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Abstract— Visual tracking is challenging due to image
variations caused by various factors, such as object deformation,
scale change, illumination change, and occlusion. Given the
superior tracking performance of human visual system (HVS),
an ideal design of biologically inspired model is expected to
improve computer visual tracking. This is, however, a difficult
task due to the incomplete understanding of neurons’ working
mechanism in the HVS. This paper aims to address this challenge
based on the analysis of visual cognitive mechanism of the ventral
stream in the visual cortex, which simulates shallow neurons
(S1 units and C1 units) to extract low-level biologically
inspired features for the target appearance and imitates an
advanced learning mechanism (S2 units and C2 units) to com-
bine generative and discriminative models for target location.
In addition, fast Gabor approximation and fast Fourier trans-
form are adopted for real-time learning and detection in this
framework. Extensive experiments on large-scale benchmark
data sets show that the proposed biologically inspired tracker per-
forms favorably against the state-of-the-art methods in terms of
efficiency, accuracy, and robustness. The acceleration technique
in particular ensures that biologically inspired tracker maintains
a speed of approximately 45 frames/s.

Index Terms— Biologically inspired model, visual tracking, fast
Gabor approximation, fast Fourier transform.

I. INTRODUCTION

V ISUAL object tracking is a fundamental problem in
computer vision. It has a wide variety of applica-

tions [1] including motion analysis, video surveillance, human
computer interaction and robot perception. Although visual
tracking has been intensively investigated in the past decade,
it is still challenging caused by various factors such as appear-
ance variations, pose change, occlusion. To improve visual
tracking, one may need to address all of these challenges by
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developing better feature representations of visual targets and
more effective tracking models.

Target objects in visual tracking are commonly represented
as handcrafted features or automated features. Histogram
based handcrafed features have been introduced to tracking,
such as a color histogram [2] embedded in the mean-
shift algorithm to search the target, a histogram of oriented
gradients (HOG) [3] to exploit local directional edge informa-
tion, and a distribution field histogram [4] to balance descriptor
specificity and the landscape smoothness criterion. In addition,
local binary patterns (LBP) [5], scale-invariant feature trans-
form (SIFT) [6] and Haar-like features [7] have also been
explored to model object appearance. Handcrafted features
only achieve partial success in coping with the challenges
of appearance variations, scale change, and pose changes,
yet requiring domain expertise for appropriate designs.
On the other hand, automated feature extraction is able
to learn self-taught features [8] from input images, which
can be either unsupervised such as principal component
analysis (PCA) [9], or supervised such as linear discrimi-
nant analysis (LDA) [10]. For example, many recent track-
ing methods including local linear coding (LLC) [11],
sparsity-based collaborative model (SCM) [12], multi-task
tracker (MTT) [13] and multi-view tracker (MVT) [14] use
learned sparse representations to improve the robustness
against various target variations. However, due to the heavy
computations involved in learning and optimization, most
of these automated features trade real-time efficiency for
the robustness. In summary, both handcrafted and automated
features have their limitations, and it remains an important
task to develop better feature representations of objects in
visual tracking.

A tracking model is used to verify the prediction of any
state, which can be generative or discriminative. In generative
models [15], [16], tracking is formulated as a search for
the region within a neighborhood that is most similar to
the target object. A variety of search methods based on
generative models have been developed to estimate object
states; for instance, a generalized Hough transform [17]
for tracking-by-detection, a sparsity-based local appearance
generative model [18], and an object similarity metric
with a gradient-based formulation [19] to locate objects.
However, generative models ignore negative samples in the
background, resulting in vulnerability caused by background
confusion. Recently, discriminative models [20], [21]
have been developed which consider the information of
the object and the background simultaneously, and learn
binary classifiers in an online manner to separate the
foreground from the background. Numerous classifiers have
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been adopted for object tracking, such as multi-view
SVM (MVS) [22], structured SVM (Struck) [23],
online AdaBoost (OAB) [24], and online multi-instance
learning (MIL) [25], as well as several semi-supervised
models [26]. However, discriminative models pay insufficient
attention to the eigen basis of the tracking target and are unable
to evaluate the credibility of the tracking results precisely.
Therefore, a successful model should exploit the advantages
of both generative and discriminative methods [12], [27] to
account for appearance variations and to effectively separate
the foreground target from the background.

Primates are acknowledged to be capable in high perfor-
mance visual pattern recognition, as they can achieve invari-
ance and discrimination uniformly. Recent research findings
in brain cognition and computer vision demonstrate that the
bio-inspired models are valuable in enhancing the perfor-
mance of object recognition [28], face identification [29], and
scene classification [30]. We expect applying visual cortex
research to object tracking would also be feasible and mean-
ingful. Robust tracking target representation based on expert
biological knowledge is able to avoid the parameter adjust-
ment of handcrafted features and the parameter learning of
automated features. In addition, the biological visual cogni-
tive mechanism provides the inspiration for combining the
generative model and discriminative model to handle appear-
ance variations and to separate the target from the back-
ground effectively. This paper develops biologically inspired
tracker (BIT) based on the ventral stream in the visual cortex.
In line with expert biological knowledge and heuristics, a new
bio-inspired appearance model is proposed which simulates
multi-cue selective (classical simple cells, S1 units) and
multi-variant competitive (cortical complex cells, C1 units)
mechanism in shallow neurons to target representation, and
achieves an appropriate trade-off between discrimination and
invariance. A two-layer bio-inspired tracking model proposed
for advanced learning combines the generative and discrimi-
native model: the response of view-tuned learning (S2 units)
is a generative model via convolution and a fully connected
classifier simulates neuronal network for task-turned learning
(C2 units) as a discriminative model. BIT exploits fast Gabor
approximation (FGA) to speed up low-level bio-inspired fea-
ture extraction (S1 units and C1 units) and fast Fourier
transform (FFT) to speed up high-level bio-inspired learning
and dense sampling (S2 units and C2 units).

To evaluate the proposed BIT in terms of tracking accuracy,
robustness, and efficiency, we conduct extensive experiments
on the CVPR2013 tracking benchmark (TB2013) [31] and
the Amsterdam Library of Ordinary Videos (ALOV300++)
database [32]. Experimental results show that BIT outperforms
existing top-performing algorithms in terms of accuracy and
robustness. Moreover, BIT enhances speed via fast Gabor
approximation and fast Fourier transform. It processes approx-
imately 45 frames per second for object tracking on a computer
equipped with Intel i7 3770 CPU (3.4GHz) and is therefore
suitable for most real-time applications.

The remainder of this paper is organized as follows.
In Section II, we review the research works related to
bio-inspired models and the tracking methods based on

bio-inspired models. In Section III, we introduce the proposed
biologically inspired tracker (BIT) and discuss both the appear-
ance model and the tracking model in detail. Section IV gives
the experimental results on both the qualitative and quantitative
analysis, including the comparison with other methods and an
analysis of each part of our method. We conclude our paper
in Section V.

II. RELATED WORK

Humans and primates outperform the best machine vision
systems on all vision tasks with regard to most measures, and
thus it is critical yet attractive to emulate object tracking in
the visual cortex. Understanding how the visual cortex recog-
nizes objects is a critical question for neuroscience. A recent
theory [33] on the feed-forward path of visual processing in
the cortex is based on the ventral stream processing from the
primary visual cortex (V1) to the prefrontal cortex (PFC),
which is modeled as a hierarchy of increasingly sophisticated
representations. In the ventral stream, a bio-inspired model
called HMAX [34] has been successfully applied to machine
vision and consists of alternating computational units called
simple (S) and complex (C) cell units. In the primary visual
cortex, the simple units combine intensity inputs with a
bell-shaped tuning function to increase scale and direction
selectivity. The complex units pool their inputs through a
pooling operation (e.g. MAX, AVG or STD), thereby intro-
ducing gradual invariance to scale and translation. In the
inferotemporal (IT) cortex (the so-called view-tuned units),
samples of features were suggested that were highly selective
for particular objects while being invariant to ranges of scales
and positions. Note that a network comprised of units from
the IT cortex to PFC is among the most powerful in terms of
learning to generalize, which is equivalent to regularizing a
classifier on its outputs tuning function.

Deep neural networks as a bio-inspired model can self-learn
features from raw data without resorting to manual tweaking,
and have achieved state-of-the-art results in several compli-
cated tasks, such as image classification [35], object recog-
nition and segmentation [36]. However, considerably less
attention has been given to applying deep networks for visual
tracking, because only the target state in the first frame is
available to train deep networks. Fan et al. [37] proposed
a human tracking algorithm that learns a specific feature
extractor with convolutional neural networks from an offline
training set of 20000 samples. In [38], Wang and Yeung
proposed a deep learning tracking method that uses a stacked
de-noising auto-encoder to learn the generic features from
1 million images sampled from the Tiny Images dataset [39].
Both methods pay particular attention to the offline learning
of an effective feature extractor with a large amount of
auxiliary data, yet they do not fully take into account the
similarities in local structural and inner geometric layout
information between the targets over subsequent frames, which
is useful and effective for distinguishing the target from the
background for visual tracking. In addition, the above tracking
methods based on deep networks cannot guarantee real-
time performance because multilayer operations take intensive
computation.
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Fig. 1. Biologically inspired tracker. BIT cascades four units including appearance model (S1 and C1 units) and tracking model (S2 and C2 units): S1 units
extract texture and color information by Gabor filters and color names; C1 units pool texture and color features and combine them by complex response maps;
S2 units learn view-turned feature by a linear convolution between the input X and the stored prototype P; C2 units apply a full-connection neural network
for task-dependent learning.

In the ventral stream, an HMAX model [34] proposed
for object recognition and scene classification has proven
to be effective. However, the original bio-inspired model is
designed for classification problems and is therefore difficult
to apply straightforwardly to object tracking. In [40],
A bio-inspired tracker called discriminant saliency
tracker (DST) uses a feature-based attention mechanism
and a target-tuned top-down discriminant saliency detector
for tracking, which does not explicitly retain appearance
models in the previous frames resulting in invalidation
in the challenges of occlusion or background cluster.
Zheng and Meng [41] presented an object tracking algorithm
by using a bio-inspired population-based search algorithm,
called particle swarm optimization (PSO). PSO introduces
the cognitive mechanism of birds and fishes to accelerate
the convergence in the potential solution space, so that the
optimal solution can be found in a short time. However,
PSO only focuses on the tracking model and loses sight of
the importance of features. Li et al. [42] proposed a simplified
biologically inspired feature (SBIF) for object representation
and combined SBIF with a Bayesian state inference tracking
framework which utilized the particle filter to propagate
sample distributions over time. The SBIF tracker extracts
a robust representation feature, but ignores the advanced
learning mechanism in the ventral stream and applies the
time-consuming particle filter as the tracking model. In [43],
a simple convolutional network encodes the local structural
information of the tracking object using a set of normalized
patches as filters, which are randomly extracted from the
target region in the first frame. All the convolution maps are
extracted from raw intensity images, therefore no importance
is attached to the low-level bio-inspired feature. In this paper,
a novel visual tracker based on a bio-inspired model is
developed to improve the aforementioned shortcomings.

III. BIOLOGICALLY INSPIRED TRACKER

BIT is an HMAX model [34] that partially mimics the
ventral stream. It is particularly designed for visual tracking,

and can be divided into two main components: a bio-inspired
appearance model and a bio-inspired tracking model (as shown
in Fig. 1). The bio-inspired appearance model is subdivided
into classical simple cells (S1 units) and cortical complex
cells (C1 units); the bio-inspired tracking model is divided
into view-tuned learning (S2 units) and task-dependent learn-
ing (C2 units). In addition, FGA and FFT are exploited to
significantly save computations.

A. Bio-Inspired Appearance Model

Appearance representation plays an important role in a
vision system, and we present a bio-inspired appearance
model. In line with bioresearch on the striate cortex and
extrastriate cortex, classical simple cells (S1 units) show that a
variety of selective and cortical complex cells (C1 units) main-
tain feature invariance. The proposed bio-inspired appearance
model achieves the unification of invariance and discrimination
between different tracking targets by a hierarchical model.

1) S1 Units – Classical Simple Cells: In the primary visual
cortex (V1) [44], a simple cell receptive field has the basic
characteristics of multi-orientation, multi-scale and multi-
frequency selection. S1 units can be described by a series of
Gabor filters [45], which have been shown to provide an appro-
priate model of cortical simple cell receptive fields. In contrast
to the traditional bio-inspired feature of the HMAX model,
which uses single even Gabor filters (contrast insensitive),
we consider that odd Gabor filters (contrast sensitive) are also
important for target representation, because they can extract
not only the texture intensity but also the texture gradient
direction. The odd and even Gabor functions have been shown
to provide a good model of cortical simple cell receptive fields
and are defined by
⎧
⎪⎪⎨

⎪⎪⎩

Geven (x, y, θ, s (σ, λ)) = exp

(

− X2+ γ 2Y 2

2σ 2

)

cos

(
2π

λ
X

)

Godd (x, y, θ, s (σ, λ)) = exp

(

− X2+ γ 2Y 2

2σ 2

)

sin

(
2π

λ
X

)

,

(1)
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TABLE I

SUMMARY OF PARAMETERS USED IN S1 UNITS

where X = x cos θ + y sin θ , Y = −x sin θ + y cos θ , the
filter patch coordinate (x, y), the orientation θ , scales s with
2 parameters (the effective width σ and the wavelength λ).
Following [45], we arranged a series of Gabor filters to
form a pyramid of scales, spanning a range of sizes from
7 × 7 to 15 × 15 pixels in steps of two pixels to model
the receipt-field ξ of the simple cells (parameter values
of Gabor filters shown in Table I are the standard setting
in bio-inspired model). The filters come in 4 orientations
(θ = 0, π/4, π/2, 3π/4) on even Gabor filters and 8 orien-
tations (θ = 0,±π/4,±π/2,±3π/4, π) on odd Gabor filters,
thus leading to 60 different S1 receptive field types in total.
The corresponding result of classical simple cells is given by

S1gabor (x, y, θ, s) = I (x, y) ⊗ Geven/odd (x, y, θ, s), (2)

where I (x, y) is the original gray-scale image of tracking
sequences.

In scene classification [46] and saliency detection [47], the
joint color and texture information is shown to be important.
To effectively represent a color target, we unify S1 units
with both the color and texture information. The color units
are inspired by the color double-opponent system in the
cortex [48]. Neurons are fired by a color (e.g., blue) and
inhibited by another color (e.g., yellow) in the center of the
receptive field, as are neurons in the surrounding area. Color
names (CN) [49] are employed to describe objects, and these
are linguistic color labels assigned by humans to represent
colors in the real world. There are 11 basic colors: black,
brown, green, pink, red, yellow, blue, grey, orange, purple and
white. However, the use of RGB color in computer vision
can usually be mapped to a probabilistic 11 dimensional
color attributes by the mapping matrix, which is automatically
learned from images retrieved by Google Images search. Color
name probabilities are defined by

S1color (x, y, c) = Map (R (x, y) , G (x, y) , B (x, y) , c),

(3)

where R (x, y), G (x, y), B (x, y) correspond to the
RGB color values of images, c is the index of color
names, and Map() indicates a mapping matrix from RGB to
11 dimensional color probabilities. In order to keep the same
feature dimension as S1gabor in one scale, S1color (x, y, 12)
is set to 0 and S1color is set to 0 for gray image.

In this paper, a color target is represented by 60 fea-
ture maps of complex number, of which 60 texture feature
maps are obtained from multi-scale Gabor filters convoluted
with the input image as the real part, and 12 color feature
maps are copied five times corresponding to 5 scales as the

imaginary part. Combining the texture feature with the color
feature through the real and imaginary parts, complex feature
maps maintain the balance between different types of features
and take full advantage of the complex frequency signal
information of FFT to reduce the computation operations by
almost half.

2) C1 Units – Cortical Complex Cells: The cortical com-
plex cells (V2) receive the response from simple cells and have
the function of primary linear feature integration. C1 units [50]
correspond to complex cells, which show the invariance to
have larger receptive fields (shift invariance). Lampl et al. [51]
suggested that the spatial integration properties of complex
cells can be described by a series of pooling operations.
Riesenhuber and Poggio [33] argued for and demonstrated
the advantages of using the nonlinear MAX operator over the
linear summation operation SUM, and Guo et al. [52] proposed
another nonlinear operation called standard deviation STD
for human age estimation. In this paper, a different pooling
method is used for shift competing on each different feature
map.

In order to keep C1 unit features what are changes in bias,
invariance to gain can be achieved via local normalization.
In [52], the STD operation has been shown to outperform pure
MAX pooling for revealing the local variations that might be
significant for characterizing subtlety. Dalal and Triggs [53]
used four different normalization factors for the histograms
of oriented gradients. Based on [52] and [53], an enhanced
STD operation in a cell grid � of size ns × ns = 4 × 4 is
shown as (4), where Nδx ,δy (x, y) is a normalization factor and(
δx , δy

)
is the shift bias.

C1gabor (x, y) =
∑

(x,y)∈�
δx ,δy∈±1

S1gabor (x, y)

Nδx ,δy (x, y)
(4)

Nδx ,δy (x, y) = (S12
gabor (x, y) + S12

gabor

(
x + δx , y + δy

)

+ S12
gabor (x + δx , y)

+ S12
gabor

(
x, y + δy

)
)0.5 (5)

In addition, the mapping of the S1 color units from the
RGB image by point-to-point is sensitive to noise, therefore an
AVG pooling operation is used for color features. The C1 color
unit responses are computed by subsampling these maps using
a cell grid � of size ns ×ns = 4×4 as C1 texture units. From
each grid cell, a single measurement is obtained by taking the
mean of all 16 elements. In summary, C1color response is

C1color (x, y) = 1

ns × ns

∑

(x,y)∈�

S1color (x, y) (6)

B. Bio-Inspired Tracking Model

The tracking model is developed to verify any object state
prediction, which can be either generative or discriminative.
Based on the learning mechanism of advanced neurons, the
IT cortex and PFC are explored to design bio-inspired tracking
model. In this paper, a tracking method based on an advanced
learning mechanism is presented to combine generative and
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discriminative models, corresponding to the view-tuned learn-
ing (S2 units) and the task-dependent learning (C2 units).

1) S2 Units – View-Tuned Learning: The tuning properties
of neurons in the ventral stream of the visual cortex, from
V2 to the IT cortex, play a key role in visual perception in
primates, and in particular for object recognition abilities [54].
This training process can be regarded as a generative model,
in which S2 units pool over afferent C1 units within its
receptive field. Each S2 unit response depends on a radial basis
function (RBF) [45] on the Euclidean distance between a new
input X and a stored prototype P . For an image patch from
the previous C1 layer, the response rS2 of the corresponding
to S2 units is given by:

rS2 = exp
(
−β‖X − P‖2

)
, (7)

where β defines the sharpness of the tuning coefficient.
At runtime, S2 response maps are computed across all
positions by (7) for each band of C2 units.

According to (7), we know the S2 units response corre-
sponds to a kernel method based on RBF, which can be
rewritten similarly to the linear function as follows (8), when
the RBF is a standard normal function (β = 1/2σ 2 = 1/2).

rS2 = exp

(

− 1

2σ 2 ‖X − P‖2
)

= exp

(

−1

2

(
X T X + PT P − 2X T P

))

∼ exp
(

X T P
)

∼ X T P (8)

Here X T X and PT P as self-correlation coefficient almost
keep changeless nearly constant with marginal effects on
S2 units, and X T P roughly locates in the linear region
of exponential function. Moreover, linear kernel is usually
preferred in time-critical problems such as tracking, because
the weight vector can be computed explicitly. Therefore, the
S2 units dense response map was calculated using a linear
function instead of RBF. The C1 units response of new
input X is expressed as C1X (x, y, k) and the response of
stored prototype P is C1P (x, y, k), where k is the index
of 60 feature maps corresponding to 12 orientations and
5 scales. To achieve scale and orientation invariance, an
AVG pooling operation is used for the fusion of multi-feature
maps:

S2 (x, y) = 1

K

K∑

k=1

C1X (x, y, k) ⊗ C1P (x, y, k) (9)

2) C2 Units – Task-Dependent Learning: The task-specific
circuits from the IT cortex to the PFC learn the discrimination
between target objects and background clusters. According to
bioresearch [54], the routine running in PFC as a classifier is
trained on a particular task in a supervised way and receives
the activity of a few hundred neurons in the IT cortex. The
classifier can indeed read-out the object identity and object
information (such as position and size of the object) from
the activity of about 100 neurons in the IT cortex with
high accuracy and in an extremely short time. Supervised
learning at this stage involves adjusting the synaptic weights to

minimize error in the training set. In this paper, a convolutional
neural network (CNN) is used as (10), which corresponds to
the task-specific circuits found in C2 units with neurons from
the IT cortex to the PFC.

C2 (x, y) = W (x, y) ⊗ S2(x, y), (10)

where W is the synaptic weights of the neural network.
In addition, a fast estimate method of W will be introduced
in the next subsection III-C.

C. Real-Time Bio-Inspired Tracker

Due to the time-sensitive nature of tracking, modern trackers
walk a fine line between incorporating as many samples as
possible and keeping computational demand low. A practical
visual tracker should reach a speed of at least 24 frames
per second (the standard frame rate of films). Past visual
trackers based on bio-inspired models are unable to maintain
real-time because of complex neuron simulation, such as
SBIF tracker [42] and discriminant saliency tracker [40].
In this paper, an FGA and an FFT are applied to speed up
the hierarchical bio-inspired model.

1) Fast Gabor Approximation (FGA): To retain the invari-
ance of bio-inspired feature, a series of multi-scale and multi-
orientation Gabor filters is used for convolution with gray
images. Therefore, a 60 times convolution operation seriously
affects the instantaneity of the BIT framework. In this paper,
we propose FGA to reduce the computational cost, which
is inspired by histograms of oriented gradients (HOG) [53].
HOG uses horizontal and vertical gradients to approximate
the gradient intensity in each orientation. Using several pairs
of 1-D Gabor filters (Gx (x, s (σ, λ)) and Gy (y, s (σ, λ))),
which are at 5 different scales and orthogonal to each other as
in Section III-A.1, 10 multi-scale orthogonal Gabor response
maps at a pixel (x, y) are computed as

{
Dx (x, y, s (σ, λ)) = I (x, y) ⊗ Gx (x, s (σ, λ))

Dy (x, y, s (σ, λ)) = I (x, y) ⊗ Gy (y, s (σ, λ))

where

⎧
⎪⎪⎨

⎪⎪⎩

Gx (x, s (σ, λ)) = exp

(

− x2

2σ 2

)

× sin

(
2π

λ
x

)

Gy (y, s (σ, λ)) = exp

(

− y2

2σ 2

)

× sin

(
2π

λ
y

)

(11)

Let � (x, y, s (σ, λ)) and A (x, y, s (σ, λ)) be the orientation
and magnitude of the Gabor gradient at a pixel (x, y) in an
image showing as (12), by which the response of the multi-
orientation S1 units is approximated.

⎧
⎪⎨

⎪⎩

� (x, y, s (σ, λ)) = tan−1
(

Dy (x, y, s (σ, λ))

Dx (x, y, s (σ, λ))

)

A (x, y, s (σ, λ)) =
√

D2
x (x, y, s) + D2

y (x, y, s)
(12)

We define a pixel-level feature map that specifies a sparse
response of Gabor magnitudes at each pixel (x, y) to approxi-
mate multi-orientation in the S1 units. When � (x, y, s (σ, λ))
belongs to the range of corresponding orientations, the mag-
nitude A (x, y, θ, s (σ, λ)) is set as the approximate response
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of S1 units as

S1odd (·) =
{

A (·) , i f � (·) ∈ [θ − π/8, θ + π/8)

0, otherwi se
(13)

S1even (·) =

⎧
⎪⎨

⎪⎩

A (·) , i f � (·) ∈ [θ − π/8, θ + π/8)

∪ [θ + 7π/8, θ + 9π/8)

0, otherwi se

(14)

2) Fast Fourier Transform (FFT): Many tracking
approaches [12], [18], [55] have featured tracking-by-
detection, which stems directly from the development of
discriminative methods in machine learning. Almost all of
the proposed tracking-by-detection methods are based on a
sparse sampling strategy. In each frame, a small number of
samples are collected in the target neighborhood by particle
filter, because the cost of not doing so would be prohibitive.
Therefore, speeding up the dense sampling of the S2 and
C2 response calculation is a key feature of BIT. In this
subsection, a real-time BIT based on dense sampling via
FFT [56] will be introduced. At time t , a S2 units dense
response map was calculated by a linear function instead of
RBF as

S2t+1 (x, y) = 1

K

K∑

k=1

C1X
t+1 (x, y, k) ⊗ C1P

t (x, y, k) (15)

According to dot-product in frequency-domain equivalent to
convolution in time-domain [57], we note that (15) can be
transformed to the frequency domain, in which FFT can be
used for fast convolution. That is,

F [
S2t+1 (·)] = 1

K

K∑

k=1

F
[
C1X

t+1 (·, k)
]

� F
[
C1P

t (·, k)
]
,

(16)

where F [ ] denotes the FFT function and � is the element-
wise dot-product.

As with S2 units, the FFT algorithm can also be used
for fast convolution and deconvolution in C2 units. Note
that the convolutional neural network is comprised of units
with Gaussian-like tuning function together on their outputs.
In order to estimate the neuronal connection weights W, the
C2 units response map of an object location is modeled as

C̃2 (x, y) = exp

(

− 1

2σ 2
s

(
(x − xo)

2 + (y − yo)
2
))

, (17)

where σs is a scale parameter and (xo, yo) is the center of the
tracking target. The neuron connection weights W is therefore
shown as

F [W (x, y)] = F [
C̃2 (x, y)

]

F [S2 (x, y)]
(18)

The object location
(
x̂, ŷ

)
in the (t +1)-th frame is determined

by maximizing the new C2 response map.
(
x̂, ŷ

) = arg max
(x,y)

C2t+1 (x, y), (19)

Algorithm 1 Real-Time Bio-Inspired Tracker

where C2t+1 (x, y) = F−1
[F [Wt (x, y)] � F [

S2t+1 (x, y)
]]

and F−1[ ] denotes the inverse FFT function.
Depending on the spatial and frequency domains, a classical

method of tracking model update is used in this paper. At the
t-th frame, the BIT is updated by
{

C1P
t+1 (x, y, k) = ρC1

(
x̂, ŷ, k

) + (1 − ρ) C1P
t (x, y, k)

F [
Wt+1 (x, y)

] = ρF [
W

(
x̂, ŷ

)] + (1 − ρ)F [Wt (x, y)],

(20)

where ρ is a learning parameter, C1
(
x̂, ŷ, k

)
is the C1 units

spatial model and F [
W

(
x̂, ŷ

)]
is the frequency model of

neural weights computed by (18).
Based on FGA and FFT, the proposed real-time bio-inspired

tracker is summarized in Algorithm 1.

IV. EXPERIMENTS

We evaluate our method on two popularly used visual
tracking benchmarks, namely the CVPR2013 Visual Tracker
Benchmark (TB2013) [31] and the Amsterdam Library of
Ordinary Videos Benchmark (ALOV300++) [32]. These
two benchmarks contain more than 350 sequences and cover
almost all challenging scenarios such as scale change, illumi-
nation change, occlusion, cluttered background, and/or motion
blur. Furthermore, these two benchmarks evaluate tracking
algorithms with different measures and criteria, which can be
used to analyze the tracker from different views.

We use the same parameter values of BIT on the
two benchmarks. Parameters of the bio-inspired appearance
model are given in Table I. Tracking model parameters men-
tioned in Sec. III-B are specified as follows: the learning
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Fig. 2. Qualitative evaluations on the CVPR2013 Tracking Benchmark. We compare BIT with the top-performing RPT, TGPR, ICF, KCF and Struck.

rate ρ is set to 0.02, and the scale parameter σs of C̃2 is
set to 0.1 or 0.08 according to the C2 response in the first
five frames. (When the average trend is ascending, σs is set
to 0.1 or is set to 0.08 otherwise). The proposed tracker is
implemented in MATLAB 2014A on a PC with Intel i7 3770
CPU (3.4GHz), and runs more than 45 frames per second (fps)
on this platform.

A. Comparison of Results on the CVPR2013 Benchmark

The CVPR2013 Visual Tracker Benchmark (TB2013) [31]
contains 50 fully annotated sequences, as shown in Fig. 2.
These sequences include many popular sequences used in
the online tracking literature over the past several years. For
better evaluation and analysis of the strength and weakness
of tracking approaches, these sequences are annotated with
11 attributes: illumination variation (IV), scale variation (SV),
occlusion (OCC), deformation (DEF), motion blur (MB),
fast motion (FM), in-plane rotation (IPR), out-of-plane rota-
tion (OPR), out-of-view (OV), background clutter (BC), and
low resolution (LR). In this paper, we compare our method
with 11 representative tracking methods. Among the competi-
tors, RPT [58], TGPR [59], ICF [60] and KCF [3] are the most
recent state-of-the-art visual trackers; Struck [23], SCM [12],
TLD [55], VTS [61] are the top four methods as reported in
the benchmark; IVT [9] and MIL [25] are classical tracking
methods which are used as comparison baselines.

The best way to evaluate trackers is still a debatable subject.
Averaged measures like mean center location error or average
bounding box overlap penalize an accurate tracker that briefly
fails more than they penalize an inaccurate tracker. According
to [31], the evaluation for the robustness of trackers is based
on two different metrics: the precision plot and success plot.
The precision plot shows the percentage of frames on which
the Center Location Error (CLE) of a tracker is within a
given threshold e, where CLE is defined as the center dis-
tance between the tracker output and the ground truth. The
success plot also counts the percentage of successfully tracked
frames by measuring the Intersection Over Union (IOU)

Fig. 3. Precisions plots and success plots on the TB2013.

metrics on each frame, and the ranking of trackers is based
on the Area Under Curve (AUC) score. Following the setting
in [31], we conduct the experiment using the one-pass eval-
uation (OPE) strategy for a better comparison with the latest
methods.

Fig. 3 shows the qualitative comparison with selected
trackers over all 50 sequences on the TB2013. BIT mainly
focuses on the position of the bounding box and ensures the
scale robustness by multi-scale filters in S1 units, resulting
in the lack of size adjustment of the bounding box. The
AUC score is sensitive to bounding box size. In the success
plot, a scale estimation method [62] is only used to estimate
bounding box size, not to aid target location and model
updating. However, many trackers (eg. TGPR [59], KCF [3],
Struck [23]) are the lack of size adjustment of the bounding
box, so the precision plot is emphatically analyzed. According
to the precision plot ranked by a representative precision score
(e = 20), our method achieves better average performance
than other trackers. The performance gap between our method
and the reported best result in the literature is 0.6% for
the tracking precision measure; our method achieves 81.7%
accuracy while the best state-of-the-art is 81.1% (RPT [58]).
Moreover the BIT significantly outperforms the best tracker
in the benchmark [31] by 15.4% (Struck [23]) in mean
CLE at the threshold of 20 pixels. The results for all the
trackers and all the video sequences are given in Table II. Our
biologically inspired tracker ranks as the best method 23 times.
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TABLE II

THE TRACKING SCORES OF THE BIT AND OTHER VISUAL TRACKERS ON THE TB2013. THE TOP SCORES ARE SHOWN IN RED FOR
EACH ROW; A SCORE IS SHOWN IN BLUE IF IT IS HIGHER THAN 80% OF THE HIGHEST VALUE IN THAT ROW

The equivalent number of best place rankings for RPT, TGPR,
ICF and KCF are 23, 11, 20 and 15 respectively. Another
observation from Table II is that the BIT rarely performs
inaccurately; there are only eight occasions when the proposed
tracker performs significantly worse than the best method
(no less than 80% of the highest score for one sequence).

Table III and Fig. 4 show the performance plots for
11 kinds of challenge in visual tracking, i.e., fast-motion,
background-clutter, motion-blur, deformation, illumination-
variation, in-plane-rotation, low-resolution, occlusion, out-of-
plane-rotation, out-of-view and scale-variation. Clearly, the
BIT almost achieved excellent performances in 11 typical
challenge subsets, especially on IV, SV, OCC, DEF, IPR,
OPR, and OV. Multi-direction Gabor filters used in S1 units

contribute to the robustness of illumination (IV) and rotation
(IPR and OPR). Pooling operations in C1 and S2 units
provide the shift and scale competitive mechanism to deal
with deformation (DEF) and scale variation (SV). Moreover,
the generative model in S2 units and the discriminative model
in C2 units rise to the challenges of OCC and OV respectively.
However, the STD pooling operation in C1 units achieves the
shift invariance and at the same time weakens the appearance
ability to low resolution (LR) targets.

B. Comparison of Results on ALOV300++
To further validate the robustness of the BIT, we conduct

the second evaluation on a larger dataset [32], namely the
Amsterdam Library of Ordinary Videos (ALOV300++),
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TABLE III

THE TRACKING SCORES ON THE TB2013 FOR 11 KINDS OF TRACKING DIFFICULTY. RED INDICATES
THE BEST WHILE BLUE INDICATES THE SECOND BEST

Fig. 4. Precisions plots of the tracking results on the TB2013 for 11 kinds of tracking difficulty.

which was recently developed by Smeulders et al.. It consists
of 14 challenge subsets, with 315 sequences in total, and
focuses on systematically and experimentally evaluating the
robustness of trackers in a large variety of situations including
light changes, low contrast, occlusion, etc. In [32], survival
curves based on F-score were proposed to evaluate each
trackers robustness and demonstrate its effectiveness. To obtain
the survival curve of a tracker, a F-score for each video
is computed F = 2 × (precision × recall)/(precision +
recall), where precision = ntp/(ntp + n f p), recall = ntp/
(ntp + n f n), and ntp, n f p, n f n respectively denote the
number of true positives, false positives and false negatives
in a video. A reasonable choice for the overlap of tar-
get and object is the PASCAL criterion [63]:

∣
∣T i ⋂

GT i
∣
∣ /∣

∣T i ⋃
GT i

∣
∣ ≥ 0.5, where T i denotes the tracked bounding

box in frame i , and GT i denotes the ground truth bounding
box in frame i . A survival curve shows the performance of
a tracker on all videos in the dataset. The videos are sorted
according to the F-score, and the graph gives a birds eye view
of the cumulative rendition of the quality of the tracker on the
whole dataset.

To evaluate the BIT on the ALOV300++ dataset [32],
we ran the BIT on all 315 sequences using the ground truth of
the first frame as the initialization and the same parameters as
the previous evaluation. Because the F-score is also sensitive
to bounding box size, DSST [62] is only used to estimate
bounding box size same as the success plot in Section IV-A.
We compare our tracker with the top four popular
trackers (Struck [23], VTS [61], FBT [64], TLD [55]) which
were evaluated in [32]. In addition, we also run ICF [60],
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Fig. 5. The survival curves for the top ten trackers on the ALOV300++.

DSST [62], KCF [3] and TGPR [59] on ALOV300++, which
are recognized as the state-of-art trackers in the previous
evaluation, and two classical trackers (IVT [9] and MIL [25])
are used as comparison baselines. The survival curves of the
ten trackers and the average F-scores over all sequences are
shown in Figure 5, which demonstrates that the BIT achieves
the best overall performance compared to the 10 trackers in
this comparison. From the figure, we can see that the proposed
tracker outperforms ICF [60] by 0.008 in mean F-score and
the survival rate (F > 0.8) of the BIT is 59.36% compared to
the second best tracker 55.87% - a difference of 3.49%.

C. Tracking Model Analysis

According to the introduction, tracking model can be gener-
ative or discriminative. For generative models, tracker searches
for the most similar region to the target object within a
neighborhood. For discriminative models, tracker is a classifier
to distinguish the target object from the background. However,
generative models ignore negative samples in the background
and discriminative models pay insufficient attention to the
eigen basis of the tracking target. In this paper, BIT pro-
posed for advanced learning combines the generative and
discriminative model: the response of view-tuned learning
(S2 units) is a generative model and a fully-connected network
classifier simulates for task-turned learning (C2 units) as a
discriminative model. In order to prove the effect of hybrid-
model, we compare the tracking scores between BIT without
C2 units, BIT without S2 units and intact BIT on the TB2013
showed in Fig. 6. For the generative model only (without
C2 units), the object location

(
x̂, ŷ

)
is determined by maxi-

mizing the S2 response map as
(
x̂, ŷ

) = arg min(x,y)S2 (x, y).
For the discriminative model only (without S2 units), the
convolutional neural network in C2 units receives the activ-
ity from C1 units directly as C2 (x, y) = 1/K

∑
k F−1

[F [W (x, y, k)] � F [C1 (x, y, k)]]]. Clearly, the hybrid-
model (81.7%) achieved excellent performances in compar-
ison to single-model (74.9% and 51.7%). In addition, the
performance gap between the discriminative model and the
generative model in the literature is 23.2% for the tracking pre-
cision measure. Because background information is critical for
effective tracking, which can be exploited by using advanced
learning techniques to encode the background information in

Fig. 6. Generative and discriminative model analysis on the TB2013.

TABLE IV

THE TRACKING SPEED AND SCORES ON THE TB2013 (M: MATLAB,
C:C/C++, MC: MIXTURE OF MATLAB AND C/C++, SUFFIX

E: EXECUTABLE BINARY CODE)

Fig. 7. Cost performance on the TB2013. The dashed line is the boundary
between real-time and non-real-time.

the discriminative model implicitly or serving as the tracking
context explicitly.

D. Tracking Speed Analysis

The experiments were run on a PC with Intel i7 3770
CPU (3.4GHz), and we report the average speed (in fps) of
the proposed BIT method in Table IV and compare it with
the state-of-the-art visual trackers referred to in Sec. IV-A.
In this paper, the average speed score is defined as the
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average fps over all the sequences, which objectively evaluates
sequences where the initialization process usually dominates
the computational burden. According to the standard frame
rate of films, we consider that a processing speed of more
than 24 fps is equivalent to real-time processing.

Table IV and Fig.7 show the tracking speed and the tracking
scores on the TB2013 [31]. According to the table, our method
tracks the object at an average speed of 45fps, which is
significantly faster than the second best tracker RPT (4.1 fps).
Furthermore, the speed of our proposed BIT is close to twice
that of the real-time criterion, which leaves a substantial
amount of time in which to increase modified strategies to
further improve tracking performance.

V. CONCLUSION

In this paper, we successfully applied a bio-inspired model
to real-time visual tracking. To the best of our knowledge,
this is the first time this has been achieved. Inspired by biore-
search, the proposed novel bio-inspired tracker models the
ventral stream of the primate visual cortex, extracting low-level
bio-inspired features in S1 and C1 units, and simulating high-
level learning mechanisms in S2 and C2 units. Furthermore,
the complicated bio-inspired tracker operates in real-time
since fast Gabor approximation (FGA) and fast Fourier
transform (FFT) are used for online learning and detection.
Numerous experiments with state-of-the-art algorithms on
challenging sequences demonstrate that the BIT achieves
favorable results in terms of robustness and speed.

The human visual system is a complex neural network
which is multi-layered and multi-synaptic, and the BIT pays
little attention to a number of visual cognitive mechanisms.
A well-known multi-store memory model (which includes sen-
sory memory, short-term memory, and long-term memory) is
proposed by Atkinson and Shiffrin [65], which provides some
ideas for tracking-by-detection to improve out-of-view and
long-term challenges. Moreover, a multi-stored prototype [34]
is used for object recognition in S2 units, which has proved
to be effective for local occlusion and partial deformation.
In addition, C2 units using a single layer convolutional net-
work cannot perfectly simulate neuron connections in PFC,
which provides a good starting platform for further research
into multi-layer neural networks.
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