were introduced in Chap. 2. There is, however,
a two-to-one correspondence between unit quaternions
and 3-D rotation matrices. This causes a topological is-
sue that is similar to the equivalence of 0 and 2� for
2-D rotations. One way to account for this is to declare
antipodal (opposite) points on S3 to be equivalent. In
planning, only the upper hemisphere of S3 is needed,
and paths that cross the equator instantly reappear on
the opposite side of S3, heading back into the northern
hemisphere. In topology, this is called a real projective
space: RP 3. Hence, the C-space of a 3-D body capable
only of rotation is RP 3. If both translation and rotation
are allowed, then SE.3/, the set of all 4�4 homogeneous
transformation matrices, yields

C DR3 �RP 3 ; (7.11)

which is six dimensional. A configuration q 2 C can
be expressed using quaternions with seven coordinates,
.x; y; z; a;b; c; d/, in which a2Cb2Cc2Cd2 D 1. More
examples can be found in Table 7.1.

7.7.2 Sampling Theory

Since the most successful paradigm for motion plan-
ning today is the sampling-based framework, presented

Table 7.1 Some common robots and their C-spaces

Type of robot C-space
representation

Mobile robot translating in the plane R2

Mobile robot translating and rotating
in the plane

SE.2/ or R2 � S1

Rigid body translating in the three-space R3

A spacecraft SE.3/ or R3 � SO.3/
An n-joint revolute arm Tn

A planar mobile robot with an attached
n-joint arm

SE.2/� Tn

in Sect. 7.3, sampling theory becomes relevant to the
motion planning problem.

Metrics in Configuration/State Spaces
Virtually all sampling-based methods require some no-
tion of distance on C. For example, the sampling-based
roadmap method selects candidate vertices to connect
a new configuration given a distance-defined neigh-
borhood. Similarly, the rapidly exploring dense trees
expands the tree from the nearest node of the tree
to a newly sampled configuration. Usually, a metric,
	 W C �C!R, is defined, which satisfies the standard
axioms: nonnegativity, reflexivity, symmetry, and the
triangle inequality.

Two difficult issues that arise in constructing a met-
ric are: (1) the topology of C must be respected, and
(2) several different quantities, such as linear and angu-
lar displacements, must be compared in some way. To
illustrate the second issue, consider defining a metric 	z
for a space constructed as Z D X �Y as

	z.z; z
0/D 	z.x; y; x

0; y0/

D c1	x.x; x
0/C c2	y.y; y

0/ : (7.12)

Above, c1 and c2 are arbitrary positive constants that
indicate the relative weights of the two components.
For a 2-D rotation, �i, expressed as ai D cos �i and
bi D sin �i, a useful metric is

	.a1; b1; a2; b2/D cos�1.a1a2C b1b2/ : (7.13)

The 3-D equivalent is obtained by defining

	0.h1;h2/D cos�1.a1a2C b1b2C c1c2C d1d2/ ;

(7.14)

in which each hi D .ai; bi; ci; di/ is a unit quaternion.
The metric is defined as 	.h1; h2/Dmin.	0.h1;h2/,
	0.h1;�h2//, by respecting the required identification
of antipodal points. This computes the shortest distance
in R4, for a path constrained to the unit sphere.

In some algorithms, defining volume on C may
also be important. In general, this leads to a measure
space, for which the volume function (called the mea-
sure) must satisfy axioms that resemble the probability
axioms, but without normalization. For transformation
groups, one must be careful to define volumes in a way
that is invariant with respect to transformations. Such
volumes are called Haar measures. Defining volumes
via balls using the metric definitions (7.13) and (7.14)
actually satisfy this concern.

Probabilistic Versus Deterministic Sampling
The C-space may be sampled probabilistically or de-
terministically. Either way, the requirement is usu-
ally that a dense sequence ˛ of samples is obtained.

http://dx.doi.org/10.1007/978-3-319-32552-1_2

Part
A
|7.7

156 Part A Robotics Foundations

This means that, in the limit as the number of sam-
ples tends to infinity, the samples become arbitrarily
close to every point in C. For probabilistic sampling,
this denseness (with probability one) ensures prob-
abilistic completeness of a planning algorithm. For
deterministic sampling, it ensures resolution complete-
ness, which means that, if a solution exists, the algo-
rithm is guaranteed to find it; otherwise, it may run
forever.

For probabilistic sampling, samples are selected
randomly over C, using a uniform probability den-
sity function. To obtain uniformity in a meaning-
ful way, the Haar measure should be used. This
is straightforward in many cases; SO.3/ however is
tricky. A uniform (with respect to Haar measure)
random quaternion is selected as follows. Choose
three points u1; u2; u3 2 Œ0; 1� uniformly at random, and
let [7.117]

hD
�p

1� u1 sin 2�u2;
p
1� u1 cos 2�u2 ;

p
u1 sin 2�u3;

p
u1 cos 2�u3

�
:

(7.15)

Even though random samples are uniform in some
sense, they are also required to have some irregularity
to satisfy statistical tests. This has motivated the de-
velopment of deterministic sampling schemes that offer
better performance [7.118]. Instead of being concerned
with randomness, deterministic sampling techniques
are designed to optimize criteria, such as discrepancy
and dispersion. Discrepancy penalizes regularity in the
sample, which frequently causes trouble in numerical
integration. Dispersion gives the radius of the largest
empty (not containing samples) ball. Thus, driving dis-
persion down quickly means that the whole space is
explored quickly. Deterministic samples may be ir-
regular neighborhood structure (appearing much like
random samples), or regular neighborhood structure,
which means that points are arranged along a grid or
lattice. For more details in the context of motion plan-
ning, see [7.7].

7.7.3 Computational Algebraic
Geometry Techniques

Sampling-based algorithms provide good practical per-
formance at the expense of achieving only a weaker
form of completeness. On the other hand, complete al-
gorithms, which are the focus of this section, are able to
deduce that there is no solution to a planning problem.

Complete algorithms are able to solve virtually any
motion planning problem as long as Cobs is represented
by patches of algebraic surfaces. Formally, the model
must be semi-algebraic, which means that it is formed

from unions and intersections of roots of multivariate
polynomials in q, and for computability, the polyno-
mials must have rational coefficients (otherwise roots
may not have finite representations). The set of all roots
to polynomials with rational coefficients is called real
algebraic numbers and has many nice computational
properties. See [7.12, 119–121] for more information
on the exact representation and calculation with real al-
gebraic numbers. For a gentle introduction to algebraic
geometry, see [7.82].

To use techniques based on algebraic geometry, the
first step is to convert the models into the required
polynomials. Suppose that the models, the robot, A,
and the obstacles O are semi-algebraic (this includes
polyhedral models). For any number of attached 2-D
or 3-D bodies, the kinematic transformations can be
expressed using polynomials. Since polynomial trans-
formations of polynomials yield polynomials, the trans-
formed robot model is polynomial. The algebraic sur-
faces that comprise Cobs are computed by carefully
considering all contact types, which characterize all
ways to pair a robot feature (faces, edges, vertices)
with an obstacle feature [7.6, 7, 9, 122]. This step al-
ready produces too many model primitives to be useful
in most applications.

Once the semi-algebraic representation has been ob-
tained, powerful techniques from algebraic geometry
can be exploited. One of the most widely known al-
gorithms, cylindrical algebraic decomposition [7.119,
123, 124], provides the information needed to solve the
motion planning problem. It was originally designed
to determine whether Tarski sentences, which involve
quantifiers and polynomials, are satisfiable, and to find
an equivalent expression that does not involve quanti-
fiers. The decomposition produces a finite set of cells
over which the signs of the polynomials remain fixed.
This enables a systematic approach to satisfiability and
quantifier elimination. It was recognized by Schwartz
and Sharir [7.121] that it also solves motion planning.

The method is conceptually simple, but there are
many difficult technical details. The decomposition is
called cylindrical because the cells are organized into
vertical columns of cells, see Fig. 7.18 for a 2-D ex-
ample. There are two kinds of critical events, shown
in Fig. 7.19. At critical points, rays are extended indef-
initely in both vertical directions. The decomposition
differs from the vertical decomposition in Fig. 7.7
because there the rays were only extended until the
next obstacle was hit. Here, columns of cells are
obtained.

In n dimensions, each column represents a chain of
cells. The first and last cells are n-dimensional and un-
bounded. The remaining cells are bounded and alternate
between being .n� 1/-dimensional and n-dimensional.

Motion Planning 7.8 Conclusions and Further Reading 157
Part

A
|7.8

The bounded n-dimensional cells are bounded above
and below by the roots of single multivariate polynomi-
als. This makes it simple to describe the cells and their
connectivity. To compute this cell decomposition, the
algorithm constructs a cascading chain of projections.
In the first step, Cobs is projected from Rn to Rn�1.
This is followed by a projection into Rn�2. This re-
peats until R is obtained with a univariate polynomial
that encodes the places at which all critical boundaries
need to be placed. In a second phase of the algorithm,
a series of liftings is performed. Each lifting takes the
polynomials and cell decomposition over Ri and lifts
them via columns of cells to RiC1. A single lifting is
illustrated in Fig. 7.18b. The running time of the full
algorithm depends on the particular methods used to
perform the algebraic computations. The total running
time required to use cylindrical algebraic decomposi-
tion for motion planning is bounded by .md/O.1/

n
, in

which m is the number of polynomials to describe Cobs

(a huge number), and d is the maximum algebraic de-
gree. (It may seem odd for O.�/ to appear in the middle
of an expression. In this context, it means that there
exists some c 2 Œ0;1/ such that the running time is
bounded by .md/c

n
. Note that another O is not neces-

sary in the front of the whole formula.) The main point
to remember is that the algorithm is doubly exponen-
tial in the dimension of C (even the number of cells is
doubly exponential).

Although performing the cylindrical decomposition
is sufficient for solving motion planning, it computes
more information than is necessary. This motivates
Canny’s roadmap algorithm [7.12], which produces
a roadmap directly from the semi-algebraic set, rather
than constructing a cell decomposition along the way.
Since there are doubly exponentially many cells in the
cylindrical algebraic decomposition, avoiding this con-
struction pays off. The resulting roadmap method of
Canny solves the motion planning problem in time that
is again polynomial in the number of polynomials and
polynomial in the algebraic degree, but is only singly
exponential in dimension [7.12].

The basic idea is to find silhouette curves in R2

of Cobs in Rn. The method finds zero-dimensional crit-
ical points and one-dimensional critical curves. The
critical curves become roadmap edges, and the criti-

a) b)

35

36

34

25

24

23

22

26

27

28
33

32

31
30

29

13

12

11

10

19

18

17

20

21

14

15

16

3
8

9

7
6

5
2

1

4

37

Fig. 7.18 (a) A face modeled with four algebraic primitives, and
(b) a cylindrical algebraic decomposition of the face

IntersectionFolding over

Fig. 7.19 Critical points occur either when the surface
folds over in the vertical direction or when surfaces
intersect

cal points are places at which the algorithm recursively
finds silhouettes of .n� 1/-dimensional slices of Cobs.
These contribute more critical points and curves. The
curves are added to the roadmap, and the algorithm
recurses again on the critical points. The recursive it-
erations terminate at nD 2. Canny showed that the
resulting union of critical curves preserves the connec-
tivity of Cobs (and hence, Cfree). Some of the technical
issues are: the algorithm works with a stratification
of Cobs into manifolds; there are strong general position
assumptions that are hard to meet; paths are actually
considered along the boundary of Cfree; and the method
does not produce a parameterized solution path. For
improvements to Canny’s algorithm and many other im-
portant details, see [7.119].

7.8 Conclusions and Further Reading

The brief survey given here hardly does justice to mo-
tion planning, which is a rich and active research field.
For more details, we recommend consulting two recent
textbooks [7.5, 7]. In addition, see the classic textbook

of Latombe [7.6], the classic papers in [7.4], and the re-
cent surveys in [7.2, 3]. Furthermore, consult the related
handbook chapters that were indicated throughout this
chapter.

Part
A
|7

158 Part A Robotics Foundations

Video-References

VIDEO 17 Powder transfer task using demonstration-guided motion planning
available from http://handbookofrobotics.org/view-chapter/07/videodetails/17

VIDEO 21 Simulation of a large crowd
available from http://handbookofrobotics.org/view-chapter/07/videodetails/21

VIDEO 22 Motion planning in multi-robot scenario
available from http://handbookofrobotics.org/view-chapter/07/videodetails/22

VIDEO 23 Alpha puzzle
available from http://handbookofrobotics.org/view-chapter/07/videodetails/23

VIDEO 24 Kinodynamic motion planning for a car-like robot
available from http://handbookofrobotics.org/view-chapter/07/videodetails/24

References

7.1 J.H. Reif: Complexity of the mover’s problem and
generalizations, IEEE Symp. Found. Comput. Sci.
(1979) pp. 421–427

7.2 H.H. Gonzalez-Banos, D. Hsu, J.C. Latombe: Mo-
tion planning: Recent developments. In: Automous
Mobile Robots: Sensing, Control, Decision-Making
and Applications, ed. by S.S. Ge, F.L. Lewis (CRC,
Boca Raton 2006)

7.3 S.R. Lindemann, S.M. LaValle: Current issues in
sampling-based motion planning, 11th Int. Symp.
Robotics Res. (Springer, Berlin, Heidelberg 2005)
pp. 36–54

7.4 J.T. Schwartz, M. Sharir: A survey of motion plan-
ning and related geometric algorithms, Artif. Intell.
J. 37, 157–169 (1988)

7.5 H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor,
W. Burgard, L.E. Kavraki, S. Thrun: Principles of
Robot Motion: Theory, Algorithms, and Implemen-
tations (MIT, Cambridge 2005)

7.6 J.C. Latombe: Robot Motion Planning (Kluwer,
Boston 1991)

7.7 S.M. LaValle: Planning Algorithms (Cambridge Univ.
Press, Cambridge 2006)

7.8 S. Udupa: Collision detection and avoidance in
computer controlled manipulators, Ph.D. Thesis
(Dept. of Electical Engineering, California Institute
of Technology, Pasadena 1977)

7.9 T. Lozano-Pérez: Spatial planning: A configuration
space approach, IEEE Trans. Comput. C 32(2), 108–
120 (1983)

7.10 J.T. Schwartz, M. Sharir: On the piano movers’
problem: III. Coordinating the motion of several in-
dependent bodies, Int. J. Robotics Res. 2(3), 97–140
(1983)

7.11 J.T. Schwartz, M. Sharir: On the piano movers’
problem: V. The case of a rod moving in three-
dimensional space amidst polyhedral obstacles,
Commun. Pure Appl. Math. 37, 815–848 (1984)

7.12 J.F. Canny: The Complexity of Robot Motion Plan-
ning (MIT, Cambridge 1988)

7.13 D. Halperin, M. Sharir: A near-quadratic algorithm
for planning the motion of a polygon in a polygonal
environment, Discret. Comput. Geom. 16, 121–134
(1996)

7.14 J.E. Hopcroft, J.T. Schwartz, M. Sharir: On the com-
plexity of motion planning for multiple indepen-

dent objects: PSPACE-hardness of the warehouse-
man’s problem, Int. J. Robotics Res. 3(4), 76–88
(1984)

7.15 J. Canny, J. Reif: New lower bound techniques
for robot motion planning problems, IEEE Symp.
Found. Comput. Sci. (1987) pp. 49–60

7.16 M.C. Lin, J.F. Canny: Efficient algorithms for in-
cremental distance computation, IEEE Int. Conf.
Robotics Autom. (1991) pp. 1008–1014

7.17 P. Jiménez, F. Thomas, C. Torras: Collision detection
algorithms for motion planning. In: Robot Mo-
tion Planning and Control, ed. by J.P. Laumond
(Springer, Berlin, Heidelberg 1998) pp. 1–53

7.18 M.C. Lin, D. Manocha: Collision and proximity
queries. In: Handbook of Discrete and Computa-
tional Geometry, 2nd edn., ed. by J.E. Goodman,
J. O’Rourke (Chapman Hall/CRC, Boca Raton 2004)
pp. 787–807

7.19 L.E. Kavraki, P. Svestka, J.C. Latombe, M.H. Over-
mars: Probabilistic roadmaps for path planning in
high-dimensional configuration spaces, IEEE Trans.
Robotics Autom. 12(4), 566–580 (1996)

7.20 N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones,
D. Vallejo: OBPRM: An obstacle-based PRM for
3-D workspaces, Workshop Algorith. Found. Ro-
botics (1998) pp. 155–168

7.21 V. Boor, M.H. Overmars, A.F. van der Stappen:
The Gaussian sampling strategy for probabilistic
roadmap planners, IEEE Int. Conf. Robotics Autom.
(1999) pp. 1018–1023

7.22 C. Holleman, L.E. Kavraki: A framework for using
the workspace medial axis in PRM planners, IEEE
Int. Conf. Robotics Autom. (2000) pp. 1408–1413

7.23 J.M. Lien, S.L. Thomas, N.M. Amato: A general
framework for sampling on the medial axis of
the free space, IEEE Int. Conf. Robotics Autom.
(2003)

7.24 S.M. LaValle, M.S. Branicky, S.R. Lindemann: On
the relationship between classical grid search and
probabilistic roadmaps, Int. J. Robotics Res. 23(7/8),
673–692 (2004)

7.25 T. Siméon, J.-P. Laumond, C. Nissoux: Visibility
based probabilistic roadmaps for motion planning,
Adv. Robotics 14(6), 477–493 (2000)

7.26 J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li,
R. Motwani, P. Raghavan: A random sampling

http://handbookofrobotics.org/view-chapter/07/videodetails/17
http://handbookofrobotics.org/view-chapter/07/videodetails/17
http://handbookofrobotics.org/view-chapter/07/videodetails/21
http://handbookofrobotics.org/view-chapter/07/videodetails/21
http://handbookofrobotics.org/view-chapter/07/videodetails/22
http://handbookofrobotics.org/view-chapter/07/videodetails/22
http://handbookofrobotics.org/view-chapter/07/videodetails/23
http://handbookofrobotics.org/view-chapter/07/videodetails/23
http://handbookofrobotics.org/view-chapter/07/videodetails/24
http://handbookofrobotics.org/view-chapter/07/videodetails/24

Motion Planning References 159
Part

A
|7

scheme for robot path planning, Proc. Int. Symp.
Robotics Res. (1996) pp. 249–264

7.27 A. Ladd, L.E. Kavraki: Measure theoretic analysis
of probabilistic path planning, IEEE Trans. Robotics
Autom. 20(2), 229–242 (2004)

7.28 R. Geraerts, M. Overmars: Sampling techniques for
probabilistic roadmap planners, Int. Conf. Intell.
Auton. Syst. (2004) pp. 600–609

7.29 D. Hsu, T. Jiang, J. Reif, Z. Sun: The bridge test
for sampling narrow passages with probabilistic
roadmap planners, IEEE Int. Conf. Robotics Autom.
(2003) pp. 4420–4426

7.30 R. Bohlin, L. Kavraki: Path planning using lazy PRM,
IEEE Int. Conf. Robotics Autom. (2000) pp. 521–528

7.31 B. Burns, O. Brock: Sampling-based motion plan-
ning using predictive models, IEEE Int. Conf.
Robotics Autom. (2005) pp. 3120–3125

7.32 P. Isto: Constructing probabilistic roadmaps with
powerful local planning and path optimiza-
tion, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2002)
pp. 2323–2328

7.33 P. Leven, S.A. Hutchinson: Using manipulability to
bias sampling during the construction of prob-
abilistic roadmaps, IEEE Trans. Robotics Autom.
19(6), 1020–1026 (2003)

7.34 D. Nieuwenhuisen, M.H. Overmars: Useful cycles
in probabilistic roadmap graphs, IEEE Int. Conf.
Robotics Autom. (2004) pp. 446–452

7.35 S.M. LaValle, J.J. Kuffner: Rapidly-exploring
random trees: progress and prospects. In: Al-
gorithmic and Computational Robotics: New
Direction, ed. by B.R. Donald, K.M. Lynch,
D. Rus (A.K. Peters, Wellesley 2001) pp. 293–
308

7.36 K.E. Bekris, B.Y. Chen, A. Ladd, E. Plaku, L.E. Kavraki:
Multiple query probabilistic roadmap planning us-
ing single query primitives, IEEE/RSJ Int. Conf. In-
tell. Robots Syst. (2003) pp. 656–661

7.37 M. Strandberg: Augmenting RRT-planners with lo-
cal trees, IEEE Int. Conf. Robotics Autom. (2004)
pp. 3258–3262

7.38 J.J. Kuffner, S.M. LaValle: An Efficient Approach to
Path Planning Using Balanced Bidirectional RRT
Search, Techn. Rep. CMU-RI-TR-05-34 Robotics In-
stitute (Carnegie Mellon University, Pittsburgh 2005)

7.39 J. Bruce, M. Veloso: Real-time randomized path
planning for robot navigation, IEEE/RSJ Int. Conf.
Intell. Robots Syst. (2002) pp. 2383–2388

7.40 E. Frazzoli, M.A. Dahleh, E. Feron: Real-time mo-
tion planning for agile autonomous vehicles, AIAA
J. Guid. Contr. 25(1), 116–129 (2002)

7.41 M. Kallmann, M. Mataric: Motion planning using
dynamic roadmaps, IEEE Int. Conf. Robotics Autom.
(2004) pp. 4399–4404

7.42 A. Yershova, L. Jaillet, T. Simeon, S.M. LaValle:
Dynamic-domain RRTs: Efficient exploration by
controlling the sampling domain, IEEE Int. Conf.
Robotics Autom. (2005) pp. 3867–3872

7.43 D. Hsu, J.C. Latombe, R. Motwani: Path planning
in expansive configuration spaces, Int. J. Comput.
Geom. Appl. 4, 495–512 (1999)

7.44 D. Hsu, R. Kindel, J.C. Latombe, S. Rock: Ran-
domized kinodynamic motion planning with mov-
ing obstacles. In: Algorithmic and Computational
Robotics: New Directions, ed. by B.R. Donald,
K.M. Lynch, D. Rus (A.K. Peters, Wellesley 2001)
pp. 247–264

7.45 G. Sánchez, J.-C. Latombe: A single-query bi-
directional probabilistic roadmap planner with
lazy collision checking, ISRR Int. Symp. Robotics
Res. (2007) pp. 403–413

7.46 S. Carpin, G. Pillonetto: Robot motion planning us-
ing adaptive random walks, IEEE Int. Conf. Robotics
Autom. (2003) pp. 3809–3814

7.47 A. Ladd, L.E. Kavraki: Fast exploration for robots
with dynamics, Workshop Algorithm. Found.
Robotics, Amsterdam (2004)

7.48 K.E. Bekris, L.E. Kavraki: Greedy but safe replan-
ning under differential constraints, IEEE Int. Conf.
Robotics Autom. (2007) pp. 704–710

7.49 C. O’Dunlaing, C.K. Yap: A retraction method for
planning the motion of a disc, J. Algorithms 6, 104–
111 (1982)

7.50 D. Leven, M. Sharir: Planning a purely translational
motion for a convex object in two-dimensional
space using generalized Voronoi diagrams, Discret.
Comput. Geom. 2, 9–31 (1987)

7.51 M. Sharir: Algorithmic motion planning. In: Hand-
book of Discrete and Computational Geometry, 2nd
edn., ed. by J.E. Goodman, J. O’Rourke (Chapman
Hall/CRC, Boca Raton 2004) pp. 1037–1064

7.52 N.J. Nilsson: A mobile automaton: An application
of artificial intelligence techniques, 1st Int. Conf.
Artif. Intell. (1969) pp. 509–520

7.53 J. O’Rourke: Visibility. In: Handbook of Discrete
and Computational Geometry, 2nd edn., ed. by
J.E. Goodman, J. O’Rourke (Chapman Hall/CRC, Boca
Raton 2004) pp. 643–663

7.54 B. Chazelle: Approximation and decomposition of
shapes. In: Algorithmic and Geometric Aspects of
Robotics, ed. by J.T. Schwartz, C.K. Yap (Lawrence
Erlbaum, Hillsdale 1987) pp. 145–185

7.55 M. de Berg, M. van Kreveld, M. Overmars,
O. Schwarzkopf: Computational Geometry: Algo-
rithms and Applications, 2nd edn. (Springer, Berlin,
Heidelberg 2000)

7.56 J.M. Keil: Polygon decomposition. In: Handbook on
Computational Geometry, ed. by J.R. Sack, J. Urrutia
(Elsevier, New York 2000)

7.57 J.T. Schwartz, M. Sharir: On the piano movers’
problem: I. The case of a two-dimensional rigid
polygonal body moving amidst polygonal barriers,
Commun. Pure Appl. Math. 36, 345–398 (1983)

7.58 O. Khatib: Real-time obstacle avoidance for ma-
nipulators and mobile robots, Int. J. Robotics Res.
5(1), 90–98 (1986)

7.59 J. Barraquand, J.-C. Latombe: Robot motion plan-
ning: A distributed representation approach, Int.
J. Robotics Res. 10(6), 628–649 (1991)

7.60 E. Rimon, D.E. Koditschek: Exact robot navigation
using artificial potential fields, IEEE Trans. Robotics
Autom. 8(5), 501–518 (1992)

Part
A
|7

160 Part A Robotics Foundations

7.61 J.P. Laumond: Trajectories for mobile robots with
kinematic and environment constraints, Int. Conf.
Intell. Auton. Syst. (1986) pp. 346–354

7.62 J.P. Laumond, S. Sekhavat, F. Lamiraux: Guide-
lines in nonholonomic motion planning for mobile
robots. In: Robot Motion Planning and Control, ed.
by J.P. Laumond (Springer, Berlin, Heidelberg 1998)
pp. 1–53

7.63 B.R. Donald, P.G. Xavier, J. Canny, J. Reif: Kinody-
namic planning, Journal ACM 40, 1048–1066 (1993)

7.64 C. O’Dunlaing: Motion planning with inertial con-
straints, Algorithmica 2(4), 431–475 (1987)

7.65 J. Canny, A. Rege, J. Reif: An exact algorithm for
kinodynamic planning in the plane, Discret. Com-
put. Geom. 6, 461–484 (1991)

7.66 J. Go, T. Vu, J.J. Kuffner: Autonomous behav-
iors for interactive vehicle animations, SIGGRAPH/
Eurographics Symp. Comput. Animat., Aire-la-Ville
(2004) pp. 9–18

7.67 M. Pivtoraiko, A. Kelly: Generating near minimal
spanning control sets for constrained motion plan-
ning in discrete state spaces, IEEE/RSJ Int. Conf.
Intell. Robots Syst. (2005) pp. 3231–3237

7.68 J. Hollerbach: Dynamic scaling of manipulator tra-
jectories, Tech. Rep. 700 (MIT, Cambridge 1983)

7.69 K.G. Shin, N.D. McKay: Minimum-time control
of robot manipulators with geometric path con-
straints, IEEE Trans. Autom. Control 30(6), 531–541
(1985)

7.70 K.G. Shin, N.D. McKay: A dynamic programming
approach to trajectory planning of robotic manip-
ulators, IEEE Trans. Autom. Control 31(6), 491–500
(1986)

7.71 S. Sastry: Nonlinear Systems: Analysis, Stability,
and Control (Springer, Berlin, Heidelberg 1999)

7.72 D.J. Balkcom, M.T. Mason: Time optimal trajectories
for bounded velocity differential drive vehicles, Int.
J. Robotics Res. 21(3), 199–217 (2002)

7.73 P. Souères, J.-D. Boissonnat: Optimal trajectories
for nonholonomic mobile robots. In: Robot Mo-
tion Planning and Control, ed. by J.P. Laumond
(Springer, Berlin, Heidelberg 1998) pp. 93–169

7.74 P. Svestka, M.H. Overmars: Coordinated motion
planning for multiple car-like robots using prob-
abilistic roadmaps, IEEE Int. Conf. Robotics Autom.
(1995) pp. 1631–1636

7.75 S. Sekhavat, P. Svestka, J.-P. Laumond, M.H. Over-
mars: Multilevel path planning for nonholo-
nomic robots using semiholonomic subsystems,
Int. J. Robotics Res. 17, 840–857 (1998)

7.76 P. Ferbach: A method of progressive constraints
for nonholonomic motion planning, IEEE Int. Conf.
Robotics Autom. (1996) pp. 2949–2955

7.77 S. Pancanti, L. Pallottino, D. Salvadorini, A. Bic-
chi: Motion planning through symbols and lattices,
IEEE Int. Conf. Robotics Autom. (2004) pp. 3914–
3919

7.78 J. Barraquand, J.-C. Latombe: Nonholonomic
multibody mobile robots: Controllability and mo-
tion planning in the presence of obstacles, Algo-
rithmica 10, 121–155 (1993)

7.79 S.M. LaValle, J.J. Kuffner: Randomized kinodynamic
planning, IEEE Int. Conf. Robotics Autom. (1999)
pp. 473–479

7.80 A.M. Ladd, L.E. Kavraki: Motion planning in the
presence of drift underactuation and discrete sys-
tem changes, Robotics Sci. Syst. I, Cambridge (2005)
pp. 233–241

7.81 J.-P. Merlet: Parallel Robots (Kluwer, Boston 2000)
7.82 D. Cox, J. Little, D. O’Shea: Ideals, Varieties, and Al-

gorithms (Springer, Berlin, Heidelberg 1992)
7.83 R.J. Milgram, J.C. Trinkle: The geometry of con-

figuration spaces for closed chains in two and
three dimensions, Homol. Homot. Appl. 6(1), 237–
267 (2004)

7.84 J. Yakey, S.M. LaValle, L.E. Kavraki: Randomized
path planning for linkages with closed kinematic
chains, IEEE Trans. Robotics Autom. 17(6), 951–958
(2001)

7.85 L. Han, N.M. Amato: A kinematics-based prob-
abilistic roadmap method for closed chain sys-
tems. In: Algorithmic and Computational Robotics:
New Directions, ed. by B.R. Donald, K.M. Lynch,
D. Rus (A.K. Peters, Wellesley 2001) pp. 233–
246

7.86 J. Cortés: Motion Planning Algorithms for Gen-
eral Closed-Chain Mechanisms, Ph.D. Thesis (Insti-
tut National Polytechnique do Toulouse, Toulouse
2003)

7.87 R. Alami, J.-P. Laumond, T. Siméon: Two ma-
nipulation planning algorithms. In: Algorithms
for Robotic Motion and Manipulation, ed. by
J.P. Laumond, M. Overmars (A.K. Peters, Wellesley
1997)

7.88 L.E. Kavraki, M. Kolountzakis: Partitioning a pla-
nar assembly into two connected parts is NP-
complete, Inform. Process. Lett. 55(3), 159–165
(1995)

7.89 M.T. Mason: Mechanics of Robotic Manipulation
(MIT, Cambridge 2001)

7.90 K. Sutner, W. Maass: Motion planning among
time dependent obstacles, Acta Inform. 26, 93–122
(1988)

7.91 J.H. Reif, M. Sharir: Motion planning in the pres-
ence of moving obstacles, Journal ACM 41, 764–790
(1994)

7.92 M.A. Erdmann, T. Lozano-Pérez: On multiple mov-
ing objects, Algorithmica 2, 477–521 (1987)

7.93 J. van den Berg, M. Overmars: Prioritized motion
planning for multiple robots, IEEE/RSJ Int. Conf. In-
tell. Robots Syst. (2005) pp. 2217–2222

7.94 T. Siméon, S. Leroy, J.-P. Laumond: Path coordi-
nation for multiple mobile robots: A resolution
complete algorithm, IEEE Trans. Robotics Autom.
18(1), 42–49 (2002)

7.95 R. Ghrist, J.M. O’Kane, S.M. LaValle: Pareto optimal
coordination on roadmaps, Workshop Algorithm.
Found. Robotics (2004) pp. 185–200

7.96 S.M. LaValle, S.A. Hutchinson: Optimal motion
planning for multiple robots having independent
goals, IEEE Trans. Robotics Autom. 14(6), 912–925
(1998)

Motion Planning References 161
Part

A
|7

7.97 P.R. Kumar, P. Varaiya: Stochastic Systems (Prentice
Hall, Englewood Cliffs 1986)

7.98 S.M. LaValle: Sensing and Filtering: A Fresh Per-
spective Based on Preimages and Information
Spaces, Foundations and Trends in Robotics (Now
Publ., Delft 2012)

7.99 R. Alterovitz, N. Simeon, K. Goldberg: The stochastic
motion roadmap: A sampling framework for plan-
ning with Markov motion uncertainty, Robotics Sci.
Syst. 3, 233–241 (2007)

7.100 H. Kurniawati, D. Hsu, W.S. Lee: SARSOP: Efficient
point-based POMDP planning by approximating
optimally reachable belief spaces, Robotics Sci.
Syst. (2008)

7.101 J. Pineau, G. Gordon, S. Thrun: Point-based
value iteration, Int. Joint Conf. Artif. Intell. (2003)
pp. 1025–1032

7.102 R. Platt, R. Tedrake, T. Lozano-Perez, L.P. Kaelbling:
Belief space planning assuming maximum likeli-
hood observations, Robotics Sci. Syst. (2010)

7.103 N. Roy, G. Gordon: Exponential family PCA for belief
compression in POMDPs, Adv. Neural Inform. Pro-
cess. Syst. (2003)

7.104 R. He, S. Prentice, N. Roy: Planning in informa-
tion space for a quadrotor helicopter in a GPS-
denied environment, IEEE Int. Conf. Robotics Au-
tom. (2008)

7.105 S. Koenig, M. Likhachev: D� lite, AAAI Nat. Conf. Ar-
tif. Intell. (2002) pp. 476–483

7.106 A. Stentz: Optimal and efficient path planning
for partially-known environments, IEEE Int. Conf.
Robotics Autom. (1994) pp. 3310–3317

7.107 J. Hershberger, S. Suri: Efficient Computation of Eu-
clidean shortest paths in the plane, IEEE Symp.
Found. Comp. Sci. (1995) pp. 508–517

7.108 J.S.B. Mitchell: Shortest paths among obstacles in
the plane, Int. J. Comput. Geom. Applic. 6(3), 309
(1996)

7.109 J. Choi, J. Sellen, C.K. Yap: Precision-sensitive Eu-
clidean shortest path in 3-space, ACM Symp. Com-
put. Geo. (1995) pp. 350–359

7.110 C.H. Papadimitriou: An algorithm for shortest-path
planning in three dimensions, Inform. Process.
Lett. 20(5), 259 (1985)

7.111 D. Yershov, S.M. LaValle: Simplicial Dijkstra and A*
algorithms for optimal feedback planning, IEEE/RSJ
Int. Conf. Intell. Robots Syst. (2011)

7.112 S. Karaman, E. Frazzoli: Sampling-based algo-
rithms for optimal motion planning, Int. J. Robotics
Res. 30(7), 846 (2011)

7.113 J.D. Marble, K.E. Bekris: Towards small asymp-
totically near-optimal roadmaps, IEEE Int. Conf.
Robotics Autom. (2012)

7.114 W.M. Boothby: An Introduction to Differentiable
Manifolds and Riemannian Geometry, 2nd edn.
(Academic, New York 2003)

7.115 A. Hatcher: Algebraic Topology (Cambridge Univ.
Press, Cambridge 2002)

7.116 G.S. Chirikjian, A.B. Kyatkin: Engineering Applica-
tions of Noncommutative Harmonic Analysis (CRC,
Boca Raton 2001)

7.117 J. Arvo: Fast random rotation matrices. In: Graphics
Gems III, ed. by D. Kirk (Academic, New York 1992)
pp. 117–120

7.118 H. Niederreiter: Random Number Generation and
Quasi-Monte-Carlo Methods (Society for Industrial
and Applied Mathematics, Philadelphia 1992)

7.119 S. Basu, R. Pollack, M.-F. Roy: Algorithms in Real
Algebraic Geometry (Springer, Berlin, Heidelberg
2003)

7.120 B. Mishra: Computational real algebraic geometry.
In: Handbook of Discrete and Computational Ge-
ometry, ed. by J.E. Goodman, J. O’Rourke (CRC, Boca
Raton 1997) pp. 537–556

7.121 J.T. Schwartz, M. Sharir: On the piano movers’
problem: II. General techniques for comput-
ing topological properties of algebraic manifolds,
Commun. Pure Appl. Math. 36, 345–398 (1983)

7.122 B.R. Donald: A search algorithm for motion plan-
ning with six degrees of freedom, Artif. Intell. J. 31,
295–353 (1987)

7.123 D.S. Arnon: Geometric reasoning with logic and al-
gebra, Artif. Intell. J. 37(1-3), 37–60 (1988)

7.124 G.E. Collins: Quantifier elimination by cylindrical
algebraic decomposition–twenty years of progress.
In: Quantifier Elimination and Cylindrical Algebraic
Decomposition, ed. by B.F. Caviness, J.R. Johnson
(Springer, Berlin, Heidelberg 1998) pp. 8–23

	7 Motion Planning
	7.1 Robotics Motion Planning
	7.2 Motion Planning Concepts
	7.3 Sampling-Based Planning
	7.4 Alternative Approaches
	7.5 Differential Constraints
	7.6 Extensions and Variations
	7.7 Advanced Issues
	7.8 Conclusions and Further Reading
	Video-References
	References

