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Abstract. As one of the most popular information safeguarding mecha-
nisms, access control is widely deployed in information systems. However,
access control approach suffers from a tough problem, i.e. system ad-
ministrators must be unconditionally trusted. Cryptographic substitutes
have been developed to solve the above problem. In particular, hierarchi-
cal encryption, as an alternate solution of access control in a hierarchy,
has been intensively studied. In this paper, we propose a cryptographic
solution for general access control based on Chinese Remainder Theo-
rem. Our solution has two categories: data based solution and key based
solution. In contrast to the most recent hierarchical encryption system:
Ray, Ray and Narasimhamurthi’s system [1], our solution is more effi-
cient, secure and flexible. Moreover, we introduce an efficient mechanism
for authorization alterations. This paper ends with a set of experimental
results that support our research.
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1 Introduction

As one of the most popular information safeguarding mechanisms, access control
is widely deployed in information systems. Great efforts have been made in
this area over decades. Traditional access control has been replaced by more
flexible and powerful systems, e.g. Role-Based Access Control (RBAC) [2] and
Flexible Authorization Framework (FAF) [3]. However, in access control systems,
unconditional trust in system administrators is always a potential threat to
information security.

In order to overcome this threat, hierarchical encryption is developed as an
alternate approach of access control. By using hierarchical encryption, all infor-
mation in an information system is encrypted in a way such that data encrypted
by a lower level security class can be decrypted by a higher level security class.
The idea of hierarchical encryption is first proposed by Akl and Taylor [4,5] in
the early 1980s. Since then on more research work [1,6,7,8,9,10,11] has been ded-
icated to this area. Ray, Ray and Narasimhamurthi’s system [1] (RRN system) ,

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 461–473, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



462 Yibing Kong et al.

to our best knowledge, is the most recent development in this area. Compared to
previous solutions, RRN system is a solution for general access control. That is,
besides supporting access control policies following the hierarchical structure of
an organization, RRN system also supports access control policies that do not
follow the hierarchical structure. Furthermore, RRN is simple and can be easily
incorporated in existing systems. However, RRN system has some disadvantages
(e.g. lack of efficiency); this issue will be further discussed in section 3.

In this paper, we propose a cryptographic solution aiming at general access
control, which performs much better than RRN . Our solution is based on Chi-
nese Remainder Theorem (CRT) and has two categories: data based solution and
key based solution. Assume a data item is to be shared with k sharers. In the
data based solution, this data item is first encrypted by k sharers’ public keys,
respectively; then these k individual ciphertexts are combined by CRT. As a
result, the final share ciphertext is k times bigger than the data item. In the key
based solution, the data item is first encrypted by a symmetric key to produce
a data ciphertext. Next, this symmetric key is encrypted by k sharers’ public
keys, respectively. Finally, these k individual ciphertexts are combined by CRT
to produce a symmetric key share ciphertext. The data ciphertext and the sym-
metric key share ciphertext are concatenated and shared with those k sharers.
The performance and security analysis shows that our solution is more efficient
and secure than RRN . Moreover, in our solution, authorization alterations are
efficiently supported. This paper ends with a set of experimental results that
support our research.

The rest part of this paper is organized as follows. Section 2 introduces the
fundamental knowledge of our solution. RRN system is briefly described in sec-
tion 3. We propose a data based approach in section 4 and a key based approach
in section 5. Section 6 depicts our experimental results. Section 7 concludes this
paper.

2 Backgrounds

In this section, we will introduce the background knowledge on which our solu-
tion is based.

Theorem 1. Chinese Remainder Theorem:
If the integers n1, n2, ..., nk are pairwise relatively prime, then the system of

simultaneous congruences

x ≡ a1 mod n1 .
x ≡ a2 mod n2 .

...
x ≡ ak mod nk .

has a unique solution x, such that 0 ≤ x < n = n1n2...nk.

We call n1, n2, ..., nk the CRT moduli and x the CRT solution. The proof of
CRT is available in most number theory books, e.g. [12]. Garner’s algorithm is
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an efficient method for determining CRT solutions. This algorithm is listed as
follows (For further details, please refer to Chapter 14.5 of [13]).

Algorithm: Garner’s algorithm for CRT
INPUT : a positive integer n =

∏k
i=1 ni > 1, with gcd(ni, nj) = 1 for all i �= j,

and a modular representation a(x) = (a1, a2, ..., ak) of x for the ni.
OUTPUT : the integer x in radix b representation.

1. For i from 2 to k do the following:
1.1 Ci ← 1 .
1.2 For j from 1 to (i− 1) do the following:

u← n−1
j mod ni .

Ci ← u · Ci mod ni .
2. u← a1, x← u .
3. For i from 2 to k do the following:

u← (ai − x) · Ci mod ni, x← x + u ·∏i−1
j=1 nj .

4. Return(x).

The RSA algorithm [14] contains three parts: key generation, encryption and
decryption. Key generation works as follows: find a modulus n (n is a product of
two large primes) and choose a number e (e is a number less than n and relatively
prime to φ(n), where φ(n) is the Euler’s totient function). Find another number
d such that ed ≡ 1 mod φ(n). The value e and d are called the public and private
exponents, respectively. The public key K is the pair (e, n); the private key K−1

is the pair (d, n). The encryption of a message m with the public key K = (e, n),
denoted by EK(m), is defined as:

c = EK(m) = me mod n .

where c is the ciphertext produced by the encryption algorithm E. The decryp-
tion of a ciphertext c with the private key K−1 = (d, n), denoted by DK−1(c),
is defined as:

m = DK−1(c) = cd mod n .

where m is the plaintext recovered by the decryption algorithm D.

3 RRN System

RRN system is a RSA based cryptosystem, which can be used not only for
access control in a hierarchy but also for general cases. RRN system is based on
the following principles [1].

Definition 1. Two RSA encryption keys K1 = (e1, n1) and K2 = (e2, n2) are
said to be compatible if e1 = e2 and n1 and n2 are relatively prime.
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Definition 2. For two compatible keys K1 = (e, n1) and K2 = (e, n2), their
product key, K1 ×K2, is defined as (e, n1n2); K1 and K2 are called factor keys
of the product key K1 ×K2.

Theorem 2. For any two messages m and m̂, such that m, m̂ < n1, n2,

EK1×K2(m) ≡ EK1(m̂) mod n1, if and only if m = m̂ .
EK1×K2(m) ≡ EK2(m̂) mod n2, if and only if m = m̂ .

where K1 = (e, n1), K2 = (e, n2) and K1 ×K2 = (e, n1n2).

We call the ciphertext generated by a factor key (K1 or K2) individual ci-
phertext and the ciphertext generated by their product key (K1 × K2) share
ciphertext. Theorem 2 states that an individual ciphertext can be easily derived
from its share ciphertext. Therefore, a message encrypted by a product key can
be recovered by any of its factor keys’ corresponding private keys. We will omit
the proof of theorem 2. For details, please refer to Section 4 of Ray, Ray and
Narasimhamurthi’s paper [1].

In a RRN system, the personnel in an organization are organized in a hier-
archical structure, which can be represented as a partially ordered set (poset),
(L, <). L is the set of levels of the organization and < is the dominance relation
between the levels. For each level Li ∈ L, there is a pair of RSA keys assigned:
KLi = (e, nLi), K−1

Li
= (dLi , nLi) such that all RSA public keys in the system

are compatible. Moreover, in order to enforce the access control in this hierarchy,
a pair of default keys is used. The default encryption key for Li is the product key
of all its ancestors’ public keys and its public key KLi ; the default decryption key
of Li is its private key K−1

Li
. In such a way, a message encrypted by Li’s default

encryption key can be decrypted by Li and its ancestors. RRN system also sup-
ports general cases of access control where customized encryption keys are used.
Advantages of RRN system can be summarized as: supporting for general cases
of access control, easily incorporated in existing systems, mutual access aware-
ness and protecting for data consistency [1]. However, many problems remain
unsolved.

• RRN system is strictly based on RSA cryptosystem, which restricts its ap-
plication in a wide range of systems.
• RRN system is inefficient.
• Generally, the modulus of a product key is a huge number (product of

many moduli); it is time-consuming to perform RSA encryption on it.
• For a message m, whenever its group of authorized users changes (e.g.

a new user is granted to access m), RRN must re-encrypt m by using a
newly generated encryption key.

• The sharing of the RSA public exponent e opens a potential security hole to
attackers.
• Share ciphertext size increases proportionally as the number of sharers in-

creases. Although this fact has been neglected in [1], it is of great importance
if original data size is big or numerous sharers are involved.
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4 A Data Based Solution

4.1 Overview

One popular way of enforcing access control is by means of Access Control
Lists (ACLs). Each data is associated with an ACL, on which its authorized
users/groups and corresponding access modes are listed. By looking at an ACL,
it is easy to determine who is allowed to do what on the data associated with it.
ACL covers the general cases of access control. For example, it supports hierar-
chical access control. If we generate ACLs according to the hierarchical structure
of an organization, then hierarchical access control can be enforced. That is, a
data owner and all his/her ancestors are listed on his/her data’s ACLs.

From cryptographic perspective, to enforce general access control, each data
must be encrypted such that only subjects on its ACL have ability to decrypt the
data. One straightforward approach exists to solve this problem [1]. Assume each
subject is assigned with a pair of keys: a public key and a private key. To share
a message m with k subjects: s1, s2, ..., sk, for each subject si ∈ {s1, s2, ..., sk},
m is encrypted by si’s public key. Together with a ciphertext for its owner, m
is encrypted k + 1 times. The system keeps these k + 1 ciphertexts for sharing
a single message m. One negative aspect of this approach has been identified,
i.e. storing multiple copies of encrypted data (individual ciphertexts) can be a
source of inconsistency [1]. In RRN system, to share the same data m, data
owner calculates its share ciphertext. Instead of multiple individual ciphertexts,
only one share ciphertext is kept. RRN system does not lead to inconsistencies
but is more computation intensive.

Based on the above straightforward approach, if there exists an efficient
method that converts multiple individual ciphertexts to one share ciphertext,
then a new approach of enforcing general access control is established with the
advantages of both efficiency and consistency. We have discovered such a method:
Chinese Remainder Theorem (CRT). CRT provides a way of mapping a number
x ∈ Zn (Zn is the set of nonnegative integers less than n) to a series of k numbers
ai ∈ Zni , where 1 ≤ i ≤ k, n = n1n2...nk and n1, n2, ..., nk are pairwise relatively
prime. The mapping is a one-to-one correspondence (called a bijection) between
Zn and the Cartesian product Zn1 × Zn2 × ...×Znk

[15]. This property of CRT
enables it to construct a share ciphertext from a series of individual ciphertexts.

4.2 System Elements

Our data based solution consists of the following elements:

• A set of subjects S = {s1, s2, ..., s�}, where a subject is either a user or a
group.
• A public key cryptosystem that consists of three functions:

(a) A Key Generation function KG: ∀si ∈ S, KG generates a pair of keys:
a public key Ksi and its corresponding private key K−1

si
.

(b) An Encryption function E: c = EK(m), where c means ciphertext, m
means message and K means public key (encryption key).
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(c) A Decryption function D: m = DK−1(c), where K−1 means private key
(decryption key).

• A Modulus Generator MG: ∀si ∈ S, MG generates a modulus nsi , such that
ns1 , ns2 , ..., ns�

are pairwise relatively prime. Please note, these moduli are
publicly known and will be used as the CRT moduli.
• A Shared DataBase (or file system) SDB that stores shared data.

4.3 Cryptographic Access Control

Our data based solution is depicted by a scenario as follows. Assume that a sub-
ject si wants to share a message m with k subjects si1 , si2 , ..., sik

∈ S, si performs
the following operations (for simplicity, we assume that m < ns1 , ns2 , ..., ns�

; for
a longer message, encryption can be performed block by block):

A1. First, si computes k individual ciphertexts, i.e. ∀sj ∈ {si1 , si2 , ..., sik
},

EKsj
(m) is calculated;

A2. Second, si uses Garner’s algorithm (see section 2) to calculate the CRT
solution x, 0 ≤ x < nsi1

nsi2
...nsik

, such that x satisfies the following k
simultaneous congruences:
(1). x ≡ EKsi1

(m) mod nsi1
.

(2). x ≡ EKsi2
(m) mod nsi2

.
...

(k). x ≡ EKsik
(m) mod nsik

.

A3. Third, si stores x in SDB.

For a subject sj ∈ {si1 , si2 , ..., sik
}, to access m, sj needs to compute

EKsj
(m) = x mod nsj . Then, sj uses the private key K−1

sj
to recover m, i.e.

m = DK−1
sj

(EKsj
(m)).

The method described above can be easily configured as an equivalent to
RRN system. For instance, choose RSA as our public key cryptosystem. At the
system initialization stage, assign each subject si ∈ S a pair of RSA keys: a
public key Ksi = (e, nsi) and a private key K−1

si
= (dsi , nsi) such that all RSA

moduli ns1 , ns2 , ..., ns�
are pairwise relatively prime. Note, that all subjects share

a public exponent e. There is no need to use the modulus generator MG here,
because we use the RSA moduli as the CRT moduli. To share a message m
with k subjects si1 , si2 , ..., sik

∈ S, our system and RRN system generate two
share ciphertexts x and x′, respectively. To verify the equivalence of the above
customized system and RRN system, we need to prove that the share ciphertexts
generated by the two systems are equal, i.e. x = x′.

Theorem 3. In the two systems above, the share ciphertexts x = x′.

Proof.
To prove x = x′, we first demonstrate that x and x′ are both the CRT

solutions of the same set of simultaneous congruences.
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x′ mod nsi1
= (me mod nsi1

nsi2
...nsik

) mod nsi1

= (me − qnsi1
nsi2

...nsik
) mod nsi1

= me mod nsi1

= EKsi1
(m) .

where me = qnsi1
nsi2

...nsik
+r for some integers q and r (r < nsi1

nsi2
...nsik

).
Hence x′ ≡ EKsi1

(m) mod nsi1
. Similarly, the other k − 1 congruences x′ ≡

EKsi2
(m) mod nsi2

, ..., x′ ≡ EKsik
(m) mod nsik

can be proven.
Thus, x′ < nsi1

nsi2
...nsik

is a solution to the above k simultaneous congru-
ences. We know that x is also a solution to these k simultaneous congruences.
From the Chinese Remainder Theorem, we know that the solution for the k
simultaneous congruences is unique in the range [0, nsi1

nsi2
...nsik

). Therefore
x = x′ holds.
�

The theorem above indicates that RRN system is covered as a special case
by our data based solution.

4.4 Authorization Alterations

Alteration of a data item’s authorizations, e.g. a subject is granted/revoked
access to a data item, is a frequent event in information systems. The way RRN
system dealing with authorization alterations is very inefficient because each
time an authorization changes the affected data item must be re-encrypted with
a new key.

Our data based solution handles authorization alterations according to the
status of the affected data item. If the data item is dynamic (i.e. the data item
changes at the time of authorization alteration), all operations from A1 to A3
(see section 4.3) are re-performed based on the new group of authorized subjects.
If the data item is static (i.e. the data item remains the same at the time of
authorization alteration), an efficient method is used to process authorization
alterations.

Fig. 1. Three Simultaneous Congruences Sets (SCSs)

The method is based on the following property of CRT. Consider the 3 Si-
multaneous Congruences Sets (SCSs) as shown in figure 1. SCS1 contains k
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simultaneous congruences, and its CRT solution is x; SCS2 is created by adding
one congruence to SCS1, and its CRT solution is x′; SCS3 is created by removing
one congruence from SCS1, and its CRT solution is x′′. Assume, that the value
of x has already been calculated. To get the value of x′, we only need to find the
CRT solution for the two congruences: x′ ≡ x mod n1n2...nk and x′ ≡ ak+1 mod
nk+1; to get the value of x′′, we only need one modular operation: x′′ = x mod
n1n2...nk−1. In a word, the values of x′ and x′′ can be easily derived from x.

In our data based solution, granting a subject access to a static data item is
equivalent to the transformation from SCS1 to SCS2. The new share ciphertext
x′ can be derived from the old share ciphertext x efficiently. Revoking a subject
from accessing a static data item is equivalent to the transformation from SCS1 to
SCS3. The new share ciphertext x′′ can be derived from the old share ciphertext
x simply by a modular operation.

Let us analyze the security of the proposed method for static data item.
First, let us consider a special situation: when x < n1n2...nk−1, x′′ = x mod
n1n2...nk−1 = x. In this case, the above revocation method becomes useless
because the revoked subject is still capable of decrypting x′′ (which is equal
to x). This problem is trivial because the probability of this situation is very
low. In section 4.1, we have mentioned that CRT’s mapping is a one-to-one
correspondence between Zn and the Cartesian product Zn1 × Zn2 × ... × Znk

[15]. The data range [0, n1n2...nk−1) is only 1
nk

of [0, n1n2...nk). If we choose
1024-bit numbers for CRT moduli, then the probability of x < n1n2...nk−1

is approximately 2−1024. However, if x < n1n2...nk−1, we must re-perform all
operations from A1 to A3 to revoke a subject. Finally, someone may argue that
it is impossible to revoke a subject from accessing a static data item because the
subject can simply store it before the revoking. Here, we assume some trusted
workstations are used for subjects to access encrypted data items, on which
saving a data item is disabled.

4.5 Performance and Security Analysis

This section compares the performance between RRN system and a Data Based
System (DBS), which is configured as a RRN equivalent (see section 4.3). There
are two algorithms used in these two systems: fast modular exponentiation algo-
rithm and Garner’s algorithm, whose complexity is detailed in [12,13].

In both RRN and DBS systems, a message m is to be shared with k subjects,
where m is of �m-bit in length, the RSA/CRT moduli of all subjects are of
the same bit length: �n, the shared public exponent e is �e-bit and the private
exponents are �d-bit (please note, �d is only an approximate value).

RRN system is purely based on RSA cryptosystem. Assume, that fast mod-
ular exponentiation algorithm is used. RRN encryption is calculated by c = me

mod n, where n is the product of the k moduli and of k�n-bit in length. Therefore
the RRN encryption complexity is O(�e(k�n)2) = O(k2�e�

2
n). The RRN decryp-

tion complexity is O(�d�
2
n). DBS system is based on RSA cryptosystem and

CRT; fast modular exponentiation algorithm and Garner’s algorithm are used.
DBS encryption consists of k RSA encryptions and one CRT computation, its
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Table 1. Performance Comparison between RRN and DBS

Systems Encryption Decryption Granting access Revoking access
to a subject from a subject

RRN O(k2�e�
2
n) O(�d�2n) O(k2�e�

2
n) O(k2�e�

2
n)

DBS O(k�e�
2
n) O(�d�2n) O(�e�

2
n) O(k�2n)

complexity is kO(�e�
2
n)+O(k�2

n) ≈ O(k�e�
2
n). The DBS decryption complexity is

the same as that of RRN : O(�d�
2
n). We next analyze the complexity of authoriza-

tion alterations. In RRN system, granting access to a subject (or revoking access
from a subject) requires re-encrypting the affected data item. The complexity
of this re-encryption is approximately O(k2�e�

2
n). In our data based solution,

granting a subject access to a static data item, we only need to generate a new
individual ciphertext for the subject and then derive the new share ciphertext
from the old one. The complexity of this process is: O(�e�

2
n)+2O(�2

n) ≈ O(�e�
2
n).

Revoking a subject from accessing a static data item only needs one modular
operation. The complexity of this process is: O(k�2

n). Here we only illustrate au-
thorization alterations for static data items; for dynamic data items, efficiency
of authorization alterations is the same as that of encryption. The performance
comparison between RRN and DBS is summarized in table 1, which shows
that besides decryption, DBS system is more efficient than RRN system. Fur-
thermore, our system has the flexibility of choosing an alternative public key
cryptosystem which may results in more efficient system than DBS system.

As we know, RRN system requires the RSA public exponent e to be shared.
This opens a potential security hole to attackers. The claim of [1] that “having
multiple copies of the same data encrypted with different keys does not arise”
is not true because with the knowledge of the RSA moduli and the sharers of a
data item, an attacker can create those multiple copies by modular operations.
In comparison with RRN system, if our data based solution uses the RSA cryp-
tosystem, sharing the same RSA public exponent e is not required, i.e. different
RSA public exponents can be used. Moreover, our data based solution has the
flexibility of choosing an alternative public key cryptosystem which may results
in more secure system.

5 A Key Based Solution

As discussed in section 1, our cryptographic solution of general access control
has two categories: data based solution and key based solution. In data based
solution, to share a message m with k sharers, the size of the share ciphertext
is k times bigger than that of m. As a consequence, data based solution is not
preferable if m or k is big. Moreover, data based solution is based on public key
cryptosystem. This is because, to share a data item, its owner must know all
sharers’ encryption keys. In order to protect the confidentiality of decryption
keys, we can only use a public key cryptosystem. Public key cryptosystems are
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typically substantially slower than symmetric key cryptosystems [13]. Therefore,
our data based solution is not so efficient, especially when m or k is big. In this
section, we propose a key based solution, which solves the above problems. Our
idea of key based solution is derived from our data based solution: instead of
sharing a message, we share its encryption key. The technique used in our key
based solution has been used by some secure broadcasting systems, e.g. [16,17].
In contrast to those secure broadcasting systems, our key based solution applies
to a different area: general access control.

In addition to the system elements listed for our data based solution (see
section 4.2), key based solution requires a symmetric key cryptosystem. Here we
denote its encryption function as SE and its decryption function as SD. This
symmetric key cryptosystem is used to encrypt data items and the encryption
keys are shared by a public key cryptosystem and CRT.

The key based solution is depicted by the following scenario. If a subject si

wants to share a message m with k subjects si1 , si2 , ..., sik
∈ S, si performs the

following operations:

B1. randomly choose a symmetric key KR;
B2. use KR to encrypt m: c = SEKR(m);
B3. ∀sj ∈ {si1 , si2 , ..., sik

}, calculate EKsj
(KR);

B4. find the CRT solution x to the following k simultaneous congruences:
(1). x ≡ EKsi1

(KR) mod nsi1
.

(2). x ≡ EKsi2
(KR) mod nsi2

.
...

(k). x ≡ EKsik
(KR) mod nsik

.
B5. store x||c in SDB, where the symbol || means concatenation.

For a subject sj ∈ {si1 , si2 , ..., sik
}, to access m, sj needs to compute

EKsj
(KR) = x mod nsj ; then uses private key K−1

sj
to retrieve the symmet-

ric key KR, i.e. KR = DK−1
sj

(EKsj
(KR)); finally uses KR to recover m, i.e.

m = SDKR(c).
In our key based solution, authorization alterations are processed in the fol-

lowing way. For a dynamic data item, whenever its authorization changes, all
operations from B1 to B5 are re-performed based on the new group of autho-
rized subjects. For a static data item, if a subject is revoked from accessing the
data item, to prevent the subject from using the old symmetric key to retrieve
the data item, all operations from B1 to B5 are re-performed based on the new
group of authorized subjects; if a subject is granted access to the data item, the
re-encryption of data item is not needed because the old symmetric key can still
be used. Thus the transformation from SCS1 to SCS2 (see section 4.4) can be
used to generate a new share ciphertext for the old symmetric key such that
the newly authorized subject can retrieve the old symmetric key to decrypt the
data item.

In contrast to data based solution, multiple public key encryptions are per-
formed on a symmetric key and one symmetric key encryption is performed on
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a data item. Because the size of the symmetric key is usually much smaller than
that of the data item, the public key encryptions are more efficient than those of
the data based solution. Due to the same reason, the size of the share ciphertext
is much smaller than that of the data based solution. In summary, key based
solution is preferable when a data item or the number of sharers is big.

6 Experimental Results

As discussed in section 4.5 and 5, our solution is more efficient than RRN system.
In this section, we list our experimental results as supporting evidence.

Table 2. Experimental Results

Systems Encryption Decryption Granting access Revoking access Share ciphertext
to a subject from a subject size

RRN 71,132 ms 11,707 ms 86,124 ms 57,683 ms 1,008,641 bytes

DBS 14,320 ms 11,476 ms 1,703 ms 401 ms 1,008,641 bytes

KBS 581 ms 491 ms 10 ms 561 ms 101,297 bytes

We have written Java programs to implement the following three systems:
RRN system, DBS system and a Key Based System (KBS) using RSA and
the Advanced Encryption Standard (AES). Our programs are running on Java 2
Standard Edition (J2SE) 1.4.2 and Windows XP; the test machine is a Pentium
M 1.60GHz laptop with 512M memories. In our experiments, we share a 100,000-
byte file with 10 sharers. The RSA public exponent is 16-bit; the RSA private
exponents are approximately 1020-bit; the RSA/CRT moduli are 1024-bit and
the AES keys are 128-bit. We have run four tests for each system: encryption,
decryption, granting access to a subject and revoking access from a subject (Here
we only measure authorization alterations for static data items; for dynamic data
items, efficiency of authorization alterations is the same as that of encryption).
The experimental results are shown in table 2, where times are measured in
milliseconds (ms) and sizes are measured in bytes. The experimental results
demonstrate the following facts, which conform to our earlier discussions.

• Our data based solution is more efficient than RRN system. The share ci-
phertext size grows proportionally as the number of sharers increases.
• Key based solution is more efficient than data based solution. And the share

ciphertext size does not grow a lot when the number of sharers increases.
• Our authorization alteration mechanism is more efficient than that of RRN

system.

7 Conclusion and Future Work

In this paper, we have proposed a cryptographic solution for general access
control. Our solution is based on Chinese Remainder Theorem (CRT) and has



472 Yibing Kong et al.

two categories: data based solution and key based solution. RRN system is
actually a special case of our data based solution. In contrast to RRN , our
data/key based solution is more efficient and flexible. The technique used in
our key based solution has been used by some secure broadcasting systems.
However, our key based solution applies to a different area: general access control.
We have proposed a mechanism for authorization alterations. This mechanism
consists of very simple operations, which make it very efficient. Moreover, by
using our solution, a system designer has the flexibility of choosing appropriate
cryptosystems which may result in more efficient and secure system. Finally, we
have utilized a set of experiments to verify our system; the experimental results
provide evidence that supports our research.

In the future, our research will follow the following directions.

• Our solution can be applied to various systems where the need for access
control arises. For example, multi-user file systems, database systems, mes-
sage broadcasting systems and so on. In the future, we will develop one of
such systems that is based on our solution.
• Explore methods other than Chinese Remainder Theorem that can be ap-

plied to cryptographic access control.
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