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Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems
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Cellular gene expression is a complex process involving many steps, including the transcription of DNA and
translation of mRNA; hence the synthesis of proteins requires a considerable amount of time, from ten minutes
to several hours. Since diffusion-driven instability has been observed to be sensitive to perturbations in kinetic
delays, the application of Turing patterning mechanisms to the problem of producing spatially heterogeneous
differential gene expression has been questioned. In deterministic systems a small delay in the reactions can
cause a large increase in the time it takes a system to pattern. Recently, it has been observed that in undelayed
systems intrinsic stochasticity can cause pattern initiation to occur earlier than in the analogous deterministic
simulations. Here we are interested in adding both stochasticity and delays to Turing systems in order to assess
whether stochasticity can reduce the patterning time scale in delayed Turing systems. As analytical insights to
this problem are difficult to attain and often limited in their use, we focus on stochastically simulating delayed
systems. We consider four different Turing systems and two different forms of delay. Our results are mixed
and lead to the conclusion that, although the sensitivity to delays in the Turing mechanism is not completely
removed by the addition of intrinsic noise, the effects of the delays are clearly ameliorated in certain specific
cases.
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I. INTRODUCTION

One of the fundamental unanswered questions of develop-
mental biology remains that of how spatiotemporal complexity
arises. Using relatively few homologous and evolutionarily
conserved pathways the biological world produces multi-
ple diverse morphological patterns [1]. Primarily, this self-
organization is thought to arise through seemingly identical
cells undergoing differential gene expression [2]. These
differentiated cells are then able to express different proteins
and thus create, and respond to, heterogeneous environments.
Of course, there will always be a certain degree of variability
between individual living systems. Even asexual reproduction
can result in different phenotypes from the same genotype if in-
dividuals are subject to differing environmental conditions [3].
However, although numerous sources of intrinsic and extrinsic
noise exist, biological processes are able to consistently exhibit
similar results, e.g., the same number of digits in chick wings
and legs [4,5]. Consequently, the development of patterns
through gene expression requires rigorous spatiotemporal
coordination, which can be exerted by both long-range signals,
such as diffusible-morphogen gradients [6], and short-range
signals, as exemplified by cell-to-cell communication via
signaling pathways [7]. Critically, development can proceed
at an extremely rapid rate, emphasizing the likely presence
of temporal coordination and regulation. For example, the
basic body plan of the zebrafish is established in under
24 h [8].
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In this paper we focus on the particular mechanism of
Turing’s diffusion-driven instability [9]. Diffusion is well
known for its homogenizing properties. However, Turing
postulated that, when coupled with certain reactions, diffusion
could lead to a persistent inhomogeneous state, created through
a spontaneous symmetry breaking of initial near-homogeneous
populations. There is certainly evidence to support the pres-
ence of gene expression for prospective Turing morphogens,
e.g. Nodal and Lefty in zebrafish, with in situ hybridisation
and mRNA expression [10–14].

However, many applications of Turing’s mechanism as-
sume instantaneous biochemical reactions for regulated pro-
tein production [15,16]. This can quickly be seen to be
inadequate as the process of producing a gene product is a
long and complicated one.

First, a linear polymeric ribonucleic acid (RNA) molecule
is produced in the cell nucleus. This RNA molecule is an
exact copy of the relevant gene sequence and is modified
into a form called messenger RNA (mRNA). The mRNA
is then transported into the nuclear membrane, where it is
used as a blueprint for protein synthesis. In particular, the
process of mRNA translation involves the polymerization
of thousands to millions of amino acids [17]. Given the
complexity of this mechanism it should not be surprising that
a delay occurs between the initiation of protein translation
and the point at which mature proteins are observed. The
exact delay depends both on the length of the sequence being
read and the sequence being created. However, typically the
delay ranges from tens of minutes to as long as several
hours [18,19]. Additionally, since inter- and intracellular
reactions frequently operate in noisy conditions [20–22], we
are interested in comparing the results of delayed deterministic
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simulations with the, perhaps, more appropriate stochastic
formalism.

For Turing patterns to exist in a two species reaction system
it is well known that diagonal elements of the Jacobian must
be of opposite signs [23], namely the Jacobian must have one
of the following forms (including the symmetries + ↔ −):

Jc =
(+ +

− −
)

, Jp =
(+ −

+ −
)

. (1)

A kinetic mechanism for which the Jacobian is of type Jc

(type Jp) is said to be a cross (pure) activator-inhibitor
mechanism [24].

In physical terms pure kinetics (Jp) comprise a short-range
self-activator which is inhibited by a long-range self-inhibitor;
hence the activator and inhibitor are in phase. The cross kinetic
form (Jc) causes a self-activator to deplete a self-inhibitor.
This, in turn, feeds production of the activator, causing the
spatial oscillations to be in antiphase. The distinction between
pure and cross kinetics is rarely made as, in general, they
behave similarly [23]. One notable difference that can be
observed in the case of Turing patterns on a growing domain
is that the activator population in a pure kinetic system favors
a peak doubling transition between patterning states, whereas
the activator in a cross kinetic system tends to peak split [25].
However, in either case, once a pattern transition has occurred
as a result of domain growth we are left with a pattern that
contains double the number of initial concentration peaks.
Thus, unless the mechanism by which the pattern changes
can be experimentally observed or the morphogens can be
shown to be in or out of phase, we are left without an exact
way of distinguishing between the two types of kinetics from
observations at the macroscale.

In contrast, when delays are added to pure and cross
kinetics systems large differences can be observed in their
behavior [26,27], at least for Gierer-Meinhardt kinetics [28]
and Schnakenberg kinetics [29] (originally proposed by Gierer
and Meinhardt [28]), which are exemplars of pure and
cross kinetics, respectively. In particular, Gierer-Meinhardt
kinetics contain a negative feedback loop which can work
in conjunction with the time delay to produce oscillations,
which are not seen with Schnakenberg kinetics [27]. Here we
extend our studies, not only considering Gierer-Meinhardt and
Schnakenberg kinetics but including delays in the glycolysis
kinetic system [30,31] and an adapted version of the cubic
autocatalytic kinetic system [32], which are further examples
of cross and pure kinetics, respectively.

A further complication in modeling delayed systems is
due to the observation that the specification of where and
how the delay occurs may not be unique. Here, two extreme,
biologically motivated cases are considered. The dominant
view is that signal transduction occurs via reversible-ligand
binding. This assumes that the signal for the production
of morphogens is produced through reversible morphogen
binding on the cell surface with an associated gene expre-
ssion delay between the initiation signal and protein production
[33,34]. Once the cell begins to form morphogen products,
particles bound to the surface of the cell are able to return to
the bulk and initiate further reactions. An alternative signaling
mechanism, known as ligand internalization, has increasing
empirical evidence for its existence. In this case the signal

is transduced via ligands that are internalized [35,36]. Thus,
instead of the particles being able to leave the binding sites of
the external cell membrane once production has been initiated,
the binding particles are removed from the system.

Our interest in stochastically simulating delayed equations
stems from recent work in which we questioned how the Turing
mechanism was affected by factors such as stochasticity [37].
It was seen that intrinsic stochasticity can actually enhance
production of the patterned state as, not only do stochastic
Turing structures form outside of the deterministic parameter
domain, the noisy simulations are able to produce the patterned
state quicker than their deterministic analogues. Thus our
intention is to use numerical simulations to investigate whether
intrinsic noise can overcome the sensitivity of Turing’s
mechanism to delays, especially the extreme patterning lags
observed in delayed systems.

In the case of delayed partial differential equations (PDEs)
analytic results concerning linear stability are difficult to
derive as the eigenvalue equation is transcendental and time-
dependent. Furthermore, it has been shown that standard linear
analysis is typically unable to capture the dynamics of the
full nonlinear system [26]. Thus full linear analysis of the
delayed system is not considered here. Instead, we focus
on numerically comparing the stochastic and deterministic
systems, in order to observe the effects of stochasticity on
delayed Turing systems.

Initially, in Sec. II, we consider the effect of altering the
initial conditions on the pattern formation time scale for
undelayed systems and use this to justify our interest in adding
stochastic effects to delayed systems. After observing how
intrinsic noise can reduce the patterning lag we progress
to adding a representation of gene expression delay into
morphogen-regulated-morphogen-production of the Turing
kinetics in Sec. III and discuss how these are to be simulated,
deterministically and stochastically in Sec. IV. The results
of simulating delayed pure and cross Turing kinetics are
illustrated in Sec. V. Finally, in Sec. VI we bring together our
results to assess the biological applicability of Turing patterns
in delayed systems.

II. SENSITIVITY TO INITIAL CONDITIONS

One factor that can alter the time taken between system
initiation and pattern realization is the form of initial con-
dition. In this section we use the Schnakenberg kinetics to
demonstrate how noise can remove this sensitivity. Although
originally derived in 1972 [28], the Schnakenberg kinetics
were popularized in 1979, where they were derived as one of
eleven sets of kinetics that demonstrated the necessary prop-
erties for limit cycle behavior, these being that the system
needs at least three reactions with at least one of those being
autocatalytic [29]. Since then extensive analysis has been
performed on the Schnakenberg kinetics [38–40], which can
be thought of as a simplified version of the Brusselator model
[41]. For populations U and V , the Schnakenberg reactions
can be written as

∅ c1−−−⇀↽−−−
[c−1]

U, ∅ c2→ V, 2U + V
c3→ 3U, (2)
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where the cn are deterministic reaction rates and ∅ rep-
resents substances which are not considered. By letting φ

and ψ be the concentrations of U and V , respectively,
and allowing the reactants to diffuse, the PDE system
becomes

∂φ

∂t
= Dφ

∂2φ

∂x2
+ c1 − c−1φ + c3φ

2ψ, (3)

∂ψ

∂t
= Dψ

∂2ψ

∂x2
+ c2 − c3φ

2ψ, (4)

where throughout this paper the equations are simulated on
finite one-dimensional domains with homogeneous Neumann
boundary conditions prescribed at each end. Alongside these
deterministic equations we also stochastically simulate the
reactions in Eq. (2) using the software Dizzy 1.11.4 [42]
to implement a standard Gillespie stochastic simulation
algorithm (SSA) [43,44]. The methods of simulation are
discussed further in Sec. IV and Appendix B. Note that the
stochastic system uses stochastic reaction rates, κn, which
have been scaled such that the theoretical homogeneous
steady state of the stochastic population is � times larger
than the deterministic concentration at the homogeneous
steady state. Thus � is a population scale that links the
discrete, stochastic description of the microscopic scale to
the continuous, deterministic macroscopic scale [37,45–49]
and, thus, approximately, φ� ≈ U and ψ� ≈ V . Here, unless
otherwise stated, � = 100.

In Figs. 1(a)–1(c) the same deterministic system is simu-
lated three times with three different initial conditions. In each
case, a normally distributed random perturbation with mean

zero and standard deviation σ was added to each spatial point
of the homogeneous steady state. If, upon the addition of this
random number, the initial condition was negative, the absolute
value of the number was taken. Figures 1(a)–1(c) show the
effect of decreasing the standard deviation over the three
simulations. Clearly, we can see that the size of perturbation
affects the resulting time between pattern initiation and pattern
formation.

Since the normal distribution produces white noise all spa-
tial frequencies have the same power. We also tested uniformly
distributed random initial conditions and pseudorandom initial
conditions in order to see if these affected the pattern initiation
time in any particular way (results not shown). Although these
different initial conditions may excite all wave modes, they
will not all have the same power; thus certain frequencies
may dominate. However, it is observed that altering the initial
condition in this manner has little effect on the time taken
to form patterns, while altering the amplitude of the noise
produces similar results to those seen in Fig. 1.

The dependence of the time taken to pattern on the initial
condition is easy to understand; if the deterministic system is
initialized at exactly the homogeneous steady state then (ignor-
ing computational error) the system will remain at the steady
state. However, any perturbation, no matter how small, will
destabilize this state. Initially, the small perturbation grows
approximately exponentially. By decreasing σ we decrease
the variance of the noise about the homogeneous steady state
and, hence, the initial amplitude of this perturbation. Thus,
although the wave mode amplitude increases exponentially, it
has to increase from a state that is very close to homogeneity

(a) σ = 1 (b) σ = 1/10

(c) σ = 1/100 (d)
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FIG. 1. (Color online) (a)–(c) Determin-
istic pattern formation from homogeneous
steady-state initial conditions with normally
distributed noise (mean zero and stan-
dard deviation, σ , given under each figure)
added to the deterministic initial conditions.
(d) Stochastic pattern formation from homo-
geneous steady-state initial conditions. The il-
lustrated system is the Schnakenberg kinetics,
Eqs. (3) and (4). The deterministic system
was simulated using an explicit Euler stepping
method and the stochastic system was simulated
using a standard Gillespie algorithm. Parameters
are Du = 10−6 mm2/s, Dv = 10−4 mm2/s, c1 =
10−3 mol/(mm s), c−1 = 2 × 10−3 s, c2 = 3 ×
10−3 mol/(mm s), and c3 = 10−3 mm2/(mol2

s). The boundary conditions are zero flux, the
temporal axis is in seconds, and the spatial axis
is in millimeters. The color axis scale is in
moles/mm for the deterministic simulations and
particles/mm for the stochastic simulations. The
boundary conditions and axis scales are the same
for all the following figures, unless otherwise
stated.
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(a) σ = 1 (b) σ = 1/10

(c) σ = 1/100 (d)
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FIG. 2. (Color online) (a)–(c) Deterministic
pattern formation from zero state initial condi-
tions with normally distributed noise (mean zero
and standard deviation, σ , given under each fig-
ure) added to the deterministic initial conditions.
(d) Stochastic pattern formation from zero state
initial condition. The kinetics, parameters, and
solution methods are the same as in Fig. 1.

when σ = 1/100 and so the time taken for patterns to appear is
increased. It is worth noting that, since the wave modes grow
exponentially, we expect a logarithmic relationship between
the size of the perturbation and the increase in time.

The deterministic simulations, Figs. 1(a)–1(c), can then
be compared with an analogous stochastic simulation in
Fig. 1(d). Here, the initial condition was the uniform steady
state exactly and it is the intrinsic noise which destabilizes
the homogeneous state. By considering Fig. 1 we observe
that the patterning time scale of the stochastic simulation is
most similar to the deterministic simulation which had the
initial condition with largest standard deviation. Critically, it
is seen that by adding noise to the initial condition of the
stochastic system the time scale of pattern formation is not
affected (results not shown). Thus, not only does the inclusion
of stochasticity reduce the sensitivity of the system to initial
conditions, it also renders patterns much more quickly than the
deterministic system, particularly when the initial condition
is very close to the homogeneous steady state. This is an
important observation since the initial stochasticity added to
initialize many deterministic simulations is generated on an ad
hoc basis. Here, we see evidence to suggest that characterizing
the initial conditions correctly as well as incorporating intrinsic
noise can have dramatic effects on the patterning time scale,
when compared to that of the deterministic simulations.

Another assumption that we need to address is that all
simulations produced thus far have been initiated from the
homogeneous steady state. We should question whether these
initial conditions are realistic in a biological sense. Certainly,
in vitro morphogens could be added at the beginning of an

experiment to reproduce steady-state conditions [50]. How-
ever, in vivo it will take time for morphogen concentrations to
build up to sufficient levels before patterning can occur [4]. In
Fig. 2 we simulate the exact same system as in Fig. 1, except
that the initial conditions are set to zero in the stochastic case
and zero with normally distributed noise in the deterministic
case. Immediately, we see that the standard deviation has much
more influence on the patterning time scale than the change in
the initial condition. We should also note that the deterministic
formulation of the system is actually invalid when we start
sufficiently close to the zero state as we are violating the
assumption that there are enough reactant particles to treat
the morphogens as continuous quantities, rather than discrete
particles.

Now that we have illustrated that intrinsic noise has
the ability to remove the sensitivity of the diffusion-driven
instability to initial conditions and increase the speed of the
patterning mechanism, we apply the stochastic formalism to
the case of delayed reaction kinetics. In the next section we
discuss how kinetic delays are added to the deterministic and
stochastic formulations.

III. MATHEMATICALLY MODELING
DELAYED KINETICS

There are multiple ways of including delays in mathemat-
ical systems and current biological understanding is often
insufficient to distinguish between them. Thus we consider
two biologically motivated options, reversible-ligand binding
and ligand internalization, and explore the following four
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model systems: Schnakenberg, glycolysis, Gierer-Meinhardt,
and cubic autocatalysis [28,30–32]. The Schnakenberg case is
considered in full detail with the other three cases being similar.
Their respective kinetic forms are given in Appendix A.

A. Schnakenberg system

First, we consider the Schnakenberg kinetics with
reversible-ligand binding. We place the delay in the
nonlinear production term, as morphogen-regulated-
morphogen-production induces gene expression delays in
protein production. The reactions,

∅ κ1→ U, U
κ−1→ ∅, ∅ κ2→ V, (5)

are kept the same as in Sec. II. The delayed reaction,

2U + V
κ3,delay τ−→ 3U, (6)

is encoded as the two-stage process. For the reversible-ligand
binding representation of morphogen production we have

2U + V
κ3→ 2U + W, W

delay τ−→ U. (7)

Using the Law of Mass Action and relating the stochastic
reaction rates, kn, to their deterministic analogues, cn, through
an appropriate scaling of � [47] we derive the following set
of PDEs:

∂φ

∂t
= Dφ

∂2φ

∂x2
+ c1 − c−1φ

+ c3 φ(x,t − τ )2ψ(x,t − τ )︸ ︷︷ ︸
Gain one particle of U from delayed reaction at time t−τ.

(8)

∂ψ

∂t
= Dψ

∂2ψ

∂x2
+ c2 − c3 φ2ψ︸︷︷︸

Lose one particle of V from reaction at time t.

,

(9)

where only the delayed arguments have been shown. All
of the other φ and ψ functions are evaluated at (x,t). It
should be noted that the production of proteins occurs at
the same spatial point as their initiation, for, although the
proteins are able to diffuse, the cells which produce them
cannot move.

In order to include the ligand internalization delay in
the Schnakenberg system we keep reactions (5) the same
as before and, once again, apply the delay to the cubic
nonlinearity,

2U + V
κ3→ W, W

delay τ−→ 3U, (10)

which models total internalization the U and V . Explicitly, at
the present time two particles of U and one particle of V are
internalized and, thus, removed from the active populations.
However, we also gain three particles of U from the delayed
reactions at a time τ in the past; thus the ligand internalized

form is

∂φ

∂t
= Dφ

∂2φ

∂x2
+ c1 − c−1φ + c3[3φ(x,t − τ )2ψ(x,t − τ )︸ ︷︷ ︸

Gain three particles of U

from delayed reaction.

− 2φ2ψ︸ ︷︷ ︸
Lose two particles of U

from present reaction.

], (11)

∂ψ

∂t
= Dψ

∂2ψ

∂x2
+ c2 − c3 φ2ψ︸︷︷︸

Lose one particle of V from present reaction.

.(12)

B. Glycolysis system

The second form of cross kinetics we consider are known as
the glycolysis kinetics [30,31]. The reversible-ligand binding
PDE formulation is

∂φ

∂t
= Dφ

∂2φ

∂x2
+ c1 − c2φ − c3φψ2 − c6φψ2, (13)

∂ψ

∂t
= Dψ

∂2ψ

∂x2
+ c4φ − c5ψ + c6φ(t − τ )ψ(t − τ )2, (14)

while the ligand internalization PDE formulation is

∂φ

∂t
= Dφ

∂2φ

∂x2
+ c1 − c2φ − c3φψ2 − c6φψ2, (15)

∂ψ

∂t
= Dψ

∂2ψ

∂x2
+ c4φ − c5ψ − c62φ(t − τ )ψ(t − τ )2

+ 3c6φ(t − τ )ψ(t − τ )2. (16)

C. Gierer-Meinhardt system

As discussed in Sec. I, the effects of the delay on particular
types of pure and cross kinetics have been seen to be very
different. Thus, in this section, we continue our investigation
into the effects of delays on stochastic equations by considering
the case of the Gierer-Meinhardt kinetics. The delay is, once
again, added through the nonlinear production terms, but this
time there are two such reactions. Although we could retard
each delayed reaction separately with a different time scale,
our focus is primarily on highlighting the general influences of
noise in both deterministic and stochastic systems. Hence the
delay in both equations is the same. Note that in Eq. (A5) we
have adapted the propensity function of the standard Gierer-
Meinhardt autocatalytic term, κ3/V , to κ3/(V + 0.001). This
is to remove the problematic singularity that may occur if the
V population decreases to zero, as can occur in deterministic
delayed systems [27]. This reaction system gives rise to a
ligand-reversible binding system of the form

∂φ

∂t
= Dφ

∂2φ

∂x2
+ c3

φ(x,t − τ )2

ψ(x,t − τ ) + 10−5
+ c1 − c2φ, (17)

∂ψ

∂t
= Dψ

∂2ψ

∂x2
+ c4φ(x,t − τ )2 − c5ψ. (18)

The different constants in the nonlinear term, i.e., κ3/(V +
0.001) in the stochastic propensity function, and c3/(ψ +
10−5) in the deterministic propensity function, are needed to
correct for the population scale, � = 100, which relates the
stochastic population and deterministic concentration, as noted
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in Sec. II. The ligand-internalization PDE formulation is

∂φ

∂t
= Dφ

∂2φ

∂x2
+ c3

(
3

φ(x,t − τ )2

ψ(x,t − τ ) + 10−5
− 2

φ2

10−5 + ψ

)

+ 2c4[φ(x,t − τ )2 − φ2] + c1 − c2U, (19)

∂ψ

∂t
= Dψ

∂2ψ

∂x2
+ c4φ(x,t − τ )2 − c5ψ. (20)

D. Cubic autocatalytic system

The second form of pure kinetics we consider are known as
the cubic autocatalytic kinetics [32]. Originally, these were
derived to make the origin the homogeneous steady state;
hence the populations could become negative. In order to
remove this problem the reactions which affect U have been
made to depend on having at least one particle of U present.
For example, originally the U population was removed at
a rate proportional to κ1. This has been altered to make
the rate proportional to κ1U . The reversible-ligand binding
form is

∂φ

∂t
= Dφ

∂2φ

∂x2
− c1φ − c2φ

2 + c3φ(t − τ )ψ(t − τ ),

(21)

∂ψ

∂t
= Dψ

∂2ψ

∂x2
+ c4 − c5φ − c6ψ + c7ψ(t − τ )2 − c8ψ

3,

(22)

while the ligand internalization form of the delayed reactions
is

∂φ

∂t
= Dφ

∂2φ

∂x2
− c1φ − c2φ

2 + 2c3φ(t − τ )ψ(t − τ ) − c3φψ,

(23)

∂ψ

∂t
= Dψ

∂2ψ

∂x2
+ c4 − c5φ − c6ψ + c3φ(t − τ )ψ(t − τ )

− c3φψ + 3c7ψ(t − τ )2 − 2c7ψ
2 − c8ψ

3. (24)

IV. NUMERICAL METHODS

Since we are dealing with delayed processes our compu-
tational scheme must allow us to keep track of the history of
the simulated variables in order to allow past populations to
affect the present state. Although there are a number of ways
of achieving this deterministically, which can be extended to
encapsulate stochastic effects [51], we choose to use a “time
bin” method. The delay time, τ , is discretized into M ∈ N bins
of size τ/M . This is implemented as it is too computationally
costly to keep track of every single time step [51], particularly
in the case of the stochastic simulations where each reaction
changes the state of a very small number of particles. In
the deterministic case we use a time-explicit Euler stepping
algorithm [27,52], which is discussed further in Appendix B.

The stochastic simulation of the delay needs further
elucidation. In contrast to a deterministic delay, where we
simply keep track of the population history and then update
the present population based on this history, we create a new
delayed population, W , and split a single delayed reaction up
into two distinct actions; the creation of the delayed population

and its decay to the products, as discussed in Sec. III and
Appendix A. We then use the software Dizzy 1.11.4 [42]
to simulate the delayed stochastic system. In this paper, the
delayed reaction is not probabilistic, so after a delay of
τ time units the delayed population decays to the product
population with probability one. The inclusion of a proba-
bilistic transition of the delayed population is possible but not
considered here.

In the case of Gierer-Meinhardt kinetics (Sec. V F), oscil-
lations occur which create huge increases in population size.
Unfortunately, these increases are too big for the Gillespie SSA
to handle practically. Thus, in cases where populations are too
big to simulate explicitly, we use Langevin simulations akin to
those introduced by Tian et al. [53]. The Langevin simulations
are related to the time-explicit Euler stepping approach
used in the deterministic simulations through the addition
of two correctly scaled white noise terms which represent
the stochasticity due to the present and delayed reactions,
respectively. Langevin simulations are also used in the case of
cubic autocatalytic kinetics with ligand internalization delays,
since the time scales over which the simulations are needed to
run cause the SSA to be impractical.

Finally, we must once again discuss the role of initial
conditions; it is not simply enough to define the initial
condition at time t = 0. Due to the delay, we must also
define the populations for the time bins during the period
−τ � t < 0. Previously [26,54], these prior time points have
simply been fixed at (small perturbations around) the steady
state and, thus, products from the delayed equation are able to
appear at the beginning of the simulation, t = 0. Physically,
these initial conditions model an experiment that is kept at
steady state during the initial time period, −τ � t < 0. We
choose to have the initial delayed concentrations set to zero
and fix the t = 0 condition to be the homogeneous steady state
in the stochastic case and the homogeneous steady state with
additional normally distributed random noise with mean 0
and standard deviation 1/10 in the deterministic case. This
small standard deviation was used to mimic the fact that
the deterministic concentration is related to the stochastic
population through the approximation φ + ηu/

√
� = U/�

and ψ + ηv/
√

� = V/�, where the ηu and ηv are normally
distributed random variables [37,45–49]. The value σ = 1/10
comes from the fact that here, as elsewhere, we fix � = 100.
The physical interpretation of these conditions is that prior to
the start of the reactions the domain was empty, or reagents
occupied the domain but were unable to react until t = 0 when
the reactants were uncaged.

Of course the reality of this initial condition may be
contested as, if the reagents exist in the domain, then, unless
they are constrained by some factor, they would surely react.
However, in feather patterning there is a hypothesis of a
priming wave [55,56], with an absence of patterning before
the wave. If the reactions are primed in this way there are no
reactions in the domain for t < 0 and hence the conditions are
not unreasonable.

V. SIMULATIONS OF DELAYED KINETICS

Having derived the delayed deterministic equations from
the underlying reaction systems we compare the stochastic and
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deterministic simulations to assess whether stochastic effects
are able to rescue the Turing mechanism from the concern that
it is not physically plausible due to its sensitivity to kinetic
delays.

A. Schnakenberg ligand internalization simulations

Deterministic and stochastic simulations of the ligand
internalized system are shown in Fig. 3. First, we observe
that, due to fixing the initial conditions to be zero for
−τ � t < 0, and then at steady state for t = 0, both the
deterministic concentrations and stochastic populations suffer
a large decrease from the steady-state populations lasting
approximately 6τ time units. This is then followed by a
large increase up to an order of 1000 particles per discretized
interval. Finally, the huge population oscillation decreases to
the steady state and, from there, progression to the patterned
state occurs.

Further, we see that, at least for these parameter values,
although noise is able to expedite pattern formation, the
Schnakenberg kinetics with ligand internalization are incred-
ibly sensitive to small changes (in relation to the time scale
of pattern formation) in the kinetic delays. Thus, due to this
temporal sensitivity induced by the delay, we conclude that
this form of kinetics is likely to be unsuitable for rapid,
temporally regulated developmental systems, such as those
found in zebrafish [8].
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FIG. 3. (Color online) Top: concentration φ of the delayed
deterministic Schnakenberg system with ligand internalization,
Eqs. (11) and (12), simulated using a modified explicit Euler
stepping method. Bottom: population U of the delayed stochastic
Schnakenberg system, simulated using Dizzy 1.11.4 [42]. The delay,
τ , in seconds, is given above each figure. All of the images inherit the
left-hand axes and the right-hand color map. Parameters are Du =
10−4 mm2/s, Dv = 10−2 mm2/s, c1 = 0.1 mol/(mm s), c−1 = 0.2 /s,
c2 = 0.3 mol/(mm s), and c3 = 0.1 mm/(mol2 s).
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FIG. 4. (Color online) Top: concentration φ of the delayed
deterministic Schnakenberg system with reversible-ligand binding,
Eqs. (8) and (9). Bottom: population U of the delayed stochastic
Schnakenberg system. The delay, τ , in seconds, is given above each
figure. All of the images inherit the left-hand axes and the right-hand
color map. The parameters and solution methods are the same as in
Fig. 3.

B. Schnakenberg reversible-ligand binding simulations

We now consider pattern initiation for the reversible-ligand
binding form of delay. From Fig. 4 we can immediately see
that this other form of delay can produce a large difference in
the simulated outcome. Once again, we see that initially the
population drops and then undergoes a large increase. After
this the population tends to the steady state and finally the
pattern is produced from this state. Although these dynamics
are attributable to both ligand internalization and reversible-
ligand binding forms of delay (compare Figs. 3 and 4), in the
current case of reversible-ligand binding these initial transient
effects are not as sensitive to the delay as in the case of ligand
internalization.

By comparing Figs. 4(a) and 4(b) we see that stochasticity
is able to remove the patterning lag that is seen in the
deterministic simulations. Explicitly, in Fig. 4(a) we observe
that the patterning lag is initially 600 s for a delay of τ = 10 s.
This then slowly increases to a lag of 1500 s, with the increase
of the delay up to τ = 30 s. However, in the case of the
stochastic system, the pattern is always seen to be initiated
within 1000 s.

Knowing that noise helps the system produce patterns
earlier, we increased the delay further to see how far we could
push the system before it began to break down. In Fig. 5 we
see that even for a delay of τ = 100 s Turing patterns are
observable. Critically, although it takes roughly 4000–5000 s
for the patterns to stabilize, we can see that the initialization
occurs at around 1000 s. If the delay is then pushed even
further spatial heterogeneity is still visible over a long time
scale, although it is now accompanied by oscillations that have
a consistent frequency. By considering higher delays (data not
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FIG. 5. (Color online) Population U of the delayed stochastic
Schnakenberg system with reversible-ligand binding, Eq. (7). The
delay, τ , in seconds, is given above each figure. All of the
images inherit the left-hand axes and the right-hand color map.
The parameters and solution methods are the same as in Fig. 3.

shown) the time scale of the oscillations is observed to increase
along with the delay.

C. Glycolysis ligand internalization simulations

The effect of the ligand internalization delays on the
glycolysis reactions is demonstrated in Fig. 6 and is very
similar to those of the Schnakenberg kinetics. However,
although the patterning initiation time still depends on the
delay, τ , its sensitivity is greatly reduced as we can increase
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FIG. 6. (Color online) Top: concentration ψ of the delayed
deterministic glycolysis system with ligand internalization, Eqs. (15)
and (16), simulated using a modified explicit Euler stepping method.
Bottom: population V of the delayed stochastic glycolysis systems,
simulated using Dizzy 1.11.4 [42]. The delay, τ , in seconds, is given
above each figure. The τ = 500 and 1000 s images are plotted
on the same axes. All of the images inherit the right-hand color
map. Parameters are c1 = 4.8 × 10−3 mol/(mm s), c2 = 8 × 10−5

s, c3 = 0.04096 mm/(mol2 s), c4 = 1.25 × 107 s, c5 = 1.6 × 10−3

s, c6 = 5.12 × 10−3 mm/(mol2 s), Dφ = 10−4 mm2/s, and Dψ =
3 × 10−7 mm2/s.

the kinetic delay far beyond that of the Schnakenberg system
and still induce patterning on significantly shorter time scales.

The effects of noise on these kinetics are seen to be minimal
in that the pattern initiation time is comparable to that of the
deterministic simulation. In certain cases (data not shown)
it has been observed that the intrinsic stochasticity causes
the initiation to be quite noisy and, thus, although the mode
one wave has been activated, the analogous deterministic
simulation is able to produce a clearer pattern much earlier.

D. Glycolysis reversible-ligand binding simulations

In Fig. 7 we see that the behavior of the glycolysis kinetics
is similar to Schnakenberg kinetics in that the systems are less
sensitive to the delay when reversible-ligand binding delays
are used than when ligand internalization delays are used.
Moreover, the glycolysis reactions are able to withstand much
higher kinetic delays compared to the Schnakenberg kinetics.
Indeed, by pushing the delay further to our computational
limits (simulations not shown) we observe that, unlike the
Schnakenberg kinetics, the kinetics never appear to break down
to constant oscillations. There may be initial oscillations, as
shown in the τ = 3000 s simulations, but these are always
damped leaving a final stable steady state.

Similar to the glycolysis simulations with ligand internal-
ization the effects of noise on the glycolysis reactions appear
to be minimal as in the majority of cases the pattern initiation
time is equivalent in both sets of simulations. However, it
is noted that in the stochastic τ = 3000 s case, although the
initiation of a pattern is observable during the temporal interval
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FIG. 7. (Color online) Top: concentration ψ of the delayed deter-
ministic glycolysis system with reversible-ligand binding, Eqs. (13)
and (14), simulated using a modified explicit Euler stepping method.
Bottom: population V of the delayed stochastic glycolysis system.
The delay, τ , in seconds, is given above each figure. All figures are
plotted on the same axes except for the τ = 3000 s images where
the axes are shown explicitly. All of the images inherit the right-hand
color map. The parameters and solution methods are the same as in
Fig. 6.
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FIG. 8. (Color online) Top: concentration φ of the
delayed deterministic Gierer-Meinhardt system with ligand
internalization, Eqs. (19) and (20), simulated using a modified
explicit Euler stepping method. Bottom: population U of the
delayed stochastic Gierer-Meinhardt system, simulated using
Dizzy 1.11.4 [42]. The delay, τ , in seconds, is given above
each figure. All of the images inherit the left-hand axes and the
right-hand color map. Parameters are Dφ = 3.125 × 10−6 mm2/s,
Dψ = 2.5 × 10−3 mm2/s, c1 = 0.06 mol/(mm s),
c2 = 0.2 s, c3 = 0.125 s, c4 = 1.25 mm/(mol s), and c5 = 0.1 s.

2 × 104 s < t < 4 × 104 s, it is not as clear as its deterministic
analog.

E. Gierer-Meinhardt ligand internalization simulations

Once again, we begin by considering the effects of ligand
internalization delays. The stochastic and deterministic simu-
lations are shown in Fig. 8. Essentially, the results produced for
these kinetics with ligand internalization delay are very similar
to those in the case of the Schnakenberg kinetics, except that
the pattern formation lag is even more severe. Once again,
stochasticity appears to aid in reducing this lag, as can be seen
in the τ = 15 s case of Fig. 8, but, on the whole, the pattern
initiation time scale is too sensitive to small changes in the
kinetic delay for the system to be of any practical use.

F. Gierer-Meinhardt reversible-ligand binding simulations

We now consider the simulation results of the reversible-
ligand binding form of delay shown in Fig. 9. Here, we
observe that for this system even small delays can cause a
complete breakdown of Turing patterning. In the deterministic
case, Fig. 9(a), the spatial inhomogeneity is replaced with
homogeneous oscillations, while in the stochastic cases,
Figs. 9(b) and 9(c), inhomogeneous oscillations are seen. Note
that this breakdown is not a numerical error as the simulations
are unaffected by a decrease in the time step or increase in the
number of time bins. Also, these effects have been observed
and described previously in deterministic systems [27].

τ=1 s

x

t

0.0 0.1
0

1000

2000

3000

4000
τ=5 s τ=10 s

0

1

2
τ=15 s

0

1

2

3

4

τ=1 s

t

x
0.0 0.1
0

1000

2000

3000

4000
τ=5 s τ=10 s τ=15 s

0

50

100

150

200

τ=1 s
t

x
0.0 0.1
0

1000

2000

3000

4000
τ=5 s τ=10 s τ=15 s

0

100

200

(a)

(b)

(c)

FIG. 9. (Color online) Top: concentration φ of the delayed de-
terministic Gierer-Meinhardt system with reversible-ligand binding,
Eqs. (17) and (18), simulated using a modified explicit Euler stepping
method. Middle: population U of the delayed stochastic Gierer-
Meinhardt system, simulated using a Langevin form of Eqs. (17)
and (18) [53]. Bottom: population U of the delayed stochastic
Gierer-Meinhardt system with saturation, simulated using a Langevin
form of Eqs. (17) and (18), where the nonlinear term in Eq. (17) has
been modified to Eq. (25). In both the middle and bottom images, the
color axes has been capped at 200 particles. However, the populations
can increase to levels much greater than this. The delay, τ , is given
above each figure in seconds. All of the images inherit the left-hand
axes and the color map is either given for each image or is inherited
from the right. The parameters are the same as in Fig. 8.

Due to the oscillations causing huge increases in the
populations, we are computationally unable to simulate the
stochastic systems using the standard Gillespie SSA. Thus,
instead, Figs. 9(b) and 9(c) are simulated using a Langevin
method, as noted in Sec. IV. Further, in order to try and reduce
this population increase, the simulations in Fig. 9(c) have a
modified nonlinear term,

κ3U
2

(1 + 10−6U 2)(V + 0.001)
, (25)

causing the kinetics to saturate. Delays are included within
this term as previously described.

Although the main dynamics observed in the deterministic
simulations [Fig. 9(a)] are recapitulated in the stochastic sim-
ulations [Figs. 9(b) and 9(c)], we immediately see that noise
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actually has a destructive effect on the Turing mechanism.
Specifically, in the case of τ = 5 s, the Turing patterns in the
noisy environments are much weaker than their deterministic
analogues, in that they frequently break up and disappear.
Equally, in the oscillating cases, τ � 10s, the oscillations are
seen to be extremely irregular, with the populations increasing
far above the values seen in the deterministic simulation, as,
although the color map in Figs. 9(b) and 9(c) is capped at
200 particles, the populations reach levels of 108 and 105

particles, respectively.
Thus we see that, not only is the breakdown to oscillations

for small delay values a key difference between the pure and
cross kinetics we have studied, their responses to intrinsic noise
are also different. By increasing the population scale, �, we
could reduce the effects of the noise on the Gierer-Meinhardt
system but, critically, for the same order of particle numbers
intrinsic noise appears to have a less destructive influence on
the cross kinetics.

G. Cubic autocatalysis ligand internalization simulations

The simulations for the cubic autocatalysis kinetics with
ligand internalization, Eqs. (23) and (24), are shown in Fig. 10
and by comparing this figure to Figs. 8, 9, and 11 we are
able to make the observation that the delays do not affect
the Gierer-Meinhardt system in the same way as the cubic
autocatalysis system, even though they are both pure kinetics.

τ=20 s

t ×
 1

04

x
0.0 0.1
0

1

2

3
τ=50 s τ=100 s

0

1

2

3

4

τ=20 s

t ×
 1

04

x
0.0 0.1
0

1

2

3
τ=50 s τ=100 s

0

100

200

300

400

(a)

(b)

FIG. 10. (Color online) Top: concentration φ of the delayed
deterministic cubic autocatalytic system with ligand internalization,
Eqs. (23) and (24), simulated using a modified explicit Euler stepping
method. Bottom: population U of the delayed stochastic cubic
autocatalytic system, simulated using a Langevin form of Eqs. (23)
and (24). The delay, τ , in seconds, is given above each figure. All
of the images inherit the left-hand axes and the right-hand color
map. Parameters are c1 = 0.06 s, c2 = 0.02 s, c3 = 0.1 mm/(mol
s), c4 = 0.0061 mol/(mm s), c5 = 0.002 s, c6 = 0.0222 s, c7 =
0.0301 mm/(mol s), c8 = 0.01 mm2/(mol2 s), Dφ = 10−4 mm2/s,
and Dψ = 10−6 mm2/s.
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FIG. 11. (Color online) Top: concentration φ of the delayed de-
terministic cubic autocatalytic system with reversible-ligand binding,
Eqs. (23) and (24). Bottom: population U of the delayed stochastic
cubic autocatalytic system. The delay, τ , in seconds, is given
above each figure. Images τ = 150 and 200 s have the same axes.
The axes for each image is either given or inherited from their
immediate left and the color map is inherited from the right-hand
side. The parameters and solution methods are the same as in Fig. 10.

Primarily, we notice that it is the ligand internalization delay
that causes this system to break down to oscillations, rather
than reversible-ligand binding delays. However, both forms of
pure kinetics do have the similarity that they are extremely
sensitive to the kinetic delay and, as such, are unsuitable for
general biological purposes, particularly where regulation over
time is also required.

When comparing deterministic and stochastic simulations
we see that the noise is able to initiate the patterns earlier
[Fig. 10(b)] than those observed in Fig. 10(a). However,
not even the noise can stop the breakdown of patterning to
oscillations for relatively small values of τ .

H. Cubic autocatalysis reversible-ligand binding simulations

Finally, we deterministically and stochastically simulate
the cubic autocatalysis kinetics with reversible-ligand binding
simulations, Eqs. (23) and (24), the results of which are shown
in Fig. 11. Although the simulations have not been observed
to break down to oscillations as in the ligand internalization
case in the previous section, we see that the patterning lag is
still sensitive to alterations in the kinetic delay.

However, noise does appear to aid in reducing the time to
pattern initiation, as can be seen by comparing Figs. 11(a)
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and 11(b). In particular, for τ = 100 s, the deterministic
pattern does not appear until around 9000 s, whereas the noisy
simulations can exhibit heterogeneity within approximately
7000 s. Similarly, when τ = 150 and 200 s, the deterministic
simulations produce patterns around 5000 s slower than their
stochastic counterparts.

VI. CONCLUSION

We started by demonstrating that the patterning initiation
time in Turing systems can be reduced through the addition
of noise. This was then used to motivate investigations into
the effects of delays on stochastic patterning systems as
their deterministic analogues have been shown to produce
some extremely anomalous behavior. Our interest in adding
delays to the system is not simply an interesting mathematical
abstraction as cellular systems, to which we apply such
reaction-diffusion equations, go through a complex procedure
of producing RNA and mRNA before producing the relevant
proteins. Overall, protein production delays can be anywhere
from several minutes to hours [18,19].

It should be noted that the results in this paper have not been
compared to predictions of linear theory as it has been shown
that, in general, linear analysis of delayed reaction-diffusion
equations is not reliable [26]. However, through completing the
standard Turing analysis for nondelayed systems (not shown)
we can be sure that in each case the stochastic simulations do
evolve to a wave mode that is consistent with the linearized
spectrum.

As the exact form of delay in such biological systems is
unknown we concentrated on simulating the effects of two
extreme, but experimentally motivated, forms of delay: ligand
internalization, which models a cell engulfing the ligand; and
reversible-ligand binding, where the ligands are able to return
to the bulk population as soon as they have initiated production
of the final product. We have shown that their effects on both
the stochastic and deterministic systems are quite different.
This indicates that if delays are to be included in a system it is
imperative that the correct form of delay be justified from the
application.

In order to observe the interaction of noise and delays
in Turing systems we simulated both delay forms with
four different kinetics, two of a pure type and two of a
cross type. For each set of kinetics we simulated ligand
internalization delays and compared these to the simulations
of reversible-ligand binding delays. Immediately, we saw that
all kinetics suffered from greater patterning lags and temporal
sensitivity due to ligand internalization, when compared to
reversible-ligand binding. Note that this increased sensitivity
to ligand internalization is present in both the deterministic and
stochastic formalisms, for although in some cases, e.g., cubic
autocatalysis kinetics [see Fig. 10(b)], noise is seen to initiate
the patterns earlier, the pattern initiation time scale is still large
compared to the size of the kinetic delay. Nonetheless, the
glycolysis kinetics were still able to pattern over biologically
relevant time scales for relatively large delays.

Due to the great variation in time scales displayed by the
different Turing kinetics we must be careful when applying
such systems to biological problems. In situations where
development is slow [16,57] we perhaps do not need not worry

about small kinetic delays greatly amplifying patterning lags.
In such cases delays only cause a problem when they are able
to cause a complete loss of spatial heterogeneity, which is
seen using Gierer-Meinhardt kinetics with reversible-ligand
binding, Fig. 9(c), and cubic autocatalysis kinetics with ligand
internalization, Fig. 10(b). However, in rapidly developing
systems [4,8] it is much more difficult to justify the use of
Turing kinetics due to their sensitivity to delays.

In the case of Schnakenberg kinetics intrinsic stochasticity
is seen to reduce the patterning time in both ligand inter-
nalization and reversible-ligand binding cases. However, the
pattern formation time is only reduced to a feasible level in
the reversible-ligand binding case as it is less sensitive to the
kinetic delay. Problematically, if the reversible-ligand binding
delay is increased too far, we see that the steady state breaks
down to spatially heterogeneous oscillations. This motivates a
brief discussion about biologically feasible time scales. In this
paper the parameters have been defined in terms of seconds.
Since the delays can occur on a time scale of minutes, i.e., τ ∼
100 s, we would be toward the upper end of the possible range
over which the Schnakenberg kinetics can still realize patterns.
However, it has been shown that reversible-ligand binding can
also occur on the order of minutes [58]. Thus, if we rescale
all of the parameters to be on the size of minutes instead of
seconds, e.g., 0.1 mol/s 	→ 0.1 mol/min, we greatly increase
the range of delays over which the stochastic Schnakenberg
system can pattern in a reasonable time.

Similarly, the second form of cross kinetics that we
considered, the glycolysis kinetics, were also much less
influenced by the kinetic delay when encoded through
reversible-ligand binding. Further, over the parameter region
that we considered, the glycolysis kinetics never break down
to constant oscillations as in the Schnakenberg case. However,
unlike the Schnakenberg system in which noise did decrease
pattern initiation time we see that stochasticity has minimal
effects on the glycolysis kinetics. This relative insensitivity
to stochasticity and delays implies that the glycolysis kinetics
are a viable candidate for patterning in deterministic systems,
especially over shorter time scales. Furthermore, we clearly see
that the effect of noise on a reaction-diffusion system is heavily
dependent on the kinetics. This difference in behavior is useful
when distinguishing which kinetic systems are appropriate for
particular applications.

The effects of noise on the pure kinetics were similarly
varied. Critically, the ligand internalization Gierer-Meinhardt
system was extremely sensitive to the delays, suggesting that
some other mechanisms would be needed for it to be a viable
candidate for patterning on rapid developmental time scales.
Further, although pattern initiation in the reversible-ligand
binding system was much less sensitive to small ranges of
the kinetic delay, if this delay is increased slightly spatially
stable pattern formation is lost in both the deterministic and
stochastic simulations and replaced with large oscillations. In
contrast to the cross kinetics with reversible-ligand binding
previously discussed, not only does noise not help reduce
the patterning delay in the reversible-ligand binding Gierer-
Meinhardt system, it also acts as a destructive mechanism,
causing the Turing patterns to break down for long periods of
time. Equally, noise also has a negative effect on the regularity
of the oscillations, whereas in the large delay stochastic
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Schnakenberg kinetic case (Fig. 5) the oscillation frequency is
much more consistent.

Finally, although the cubic autocatalysis kinetics display
similar dynamics to the Gierer-Meinhardt kinetics the effects
of the different delays appear to be reversed. Specifically,
it is ligand internalization delays that cause the oscillations
in the cubic autocatalysis kinetics, whereas it is reversible-
ligand binding delays that produce oscillations in the Gierer-
Meinhardt system. Moreover, it is observed that the oscilla-
tions in the stochastic simulations of the cubic autocatalysis
kinetics are much more regular and consistent with their
deterministic simulation than the Gierer-Meinhardt kinetics,
once again illustrating that kinetics with a similar theoretical
basis need not behave in the same way once delays are
included. Similar to the rest of the investigated kinetics,
the cubic autocatalysis system shows an increased temporal
sensitivity to ligand internalization delays, when compared
to reversible-ligand binding delays. Equally, similar to the
glycolysis kinetics, although intrinsic stochasticity is able to
reduce the time to pattern formation slightly, the effect is
generally minimal.

It has been noted previously [27] that delays can affect pure
and cross kinetics differently. Here, we have shown that exactly
the same is true in the case of stochastic kinetics and, moreover,
the effects of noise on these different cases is also observed to
vary. These differences between stochastic and deterministic
frameworks, ligand internalization and reversible-ligand bind-
ing descriptions of delay, and pure and cross kinetic systems
all aid the construction of biologically realistic models, as
these insights allow us to distinguish the most appropriate
mathematical components for specific applications.

In summary, in relation to the chosen kinetic parameter
values, if one is not dealing with relatively rapid developmental
systems the observed sensitivity to delays may be tolerable.
However, in the case in which developmental time is fast
we are able to suggest that, although delays are able to
produce aberrant effects in deterministic reaction-diffusion
systems, there are certain specific conditions, e.g., glycolysis
kinetics with reversible-ligand binding, where pathologies in
delayed Turing systems are ameliorated. This contrasts with
the conclusions previously drawn [26,28,54,59] emphasizing
the structural sensitivity of delayed Turning patterning. In
addition, there are also conditions under which stochasticity is
able to act against the dominant dynamics, thereby impairing
the pattern formation mechanism (see Sec. V F). Due to these
vastly different effects of noise it would be interesting to
further investigate delayed stochastic systems by simulating
them on growing domains. Although stochastic systems on
growing domains may not be able to generate robust transition
sequences, we might speculate that the noise could disrupt the
homogeneous steady state and initiate pattern formation, thus
removing the pattern breakdown which has been observed in
the deterministic case [54,59].
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APPENDIX A: KINETICS

In this Appendix we provide the reactions that form the ba-
sis of the glycolysis, Gierer-Meinhardt and cubic autocatalysis
systems.

Glycolysis. The reactions are

∅ κ1→ U, U
κ2→ ∅, 2V + U

κ3→ 2V, U
κ4→ U + V,

(A1)
V

κ5→ ∅, 2V + U
κ6,delay τ−→ 3V.

The reversible-ligand binding delayed reaction is

2V + U
κ6→ 2V + W, W

delay τ−→ V. (A2)

The ligand internalization delayed reaction is

2V + U
κ6→ W, W

delay τ−→ 3V. (A3)

Gierer-Meinhardt system. The reactions are

∅ κ1→ U, U
κ2→ ∅, V

κ5→ ∅, 2U
κ3/(V +0.001) delay τ−→ 3U,

2U
κ4 delay τ−→ 2U + V. (A4)

The reversible-ligand binding delayed reactions are

U + U
κ3/(V +0.001)−→ W1 + U + U, W1

delay τ−→ U, (A5)

U + U
κ4→ W2 + U + U, W2

delay τ−→ V. (A6)

The ligand internalization delayed reactions are

U + U
κ3/(V +0.001)−→ W1, W1

delay τ−→ 3U, (A7)

U + U
κ4→ W2, W2

delay τ−→ U + U + V. (A8)

Cubic autocatalytic system. The reactions are

U
κ1→ ∅, 2U

κ2→ U, ∅ κ4→ V, V
κ5U/V→ ∅,

(A9)
V

κ6→ ∅, 3V
κ8→ 2V,

V + U
κ3,delay τ−→ 2U + V, 2V

κ7,delay τ−→ 3V. (A10)

The reversible-ligand binding delayed reactions are

V + U
κ3→ W1 + V + U, W1

delay τ−→ U, (A11)

2V
κ7→ W2 + 2V, W2

delay τ−→ V. (A12)

The ligand internalized form of the delayed reactions is

V + U
κ3→ W1, W1

delay τ−→ 2U + V, (A13)

2V
κ7→ W2, W2

delay τ−→ 3V. (A14)

APENDIX B: NUMERICAL ALGORITHM

To simulate the deterministic system we use an explicit Eu-
ler stepping algorithm [52], which updates the concentrations
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FIG. 12. Illustration of the time axis discretized into bins. See text for details.

at discrete time points based on a time step, dt , that is an
input of the algorithm. In order to satisfy numerical stability
of the algorithm dt is bounded above. However, we are able
to make dt as small as computationally feasible [53]. Due to
this certain amount of freedom of choice over dt we are able
to choose it such that it is an integer divisor of τ/M . Hence, as
the concentrations are calculated at integer multiples of dt , we
can determine the concentration at the start of each time bin.
Unfortunately, we do not have this form of control in the case
of the Gillespie algorithm as the time step is computed as an
integral part of the SSA. Thus we fix the delayed population
of a time bin to be the population at time t ′, where t ′ is the first
time point to cross the time bin’s threshold. If M is chosen
to be large this should produce minimal numerical differences
in the simulation, and we have verified that our results do not
change on further increases in M .

Suppose we are interested in outputting the value of the
populations at time points 0, T , 2T , etc. Since we also need to
keep track of τ time units worth of history, the simulation time
axis is broken up into steps of size τ/M . This idea is illustrated
in Fig. 12 where we consider a specific time point t = nT for
some n ∈ Z. In the stochastic case, the population at the next
time point, [U (s ′),V (s ′)], will be calculated through kinetics
involving the current populations, [U (s),V (s)], and the past
populations, [U (t + ατ/M − τ ),V (t + ατ/M − τ )], where α

is the integer satisfying t + ατ/M � s < t + (α + 1)τ/M .
Further, as time steps forward, with maximum step dt � τ/M ,

the populations [U (t + zτ/M),V (t + zτ/M)] are recorded
for z = 0, . . . ,M and are used as the delayed populations
in the next τ time step. Note that the initial M populations
for time −τ � t � 0 have to be specified, but, after this, all
of the populations are generated as the system evolves. The
deterministic simulations are constructed in exactly the same
way except that we use the concentrations (φ,ψ) instead of
the populations (U,V ).

The algorithms do not resolve time within each time bin,
[t + ατ/M,t + (α + 1)τ/M], as the populations [U (s),V (s)]
(concentrations [φ(s),ψ(s)]) are used in conjunction with
the past population [U (t + ατ/M − τ ),V (t + ατ/M − τ )]
([φ(t + ατ/M − τ ),ψ(t + ατ/M − τ )]). For mathematical
exactness, the delayed populations should be
[U (s − τ ),V (s − τ )] ([φ(s − τ ),ψ(s − τ )]). However,
by taking M large enough we simply incur discretization
errors at the same level of standard first order numerical
algorithms. Hence M is chosen on an ad hoc basis, through
simulating the system with one value of M and then increasing
it by a factor of 10 until changes in M stopped producing
different effects in the simulation. Through this we have
chosen the following values: M = 1000 when τ � 100;
M = 10000 when 100 < τ � 1000; and M = 30000 when
τ = 3000. Note that if M is taken large enough then the
stochastic algorithm would effectively be capturing every
single reaction that occurs and thus it would no longer be an
approximate method.
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