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Abstract 
 

This research work proposes a five-term 3-D novel conservative chaotic system with a quadratic nonlinearity and a quartic 
nonlinearity. The conservative chaotic systems have the important property that they are volume conserving. The 
Lyapunov exponents of the 3-D novel chaotic system are obtained as 𝐿! = 0.0836, 𝐿! = 0 and 𝐿! = −0.0836.  Since the 
sum of the Lyapunov exponents is zero, the 3-D novel chaotic system is conservative. Thus, the Kaplan-Yorke dimension 
of the 3-D novel chaotic system is easily seen as 3.0000.  The phase portraits of the novel chaotic system simulated using 
MATLAB depict the chaotic attractor of the novel system. This research work also discusses other qualitative properties of 
the system. Next, an adaptive controller is designed to achieve Generalized Projective Synchronization (GPS) of two 
identical novel chaotic systems with unknown system parameters. MATLAB simulations are shown to validate and 
demonstrate the GPS results derived in this work. 
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1. Introduction 
 
There is great interest in the chaos literature in the discovery 
of chaotic behaviour in nature and physical systems. Chaotic 
systems are defined as nonlinear dynamical systems which 
are very sensitive to initial conditions, topologically mixing 
and also with dense periodic orbits [1].   

 A significant development in chaos theory occurred 
when Lorenz discovered a 3-D chaotic system of a weather 
model [2]. This was followed by the discovery of many 3-D 
chaotic systems in the chaos literature such as Rössler 
system [3], Rabinovich system [4],  ACT system [5], Sprott 
systems [6], Chen system [7], Lü system [8], Shaw system 
[9], Feeny system [10], Shimizu system [11], Liu-Chen 
system [12], Cai system [13], Tigan system [14], Colpitt’s 
oscillator [15], WINDMI system [16], Zhou system [17], etc. 

Recently, many 3-D chaotic systems have been 
discovered such as Li system [18], Elhadj system [19], Pan 
system [20], Sundarapandian system [21], Yu-Wang system 
[22], Sundarapandian-Pehlivan system [23], Zhu system 
[24], Vaidyanathan systems [25-30], Vaidyanathan-
Madhavan system [31], Pehlivan-Moroz-Vaidyanathan 
system [32], Jafari system [33], Pham system [34], etc. 

We note that the chaotic systems [2-34] are dissipative 

systems in which the system limit sets are ultimately 
confined into a specific limit set of zero volume, and the 
asymptotic motion of the chaotic system settles onto a 
strange attractor of the system.  

In the chaos literature, there is also an active interest in 
the discovery of conservative chaotic systems [35], which 
have the special property that the volume of the flow is 
conserved. 

A classical example of a conservative chaotic system is 
the Nosé-Hoover system [36, 37], which is modelled by the 
system of differential equations 

 
!!!
!"

= 𝑥!
!!!
!"

= −𝑥! + 𝑥!𝑥!
!!!
!"

= 1 − 𝑥!!
      (1) 

 
The Nosé-Hoover system (1) has the Lyapunov 

exponents 𝐿! = 0.014, 𝐿! = 0 and 𝐿! = −0.014. The 
system (1) is chaotic as it has a positive Lyapunov exponent 
and  is conservative as the sum of the Lyapunov exponents is 
zero. Thus, the system (1) is volume-conserving.  
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Also, the Kaplan-Yorke dimension of the Nosé-Hoover 
system (1) is easily seen as 

 
𝐷!" = 2 + !!!!!

!!
= 2 + 1 = 3     (2) 

 
In this research work, we modify the dynamics of Nosé-

Hoover chaotic system (1) and obtain a 3-D novel 
conservative chaotic system with Lyapunov exponents 
𝐿! = 0.0836, 𝐿! = 0 and 𝐿! = −0.0836. Thus, it is clear 
that the maximal Lyapunov exponent (MLE) of the novel 
conservative chaotic system is 𝐿! = 0.0836, which is greater 
than the maximal Lyapunov exponent (MLE) of the Nosé-
Hoover chaotic system (1). The Kaplan-Yorke dimension of 
all 3-D conservative chaotic systems is equal to three. 

The study of chaos theory has many important 
applications in science and engineering such as oscillators 
[38-40], lasers [41-43], robotics [44-47], chemical reactors 
[48-50], biology [51,52], ecology [53,54], cardiology [55], 
memristors [56-60], neural networks [61-63], secure 
communications [64-67], cryptosystems [68-71], economics 
[72-74], etc. 

Chaos control and chaos synchronization are important 
research problems in the chaos theory. In the last three 
decades, many mathematical methods have been developed 
successfully to address these research problems. 

The study of control of a chaotic system investigates 
methods for designing feedback control laws that globally or 
locally asymptotically stabilize or regulate the outputs of a 
chaotic system.  

Many methods have been developed for the control and 
tracking of chaotic systems such as active control [75-78], 
adaptive control [79-85], backstepping control [86-88], 
sliding mode control [89, 90], etc. 

Chaos synchronization problem deals with the 
synchronization of a couple of systems called the master or 
drive system and the slave or response system. To solve this 
problem, control laws are designed so that the output of the 
slave system tracks the output of the master system 
asymptotically with time.  

Because of the butterfly effect, this is a challenging 
problem even when the initial conditions of the master and 
slave systems are nearly identical because of the exponential 
divergence of the outputs of the two systems in the absence 
of any control. The synchronization of chaotic systems has 
applications in secure communications [91-93], 
cryptosystems [94, 95], encryption [96, 99], etc. 

In the chaos literature, many different methodologies 
have been also proposed for the synchronization and anti-
synchronization of chaotic systems such as PC method 
[100], active control [101-111], time-delayed feedback 
control [112,113], adaptive control [114-125], sampled-data 
feedback control [126-129], backstepping control [130-136], 
sliding mode control [137-143], etc. 

Furthermore, we derive an adaptive control law that 
achieves generalized projective synchronization (GPS) of 
the identical 3-D novel conservative chaotic systems when 
the system parameters are unknown. Generalized projective 
synchronization is a general type of synchronization which 
generalizes complete synchronization, anti-synchronization, 
hybrid synchronization, and projective synchronization of 
chaotic systems. The main synchronization result is proved 
using adaptive control theory and Lyapunov stability theory. 
MATLAB simulations are shown in detail to validate and 
demonstrate the generalized projective synchronization of 
the identical 3-D novel conservative chaotic systems. 

2. A Five-Term 3-D Novel Conservative Chaotic System 
 
The dynamics of the five-term novel 3-D conservative 
chaotic system is described by 
 
!!!
!"

=   𝑥!
!!!
!"

= −𝑥! + 𝑎𝑥!𝑥!
!!!
!"

=   𝑏 − 𝑥!!
       (3) 

 
where 𝑥!, 𝑥!, 𝑥!  are the states and 𝑎, 𝑏 are positive 
parameters.  

The nonlinear system (3) depicts a chaotic attractor when 
the parameter values are taken as: 
 
𝑎 = 1, 𝑏 = 1         (4) 

 
We take the initial conditions as 
 

𝑥! 0 = 0.2,   𝑥! 0 = 0.2, 𝑥! 0 = 0.2     (5) 
 
The 3-D portrait of the strange chaotic attractor (3) for 

the parameter values (2) and the initial conditions (5) is 
depicted in Fig. 1, and the 2-D portraits (projections on the 
three coordinate planes) are depicted in Figs. 2-4.  

 

   
 
Fig. 1. The chaotic attractor of the novel chaotic system in 𝑅!. 
 
 
 

 
 
Fig. 2. The 2-D projection of the chaotic attractor on the (𝑥!, 𝑥!) plane. 
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Fig. 3. The 2-D projection of the chaotic attractor on the (𝑥!, 𝑥!) plane. 
 

 
 
Fig. 4. The 2-D projection of the chaotic attractor on the (𝑥!, 𝑥!) plane. 
 
 
3. Analysis of the 3-D Novel Chaotic System 
 
In this section, qualitative properties of the 3-D novel 
chaotic system (3) are detailed. 
 
 
3.1. Volume Conservation of the Flow 
 
In vector notation, we may express the system (3) as: 
 

!𝒙
!"
= 𝑓 𝒙 =   

𝑓!(𝑥!, 𝑥!, 𝑥!)
𝑓!(𝑥!, 𝑥!, 𝑥!)
𝑓!(𝑥!, 𝑥!, 𝑥!)

     (6) 

 
where 
 
𝑓! 𝑥!, 𝑥!, 𝑥! = 𝑥!
𝑓! 𝑥!, 𝑥!, 𝑥! = −𝑥! + 𝑎𝑥!𝑥!
𝑓! 𝑥!, 𝑥!, 𝑥! = 𝑏 −   𝑥!!

      (7) 

 
We take the parameter values as in the chaotic case, viz. 

a = 1 and b = 1. 
Let Ω be any region in  𝑹!  with a smooth boundary and 

also Ω(t) = Φt(Ω), where Φt is the flow of f.  
Furthermore, let V(t) denote the volume of Ω(t). 
By Liouville’s theorem, we have 
 

!"
!"
= ∇ ∙ 𝑓 𝑑𝑥!𝑑𝑥!𝑑𝑥!!(!)       (8) 

 
The divergence of the novel chaotic system (3) is easily 

found as: 
 

∇ ∙ 𝑓 = !!!
!!!

+ !!!
!!!

+ !!!
!!!

= 0 + 0 + 0 =   0      (9) 
 

Substituting (9) into (8), we obtain the first order ODE 
 

 !"
!"
= 0       (10) 

 
Integrating (10), we obtain the unique solution as: 
 

𝑉 𝑡 = 𝑉(0)    for all 𝑡 ≥ 0   (11) 
 

 This shows that the 3-D novel chaotic system (3) is 
volume-conserving. Hence, the system (3) is a conservative 
chaotic system. 
 
 
3.2. Symmetry and Invariance 
 
It is easy to see that the system (3) is invariant under the 
coordinates transformation 
 
𝑥!, 𝑥!, 𝑥! ⟼ −𝑥!,−𝑥!, 𝑥! .    (12) 

 
Thus, the system (3) has rotation symmetry about the    

x3-axis and any non-trivial trajectory of the system (3) must 
have a twin trajectory. It is also easy to see that the x3-axis is 
invariant under the flow of the system (3).  
 
 
3.3. Equilibrium Points  
 
The equilibrium points of the novel chaotic system (3) are 
obtained by solving the following system of equations (with 
a = 1 and b = 1)   

  
  𝑥! = 0

−𝑥! + 𝑎𝑥!𝑥! = 0
𝑏 − 𝑥!! = 0

      (13) 

  
Since the first and last equations of the system (13) 

contradict each other, it is immediate that the system (13) 
does not admit any solution. Hence, there is no equilibrium 
for the novel chaotic system (3). 
 

 
3.4. Lyapunov Exponents and Kaplan-Yorke Dimension  
 
For the chosen parameter values (4), the Lyapunov 
exponents of the novel chaotic system (3) are obtained using 
MATLAB as: 

  
𝐿! = 0.0836, 𝐿! = 0, 𝐿! = −0.0836    (14) 

 
Since the spectrum of Lyapunov exponents (14) has a 

positive term  𝐿!, it follows that the 3-D novel system (1) is 
chaotic. Since the sum of the Lyapunov exponents is zero, 
the novel chaotic system is conservative. 

The maximal Lyapunov exponent (MLE) of the novel 
chaotic system (3) is L1 = 0.0836.  
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Also, the Kaplan-Yorke dimension of the novel chaotic 
system (3) is calculated as: 

  
 𝐷!" = 2 + !!!!!

!!
= 2 + 1 = 3   (15) 

  
Fig. 5 depicts the dynamics of the Lyapunov exponents 

of the novel chaotic system (3). 
 

 

 
 

Fig. 5. Dynamics of the Lyapunov Exponents of the Novel System. 
 
 
4. Generalized Projective Synchronization of the 
Identical 3-D Novel Conservative Chaotic Systems 
 
In this section, new results are derived for an adaptive 
controller to achieve generalized projective synchronization 
(GPS) of the identical 3-D novel conservative chaotic 
systems. 

As the master system, we take the novel chaotic system 
  

!!!
!"

= 𝑥!
!!!
!"

= −𝑥! + 𝑎𝑥!𝑥!
!!!
!"

= 𝑏 − 𝑥!!
     (16) 

  
where x1, x2, x3 are state variables and a, b are unknown, 
constant, parameters of the system.  

As the slave system, we take the novel chaotic system 
  

𝑑𝑦1
𝑑𝑡

= 𝑦2 + 𝑢1
𝑑𝑦2
𝑑𝑡 = −𝑦1 + 𝑎𝑦2𝑦3 + 𝑢2
𝑑𝑦3
𝑑𝑡

= 𝑏− 𝑦2
4 + 𝑢3

    (17) 

  
where y1, y2, y3 are state variables and u1, u2, u3 are adaptive 
controllers to be designed. 

The generalized projection synchronization (GPS) error 
between the identical chaotic systems is defined as: 

  
𝑒!(𝑡) = 𝑦! 𝑡 − 𝜂!𝑥!(𝑡)
𝑒!(𝑡) = 𝑦! 𝑡 − 𝜂!𝑥!(𝑡)
𝑒!(𝑡) = 𝑦! 𝑡 − 𝜂!𝑥!(𝑡)

    (18) 

  

In (18), η1, η2, η3 are real, scaling constants, which are 
known. (Note that ηi can take both positive and negative 
values). 

The GPS error dynamics is calculated as: 
  

!!!
!"

= 𝑦! − 𝜂!𝑥! + 𝑢!
!!!
!"

= −𝑦! + 𝜂!𝑥! + 𝑎 𝑦!𝑦! − 𝜂!𝑥!𝑥! + 𝑢!
!!!
!"

= 𝑏 1 − 𝜂! − 𝑦!! + 𝜂!𝑥!! + 𝑢!

  (19) 

  
We consider the adaptive control law 
  

𝑢1 = −𝑦2 + 𝜂1𝑥2 − 𝑘1𝑒1
𝑢2 = 𝑦1 − 𝜂2𝑥1 − 𝐴 𝑡 𝑦2𝑦3 − 𝜂2𝑥2𝑥3

−𝑘2𝑒2
𝑢3 = −𝐵 𝑡 1− 𝜂3 + 𝑦2

4 − 𝜂3𝑥2
4 − 𝑘3𝑒3

  (20) 

  
where k1, k2, k3 are positive gains and A(t), B(t) are estimates 
of the unknown parameters a, b respectively. 

The parameter estimation errors are defined by 
  
𝑒!(𝑡) = 𝑎 − 𝐴(𝑡)
𝑒!(𝑡) = 𝑏 − 𝐵(𝑡)      (21) 

  
Substituting (20) into the error dynamics (19), we get 
   

𝑑𝑒1
𝑑𝑡

= −𝑘1𝑒1
𝑑𝑒2
𝑑𝑡

= (𝑎− 𝐴 𝑡 ) 𝑦2𝑦3 − 𝜂2𝑥2𝑥3 − 𝑘2𝑒2
𝑑𝑒3
𝑑𝑡

= (𝑏− 𝐵 𝑡 ) 1− 𝜂3 − 𝑘3𝑒3

   (22) 

  
Using (21), we can simplify the error dynamics (22) as: 
  
𝑑𝑒1
𝑑𝑡

= −𝑘1𝑒1
𝑑𝑒2
𝑑𝑡

= 𝑒𝑎 𝑦2𝑦3 − 𝜂2𝑥2𝑥3 − 𝑘2𝑒2
𝑑𝑒3
𝑑𝑡

= 𝑒𝑏 1− 𝜂3 − 𝑘3𝑒3

   (23) 

  
Differentiating (21) with respect to t, we get 
  
!!!
!"

= − !"
!"

!!!
!"

= − !"
!"

       (24) 

  
Next, we use Lyapunov stability theory for finding an 

update law for the parameter estimates.  
Consider the quadratic Lyapunov function defined by 
  

𝑉 = !
!
𝑒!! + 𝑒!! + 𝑒!! + 𝑒!! + 𝑒!! ,     (25) 

 
which is positive definite on 𝑅!. 

Differentiating 𝑉 along the trajectories of (23) and (24), 
we get 

  
!"
!"

= −𝑘!𝑒!! − 𝑘!𝑒!! − 𝑘!𝑒!!

+𝑒! 𝑒! 𝑦2𝑦3 − 𝜂2𝑥2𝑥3 − !"
!"

+𝑒! 𝑒! 1 − 𝜂! − !"
!"

   (26) 
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In view of (26), we take the parameter update law as: 
  

 
!"
!"

= 𝑒! 𝑦2𝑦3 − 𝜂2𝑥2𝑥3
!"
!"

= 𝑒! 1 − 𝜂!
    (27) 

  
Theorem 1. The adaptive control law (20) and the 
parameter update law (27) achieve generalized projective 
synchronization (GPS) between the identical chaotic systems 
(16) and (17) for all initial conditions, where k1, k2, k3 are 
positive constants. 
 
Proof. We prove this result using Lyapunov stability theory.  

For this purpose, we consider the quadratic Lyapunov 
function V defined by (25), which is positive definite on 𝑅!.  

Substituting the parameter update law (27) into (26), we 
obtain the time derivative of V as: 

  
 !"
!"
= −𝑘!𝑒!! − 𝑘!𝑒!! − 𝑘!𝑒!!,    (28) 
  

which is a negative semi-definite function on 𝑅!. 
Thus, we can conclude that the synchronization error 

𝑒(𝑡) and the parameter estimation error are globally 
bounded. 

We define k = min{k1, k2, k3}. Then we get 
 
!"
!"
≤ −𝑘 𝑒 !  or   𝑘 𝑒 ! ≤ − !"

!"
   (29) 

  
Integrating the inequality (29) from 0 to t, we get 
  

𝑘 𝑒(𝜏) !𝑑𝜏 ≤ 𝑉 0 − 𝑉(𝑡)!
!      (30) 
  
From (30), it follows that e(t) ∈ L2. Using (23), we can 

conclude that 𝑒 ∈  L∞. 
Thus, using Barbalat’s lemma [140], we conclude that 

e(t) → 0 exponentially as t → ∞ for all initial conditions e(0) 
∈ 𝑅!. This completes the proof. n 

 
For numerical simulations, the parameter values of the 

novel chaotic systems (16) and (17) are taken as in the 
chaotic case, viz. a = 1 and b = 1. We take the gain constants 
as ki = 6 for i = 1, 2, 3. The GPS constants are taken as                
η1 = 1.2, η2 = –0.7 and η3 = 1.8. 

The initial conditions of the master system (16) are taken 
as x1(0) = 9.5, x2(0) = 2.3 and x3(0) = –6.1.  

The initial conditions of the slave system (17) are taken 
as y1(0) = 4.8, y2(0) = –2.9 and y3(0) = 7.5. 

The initial conditions of the parameter estimates are 
taken as A(0) = 4.2 and B(0) = 0.2. 

Figs. 6-8 describe the generalized projective 
synchronization (GPS) of the novel chaotic systems (16) and 
(17), while Fig. 9 describes the time-history of the 
synchronization errors e1, e2, e3. 

 

 
 

Fig. 6. GPS of the states x1 and y1 of the novel chaotic systems. 
  

 
 

Fig. 7. GPS of the states x2 and y2 of the novel chaotic systems. 
 

 
 

Fig. 8. GPS of the states x3 and y3 of the novel chaotic systems.  
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Fig. 9. Time-history of the GPS errors e1, e2, e3. 

 
 

6. Conclusions 
 
In this research work, we have proposed a five-term 3-D 
novel conservative chaotic system with a quadratic 
nonlinearity and a  quartic  nonlinearity.  The  conservative  

chaotic systems have the important property that they are 
volume conserving.  Also, the Kaplan-Yorke dimension of 
any 3-D conservative chaotic system is equal to 3.  The 
Lyapunov exponents of the 3-D novel chaotic system have 
been obtained as L1 = 0.0836, L2 = 0 and L3 = –0.0836.     
Also, the maximal Lyapunov exponent of the 3-D novel 
conservative chaotic system is L1 = 0.0836,  which is greater 
than the maximal Lyapunov exponent of the 3-D Nosé-
Hoover conservative chaotic system, viz. L1 = 0.014. The 
phase portraits of the novel chaotic system were simulated 
using MATLAB. We also showed that the 3-D novel 
conservative chaotic system has no equilibrium points and 
discussed its symmetry and invariance properties.  Next, an 
adaptive controller was designed to achieve generalized 
projective synchronization (GPS) of two identical novel 
chaotic systems with unknown system parameters. 
Generalized projective synchronization is a general type of 
synchronization which generalizes common types of 
synchronization such as complete synchronization (CS), 
anti-synchronization (AS), hybrid synchronization (HS), 
projective synchronization (PS), etc. The adaptive GPS 
synchronization result was established using Lyapunov 
stability theory. Finally, MATLAB simulations were shown 
to validate and demonstrate the GPS result derived in this 
work for identical 3-D novel conservative chaotic systems. 

 
______________________________ 
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