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Abstract

Mathematical modeling of random searches is of great relevance in the field of physics, chemistry, biology or
modern ecology. A large number of existing studies record the search movement at equidistant time intervals
and model such time series data directly with discrete-time random walks, such as Lévy flights and correlated
random walks. Given the increasing availability of high resolution observation data, statistical inference for
search paths based on such high resolution data has recently become one of the major interests and has raised an
important issue of robustness of random walk models to the sampling rate, as estimation results for the discrete
observation data are found to be largely different at different sampling rates even when the underlying movement
is supposedly independent of scale. To address this issue, in this paper, we propose to model the continuous-
time search paths directly with a continuous-time stochastic process for which the observer makes statistical
inference based on its discrete observation. As continuous-time counterparts of Lévy flights, we consider two-
dimensional Lévy processes and discuss the relevance of those models based upon advantages and limitations in
terms of statistical properties and inference. Among the proposed models, the Brownian motion is most tractable
in various ways while its Gaussianity and infinite variation of sample paths do not well describe the reality. Such
drawbacks in statistical properties may be remedied by employing the stable and tempered stable Lévy motions
while those models are less tractable and cause an issue in statistical inference.
Keywords: Brownian motion; Lévy flights; optimal foraging; power law; random search; sampling frequency;
sub-sampling; truncated Lévy flights.
PACS numbers: 87.23.-n, 87.10.Mn, 87.10.Ca.

1 Introduction

The random search problem has long attracted continuing attention due to its board interdisciplinary range of
applications. In particular, animal foraging movements do not seem to be simply deterministic and thus such
characteristics are often modelled with two-dimensional spatial stochastic processes, in particular, random walk
models. Examples include biased random walks and correlated random walks (Okubo and Levin [33], Turchin
[53]). Those models have been analyzed by many authors with respect to various aspects, such as modeling,
statistical methodology, simulation, and empirical data analysis. Search movement is made on the continuous-time
basis and such a movement path is usually recorded at equidistant time intervals, that is to say, a path is mapped
into a broken line where the nodes correspond to animal position at certain observation times. The movement along
the broken line, or the random walk in other words, can then be quantified by the distribution of probabilities for
the stepsize or ”jump” and the turning angle. In contemporary practice of animal movement studies, researches
have indeed worked with such discrete-time random walks in order to reach a good understanding of the underlying
continuous-time movement path (see, for example, Codling et al. [9]).

Given the availability of high resolution data of animal movement paths, statistical analysis and modeling can
provide a way of closer look at animal movement at a fundamental level, while the approach based on random walks
has recently brought up an important issue on robustness of statistical analysis to the sampling rate, that is to say,
whether or not these paths remain invariant to the sampling scale used by the observer. The effect of sub-sampling
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and rediscretization on such underlying models has been investigated by many authors. (See, for example, Plank
and Codling [38], Kawai and Petrovskii [17] and Kawai [18].) A Lévy movement pattern is in general assumed
to be fractal and thus the sampling scale used by the observer should not affect the observed properties (Reynolds
and Frye [42]). Recently, however, Plank and Codling [38] demonstrated that the observed properties of simulated
Lévy walks are dependent largely on the sampling rate and the value of the exponent in the underlying walk and
also how a simulated intermittent random walk can be misidentified as a Lévy path even when rigorous statistical
methodologies are employed.

In principle, animal movements involve finite distances moved in finite times and cannot be truly scale invariant.
Hence, movement paths are, by nature, not supposed to be robust to the sampling rate. For example, a correlated
random walk acts as a good model in this context; the sampling rate is known to have a significant effect on the
apparent properties of the movement pattern (Bovet and Benhamou [6]). Alternatively, Viswanathan et al. [55]
assumed that movements constitute a truncated Lévy walk, where steps are truncated at points where food is found,
so that unrealistically large jumps do not occur and thus the movements are never scale invariant. Moreover, the
movement process is modelled with a composite random walk with intermittent phases of extensive and intensive
movements [5].

All those arguments are in agreement with the evident fact that any non-fractal discrete-time stochastic pro-
cesses cannot be robust to the sampling rate. As mentioned earlier, however, animals move on the continuous-time
basis and, in principle, such a movement path should not be interpreted in more than one way. To address this
robustness issue, it is certainly desirable to model the continuous-time dynamics of random searches directly with
a continuous-time stochastic process. In this framework, the observer is required to make statistical inference for
the underlying continuous-time dynamics based on its discrete observation. In this paper, as continuous-time coun-
terparts of Lévy flights [12, 41, 25, 50, 54, 55], we consider two-dimensional Lévy processes to model spatial
movement paths and discuss the relevance of those models based upon advantages and limitations from several dif-
ferent standpoints, in particular, in terms of statistical properties and inference. We also raise a variety of challenges
caused by continuous-time modeling and its statistical analysis to address in the future.

2 Models

Animals make a movement on the continuous-time basis, as a matter of course, whether its movement path is
purely continuous or contains some discontinuities (for instance, kangaroos make nearly instantaneous jumps).
Such continuous-time movement paths are often observed at equidistant time points and are mapped into a bro-
ken line where the nodes indicate animal position at observation times. In the literature, such nodes and lines are
mathematically modelled with discrete-time random walks, which we begin our discussion with. Let {Xn}n=0,1,2,...
be a discrete-time stochastic process in R2, where the integer n indicates the discrete time steps. Of particu-
lar practical interest are the cases where the magnitude (that is, jump or step size) {∥Zn∥}n∈N of the increments
{Zn}n∈N(=: {Xn−Xn−1}n∈N) are independent and identically distributed (iid) with Gaussian distributed length with
N (0,σ 2) or Pareto distributed length with probability density

f (z;α,0,τ) :=
ατα

zα+1 , z ∈ (τ ,+∞), (2.1)

where α > 0 and τ > 0 and with the tail probability

P(∥Z1∥> z) = (τ/z)α , z ∈ (τ ,+∞). (2.2)

Here, τ indicates the minimum step size being considered, while α is the exponent (usually written with µ related
through α = µ − 1). Moreover, In applications to animal movement, this Pareto length is usually referred to as a
”power law distribution” (for instance, of the jump size z), the resultant random walk is called ”Lévy flight”, and
such movement pattern is called ”Lévy movement pattern” (Bartumeus et al.[1], Sims et al. [51], Viswanathan
et al. [55]). See Kawai and Petrovskii [17] and Kawai [18] for the issue of data interpretation from a statistical
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inference point of view. A Lévy movement pattern is generally assumed to be scale-invariant, that is to say, it has
the fractal property that the scaling used by the observer should not affect the observed properties (Boyer et al.
[7], Reynolds and Frye [42]). In particular, the Gaussian distribution is closed under convolution; in other words,
the sum of independent Gaussian random variables is again Gaussian. In turn, the Pareto distribution belongs to a
class of the subexponential distribution, namely, if {∥Zn∥}n∈N is a sequence of iid Pareto random variables with the
above density function, then it holds that for each n ∈ N, as z ↑+∞,

P(∥Z1∥+ · · ·+∥Zn∥> z)∼ nP(∥Z1∥> z) = n(τ/z)α , (2.3)

where the equality holds by (2.2) and where∼ indicates the asymptotic equivalence, that is, ” f (z)∼ g(z) as z ↑+∞”
means that ” f (z)/g(z)→ 1 as z ↑+∞.” This implies that the density f (∗n)(z;α,τ) of the n-fold convolution satisfies
the same order of decay

f (∗n)(z;α,0,τ)∼ n f (z;α,0,τ),

as z ↑+∞. This implies that at least the parameter α might be asymptotically robust to the sampling rate.
Before proceeding to the next model, let us remark that there is a different class of random walks with the term

”Lévy” for modeling animal movement path, that is, Lévy walks, which are also characterized by the existence
of rare but extremely large steps (Raposo et al. [41]). In the Lévy walks, however, the constant velocity implies
the time of travel proportional to the total path length, causing the mean-square displacement to grow with time
superlinearly. In contrast, the total path length of Lévy flights (Shlesinger et al. [50]) corresponds to the total time
of travel in Lévy walks.

A serious drawback of the Pareto distribution is attributed to its infinite variance. In statistical physics, random
walks with heavy probability tails and still with a finite variance have been developed through various different
truncations of the Pareto distribution. The pioneering work of Mantegan and Stanley [27] is the constitution for
such truncated Lévy flights. In Koponen [23], the analytic expression for characteristic function of truncated Lévy
flights was derived. In mathematical ecology, there exist more than one construction of the truncated Lévy flight,
one of which is defined through the density function

f (z;α,κ,τ) :=
1

καΓ(−α,κτ)
e−κz

zα+1 =
e−κz

α(κτ)αΓ(−α,κτ)
f (z;α,0,τ) ,

which is indeed exponential tempering, rather than truncation (for example, Kawai and Petrovskii [17], Mashanova,
Oliver and Jansen [29]). Another definition is made through a literal truncation of the Pareto density, such as

p(z;α,τmin,τmax) =
α

τ−α
min− τ−α

max
z−α−1, z ∈ (τmin,τmax) ,

where 0 < τmin < τmax < +∞ (for example, Plank and Codling [38]). Either definition improves the ordinary
Pareto distribution by capturing various statistical properties of the movement step length, such as a finite variance,
non-fractality and aggregational Gaussianity.

As discussed earlier, such random walk models are purely of discrete-time type and are known to be not robust
to the sampling rate. This is because the observer does not (or pretends not to) look at the underlying continuous-
time movement path anymore, once such movement paths are discretely observed. With this in mind, we consider
three continuous-time spatial stochastic processes in the class of Lévy processes, which may serve as the first step
towards realistic modeling of movement paths.

2.1 Brownian Motion

The Brownian motion (or the Wiener process) has been most widely used in modeling continuous-time probabilistic
phenomena. Consider the Brownian motion {tγ +Bt : t ≥ 0}, where γ := [γ1,γ2]

⊤ and {Bt : t ≥ 0} is a centered
Brownian motion in R2 with variance-covariance matrix[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
=: Σ, (2.4)

3



with σ1 > 0, σ2 > 0 and ρ ∈ [−1,+1]. Here, the parameter γ is the constant drift, which essentially governs
advection, while σ2

1 and σ 2
2 are variance of the movement and ρ is the correlation between two components. In

particular, when ρ = 0, the two components are independent. The Brownian motion (without drift) enjoys the
self-similarity property, that is, for any h > 0,{

h−1/2Bht : t ≥ 0
}

L
= {Bt : t ≥ 0} ,

which is essentially equivalent to the scale-free property. Here, we denote by L the law and by L
= the identity in

law (or distribution).

2.2 Stable Lévy Motion

The stable Lévy motion has been used in several fields of application, such as statistical physics, queueing theory,
mathematical finance, to mention just a few. In this paper, we call the stochastic process {Xt : t ≥ 0} a stable Lévy
motion if it is a Lévy process in R2 without Gaussian component and with characteristic function

E
[
ei⟨y,Xt⟩

]
= exp

[
t
(

i⟨y,γ⟩+
∫

S

∫ +∞

0

(
ei⟨y,rξ ⟩−1

) dr
rα+1 λ (dξ )

)]
(2.5)

= exp
[

t
(

i⟨y,γ⟩+Γ(−α)cos
πα
2

∫
S
|⟨y,ξ ⟩|α

(
1− i tan

πα
2

sgn(⟨y,ξ ⟩)
)

λ (dξ )
)]

,

where α ∈ (0,2) is the so-called stability index, λ (dξ ) is a finite positive symmetric measure on S (the unit sphere,
or circle, in R2), the drift γ ∈ R2, and Γ(−α)cos(πα/2) is negative over α ∈ (0,2) and is continuous at α = 1
with value −π/2. (Note that any probability distribution is uniquely characterized by its characteristic function, or
equivalently its Fourier transform.) The parameter α corresponds to the exponent of power law and the measure
λ controls the direction of jumps. On the one hand, the stable Lévy motion with α ≈ 0 generates nearly ballistic
trajectories, which have been thought of as the most efficient search strategy in destructive foraging, in which the
forager may feed at a given target site only once. It is known, on the other hand, that the stable Lévy motion with
α = 2 corresponds to the Brownian motion, which we exclude from consideration in the name of stable motion.
(See, for example, Sato [48] and Samorodnitsky and Taqqu [47] for various basic facts on the stable law and
process.)

If the drift γ is zero, then the stable Lévy motion enjoys the self-similarity property, like the Brownian motion
but with a different exponent, that is, for any h > 0,{

h−1/αXht : t ≥ 0
}

L
= {Xt : t ≥ 0} .

By the generalized central limit theorem due to Gnedenko and Kolmogorov, the scaled sum of iid Pareto random
variables tend to a stable distribution. Let {∥Zn∥}n∈N denote a sequence of iid Pareto random variables with density
function (2.1). Then, when α ∈ (1,2), the scaled sum(

2Γ(α)sin(πα/2)
πτα

)1/α
n−1/α

(
∥Z1∥+ · · ·+∥Zn∥−n

ατ
α−1

)
converges in law to the stable law (2.5) with λ (dξ ) = −(Γ(−α)cos(πα/2))−1δ{[1,0]⊤}(dξ ). (This explains the
asymptotic equivalence (2.3).) This fact indicates that the Lévy flight can be thought of as a random walk formed
through equidistant discrete observation of a stable motion. In this paper, we consider the following two subclasses
of the stable Lévy motion.

4



2.2.1 Rotation-Invariant Case

We refer the case where the control measure λ (dξ ) is moreover uniform on the unit circle to rotation-invariant, in-
dicating that each independent jump has no preference in the direction (Reynolds et al. [43]). If the total mass of the
uniform control measure is λ (S) =−σα/(Γ(−α)cos(πα/2)) with a suitable positive constant σ , the characteristic
function (2.5) reduces to the simpler form

E
[
ei⟨y,Xt⟩

]
= et(i⟨y,γ⟩−σα∥y∥α ). (2.6)

Multi-dimensionality of the model poses a serious challenge. For example, the probability density fα(x) of the
marginal X1 with γ = 0 and σ = 1 is given by

fα(x) :=
1

(2π)2

∫
R2

e−i⟨x,y⟩−∥y∥α
dy, x ∈ R2, (2.7)

which does not reduce to any practically useful form. Numerical treatment of this density function is thus pro-
hibitively expensive.

2.2.2 Independent Components

Such computational difficulty in the rotation-invariant model may be circumvented by employing the stable Lévy
motion with independent components. Let the control measure λ (dξ ) be a sum of delta measures as

λ (dξ ) =− σα

2Γ(−α)cos(πα/2)

[
δ{[1,0]⊤}(dξ )+δ{[−1,0]⊤}(dξ )+δ{[0,1]⊤}(dξ )+δ{[0,−1]⊤}(dξ )

]
, (2.8)

with some σ > 0. (A similar argument holds for the case when the control measure λ (dξ ) is supported homoge-
neously only on the orthonormal basis of R2. In this paper, we focus on the setting (2.8), without loss of generality.)
Then, the characteristic function (2.5) reduces to

E
[
ei⟨y,Xt⟩

]
= et(iy1γ1−σα |y1|α )et(iy2γ2−σα |y2|α ), (2.9)

where y = [y1,y2]
⊤ ∈ R2. In contrast to the characteristic function (2.6) of the rotation invariant model, indepen-

dence of the two components is evident. Each component has the so-called power-law tail, that is to say, a random
variable Z with E[eiyZ] = exp[iyγ−σα |y|α ], y ∈ R, has the asymptotic power-law tail behavior

P(Z > z)∼ σα

2Γ(1−α)cos(πα/2)
z−α , z ↑+∞, (2.10)

in a similar manner to the exact Pareto tail (2.2).

2.3 Tempered Stable Lévy Motion

Finally, we introduce the tempered stable Lévy motion, which corresponds to the smoothly truncated Lévy flights
in physical sciences (Koponen [23]). Its featuring properties were rigorously discussed by Rosiński [46], such
as a stable-like behavior over short intervals and an aggregational Gaussianity. We call the stochastic process
{X (ts)

t : t ≥ 0} a tempered stable Lévy motion if it is a Lévy process in R2 without Gaussian component and with
characteristic function

E
[
ei⟨y,X (ts)

t ⟩
]
= exp

[
t

(
i⟨y,γ⟩+

∫
S

∫ +∞

0

(
ei⟨y,rξ ⟩−1

) e−κ(ξ )r

rα+1 dr λ (dξ )

)]
(2.11)

= exp
[

t
(

i⟨y,γ⟩+Γ(−α)
∫

S

(
(1− i⟨y,ξ/κ(ξ )⟩)α −1+ iα⟨y,ξ/κ(ξ )⟩

)
λ (dξ )

)]
,
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where α ∈ (0,2), γ ∈ R2, κ(ξ ) is a measurable mapping from the unit circle S to R+ satisfying the integrability
condition

∫
S κ(ξ )α−2λ (dξ )<+∞, and λ (dξ ) is the symmetric control measure on the unit circle as in (2.5). Obvi-

ously, the term ”tempered” comes from the exponential tempering e−κ(ξ )r in the characteristic function (2.11). The
motion is nearly the (non-tempered) stable motion for a very small κ(ξ ) > 0, while its increments are essentially
exponential if κ(ξ ) is very large. Here, we do not go into the specification of the control measure, unlike in the
case of the stable Lévy motion.

3 Technical Results

In this section, we prepare technical results of the proposed models and describe statistical inference for later
discussions. We begin with the basics of discrete sampling of the underlying continuous-time stochastic process,
which our statistical experiment is based on.

3.1 Discrete Observations and Sampling Frequency

Hereafter, we let n denote the number of observations and suppose that the sample (Xtn,1 ,Xtn,2 , . . . ,Xtn,n) is available
at equidistant observation points tn,k := k∆, k = 1, . . . ,n, where ∆ indicates the equidistant time stepsize. If ∆
is very small, then sampling is high frequency, while a larger ∆ indicates low frequency sampling. We write
Zn,k := Xtn,k − Xtn,k−1 , k = 1, . . . ,n, for increments observed at equidistant time stepsize ∆, whether high or low
frequency. Moreover, we often use the terminology ”ultra high frequency” for the case where the stepsize ∆ is
extremely close to zero. (In general, the distinction among low, high and ultra high is rather qualitative than
quantitative.) High frequency sampling has recently attracted much attention due to increasing availability of high
resolution data of individual animal movement in ecology (Edwards et al. [12], Mashanova et al. [29], Plank and
Codling [38]). Ultra high frequency sampling reflects the best possible experiment environment; in other words,
strictly speaking, observation over a whole interval is never possible even with recent high technology; for example,
although high resolution video recording apparently provides a continuous movement, it is still discrete even at a
ultra high frequency. (It is noteworthy that there however exists some doubt of relevance of ultra high frequency
sampling since in practice, the signal tends to decreases while the observation error might not be negligible and
may dominate the measurements at some point.)

3.2 Simulation Methods

The increments {Zn,k}k=1,...,n of the Brownian motion of Section 2.1 are iid Gaussian with N (∆γ,∆Σ), where
Σ is the variance-covariance matrix defined by (2.4). Therefore, generation of sample paths (by increments) is
straightforward.

The rotation-invariant stable motion of Section 2.2.1 can be simulated through the infinite shot noise series
representation on a fixed finite horizon [0,T ];

{Xt : t ∈ [0,T ]}←

{
tγ +

+∞

∑
n=1

(
Γ(1−α)cos(πα/2)

σαT
Γn

)−1/α
ξn1(Tn ≤ t) : t ∈ [0,T ]

}
, (3.1)

where {Tn}n∈N is a sequence of iid uniform random variables on [0,T ], {Γn}n∈N are arrival times of a standard
Poisson process, and {ξn} is a sequence of iid random vectors with ξn := [cosηn,sinηn]

⊤ and {ηn}n∈N is a sequence
of uniform random variables on [0,2π). (See [47] for details.) (Computationally realistic) sample path simulation
of the rotation-invariant stable Lévy motion can be performed only through a finite truncation of the infinite series
(3.1). In Figure 1, we draw typical sample paths of the Brownian motion with ρ = 0 (left) and the rotation-
invariant stable Lévy motions with α = 1.8 (center) and with α = 0.9 (right) on the unit time interval [0,1] with
5000 increments. From the Brownian motion to the stable Lévy motion with α = 1.8, we observe more large
movements. Then, towards a smaller α of the stable Lévy motions, the sample path looks more ballistic.
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Figure 1: Typical spatial sample paths of a Brownian motion with ρ = 0 (leftmost) and rotation-invariant stable
Lévy motions with α = 1.8 (center) and α = 0.9 (rightmost).

The stable Lévy motion with independent components of Section 2.2.2 can be simulated through the following
infinite shot noise series representation (3.1) where {ηn}n∈N here is a sequence of iid uniform random variables on
{0,π/2,π,3π/2} instead. Furthermore, independence of two components provides an easier simulation method

for one-dimensional increments; for each k, Zn,k
L
= ∆γ +[Zx(∆),Zy(∆)]⊤, where Zx and Zy are iid random variables

as

Zx(∆)
L
= Zy(∆)

L
=

(
∆σα

cos(πα/2)cos(V )

)1/α
sin(α(V +π/2))

(
cos(V −α(V +π/2))

E

)(1−α)/α
,

with E being a standard exponential random variable and V a uniform random variable on (−π/2,π/2). Simulation
based on the above expression is significantly much simpler than that using the infinite series (3.1). (We defer
illustration of typical sample paths of this model to Section 4.)

Sample path simulation of the tempered stable Lévy motion of Section 2.3 can also be performed through a
finite truncation of the infinite series representation (Rosiński [46]) as follows. Let {En}n∈N be a sequence of iid
standard exponential random variables and let {Un}n∈N be a sequence of iid uniform random variables on (0,1).
Then, the tempered stable Lévy motion can be generated through

{
X (ts)

t : t ∈ [0,T ]
}
←

{
tγ +

+∞

∑
n=1

min

[(
Γ(1−α)cos(πα/2)

σαT
Γn

)−1/α
,

EnU1/α
n

κ(ξn)

]
ξn1(Tn ≤ t) : t ∈ [0,T ]

}
,

(3.2)
where σα := λ (S) here and where {Tn}n∈N, {Γn}n∈N, and {ξn}n∈N are the ones appeared in (3.1). (A finite
truncation of the infinite series representation is studied in Imai and Kawai [15] from a computational point of
view. Similarly to the stable motion, some simpler simulation methods are discussed in Kawai and Masuda [20].)
In Figure 2, we draw typical sample paths of the rotation-invariant stable Lévy motion and the rotation-invariant
tempered stable Lévy motions with κ(ξ )≡ 1.0 and κ(ξ )≡ 2.0. The stability index is fixed at α = 0.9 in common.
Thanks to the minimum in the series representation (3.2), extremely large jumps tend to be (randomly) truncated.
As the figures illustrate, sample paths behave smoother with larger tempering k(ξ ).

3.3 Variation of Movement Paths

In this section, we discuss the proposed models in terms of variation of movement paths, which indicates the
amount of movement undergone by the sample path over a finite time interval [0,T ]. To define this, fix T > 0
and let {sk}k=0,...,n denote the time partition, that is, non-decreasing positive constants satisfying 0 =: s0 ≤ s1 ≤
·· · ≤ sn := T , not necessarily equidistant. Also, the length of the longest subinterval is assumed to go to zero;
maxk=0,...,n−1(sk+1− sk)→ 0. Then, the variation of a trajectory {Xt : t ∈ [0,T ]} on a fixed finite time interval [0,T ]
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Figure 2: Typical spatial sample paths of the rotation-invariant stable Lévy motion (corresponding to κ(ξ ) ≡ 0,
left) and the rotation-invariant tempered stable Lévy motions with κ(ξ )≡ 1.0 (center) and κ(ξ )≡ 2.0 (right). The
stability index is α = 0.9 in common.

is defined by

lim
n↑+∞

n−1

∑
k=0

∥∥Xsk+1−Xsk

∥∥ .
We present the variation property of the proposed models below, all of which hold regardless of directional prefer-
ence of the movement. (For proof, see, for example, Sato [48].)

Theorem 3.1. The following statements hold with probability one;

(i) the variation of the Brownian motion of Section 2.1 is infinite,
(ii) the variation of the stable Lévy motion of Section 2.2 with α ∈ [1,2) is infinite,

(iii) the variation of the stable Lévy motion of Section 2.2 with α ∈ (0,1) is finite,
(iii) the variation of the tempered stable Lévy motion of Section 2.3 with α ∈ [1,2) is infinite,
(iv) the variation of the tempered stable Lévy motion of Section 2.3 with α ∈ (0,1) is finite.

In principle, no animal can physically make a movement of infinite length over a finite time interval. The above
results suggest that in terms of variation, the stable and tempered stable Lévy motions with α ∈ (0,1) well describe
movement paths in the sense that the amount of its movement undergone by the sample path over a finite time
interval is finite. In contrast, the Brownian motion, the stable and tempered stable Lévy motions with α ∈ [1,2) fail
to do so, as the sample paths make a movement of infinite length.

3.4 Moments of Increments

In the case of the Brownian motion, the increments are iid Gaussian with N (∆γ,∆Σ), where Σ is the variance-
covariance matrix defined by (2.4). Therefore, each increment has finite moment of every polynomial order, that
is, E[∥Zn,1∥p]<+∞ for p > 0.

Turing to the stable motions of Section 2.2, the increments are iid stable random vectors. Irrespective of the
stepsize ∆ and the control measure λ (dξ ), its increments have finite moment of polynomial order only strictly less
than α , that is,

E [∥Zn,1∥p]

{
<+∞, if p < α,

=+∞, if p≥ α,

identical to the moment property of the Pareto distribution (2.1).
In the case of the tempered stable motion of Section 2.3, the increments are iid tempered stable random

vectors. The condition on the tempering exponent κ(ξ ) ensures the square integrability
∫
R2

0
∥z∥2ν(dz) = Γ(2−

α)
∫

S κ(ξ )α−2λ (dξ ) < +∞ and thus a finite variance is guaranteed, unlike the (non-tempered) stable motion of
Section 2.2. (See Theorem 25.3 of Sato [48] for technicality.)
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3.5 Short- and Long-Time Behaviors of the Tempered Stable Lévy Motion

The tempered stable Lévy motion exhibits desirable short- and long-time behaviors; over short intervals, it behaves
like a non-tempered stable Lévy motion, while it approximates a Brownian motion in the long run. We state below
the results without proof as they are special cases of [46] and without specifying constants to omit non-essential
details.

Theorem 3.2. Let {X (ts)
t : t ≥ 0} be the tempered stable motion satisfying (2.11) with γ = 0.

(i) Short time behavior: It holds that as h ↓ 0,{
h−1/αX (ts)

ht : t ≥ 0
}

L→{Xt : t ≥ 0} , (3.3)

where {Xt : t ≥ 0} is a suitable stable Lévy motion of Section 2.2 with the same stability index α .
(ii) Long time behavior: It holds that as h ↑+∞,{

h−1/2X (ts)
ht : t ≥ 0

}
L→{Bt : t ≥ 0} , (3.4)

where {Bt : t ≥ 0} is a Brownian motion in R2 with mean zero and with variance-covariance matrix Γ(2−
α)
∫

S κ(ξ )α−2ξ ξ⊤λ (dξ ).

Above, the convergence L→ conserves all sample path properties (for example, continuity and differentiability
of the sample path), not only the distribution at some fixed point in time.

3.6 Fisher Information and Local Asymptotic Normality

In this section, we discuss a statistical issue of the proposed models on the basis of the Fisher information and
the local asymptotic normality property, both of which serve as vital concepts in asymptotic statistical analysis.
The local asymptotic normality property for a differentiable statistical model with the parameter θ ∈ Rd is defined
through the weak convergence of the likelihood ratio to the Gaussian shift experiment; for each h ∈ Rd , as the
number of observations tend to increase (n ↑+∞),

dPθ+Rn(θ)h

dPθ

∣∣
Fn

L→ exp
[
⟨h,Z(θ)⟩− 1

2
⟨h,I (θ)h⟩

]
, (3.5)

under Pθ , where Pθ |Fn is a probability measure associated with θ restricted to the filtration Fn, which is the
σ -field generated by the discrete observation (Xtn,1 ,Xtn,2 , . . . ,Xtn,n). Here, the equidistant time stepsize ∆ may be
either constant or decreasing in the number n of observations. In this paper, we are particularly interested in the
latter case and rewrite it as ∆n so that ∆n ↓ 0, corresponding to (relatively) high frequency sampling and its limit.
Moreover, {Rn(θ)}n∈N is a sequence of diagonal matrices in Rd×d whose diagonal entries tend to zero, I (θ) is a
non-negative definite deterministic matrix in Rd×d , called the Fisher information matrix, and Z(θ)∼N (0,I (θ))
under Pθ . If the above weak convergence holds, then we say that the local asymptotic normality property holds at
point θ with the rate Rn(θ) and the Fisher information matrix I (θ). If the local asymptotic normality property
holds with non-singular I (θ), then a unbiased estimator {θ̂n}n∈N of θ is asymptotically optimal in a neighborhood
of θ if

Rn(θ)−1
(

θ̂n−θ
)

L→N
(
0,I (θ)−1) ,

under Pθ , that is, such estimators achieve asymptotically the Cramer-Rao lower bound I (θ)−1 for the estimation
variance, provided that the inverse I (θ)−1 is well defined. Below, we give results for the Brownian motion and the
stable Lévy motion. In order to avoid overloading with unnecessary lengthy details, we do not specify the constants
H1(α), M1(α), H2(α) and M2(α).
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Theorem 3.3. Let Θ1 and Θ2 be bounded convex domains, whose closures satisfy

Θ1 ⊂
{
[γ1,γ2,σ1,σ2,ρ ]⊤ ∈ R5

∣∣∣γ1 ∈ R, γ2 ∈ R, σ1 ∈ R+, σ2 ∈ R+, ρ ∈ [−1,+1]
}
,

Θ2 ⊂
{
[γ1,γ2,α,σ ]⊤ ∈ R4

∣∣∣γ1 ∈ R, γ2 ∈ R, α ∈ (0,2), σ ∈ R+

}
.

(i) Consider the Brownian motion of Section 2.1. Suppose ∆n ↓ 0 satisfies
√

n∆n ↑ +∞. The local asymptotic
normality property holds at the point θ := [γ1,γ2,σ1,σ2,ρ]⊤ ∈Θ1 with

Rn(θ) = diag
(

1√
n∆n

,
1√
n∆n

,
1√
n
,

1√
n
,

1√
n

)
, (3.6)

I (θ) =
1

1−ρ2



1
σ2

1
− ρ

σ1σ2
0 0 0

− ρ
σ1σ2

1
σ2

2
0 0 0

0 0 2−ρ2

σ2
1

− ρ2

σ1σ2
− ρ

σ1

0 0 − ρ2

σ1σ2

2−ρ2

σ2
2

− ρ
σ2

0 0 − ρ
σ1

− ρ
σ2

1+ρ2

1−ρ2


.

In particular, the matrix I (θ) is singular if and only if ρ =±1.
(ii) Consider the rotation-invariant stable Lévy motion of Section 2.2.1. Suppose ∆n ↓ 0 satisfies

√
n∆1−1/α

n ↑+∞.
The local asymptotic normality property holds at the point θ := [γ1,γ2,α,σ ]⊤ ∈Θ2 with

Rn(θ) = diag

(
1

√
n∆1−1/α

n

,
1

√
n∆1−1/α

n

,
1√

n| ln∆n|
,

1√
n

)
, I (θ) =


M1(α)

σ2 02×1 02×1

01×2
H1(α)

α4
H1(α)
σα2

01×2
H1(α)
σα2

H1(α)
σ2

 ,
with H1(α)> 0 and M1(α) is a positive definite matrix in R2×2, both of which depend only on α . In particular, the
matrix I (θ) is singular.
(iii) Consider the stable Lévy motion with independent components of Section 2.2.2. Suppose ∆n ↓ 0 satisfies√

n∆1−1/α
n ↑+∞. The local asymptotic normality property holds at the point θ := [γ1,γ2,α,σ ]⊤ ∈Θ2 with

Rn(θ) = diag

(
1

√
n∆1−1/α

n

,
1

√
n∆1−1/α

n

,
1√

n| ln∆n|
,

1√
n

)
, I (θ) =


M2(α)

σ2 0 0 0
0 M2(α)

σ2 0 0
0 0 H2(α)

α4
H2(α)
σα2

0 0 H2(α)
σα2

H2(α)
σ2

 ,
with H2(α)> 0 and M2(α)> 0, both of which depend only on α . In particular, the matrix I (θ) is singular.

4 Discussion

Given the increasing availability of high resolution observation data of random search paths, it is a natural interest
to investigate movement paths at different sampling rates. It has been argued in the recent literature that statistical
inference for the time series observation itself tend to give different results at different sampling rates. To address
this issue, we have considered three continuous-time spatial stochastic processes when directly describing random
searches. We now discuss the relevance of those models on the basis of their advantages and limitations in terms
of statistical properties and inference.
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4.1 Statistical Properties

We have presented various relevant statistical properties of the proposed models. In particular, all the proposed
models provide simulation methods in an implementable form (Section 3.2), which enables us to conduct simulation-
based study.

First, increments of the Brownian motion of Section 2.1 with equidistant time stepsize are iid Gaussian with
no directional preference. It has long been a widely accepted consensus (Viswanathan [54], for example) and is
observed in Figure 1 that the resulting Gaussian step length is too regular to properly describe typical individual
movement paths. Even in the continuous-time modeling framework, the Brownian motion fails to capture key
statistical properties of movement paths; for example, the variation of its sample path is infinite over a finite time
interval (Theorem 3.1 (i)), which is physically impossible for any animal to achieve.

The stable motion of Section 2.2.1 achieves a better description of movement paths. As illustrated in Figure
1, the Brownian walker frequently returns to previously visited locations. By contrast, the rotation-invariant stable
Lévy motion revisits sites far less often. This is in agreement with a conclusion often made in the literature that
Lévy walkers can outperform Brownian walkers in places where prey is scarce (Viswanathan [54]). In this respect,
the sample path with smaller α looks more realistic as a foraging movement. On the additional basis of the variation
(Theorem 3.1 (ii) and (iii)), the stable Lévy motion with α ∈ (0,1) seems to act as a good candidate.

Still, there exist at least two remaining issues with the stable motion. One is its fractal property, which is
too beautiful to be realistic, while the other is infinite variance (and even infinite mean for α ∈ (0,1)) which
is simply against reality. Those issues may be addressed by employing the tempered stable motion of Section
2.3. In particular, we have seen that the tempered stable Lévy motion with α ∈ (0,1) has a finite variation and a
finite variance, with which its sample paths describe the movement in the continuous-time modeling framework
sufficiently well, not only by eye based on Figure 2. Also, the short-time stable and long-time Gaussian behaviors
account for the recent statistical observation (for example, Plank and Codling [38]) through the effect of sampling
frequency; if frequency is sufficiently high, the observed lengths essentially follow Pareto, while they tend to a
distribution with a lighter tail after subsampling, which is obvious in some sense due to the central limit theorem,
as the observed lengths have a finite variance in practice.

It is important to discuss here that the stable (and tempered stable) motion with independent components might
not be really appropriate for modeling movement paths. We draw various sample paths in Figure 3 to demonstrate
this point. In the case of the stable Lévy motion, the trajectory with independent components looks unrealistically
orthogonal. Such orthogonality occurs when either one of two independent components jumps with one very large
length and the other with no such long jumps during the observation interval. In contrast, the Brownian motion
with independent components (ρ = 0) is indeed rotationally invariant.

Figure 3: Typical sample paths of the rotation-invariant stable Lévy motion with α = 1.8 (leftmost), the stable Lévy
motion with independent components with α = 1.8 (the second from the left), the Brownian motions with ρ = 0
(the second from the right) and ρ = 0.7 (rightmost),
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4.2 Statistical Inference

For the Brownian motion, the Fisher information matrix is singular (Theorem 3.3 (i)) if the two dimensions are
completely correlated, that is, ρ = ±1; such unrealistic settings can be excluded from consideration right away.
It is known that the Fisher information matrix remains the same even under low frequency sampling. Regardless
of sampling frequency, thus, asymptotic normality of efficient joint estimation is readily guaranteed. Also, the
maximum likelihood estimator, which is easily computable, is known to achieve this asymptotic efficiency. As
a consequence, one may choose the time stepsize ∆, without worrying about normality of the joint maximum
likelihood estimator.

The optimal rate in (3.6) provides an essential idea about estimation under high frequency sampling, in agree-
ment with the discussion made in Codling et al. [8]. Namely, on the one hand, as the drift parameter γ describes
a global behavior of sample paths, the drift parameter cannot be correctly estimated only based on a fixed time
interval. For example, if one might mistakenly focus on a fixed interval with very negatively skewed path when
the true drift is positive, which is occasionally possible, then estimation would indicate a negative drift. Hence, the
total observation length n∆ is required to be very large. On the other hand, the variances and correlation [σ1,σ2,ρ ]⊤
describe a local behavior of sample paths, estimatable from a finite interval. In other words, we only need a short
interval (the total observation window n∆ may even be decreasing) without looking at the global tendency of sample
paths.

Just as is often the case, getting beyond the Gaussian regime is a typical example of ”more realistic model with
less mathematical tractability.” The rotation-invariant stable motion of Section 2.2.1 exhibits a desired power-law
type movement (Dziubanski [11]), while its marginal probability density function (2.7) is numerically prohibitive.
Due to the singular Fisher information (Theorem 3.3 (ii)), either the stability index α or the scale σ is desired
to be a priori known to attain asymptotic optimal joint normality of unbiased efficient estimators, in particular,
when the observation is made at ultra high frequency. Even when one parameter is given, the efficient maximum
likelihood estimator (that is, root finding of the likelihood equation) is numerically intractable as computation of
the multidimensional stable density and its derivatives is computationally prohibitive.

In addition, we would like to emphasize that a priori knowledge of a parameter is technically different from
leaving it as a nuisance parameter. For example, in the case of the Pareto random walk model, its jump-size
distribution requires a (strictly positive) threshold, which is often set in a somewhat heuristic manner by discarding
tiny jumps or noises (Sims, Righton and Pitchford [52], Edwards [13], White, Enquist and Green [56]). Such an
arbitrarily set threshold is still nothing but a nuisance parameter and may have a significant impact on estimation
results (Kawai and Petrovskii [17]).

By employing the stable motion with independent components of Section 2.2.2, we can apply estimation pro-
cedures for the one-dimensional stable motion separately to two coordinates due to their independence. Although
statistical methods for the one-dimensional stable Lévy motion are already computationally demanding, they are
relatively well known (Masuda [28], Nolan [31]), together with a computer code for the maximum likelihood es-
timation (Nolan [32]). Again, due to the singularity of the Fisher information in the limit, a great care is required
for estimation based on ultra high resolution data. Despite a slight advantage in statistical inference, as discussed
earlier with Figure 3, the stable motion with independent components may not be a realistic candidate due to its
orthogonal-looking movement paths.

Turing to the tempered stable motion of Section 2.3, which appears to be the most realistic among the proposed
models, little is known about its statistical inference. For example, the probability density function of tempered
stable laws is unavailable in any useful form even in the one-dimension setting, and thus so are all essential quan-
tities, such as the likelihood ratio function, the the likelihood equation and its root. In addition, unlike the well
known power-law decay (2.10) of the stable motion, asymptotic behavior of the probability density of the sym-
metric tempered stable laws is still an open problem, irrespective of the directional preference. We conjecture that
the two parameter (α,σ) end up causing the singularity of the Fisher information, just as in the stable motion
(Theorem 3.3 (ii) and (iii)). This is so because, as seen in the short time behavior (3.3), its increments behave like
the (non-tempered) stable motion under ultra high frequency sampling.
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4.3 Perspectives and Challenges

Existing studies have only focused on time series modeling of discrete observations of a random search path, while
such discrete-time models are not robust to the sampling rate, as often argued in the literature. In other words,
statistical inference at different sampling rates tend to misidentify the underlying continuous-time movement path.
Meanwhile, continuous-time modeling is designed to directly describe the underlying continuous-time movement
path and thus make it possible to perform inference for the underlying continuous-time path given its discrete
observation data, not for the time series formed by discrete sample itself. Hence, by nature, continuous-time
models are fully robust to the sampling frequency in statistical inference, as long as the underlying path is the
interest for estimation.

In this paper, we have taken the first step towards continuous-time modeling of movement paths, by considering
two-dimensional Lévy processes as realistic and/or mathematically tractable candidates; the Brownian motion, the
stable motion and the tempered stable motion. Relatively straightforward simulation methods are available for all
those models. This is a key feature when using such models in applications.

We have discussed further advantages and limitations of those continuous-time models on the basis of statistical
properties and inference. In short, as is often the case, there is an inevitable tradeoff; analytically tractable models
are not statistically realistic, while models incorporating more statistical features are too complex in various ways;
analytically, numerically and statistically, etc.

The Brownian motion allows for analytical computations of many quantities without recourse to simulation
and provides optimal parameter estimation methods regardless of the sampling rate, while its sample path is not
considered as a good description of movement paths. Second, the stable motion of finite variation captures many
statistical properties except for infinite variance. Nevertheless, statistical inference for the model is significantly
much more complex than the case of the Brownian motion. In particular, under ultra high frequency sampling, its
Fisher information matrix is singular. Third, the tempered stable motion captures even more statistical properties
than the (non-tempered) stable motion, including a finite variance, short-time Pareto and long-time Gaussian be-
haviors, while almost none is known about its statistical inference as its probability density function and its tail
behaviors are still unknown. The range of sampling periods for which short-time Pareto and long-time Gaussian
behaviors occur depends largely on the parameters of the model and is an interesting topic to investigate.

Still, the proposed models are relatively mathematically tractable and way too simple to describe the reality.
Much more remains to be done to bridge the gap between such stochastic models and the reality. In particular, the
proposed models are all in the class of Lévy processes, which satisfy the unrealistic assumption of independent and
stationary increments. Thus, they neither cover a multi-state movement based on a combination of intensive and
extensive search modes (Bartumeus [2], Benhamou [3]) nor describe non-destructive search strategies, in where the
forager may visit and feed at the same target site many times (Morales et al. [30], Patterson et al. [36], Pedersen et
al. [37]).

Lévy flights are not optimal search strategies in the case of nonrevisitable targets [41], where intermittent
strategies come into effect. (See [5] for a nice review on intermittent search.) Intermittent search processes switch
between local extensive search phases and ballistic relocation phases, for example, the leftmost and rightmost
figures in Figure 1, respectively. The question of determining optimal search strategies (or equivalently, minimizing
the relocation time) has been given growing attention, for example, [34, 35, 45]. In particular, it is known [26] that
once optimised, a scale free system based on Pareto jumps is adaptable to changing parameters and is more robust
than intermittent systems with fixed scales [4]. Classical statistical methods are directly applicable to a partial
trajectory within each phase, while evidently not when two or more phases are under consideration. It is certainly
an interesting research direction to develop a quantitative statistical methods for such change-point detection, such
as [30], rather than on the basis of visual detection.

Although we have focused on Markovian Lévy process models as continuous-time counterparts of Lévy walks,
there are non-Markovian features to be taken into account in modeling, such as directional preference and autocor-
relation (Bovet and Benhamou [6], Plank and Codling [38], Shlesinger [49]). For example, fractional Brownian and
Lévy motions are continuous-time stochastic processes with autocorrelations and are examined by Reynolds [44]
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in their discrete-time form as alternatives to Lévy walks. In general, such non-Markovian properties tend to clearly
show up when observing movement paths in detail, that is, under higher frequency sampling. On the contrary, as
discussed in the literature (Raposo et al. [41], Viswanathan [55]), even a correlated random walk resembles Brow-
nian motion at a lower sampling rate, due to the tangling impact of the turning angles. Our proposed models thus
have the potential to be very useful for modeling random search paths at a relatively low observation rate when such
non-Morkovian properties become negligible. Moreover, in relation to sampling rate, observation error is another
largely open question in particular under high frequency sampling where the signal-to-noise ratio tends to be small.

Finally, singularity of the Fisher information that we have encountered in this paper is not really a rare phe-
nomenon (Kawai [19]); at least two such concrete examples are known. It is known (Kawai [16], Kawai and
Petrovskii [17]) that in the fractional Brownian motion model (Reynolds [44]), the joint presence of the self-similar
index H and the volatility σ causes singularity. The other is the Meixner Lévy process, suffering from a somewhat
different type of singularity between two scale parameters (Kawai and Masuda [21]). Note that like the tempered
stable motion of Section 2.3, a Meixner Lévy process behaves like a stable Lévy process with stability index 1
(a Cauchy process, in other words). Interestingly, the normal inverse Gaussian Lévy process exhibits a similar
short-range Cauchy behavior, while it possesses the invertible Fisher information matrix (Kawai and Masuda [22]).
Given the increasing availability of high resolution observation data, the issue of singular Fisher information is
likely to appear more frequently and is a subject of future research.

A Proof

Proof of Theorem 3.3. The complete proof entails rather lengthy arguments of somewhat routine nature. To avoid
overloading the paper, we omit the proof of (i) and only give a short sketch of the proof of (ii) without non-essential
details. For the proof of (i), see, for example, Ferguson [14]. The results (ii) and (iii) can be shown in a similar
manner to Masuda [28]. Define for each n ∈ N,

εn,k := εn,k (γ,α,σ ,∆n) :=
Xtn,k −Xtn,k−1−∆nγ

∆1/α
n σ

, k = 1, . . . ,n,

where εn,1 has the probability density function fα(x) given by (2.7). Thanks to the stationarity and independence of
increments of Lévy processes, the log-likelihood function to be maximized with discrete observations {Xtn,k}k=1,...,n
is as simple as ℓn(θ) = ∑n

k=1(− lnσ −α−1 ln∆n + ln fα(εn,k)). We can show that

∇γ (ℓn(θ)) =−
1

∆1/α−1σ

n

∑
k=1

∇ fα(εn,k)

fα(εn,k)
,

∂
∂α

(ℓn(θ)) =
n ln∆n

α2 +
n

∑
k=1

[
ln∆n

α2
⟨εn,k,∇ fα(εn,k)⟩

fα(εn,k)
−
∫
R2 ∥y∥α ln∥y∥e−i⟨εn,k,y⟩−∥y∥α

dy
(2π)2 fα(εn,k)

]
,

∂
∂σ

(ℓn(θ)) =−
n
σ
− 1

σ

n

∑
k=1

⟨εn,k,∇ fα(εn,k)⟩
fα(εn,k)

,

where ∇ fα(x) := ∇x( fα(x)). For the rest, we refer to [28]. (In particular, for (iii), each entry of the matrix I (θ) is
well defined since the tail behavior of the density function is given by g(rξ ) = O(r−2−α) as r ↑ +∞ for each ξ in
the unit circle S. See [11] for details.)
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