
UNIVERSITY OF OSLO
Department of Informatics

Towards
Secure and Reliable
Information Sharing
in Emergency and
Rescue Operations

PhD thesis

Matija Pužar

July 2nd 2010

© Matija Pužar, 2010

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 978

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AiT e-dit AS.

Produced in co-operation with Unipub.
The thesis is produced by Unipub merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Abstract

Efficient information sharing among rescue personnel is crucial for a successful res-
cue operation. If computer networks were actively used by the rescue personnel, it
would allow for more efficient communication, and information sharing in general,
compared to standard walkie-talkies still in use today (often more than one at a
time). However, emergency and rescue operations present the system with a num-
ber of characteristic requirements, compared to traditional networks. The most
significant difference is that the network must be built up by the rescue personnel
on the spot, and that the presence of existing infrastructure cannot be relied on.
Moreover, the rescue personnel’s movements make the network topology very dy-
namic and unstable. We call this type of networks mobile ad-hoc networks
(MANETs).

In this thesis, we analyze in detail the requirements for usage of MANETs in
emergency and rescue operations, with particular focus on security and data shar-
ing. Based on this analysis, the thesis suggests solutions to a selected set of major
challenges. The thesis’ main contributions are threefold.

The first contribution is a concrete solution for one of the main security issues,
namely ensuring that only authorized personnel has access to the network. This is
achieved by means of a simple and efficient key exchange protocol that relies on
device credentials being installed prior to the operation.

Next, the thesis contributes with a shared data space that can be used to effi-
ciently and robustly distribute information among the rescue personnel. The dis-
tributed nature of the data space is transparent to the applications, as well as the
fact that data versioning is performed for the purposes of consistency, conflict reso-
lution, and auditing. Data placement in such a distributed and dynamic environ-
ment has to be performed with outmost care. In the cases where network topology
or the applications’ access pattern to the data space are unknown upfront, we
show that placing replicas on 10 % well chosen nodes, achieved e.g. by means of
clustering techniques, leads to close-to-optimal placement with regards to network
usage.

The final contribution of this thesis is a network emulation test-bed imple-
mented to facilitate development of specialized applications and protocols for
MANETs. The test-bed has been utilized in a number of Master’s and PhD theses,
demonstrating its usefulness and flexibility with respect to development time and
cost, as well as choice of programming languages.

Acknowledgment

First and foremost, I would like to thank my supervisors Thomas Plagemann, Jon
Andersson and Yves Roudier for most valuable inputs and guidelines throughout
these years. The same goes to all of my current and former colleagues from the
Distributed Multimedia Systems group at the Department of Informatics, espe-
cially my fellow PhD students from the Ad-Hoc InfoWare project, Katrine Stem-
land Skjelsvik, Ovidiu Valentin Drugan and Norun Christine Sanderson.

I would also like to thank my former supervisor Maja Matijaševi� from the
Faculty of Electrical Engineering and Computing in Zagreb, for showing me the
way.

From the MIDAS project, there are a few persons I would particularly like to
thank for a great collaboration in our technical discussions, both during and after
the project’s lifetime – José Pablo Gañán Blanco, Micha� Koziuk, Alisa Devli� and
Wybe Horsman.

Special thanks to Ellen Munthe-Kaas and Katrine Stemland Skjelsvik for tak-
ing their time to proof-read the thesis and giving me valuable feedback, and to the
latter, for the crash course in Norwegian during my first years in the country, and
for not giving up on me or kicking me out of the office.

Finally, big thanks to my wonderful wife Snežana for her support and for being
who she is.

Table of Contents

I Overview 1

1 Introduction 3
1.1 Problem Statement ... 4
1.2 Methodology.. 5
1.3 Main Contributions... 5
1.4 Structure of the Thesis ... 6

2 Background 7
2.1 Mobile Ad-Hoc Networks.. 7

2.1.1 Routing in MANETs.. 8
2.1.2 Security in MANETs ... 9
2.1.3 Data Sharing and Replication in MANETs10
2.1.4 Testing and Evaluation of MANET protocols11

2.2 Research Projects...11
2.2.1 Ad-Hoc InfoWare ..12
2.2.2 MIDAS ..14

3 Application Requirements 15
3.1 Emergency and Rescue Operations..15

3.1.1 Example Scenario: Earthquake ...16
3.1.2 Example Scenario: Railway Accident ...17
3.1.3 Example Scenario: Subway Station Accident18
3.1.4 Summary...19

3.2 Requirements Analysis...21
3.2.1 Security Aspects..21
3.2.2 Network Characteristics..22
3.2.3 Data Sharing ...22

4 MIDAS Data Space 23
4.1 MDS within MIDAS ..24
4.2 MDS Architecture..24
4.3 Database Support ..26
4.4 Data Versioning ...26
4.5 Data Storage and Retrieval ...27
4.6 Data Replication ..29

vi Table of Contents

4.7 MDS Schema... 31
4.8 Examples ... 34

4.8.1 Example: Update While Network is Partitioned............................ 34
4.8.2 Example: Query.. 36
4.8.3 Example: Delete or Update While Network is Partitioned............ 37
4.8.4 Example: Problems When No Versioning 38

4.9 Subscription and Notification Mechanism .. 39
4.10 Performance Experiments on the MDS Prototype 39

4.10.1 Memory Cards in Nokia Internet Tablets 39
4.10.2 Choice of Java Interpreter.. 40
4.10.3 Packet Loss as a Result of Route Changes 40

4.11 Final Notes on MDS.. 41
5 Overview of the Research Papers 43

5.1 Paper #1 ... 44
5.2 Paper #2 ... 44
5.3 Paper #3 ... 45
5.4 Paper #4 ... 46
5.5 Paper #5 ... 46
5.6 Paper #6 ... 47
5.7 Paper #7 ... 47
5.8 Other Publications .. 48

6 Conclusions and Future Work 49
6.1 Summary ... 49
6.2 Critical Review of Claims.. 50
6.3 Open Problems and Future Work... 52

Bibliography 55

II Research Papers 61

7 Security and Privacy Issues in Middleware for Emergency and Rescue
Applications 63
7.1 Introduction .. 64
7.2 The MIDAS Architecture.. 64
7.3 Basic Assumptions and Our Approach ... 66
7.4 The Key Management Protocol .. 67
7.5 Dynamic Role Based Access Control .. 68
7.6 A Combined Solution .. 69
7.7 Conclusion ... 70
Acknowledgments.. 70
References.. 71

8 SKiMPy: A Simple Key Management Protocol for MANETs in Emergency and
Rescue Operations 73
8.1 Introduction .. 74
8.2 Protocol Description.. 75

 vii

8.3 Design Considerations..77
8.3.1 Authentication ..77
8.3.2 Choosing Keys...77
8.3.3 Key Distribution ...79
8.3.4 Key Update ...79
8.3.5 Exclusion of Nodes ..80
8.3.6 Batching..81
8.3.7 Additional Issues...81

8.4 Protocol Implementation and Evaluation..81
8.4.1 Implementation ...81
8.4.2 Evaluation Results ..82

8.5 Related Work...83
8.6 Conclusion..85
Acknowledgment ..85
References...85

9 NEMAN: A Network Emulator for Mobile Ad-Hoc Networks 89
9.1 Introduction ...90
9.2 Related Work...92
9.3 Architecture ...93
9.4 Implementation Details..95
9.5 Application Development...96
9.6 Experiences ..97

9.6.1 A Simple Key Management Protocol for MANETs........................97
9.6.2 Distributed Event Notification Service (DENS)99

9.7 Performance and Scalability ..99
9.8 Conclusion and Future Work ..100
Acknowledgments...101
References...101

10 Cross-layer Overlay Synchronization in Sparse MANETs 103
10.1 Introduction ...104
10.2 DENS ...106
10.3 Routing Table Information ..107
10.4 Synchronization Protocol ...109

10.4.1 Synchronization Initialization ...109
10.4.2 Basic Protocol ...110
10.4.3 Exception Handling...112
10.4.4 Complexity..114

10.5 Conclusions ..115
Acknowledgments...116
References...117

11 Information Sharing in Mobile Ad-Hoc Networks: Metadata Management in the
MIDAS Dataspace 119
11.1 Introduction ...121
11.2 MIDAS Architecture..122
11.3 Routing in MANETs..124

viii Table of Contents

11.3.1 MANET Characteristics..124
11.3.2 MANET Routing Techniques and Challenges124

11.4 Metadata Propagation ...125
11.4.1 Synchronisation ...125
11.4.2 Triggers ...125
11.4.3 Metadata Propagation Protocols...126

11.5 Test Setup ..127
11.5.1 Metrics...127
11.5.2 Test Scenarios ...128

11.6 Test Results ...129
11.6.1 Comparison of Metrics ..130
11.6.2 Dissemination Results ...131
11.6.3 Group Dissemination Results ..133

11.7 Discussion and Conclusion ...133
Acknowledgment ..134
References...134

12 Information Sharing in Mobile Ad-Hoc Networks: Evaluation of the MIDAS
Data Space Prototype 137
12.1 Introduction ...138
12.2 MDS Design ...139

12.2.1 Architecture...140
12.2.2 Versioning..140
12.2.3 Synchronization...141

12.3 Prototype Implementation ...141
12.4 Evaluation ..142

12.4.1 MDS overhead...145
12.4.2 Performance experiments on physical devices...............................145
12.4.3 Emulation experiments on a static network..................................146
12.4.4 Emulation experiments on a mobile network................................147

12.5 Conclusion ..149
Acknowledgment ..149
References...150

13 Evaluation of Replica Placement Strategies for a Shared Data Space in Mobile
Ad-Hoc Networks 151
13.1 Introduction ...152
13.2 Related Work ...153
13.3 MDS and the Traffic Controller...154
13.4 Methodology...157
13.5 Static Network Experiments ..158
13.6 Mobile Network Experiments...161

13.6.1 Frequent Reconfiguration vs. Static Configuration.......................161
13.6.2 Gains and Costs of Frequent Reconfiguration162

13.7 Conclusion ..164
Acknowledgment ..165
References...165

List of Figures

Figure 3.1: Organization and structure in rescue operations16
Figure 4.1: MIDAS Architecture ...24
Figure 4.2: MDS Architecture ...24
Figure 4.3: Lazy synchronization process ..30
Figure 4.4: Example of the MDS Schema ...33
Figure 4.5: Automatically generated SQL statement for creating tables34
Figure 4.6: Total number of packets vs. lost packets..41
Figure 4.7: Impact of Hello Message interval on packet loss41
Figure 7.1: MIDAS Architecture ...65
Figure 8.1: Message Flow Diagram ...75
Figure 8.2: Traffic analysis of the first, non-optimized protocol implementation ...80
Figure 8.3: Results for the same scenario, after introducing the batching process .80
Figure 8.4: Example of a chain scenario..82
Figure 8.5: Example of a mesh scenario ..82
Figure 8.6: Time needed to achieve a stable shared key ...83
Figure 9.1: NEMAN architecture ..93
Figure 9.2: Example screenshot taken from the GUI ..93
Figure 9.3: Workflow diagram of using NEMAN..96
Figure 9.4: Time needed to achieve a stable shared key ...98
Figure 10.1: Two mobile groups merging and partitioning107
Figure 10.2: Mediator and partition_representative states110
Figure 10.3: Mediator Discovery (messages) ...111
Figure 10.4: Global Synchronization (messages) ...111
Figure 10.5: Local Update (messages) ...112
Figure 10.6: Nr. of Mediators from one Mediator’s perspective............................112
Figure 11.1: Relationship between message count and message size.....................130
Figure 11.2: Chain scenario message and metadata count....................................131
Figure 11.3: Grid scenario message and metadata count131
Figure 11.4: Merge scenario message and metadata count....................................132
Figure 11.5: Ferry scenario message and metadata count.....................................132
Figure 11.6: Metadata dissemination on a per node basis.....................................134
Figure 12.1: MDS Architecture ...139

x List of Figures

Figure 12.2: Start-up times on Nokia N800 and N810, and query times on N810 142
Figure 12.3: Network traffic during the initialisation process146
Figure 12.4: Network traffic when workload is added ...147
Figure 12.5: Unsuccessful queries due to packet loss...148
Figure 13.1: Screenshot from the test application ...155
Figure 13.2: Link usage, S1, manual replica placement...159
Figure 13.3: Cumulative bandwidth usage, S1, manual replica placement159
Figure 13.4: Link usage, S1, using clustering algorithms.......................................159
Figure 13.5: Cumulative bandwidth usage, S1, clustering algorithms...................159
Figure 13.6: Link usage, S1, manual replica placement...160
Figure 13.7: Cumulative bandwidth usage, S1, manual replica placement160
Figure 13.8: Cumulative bandwidth usage, S2, manual placement161
Figure 13.9: Link usage, S2, using clustering, 1 reader / 100 writers....................161
Figure 13.10: Total bandwidth usage in 4 different cases, S4162
Figure 13.11: Potential bandwidth savings or costs ..164

List of Tables

Table 4.1: Patient table on nodes 1 and 2, before partitioning...............................34
Table 4.2: Patient table on Node 1, during partitioning...35
Table 4.3: Patient table on Node 2, during partitioning...35
Table 4.4: Patient table on Node 1, after the two partitions have merged35
Table 4.5: Patient table on Node 2, after the two partitions have merged36
Table 4.6: Patient table on nodes 1 and 2, before partitioning...............................37
Table 4.7: Patient table on Node 1, during partitioning...37
Table 4.8: Patient table on Node 2, during partitioning...37
Table 4.9: Patient table on Node 1,after the two partitions have merged..............38
Table 4.10: Patient table on Node 2, after the two partitions have merged...........38
Table 4.11: Patient table on nodes 1 and 2, before partitioning.............................38
Table 4.12: Patient table on Node 1, after the record has been deleted38
Table 4.13: Access times for the sqlite database on Nokia Internet tablets............40
Table 9.1: Properties of Various Emulators for Mobile Networks92
Table 10.1: Resulting times for merging and partitioning108
Table 10.2. Exception Handling when Idle..113
Table 10.3. Exception Handling in Mediator Discovery phase113
Table 10.4. Exception Handling in the Global Synch phase113
Table 10.5. Exception Handling in the Local Update phase113
Table 11.1: Message count during the dissemination phase..................................129
Table 11.2: Traffic measured during the dissemination phase130
Table 12.1: Results of the MDS overhead experiments...144
Table 12.2: Results for network queries (in milliseconds)145
Table 12.3: Results for local queries (in milliseconds)...145
Table 13.1: Request and response size of the queries used in the experiments.....158

List of Abbreviations

AODV Ad-hoc On-Demand Distance Vector Routing
API Application Programming Interface
DBMS Database Management System
DENS Distributed Event Notification Service
DSDV Destination-Sequenced Distance Vector routing
DSR Dynamic Source Routing
CPU Central Processing Unit
CRT Communication and Routing
DA Data Allocator
DS Data Synchronizer
GMDM Global MetaData Manager
GPS Global Positioning System
GPRS General Packet Radio Service
HNA Host and Network Association
LS Local Storage
MANET Mobile Ad-hoc Network
MDS MIDAS Data Space
MIDAS Middleware Platform for Developing and Deploying Advanced Mobile
 Services
NEMAN Network Emulator for Mobile Ad-hoc Networks
OLSR Optimized Link State Routing protocol
PDA Personal Digital Assistant
QA Query Analyzer
SKiMPy Simple Key Management Protocol
SM Subscription Manager
SQL Structured Query Language
TC Traffic Controller

Part I

Overview

1Chapter 1

Introduction

In an emergency and rescue operation, where people’s lives might be at stake, effi-
cient data sharing between the organizations and individuals involved is of out-
most importance for the mission’s success. Disasters often happen where and when
it is least expected, making it hard or impossible to prepare a working infrastruc-
ture on the location in question, or to expect such an infrastructure to be present
when the rescue personnel arrives. For that reason, a more practical solution needs
to be present, which would work anywhere and at any time.

A mobile ad-hoc network (MANET) is a wireless network created on the spot
by the devices present at the time. Devices taking part in the network’s activity
might be of very heterogeneous nature with regards to hardware and software
specifications. They do however need to support the same network protocols to be
able to form a network. In a MANET, each device works both as a host node and
a router node, and routes between nodes are constantly updated depending on the
nodes’ connectivity. Existing infrastructure, if present, can be used to increase
connectivity or to gain access to external networks (such as the Internet), but it is
not a prerequisite. Given the abovementioned characteristics, MANETs are a
natural candidate for our target scenario, i.e., emergency and rescue operations.

However, using MANETs introduces challenges on several fronts. The broad-
cast nature of wireless networks has a big impact on network and data security.
On the other hand, the dynamic and unpredictable nature of MANETs influences
in a high degree data availability. Both of these areas need to be researched, and
satisfactory solutions need to be present, in order to achieve a system that is ac-
ceptable for data sharing in emergency and rescue operations.

This thesis is tied to two research projects, Ad-Hoc InfoWare [39] and MIDAS
[9], both of which focus on MANETs in emergency and rescue operations. As part
of these two projects, the thesis focuses on securing the network layer and imple-
menting and optimizing the presented solution for a distributed data sharing
space. Furthermore, the thesis contributes with a working emulation environment,
which was necessary to develop, test, and evaluate applications and protocols.

4 Introduction

1.1 Problem Statement

Emergency and rescue operations present the system with numerous requirements.
In this chapter, we present the main requirements of interest for this thesis.

The first, basic requirement is security. A typical example are patients’ medi-
cal records that might be sent through the network, where one must make sure
that only certain people (e.g., medical personnel) are allowed to see them. On the
other hand, information such as pictures and other details of the incident area
might be of interest for all the involved parts, which clearly shows that different
security policies need to be present with regards to access control and confidential-
ity.

Authorization is another security objective that needs to be taken care of.
Given the fact that malicious individuals or groups not only might be present at
the incident area, but might also be directly responsible for the incident itself, it
must be ensured that only authorized persons have access to the network. A mali-
cious person could easily interfere with the rescue operation by means of signal
jamming or by inducing false routing information, which would in both cases dis-
rupt the network and make data sharing over MANETs impossible. Signal jam-
ming is something that needs to be addressed by other means, e.g., channel coding
at the link layer [28], or by detecting at the physical layer, physically locating the
source, and making sure it is disabled. On the higher levels, however, more ad-
vanced methods need to be designed and implemented to protect the network from
intruders. It has been shown that a very small percentage of misbehaving nodes
might cause the whole network to collapse [16]. Consequently, protecting the rout-
ing protocol is fundamental for having an operational network.

Availability of data is also important for the success of a rescue operation. In
traditional wired networks, one can assume that the data will always be available,
except in specific situations. In mobile networks, however, a node hosting impor-
tant data might suddenly disappear due to the device entering a building, its bat-
tery being empty, etc. Thus, such situations constitute more a rule than an excep-
tion, making it necessary to have mechanisms in place that would prevent data
loss and increase availability. This can only be achieved by means of data replica-
tion. Replication, in cases where data is constantly generated or updated, intro-
duces the need for synchronization, which is costly with regards to network usage.
The number of replicas, as well as their locations in the network, should therefore
be planned and implemented carefully. Failure to do so might cause synchroniza-
tion traffic to consume all network resources, and thus render the whole infrastruc-
ture unusable to the rescue personnel.

To ensure that the applications and protocols work correctly and meet the ex-
pectations imposed in the design phase, they need to be tested and evaluated. For
network protocols specifically, there are three main possibilities to do so, namely
simulation, emulation, and field tests. Simulations usually do not run in real-time,
and are suitable for larger networks. In addition, they might include a detailed
representation of the physical layer, and the results are reproducible. The downside
is that one must spend a certain amount of time to learn the simulator, and im-

1.2 Methodology 55

plement the protocol specifically for a given simulation, only to be re-implemented
later for real devices. Emulations allow for a certain part of the protocol stack to
be simulated, while the rest consists of real code (implementation) running in real-
time. This can considerably reduce the time needed to implement an application or
protocol, with the possibility to later install them to target devices with minor
changes or no changes at all. Emulation results can be reproducible to a certain
extent. The downside is that the emulation environment, depending on its imple-
mentation, might not be scalable. Field tests, where real code runs on real devices,
give the most realistic results. They are, however, the most costly alternative with
regards to the number of devices and people involved. In addition, debugging and
bug-fixing can be problematic, and results are hardly reproducible.

To summarize, this thesis addresses the following problems:
� security in MANETs,
� data sharing and replica placement in MANETs, and
� testing and evaluation of MANET protocols.

1.2 Methodology

To address the abovementioned problems, we used the following methods. We per-
formed an in-depth requirement analysis of the target scenario, i.e., emergency and
rescue operations. We analyzed the existing related work and state-of-the-art in
the topics in question, namely security in MANETs, data sharing and replica
placement in MANETs, and network simulators and emulators. Since we aim for a
real proof-of-concept implementation, we follow a typical systems approach com-
prising design of applications and protocols, followed by their implementation in
various programming languages, and last by testing and evaluation. For the pur-
pose of testing and evaluation, we developed our own emulation platform, called
NEMAN, which is also one of the contributions of this thesis. We designed and ran
most of the experiments on the emulation platform, but for more resource demand-
ing experiments, we used modeling and simulation. We successfully ran some of
the solutions in field tests on target devices.

1.3 Main Contributions

The main contributions of this thesis can be summarized by the following four
claims:

Claim 1:
In emergency and rescue operations, security has to be present at the lowest lay-
ers, in order to prevent malicious nodes from disrupting the network. The hierar-
chical organization of the entities involved in these kinds of operations can provide
a basis for trust establishment between rescue personnel’s devices. We provide a
solution that exploits this fact in order to agree on a shared key. The solution can

6 Introduction

be used to ensure that intruders cannot disrupt the network by injecting false
routing information. Moreover, the solution can be used to secure all the traffic
from being tampered with by unauthorized persons.

Claim 2:
With a secured infrastructure, the system can be used for information sharing be-
tween the rescue personnel. A shared data space, such as MIDAS Data Space, can
be used to efficiently and robustly distribute information, even on small resource-
limited devices. The strict requirement of accounting for such operations can be
achieved by means of versioning.

Claim 3:
It is possible to achieve a close-to-optimal placement of table replicas within the
network, which works well for most scenarios where the applications’ access pat-
tern to the data space or the network topology are unknown a priori. At a later
point, the system can adjust to the concrete situation by analyzing the applica-
tions’ access pattern and network topology.

Claim 4:
In order to develop and evaluate protocols, an adequate test-bed has to be in
place. An emulation test-bed is the most flexible choice with respect to develop-
ment time and costs, as well as choice of programming languages. We have imple-
mented such an emulation test-bed and used it to develop, test and evaluate a va-
riety of protocols.

1.4 Structure of the Thesis

This thesis is divided in two main parts – the introductory part and the collection
of research papers.

The introductory part gives some background information about the work pre-
sented in the papers. In Chapter 2, we present the main issues in mobile ad-hoc
networks that the thesis focuses on, as well as the two research projects in context
of which the thesis is done. Chapter 3 describes the application requirements for
the two research projects, and consequently for this thesis. In Chapter 4, we intro-
duce the MIDAS Data Space and the proof-of-concept implementation made as
part of the MIDAS project. Chapter 5 gives a short overview of the research pa-
pers included in the second part. Finally, in Chapter 6 we give a conclusion, in-
cluding critical review of the claims introduced in Chapter 1.3, and plans for future
work.

The second part (Chapters 7-13) presents the seven research papers that con-
stitute the main contribution of the thesis. Each paper is given in its entirety, as
published in the respective conference or workshop. The papers have, however,
been re-formatted to match the rest of the thesis’ layout.

2Chapter 2

Background

In this chapter, we introduce mobile ad-hoc networks (MANETs) and give an
overview of the main topics within MANETs that constitute the background for
work on this thesis, namely security and data sharing. We also present briefly the
research projects this thesis is tied to.

2.1 Mobile Ad-Hoc Networks
While in traditional infrastructured networks the topology is static and predict-
able, and nodes often have distinct roles (end-user node, router, access point, etc.),
mobile ad-hoc networks (MANETs) are basically characterized by having each
node performing all these functions. Another important difference between infra-
structured networks and MANETs is that the former often have a steady topology,
while the latter’s main characteristic is that their topology can be highly dynamic
and unpredictable. As nodes move around, they constantly form new links, while
removing old ones.

The advantage of MANETs is that one can establish them at any place and
any point of time, as they are not dependent on any infrastructure being set up
upfront. If an infrastructure is present, however, MANETs can easily connect to it
to achieve a broader range. As an example, a node in a MANET can have an addi-
tional 3G/GPRS/satellite connection and use it to act as a gateway to the Inter-
net, and through it to the organization’s headquarters. Another example might be
to use such a connection to communicate with another MANET on a distant or
out-of-reach location, e.g. two rescue teams located on the opposite sides of a tun-
nel.

As such, MANETs represent ideal candidates for emergency and rescue opera-
tions, whose locations are not known upfront, or military operations on an enemy
territory, whose locations might be known upfront but there is no physical access
to them.

8 Background

2.1.1 Routing in MANETs

To be able to communicate and to forward packets within a MANET, nodes in the
network must use a routing protocol. Routing protocols in MANETs can be
roughly put into two categories, proactive and reactive.

In proactive routing protocols (such as OLSR [4], DSDV [36]), nodes regularly
send broadcast beacons to inform neighbors about their presence. As a conse-
quence, each node can at any time have a complete picture of the network’s topol-
ogy, but having a proactive routing protocol causes constant traffic that might be
unnecessary.

Reactive protocols (such as AODV [35], DSR [23]), on the other hand, are
triggered by outgoing traffic, and routes are only discovered when needed. As a
consequence, nodes might not know about their neighbors until they in fact try to
communicate with them, but no bandwidth is used by the routing protocol unless
necessary.

A variety of other routing protocols exist for MANETs, such as hybrid proto-
cols trying to include the best characteristics of both proactive and reactive ideas,
geographical routing protocols, taking into consideration nodes’ physical locations,
multicast protocols, etc.

As part of the research projects this thesis is bound to, the choice fell on the
proactive principle, more precisely the OLSR protocol. Using a proactive routing
protocol opens doors to a number of possible applications that rely on (or benefit
from) knowledge of the network topology. One such application, described in this
thesis, is using this knowledge to better plan the location of database replicas in
the network, to minimize network traffic caused by remote database queries and
data synchronization, and to increase the probability of data being available in
case of network disruptions. The Distributed Event Notification Service (DENS
[52]) is another example of an application that benefits from knowledge of the net-
work topology.

The OLSR Protocol

OLSR stands for Optimized Link State Routing, and is a proactive routing proto-
col for MANETs. OLSR aims at providing each node in the network with the
whole logical picture of what the network looks like (i.e., network topology). This
is mainly achieved by means of different types of messages.

Each node sends periodic Hello messages (typically every 1-2 seconds), to in-
form potential neighbors of its presence. Hello messages include a list of all known
direct (i.e., 1-hop) neighbors, making it possible for recipients to create a picture of
the whole 2-hop neighborhood. By doing this, it is easy for a node to find the
minimal number of its 1-hop neighbors needed to cover the 2-hop neighborhood,
for the purpose of flooding the network. These chosen nodes are called Multipoint
Relays (MPRs) and are specific to each node separately, and each node’s MPR set
is known to all of its neighbors. This way, each neighbor knows whether it should
later retransmit broadcast messages or not. Topology Control messages are an ex-
ample of such broadcast messages, which include all the information necessary to
calculate routes.

2.1 Mobile Ad-Hoc Networks 99

OLSR allows for connection to other networks as well. By means of Host and
Network Association (HNA) messages, a node can inform other nodes in the
MANET if it has additional interfaces which might give connectivity to other net-
works.

OLSR has been designed with modularity in mind. The packet format allows
for multiple messages being sent together, as well as including support for custom
messages. As part of our research, we have implemented an extension to the secu-
rity plugin [15] distributed with the UniK olsrd [58] implementation, adding the
functionality of node authentication and key distribution, as described in Chapter
8 (i.e., Paper #2). We used the same functionality to work on other plugins, such
as transparent gateways [2], piggybacking of custom messages on broadcast pack-
ets [54], etc.

2.1.2 Security in MANETs

Use of wireless networking presents the system with a series of security related
challenges. Network security comprises four main objectives: authenticity, integ-
rity, access control, and non-repudiation. Starting from the medium itself, one of
its main characteristics is that anyone with a tuned wireless device can listen to
the traffic in the network, as well as generate and induce bogus traffic into it.
Since neither of these two issues can be efficiently prevented in a rescue operation,
they introduce problems into at least three of the abovementioned security catego-
ries:

� Authenticity: mechanisms need to be present to ensure that only authorized
devices can be part of the network.

� Integrity: it must be ensured that no one can manipulate the network traffic
by, e.g., changing its contents before retransmitting it.

� Access Control: some data must be kept confidential, i.e., inaccessible to
unauthorized recipients.

Another issue not directly related to data security but still directly related to
the efficiency of the network (and as such to the efficiency of the rescue operation
itself) is signal jamming. Unlike wired networks where a device needs physical ac-
cess to the medium to perform any action, wireless networks are highly prone to
such attacks and there is no real solution other than locating the perpetrator and
disabling the source of jamming, or at least by using some channel coding tech-
niques at the link layer [28].

All the abovementioned issues are considered as external attacks [24], i.e., at-
tacks coming from nodes that are not (or not supposed to be) part of the network.
One of this thesis’ main contributions, presented in Chapter 8 (i.e., Paper #2) is a
key management protocol that can be used by the rescue personnel to prevent un-
authorized nodes from joining the network.

A much different, and in some cases more dangerous type of attacks are so
called internal attacks [46]. These attacks come from nodes that have already been
authenticated and as such considered legitimate members of the network, but at
some point have become compromised. This can happen if devices are stolen, lost

10 Background

and then found by a malicious person, or even worse, if their legitimate owner be-
comes compromised. Detecting and excluding such nodes is a much more difficult
process and requires specialized solutions.

Other than attacks, the system must take care of confidentiality within the
network. Inter-organizational collaboration is one of the key functionalities in a
rescue operation. Nevertheless, different organizations may have different security
requirements and policies and, in addition, not all data within the network should
be seen by every member. Examples of such data may be medical records, police
records, other personal or confidential information, etc. Additional challenges are
imposed by different organizational structures and levels of confidentiality within
the organizations themselves, which could also change dynamically.

With regards to implementation, security can be implemented in either the
traditional layered approach or a more adaptive cross-layered one, both having
their advantages and disadvantages. The layered approach, by putting clear bor-
ders to data flow, offers a high level of security. In our case, a more flexible ap-
proach might be a better choice, provided that it does not significantly weaken the
overall security level. A lightweight adaptable cross-layer middleware solution,
based for example on the reflection technique [29], [3], would allow middleware
services to adapt to the heterogeneous dynamic environment. Examples of such ar-
chitectures are Open ORB 2 [3] and ReMMoC [14]. The programming language
Obol [1] can be used to face the security issues, and with help of Aspect Oriented
Programming [26], the cross-concern integration can be faced early in the devel-
opment phase.

For a more extensive look into security issues in MANETs, focused on middle-
ware for emergency and rescue operations, see Chapter 7 (i.e., Paper #1).

2.1.3 Data Sharing and Replication in MANETs

The dynamic and unpredictable nature of MANETs poses special challenges with
regards to data sharing, more precisely availability and consistency. Availability
can be degraded by nodes disappearing, something that can be compensated by
means of data replication. Data replication is, however, a potentially costly opera-
tion with regards to the amount of data that need to be transferred from one rep-
lica to the other, in order to achieve a consistent state where all replicas have the
same information. Such a consistent state can only be guaranteed through the use
of transactions. Due to MANETs being prone to partitioning and frequent route
changes, transactions might often fail or lead to locks, and are therefore undesir-
able. Since it has been proven that it is impossible to have a system that is prone
to partitions, and that at the same time provides data consistency and availability
[8], we must accept a trade-off between the levels of data consistency and availabil-
ity. Eventual consistency is such a model where, under certain requirements, it is
guaranteed that all accesses to the data eventually will give the same result. The
MIDAS Data Space, described in Chapter 4, is an example of a system that en-
sures eventual consistency by means of eager and lazy synchronization.

A variety of other data replication techniques exist for databases in MANETs,
some of which are categorized and presented in [34].

2.2 Research Projects 111

2.1.4 Testing and Evaluation of MANET protocols

Testing and evaluation are important stages in the process of developing network
applications and protocols. For MANETs, this is particularly difficult due to the
fact that the network topology might be constantly changing. Applications and
protocols need to be designed to cope with this issue, but whether they actually
manage it is something that needs to be tested. Three basic methods are available
for doing so, namely simulation, emulation, and field tests.

In simulations, the whole protocol stack is simulated, making it necessary to
implement everything specifically for the given simulation environment. It is the
cheapest solution with regards to the number of devices needed, and results are re-
producible. However, the learning curve for the simulator may be steep, and appli-
cations need later to be rewritten in order to run on real devices. Network Simula-
tor ns-2 [55], its successor ns-3 [57], OMNeT++ [60] and GloMoSim [64] are exam-
ples of well-known simulators used within the research community.

In field tests, where real devices are used, real implementations of the applica-
tions are also used. This may, however, be expensive with regards to both man-
power and the number of devices needed. Moreover, deployment and debugging
can be a challenge, and the results (which might depend on persons’ movements)
are not reproducible.

Emulation environments present a compromise between simulation and field
tests, by having parts of the protocol stack (typically the lowest layers) being
simulated, while other parts run the real implementation. This is the most cost-
effective way of testing and evaluating network applications and protocols since
not every node needs its own physical device, and the code can later be moved to
real devices with minor changes or no changes at all. NEMAN [42], presented in
Chapter 9 of this thesis, and a distributed version of NEMAN called DINEMO [13]
are examples of network emulators. IMUNES [62] with its follow-up project
VIRTNET [61], Mobile Emulab [21], MobiNet [30], and ORBIT [47] are some
other examples. ns-3, even though it is mainly a simulator, introduces support for
different types of emulation, with respect to which layers are being simulated or
emulated.

For a comprehensive list of emulation platforms and test beds, see the surveys
presented in [12] and [25].

2.2 Research Projects

Work on this thesis has been done in the context of two research projects, Ad-Hoc
InfoWare and MIDAS. Both the projects have emergency and rescue operations as
a target scenario, though they focus on different aspects of the scenario and ap-
proach it in different ways. In this chapter, we describe both the projects individu-
ally, as well as their connection to this thesis.

12 Background

2.2.1 Ad-Hoc InfoWare

Ad-Hoc InfoWare [39] is a research project funded by the Norwegian Research
Council, running in the period 2003-2006. The aim of the project is to develop
middleware services for emergency and rescue operations, in order to fulfill the fol-
lowing requirements: Intra- and inter-organizational information flow, service
availability, context management, profiling and personalization, group- and organ-
izational support, dynamic security, communication, resource sharing (especially
data sharing), and graceful degradation. These requirements are addressed by six
middleware concerns:

� Knowledge Management – to handle ontologies, support metadata integra-
tion and interpretation;

� Context Management – to manage context models, context sharing, profil-
ing and personalization;

� Data Management – to cater for capabilities similar to those of distributed
databases;

� Communication Infrastructure – for supporting distributed event notifica-
tion, publish and subscribe services, and message mediation;

� Resource Management – to register and discover information sources and
web services as well as resources available, to handle neighbor awareness,
computation and application sharing, mobile agents, proxy and replica
placement, and movement prediction;

� Security Management – for access control, message signing and encryption,
supporting group- and organizational structure, group key assignment, and
dynamic security services.

In the middleware architecture, these concerns correspond to five components
which we present shortly in this chapter, together with the respective PhD theses
addressing them.

The Knowledge Manager component corresponds to the concerns Knowledge
Management and Context Management. The purpose of this component is to pro-
vide flexible services that allow relating metadata descriptions of information items
to a semantic context and support management of knowledge sharing and integra-
tion in a rescue operation scenario. The Knowledge Manager offers support for the
dissemination, sharing and interpretation of ontologies, and browsing and querying
of ontologies and ontology contents. Issues that needed addressing included under-
standing across domains and organizations through use of knowledge management
techniques, avoiding information overflow through content filtering and personal-
ization, managing availability of information, metadata and ontologies, offering in-
formation query and retrieval services, and supporting information exchange. Work
on the Knowledge Manager has been documented as part of Norun Christine San-
derson’s PhD thesis [49]. The thesis has contributed with a three-layered architec-
ture for efficient metadata management, an approach to ontology based dynamic
update, and a high level design of the Knowledge Manager component targeted at
the given scenario’s requirements.

2.2 Research Projects 113

Distributed Event Notification Service (DENS) and Watchdogs provide a pub-
lish/subscribe service and delay-tolerant delivery of notifications in case of, e.g.,
network partitioning. In the publish/subscribe service a subscriber subscribes for
information, and the publishers publish information, independently. If DENS can-
not deliver a notification to a subscriber, the service will store the notification and
try to deliver the notification using the store-carry-forward paradigm. The main
design goals for DENS were to support a flexible subscription model, ensure a high
delivery ratio, as close to at-least-once semantics as possible, and use a-priori in-
formation and information collected at run-time to best configure the system. To-
gether with watchdogs, DENS corresponds to the Communication Infrastructure
concern, and is the main contribution of the PhD thesis written by Katrine Stem-
land Skjelsvik [52].

Resource Manager, the component for Resource Management, aims at enabling
best possible resource sharing among the devices involved in the network. During a
rescue operation the involved personnel has a very strong incentive to collaborate
and cooperate across organizations. This requires them to share knowledge and re-
sources in order to fulfill their tasks. In a resource constraint environment such as
a rescue operation, a distributed application needs the help of a resource manager
in order to make the best out of the available resources. A resource manager’s
main duties in such environments are to register, discover services and data
sources, and make the information available through the network. For this, each
node can maintain a sharing profile with information about locally available re-
sources and running services. The physical resources need to be frequently moni-
tored, which can be achieved by using mechanisms provided by the operating sys-
tem. Resource availability information can be disseminated in the network by us-
ing a shared data space as the one provided by the Data Management. Other al-
ternatives are to announce availability of resources as notifications by using DENS,
or to discover resources by querying the other nodes. Design of a non-intrusive and
location information independent Resource Manager, deployed in a network with
constrained devices and unreliable channels, is the main contribution of Ovidiu
Valentin Drugan’s PhD thesis [6]. The very part about Data Management, how-
ever, is being addressed in detail in this thesis.

Finally, the Security and Privacy Manager is in charge of Security Manage-
ment. This component has a direct impact on the functionality of all the other
components and therefore has to be considered from an early stage of development.
The Security Management has to make sure that all the security requirements are
fulfilled during the other components’ operation. In addition to being something
every other component depends on, the Security Management itself depends on
some of the other components, such as key distribution, storage of keys and certifi-
cates, getting information on the neighborhood, etc. This cross-dependence be-
tween components, however, poses additional security issues that need to be taken
care of. Security and privacy issues are being addressed in detail in this thesis.

14 Background

2.2.2 MIDAS

MIDAS (Middleware Platform for Developing and Deploying Advanced Mobile
Services, [9]) is a project funded by the European Commission (2006-2008). The
main objective of the project is to simplify and speed up the task of developing
and deploying mobile applications and services for larger heterogeneous networks.
The two scenarios addressed by the MIDAS project include (but are not limited
to) big sports events, e.g. Tour de France, and emergency and rescue operations.
Although very different in their basics, these scenarios do share some common re-
quirements and assumptions, such as: large number of users, limited duration of
the event, networks consisting of a variety of different devices (possibly supporting
different network technologies), the fact that infrastructure might be present but
should not be solely relied on, strict consistency not being a requirement (i.e., if
the situation does not allow it, it is better to get some information than no infor-
mation at all). Next, we present shortly the three key features of MIDAS.

In heterogeneous networks, such as MIDAS is targeting, different devices might
have support for different of network technologies, some of them might even sup-
port more than one. In general, this would cause compatibility problems. MIDAS,
however, uses this fact to its advantage, by selecting the most adequate technology
for communication between a group of nodes and thus extending the communica-
tion possibilities within the network, or even across different networks. This fact is
transparent to the applications, which only need to know which nodes are avail-
able at any time, or possibly the network topology as well. If a node is not avail-
able at a certain point in time, an application may allow MIDAS to effectuate the
message delivery at a later point in time when the recipient node is reachable
again, by means of a store-and-forward mechanism.

To facilitate application development, MIDAS provides a higher level data ab-
straction known as context information, where context is interpreted as any infor-
mation that could be relevant to the interaction between the user and the applica-
tion. Context information is structured according to a domain model ontology
which describes the current domain of deployment of the MIDAS middleware (e.g.,
the Tour de France race). MIDAS offers two context related services: context op-
erators and context-addressable messaging, which rely very closely on the domain
model structure. Context operators work as means for extraction of context infor-
mation, possibly with synthesis of the information carried out by dedicated scripts
(as an example, the application could query the middleware for the positions of us-
ers within a 500 m radius of another user) [5]. Context-addressable messaging is a
best-effort service used to push messages to users described through their context
(as an example, a message could be sent to all “Norwegian cyclists”) [27]. By using
an ontology based context model, both of these services can rely on underlying
reasoning mechanisms and the information level interoperability between inde-
pendent applications.

Information sharing by means of a distributed data space is addressed in the
project by the MIDAS Data Space (MDS) middleware component. This component
provides its users with a means of accessing the distributed shared data space
without actually knowing where data are located. In addition, it performs trans-
parent versioning of data, to allow for consistency management and conflict resolu-
tion in a dynamic environment, such as the one MIDAS is targeting. The MDS
component represents the main focus of this thesis and will thus be described in
more detail in the Chapter 4.

3Chapter 3

Application Requirements

Emergency and rescue operations have specific characteristics and requirements. In
the Ad-Hoc InfoWare [39] and MIDAS [9] projects, we have designed middleware
services to facilitate the development of applications and services for emergency
and rescue operations.

The content of this chapter is based on our previous work documented in form
of a technical report [48]. The chapter includes three different example scenarios,
followed by a requirements analysis of the scenarios’ main aspects of interest for
this thesis.

3.1 Emergency and Rescue Operations

Emergency and rescue operations are characterized by a number of organizations
and individuals involved. As such, they form a heterogeneous composition with re-
gards to organizational structure and devices present at the scene. However, by
having a common goal, i.e., saving lives and limiting material damage, there must
be mechanisms present that will cope with such heterogeneity and allow for effi-
cient data sharing between the participants.

Organizations that are typically involved in such operations include the police
department, paramedics, firefighters, armed forces, and possibly several additional
organizations. In Norway, the police department has the main responsibility for
rescue site management and coordination between all the organizations involved,
as well as the county governor and other governmental departments who might get
involved during the event. Even though each organization has its own set of rescue
operation procedures and guidelines, cross-organizational interaction procedures
and coordination structure must be defined. The coordination structure should to
some extent shape the flow of information on the scene, even though the latter
might sometimes deviate during the course of the event, if that improves efficiency.

16 Application Requirements

In Norway, land operations are usually handled by the Rescue Sub-Centre
(RSC), which has regional responsibility and appoints the on-scene coordina-
tor/commander (OSC) at operation initiation. For larger operations, there is usu-
ally one person from each of the three main organizations (police, firefighters, and
paramedics), in charge for the different aspects of the operation (public order, fire
control, and medical treatment respectively), who all report directly to the OSC.
On top of the hierarchy there is the Joint Rescue Coordination Command Central
(RCC), whose role is mainly to monitor the operation and give advice. Figure 3.1
illustrates the organizational structure of rescue operations in Norway, as well as
the role hierarchy and lines of reporting. The information is based on descriptions
taken from the Norwegian Rescue and Search Service (SAR) [56]. It is this very
model that we have used as basis for designing a key exchange protocol, presented
and described in Chapter 8 (i.e., Paper #2).

3.1.1 Example Scenario: Earthquake

In this section, we present a scenario of a rescue operation after an earthquake.
Even though it is a hypothetical scenario, it is based on information from a real
earthquake that took place in western Nevada in September 1994 [7]. A strong
earthquake may cause a high number of casualties and injured people, as well as
severe material damages. This includes possible loss of electricity, communication
infrastructure, blocked roads, etc., all of which might severely affect the rescue op-
eration.

Figure 3.1: Organization and structure in rescue operations

3.1 Emergency and Rescue Operations 117

The rescue operation following such an earthquake may last for days or weeks,
and will generally cover a large geographical area. Not only might blocked roads
prevent rescue personnel’s vehicles from coming to certain places, it might also
hinder fuel supply to the same vehicles. Communication infrastructure might also
be unavailable, either because cables have been damaged, or due to overload as a
consequence of many people placing calls simultaneously. As a consequence, infor-
mation sharing between the rescue personnel, necessary for a successful operation,
might be highly challenging.

Efficient information sharing and means for information dissemination can
speed up the work, which in turn may save lives. Such information include, but is
not limited to patient files, drawings of buildings, maps, either from the Internet
(if accessible) or from one of the devices present at the rescue scene (i.e., by form-
ing an ad-hoc network). The fact that there are many different types of informa-
tion causes a number of different flows of information, i.e., instructions from higher
ranked officers to the next level in the hierarchy, status reports from the “ground
people”, information from sensors to people on the scene, information from experts
not directly involved in the operation, etc.

3.1.2 Example Scenario: Railway Accident

A railway accident might happen in inaccessible terrain due to landslides, technical
failure, sabotage, collisions, etc. The hypothetical rescue operation presented in
this section is based on a serious train accident that happened in Norway in Janu-
ary 2000 [45].

The accident in question happens in a tunnel at a mountain pass, as a conse-
quence of a rockslide outside the tunnel causing broken rail tracks. An incoming
train hits the rocks on the way out of the tunnel, causing the locomotive to derail.
There are a number of injured people, some of them still trapped in the train,
while others managed to walk out. Both the locomotive and one of the train car-
riages are completely crashed, and there is high risk of fire. The train driver fol-
lows the procedure and reports the incident and location to the train control cen-
tre, who immediately forwards this information to the fire department and ambu-
lance, and starts necessary emergency procedures. The temperature is -10�C, with
deep snow in the area. The area has weak infrastructure and a need for special
services. There is a mountain lodge located nearby, which can be accessed by a
mountain road, and used for collecting evacuated train passengers. All personnel
get relevant information (maps of the area, weather condition, available personnel
and equipment, etc.) to their devices before leaving for the accident. RCC together
with RSC starts a rescue operation to evacuate those in need of acute medical
treatment which, due to harsh weather conditions, includes not injured people as
well.

The tunnel, rocks, train carriages, and an area that is not very accessible – all
of these hinder communication between the rescue personnel, and the rescue opera-
tion as a whole. Inside the tunnel, there is limited communication range. Outside,
there is problem of communicating with both people inside, and people on the
other side of the tunnel.

18 Application Requirements

The leader of the first team arriving at the scene takes immediately the role of
on-site commander (OSC), which he keeps until a higher ranked police officer ar-
rives and takes over the role. The OSC gathers all necessary information, and co-
ordinates equipment and personnel as they keep arriving. It is imperative to
evacuate people from the carriages, something firefighters are in charge of. Medical
personnel take over as people are outside of the tunnel, and categorize them by the
degree of injury and need for acute treatment. They are then transported to the
mountain lodge for further treatment.

Examples of communication flows in this scenario include information ex-
change among team members from the same organization (e.g., between medical
personnel sharing registration and medical information about patients, or firefight-
ers sharing temperature information in the monitored area, etc.), among task
forces created on the spot between team members from same or different organiza-
tions (e.g., a team consisting of a few firefighters and paramedics, assigned to go
through a certain train carriage to report on the situation), or communication be-
tween different levels in the rescue operation organizational hierarchy, e.g., RSC
and OSC, team members and team leaders, or team leaders and OSC.

The landscape of the accident area has a big impact on the network topology,
causing temporary or permanent partitions within or on the different sides of the
tunnel. It must be ensured that all necessary data services are present in all the
possible network partitions, and the mobility of the nodes has to be used as an ad-
vantage to deliver information across the partitions.

3.1.3 Example Scenario: Subway Station Accident

The following hypothetical scenario is located in an underground station of the ur-
ban metro system of Paris, France, based on a scenario description provided by
the Régie Autonome des Transports Parisiens (RATP) [19].

The area has a good and well-maintained infrastructure, as opposed to the two
previous scenarios. Still, some communication services might be unavailable at cer-
tain places of the subway system (e.g., tunnels between stations).

In this scenario, there are two trains standing on the opposite platforms of the
same stations. One of the drivers notices smoke coming from one of his carriages,
and immediately reports all the necessary details to the operation control centre
(PCC). The PCC turns on the fire alarm, shuts down the traction power for the
trains in the area of the station, asks the passengers to evacuate the station, and
notifies the nearby stations. The information is then passed on higher up in the hi-
erarchy, to the operation duty inspector (IPEX). The drivers of the two trains take
pictures with their mobile devices and send them to the PCC, together with all
necessary metadata (such as date, time, location, etc.). The IPEX calls for external
support from the fire department, ambulance, police, etc., and informs the neces-
sary instances about the accident. The passengers are evacuated and the station is
secured.

The metro has a set of different emergency procedures, and a very precise hier-
archy for the information flow, depending on who is on duty. All this information

3.1 Emergency and Rescue Operations 119

is readily available, which shortens the briefing phase. The incident manager, i.e.,
the first operation supervisor arriving at the scene, receives information from the
mobile agents at the site and sends reports to the control centre. The IPEX keeps
agents at nearby stations informed about the status of the accident. They may also
send personalized to-do-lists to the agents, in form of tasks. When a task is com-
pleted, the information about this is immediately sent to the control unit.

Also in this scenario different organizations and groups of people are involved,
e.g., train drivers, people working on the station, emergency teams, accident lead-
ers form the metro department, etc. They all carry mobile devices for purpose of
communication sharing, using infrastructure (e.g., GPRS or IEEE 802.11) where
available, or forming an ad-hoc network otherwise.

3.1.4 Summary

The scenarios presented in the previous three sections are very different with re-
spect to location, landscape, size of the accident area, number of people involved,
available resources, time span, etc. While the earthquake scenario covers a large
area and number of people, and might last for several days, the other two scenar-
ios are more limited with respect to these factors.

On the other hand, the scenarios do share a lot of similarities, something that
has to be looked into when designing a generic middleware. Many of the same or-
ganizations are involved in the scenarios (e.g., paramedics, firefighters, and police),
with similar tasks, but with different numbers of people involved.

Possible sources of information include, for all scenarios, mobile devices carried
by the rescue personnel, stationary devices, PCs in vehicles, sensors, possible access
to data from the Internet, etc. Some of the information can be shared, but other
information might be confidential (e.g., medical records). Infrastructure might be
present, but should not be solely counted on due to possible breakages. Various
types of information flow might be present in all the scenarios, e.g., among team
members from the same organization, between different organizations, or between
different levels in the rescue operation organizational hierarchy.

As part of the Ad-Hoc InfoWare project, we have identified six different phases
[31] of a typical emergency and rescue operation.

Phase 1 – A priori
This phase is before any accident takes place, when the relevant organizations, in
cooperation with the authorities, exchange information on data formats and shared
vocabularies, and make agreements on procedures and working methods. Required
certificates would be installed in this phase, and applications can be installed and
run so as to allow completion of an initial self-configuration phase. A communica-
tion and knowledge environment tailored to relevant applications can be prepared,
and data replication strategies chosen by the middleware. In a context aware sys-
tem, contexts reflecting different scenarios can be prepared, group memberships
based on user profiles set up.

20 Application Requirements

Phase 2 – Briefing
This phase starts once the incident has been reported. The briefing involves gath-
ering of information about the accident, e.g., weather, location, number of people
involved, and facilities in the area. Some preliminary decisions about rescue proce-
dures and working methods are also made at this stage. Based on information
gathered during this phase, applications can be configured further, security levels
chosen, and, if applicable, relevant rescue contexts and profiles put in force.

Phase 3 – Bootstrapping the network
This phase takes place at the rescue site, and involves devices joining and register-
ing as nodes in the network on arrival. In addition, the appointing of rescue leaders
takes place in this phase. By preparing communication and taking care of security
restrictions in force, the middleware can improve the working environment of the
applications.

Phase 4 – Running of the network
This is the main phase during the rescue operation, and the one this thesis focuses
mostly on. Events that may affect the middleware services include nodes joining
and leaving the network and network partitions and merges. Information is col-
lected, exchanged and distributed. There may be changes in the roles different per-
sonnel have in the rescue operation, e.g., change of rescue site leader. New organi-
zations and personnel may arrive and leave the rescue site, new groups of an ad-
hoc, task-oriented kind may form, possibly involving people from different organi-
zations. Applications communicate about available resources and capabilities of the
nodes in the network, using whatever knowledge is provided by the middleware. It
can update to changes in available resources as the network is evolving, query for
more data or information as it becomes available, and adjust its configuration and
behavior accordingly. Computing resources, processing environments and applica-
tions situated at neighbors can be utilized, using resource information provided by
the middleware and obeying accepted policies for resource sharing. Replicas and
proxies can be placed at strategic nodes in the network, and nodes can receive
event notifications based on relevance and priority. As nodes join and leave the
network the middleware can keep track of available resources and adjust its com-
munication and knowledge environment accordingly. This is especially important
for the location of database replicas, to ensure high data availability at all times.

Phase 5 – Closing of the network
At the end of the rescue operation all services must be terminated. Applications
can adapt to the closing of the network by acting on received information about
degradation of the capabilities and resources of the network.

Phase 6 – Post processing
After the rescue operation, operation specific data, e.g., resource use, user move-
ments, and how and what type of information was shared, may be analyzed to
gain knowledge for future situations. Depending on the nature of the application, it
may have gathered statistical or other information for post scenario analysis or for
future use.

3.2 Requirements Analysis 221

Infrastructured networks cannot be relied on during the rescue operation itself.
However, in the opening phases (phases 1-2), there are no such restrictions, which
gives possibilities for preparations that to some degree can compensate for a lack of
resources during the rescue operation.

3.2 Requirements Analysis

The three main aspects from the application scenarios of interest for this thesis are
security (both towards and within the network), network characteristics, and data
sharing.

3.2.1 Security Aspects

In emergency and rescue operations, where people’s lives are at stake, certain as-
pects of security are of outmost importance. Authentication of rescue personnel
and their devices, as well as data integrity, must be ensured in order to prevent in-
truders from injecting false information, which might allow them to disrupt com-
munication and jeopardize the whole operation, or to gain access to confidential in-
formation. Certain types of data, e.g., medical records, are regarded as being
strictly confidential. Not only intruders must be prevented from accessing them,
but their access should be limited among the rescue personnel as well. For that
reason, there must exist mechanisms that would ensure that only authorized per-
sons/devices, groups, ranks, etc., have access to certain data.

The abovementioned issues are especially hard to achieve in an environment
where wireless technologies are used for information exchange. Unlike wired net-
works, where one needs physical access to gain access to the network, the wireless
medium allows anyone in the vicinity to be part of it, both passively and actively.
It is fairly easy for an intruder to bring down the whole network by means of sig-
nal jamming, something that would need to be taken care of by physically locating
and removing them. However, there are more subtle ways of achieving the same ef-
fect, i.e., by means of eavesdropping, injecting false information, or re-sending old
but perfectly valid packets, that might be harder to locate and resolve. Another is-
sue that is very much plausible, yet hard to be taken care of, is introduced by the
fact that rescue operations are hectic and dynamic in nature, which makes it easy
for a member of the rescue personnel to lose their (already authenticated) devices.
If an intruder gets hold of such a device, and nothing is done to exclude it from
the network, they might easily get the possibility to do anything the device’s
owner could do, something that in wrong hands could be disastrous.

All this has to be kept in mind when implementing a system that should meet
the security demands for such a specific scenario as emergency and rescue opera-
tions.

22 Application Requirements

3.2.2 Network Characteristics

Using MANETs on the rescue site is a promising approach, due to the fact that
existing infrastructure might not be present or might be destroyed. However, the
layout of the affected area, physical obstacles, and the mobility of the rescue per-
sonnel and their devices, might lead to frequent and/or long term network parti-
tions.

In the train accident described in Section 3.1.2, rescue personnel needs to take
care of passengers at both sides of the tunnel, causing two network partitions.
There might be ways to connect these partitions (e.g., by means of GSM, satel-
lites, or ad-hoc placed base stations above the tunnel if possible), but they need to
be able to function properly even if this is not possible. In addition, some teams
might go into the tunnel, causing new partitions that also need to function inde-
pendently.

The rescue personnel’s devices might be very heterogeneous with respect to
hardware (PDAs, mobile phones, laptops, stationary computers within vehicles,
etc.) and available resources (e.g., battery power, storage space, CPU, etc.). Both
the heterogeneity of devices, and the broad range of functional and non-functional
requirements, impose the need for resource management mechanisms. In order to
have efficient resource management mechanisms, prediction of network connec-
tivity is an important, albeit challenging factor.

Node mobility in a MANET poses challenges also with regards to packet rout-
ing, creating a need for specialized routing protocols, to be able to find paths be-
tween pairs of nodes. Given the fact that there is no infrastructure in a MANET,
each node needs to be able to act both as an end-user device and a router (as seen
from a traditional network’s perspective). This issue is described in more detail in
Section 2.1.1.

3.2.3 Data Sharing

Due to the dynamicity of the network, data sharing poses challenges with regards
to storing, locating, and retrieving data. The fact that a certain node might be out
of reach could cause important data to be unavailable. To ensure availability of
data, even if the network is partitioned, the data must be replicated on more than
one node, and consistency between replicas needs to be taken care of. A system
such as MIDAS Data Space (see Chapter 4) can be used to address this issue.

The fact that a node might not be reachable at a certain point of time makes it
also necessary to develop protocols for a more asynchronous, i.e., delay tolerant
communication. This can be achieved e.g. by means of a publish/subscribe mecha-
nism, in combination with mechanisms such as store-carry-forward, epidemic rout-
ing [59], message ferrying [63], etc., to deliver notifications. Data sharing in emer-
gency and rescue operations is not a trivial issue, not only due to the fact that the
network is dynamic, but also because each organization might use its own stan-
dardized vocabulary and data model. Therefore, it is desirable to support subscrip-
tions that are targeting different vocabularies, including translation or mapping
between different vocabularies.

4Chapter 4

MIDAS Data Space

The core purpose of the MIDAS Data Space (MDS) is to provide applications and
other MIDAS components (so called MDS users) running on different nodes a
mechanism to share information by inserting data in and retrieving data from a
shared data space. To the MDS users, the shared data space is very similar to a
standard relational database, with functions to create, add data to, retrieve data
from and remove data from tables. These MDS functions work in such a way that
data added by an application on one node is made available for retrieval on other
nodes, without any intervention needed from the application program. The shared
data space is implemented using a combination of data replication and remote op-
erations, but this fact is transparent to applications. To the applications, it looks
as if there is just one instance of each table, accessible from all nodes. However,
multiple table instances (replicas) may exist in the network, providing higher reli-
ability in case of network partitioning. MDS uses a cross-layer approach when per-
forming decisions on where replicas should be placed, taking into account both the
network topology and applications’ access pattern to the data. To ensure eventual
consistency, conflict resolution and auditing, MDS implements data versioning, i.e.,
data are never physically deleted and, if updated, old versions are kept.

In short, MDS can be summarized by the following main features:
� shared data space where data location and distribution issues are transpar-

ent to the users
� two types of replication (eager and lazy), to ensure data availability and

eventual consistency between the replicas
� data versioning, for purposes of consistency, conflict resolution, and auditing
� cross-layer optimizations, to minimize the resource usage due to data repli-

cation

In this chapter, we describe in detail the MDS component, as well as the proof-
of-concept implementation used as the basis for this thesis. Due to time constraints

24 MIDAS Data Space

imposed by the project’s duration and deadlines, the proof-of-concept implementa-
tion of the MDS, as presented in this chapter, has certain limitations. The focus
was put on getting the component functional, and as a consequence not all sub-
component implementations take into account issues such as scalability and re-
source usage. These issues were further studied after the project’s end, and are
presented in Chapter 13.

4.1 MDS within MIDAS

MDS is one of the core components of the MIDAS Architecture, as shown in
Figure 4.1, taken from [53]. MDS uses mostly services from the Connectivity and
Routing component, as well as some Common Functions. MDS offers its services
to both applications and other MIDAS components, mostly the Context Space
component.

4.2 MDS Architecture

The MDS component consists of the following sub-components:

� Query Analyzer (QA) – supports queries towards the local database, as well
as towards remote nodes.

� Global MetaData Manager (GMDM) – keeps track of which tables have
replicas on which nodes.

� Data Allocator (DA) – decides where in the network replicas of each table
should be placed.

� Data Synchronizer (DS) – performs synchronization of data between nodes
having replicas of the same table.

� Subscription Manager (SM) – offers publish/subscribe functionality where
an application may subscribe to changes to a table and receive notifications
when and if such a change takes place.

� Local Storage (LS) – manages data persistence on behalf of the other MDS
subcomponents.

Figure 4.1: MIDAS Architecture

Figure 4.2: MDS Architecture

QA

LSDA DS SMGMDM

4.2 MDS Architecture 225

Figure 4.2 shows the overall design of MDS and the interaction between its
sub-components. Here are some observations:

� QA is the only sub-component that other MIDAS components (or applica-
tions, through the Middleware Core) have contact with, serving as a so
called façade component.

� The only sub-components communicating directly with the database (i.e.,
LS) are QA and GMDM.

The QA sub-component receives queries containing INSERT, SELECT,
UPDATE or DELETE statements. It is the task of MDS to choose on which node
a query will be performed, and thus provide applications with transparency on
where data are located. In addition, MDS users are given the possibility to make
that decision themselves in case they might have knowledge about where a table is
(or should be) stored. Being a façade component towards MDS, QA also imple-
ments the functionality for allocating or de-allocating table replicas, as well as in-
forming GMDM on such events, although the decision on where to place replicas is
the realm of the DA sub-component. QA performs transparent versioning of data,
as explained in Section 4.4 of this thesis. QA takes care of immediately propagat-
ing data changes that might take place as a consequence of a query, to all replicas
in the network. This process is called eager synchronization.

The GMDM sub-component keeps track of which table replicas are located on
which nodes. Ideally, all the nodes’ GMDMs should have the same view of the
network. For this purpose, when a new table is created, GMDM stores new meta-
data information on the table in question and immediately starts a metadata syn-
chronization process with its neighbors. When a query is received from the applica-
tion, it is GMDM who knows where the query can be performed. When a new
node joins the network, the GMDMs synchronize metadata information, thus get-
ting an updated view on what table replicas exist on which nodes. When done,
GMDM calls DS to synchronize the actual data in tables that the local node has in
common with the newly arrived node. This process is called lazy synchronization.

The DA sub-component decides when and where in the network instances of
each table (i.e., replicas) should be placed. As part of this thesis, we have imple-
mented a solution where an instance of DA on each node continuously monitors
usage patterns (local and remote) of each table. This information is periodically
sent to a central node, called Traffic Controller (TC), whose DA sub-component
uses it to actually decide on the placement of each replica. Work on the DA sub-
component, including evaluation results, has been described in detail in Chapter 13
(i.e., Paper #7).

The LS sub-component gives access to local data, stored in a relational data-
base. LS makes it possible for any node to choose any of the supported relational
database management systems (see Section 4.3 for details).

The DS sub-component is used to perform lazy synchronization of data be-
tween nodes having replicas of the same table. When a change in the network is
reported by the MIDAS Communication and Routing component, involving one or
more nodes that have entered the network, a synchronization process is started.

26 MIDAS Data Space

After the GMDMs have synchronized their metadata information, they each call
their respective DS to start peer-to-peer synchronization on the data level with
nodes having replicas of the same table. Due to network disruptions and messages
being lost for other reasons, the abovementioned procedure might not be sufficient.
To make sure that eventual consistency is obtained, DS therefore performs periodic
synchronization with nodes with which it has tables in common.

The SM sub-component provides a subscription and notification mechanism.
MDS users may subscribe to changes to certain fields in a certain table (e.g., “no-
tify me if Paul’s temperature gets over 38�C”).

4.3 Database Support

In order to be able to run the LS sub-component of MDS, a 3rd party DBMS solu-
tion is used, with the responsibility for managing table definitions and their infor-
mation content locally at a node. The functionality provided to MDS users
through the MDS information management API will be a subset of what the
DBMS solution provides. The exact subset of SQL calls supported by MDS is de-
scribed in Section 4.5.

MDS currently supports the following free SQL databases:
� H2 [18] is implemented in Java and may run within the middleware or as a

standalone server. The database is stored on disk.
� Sqlite [51] is implemented in Java, and runs within the middleware. It can

be chosen whether the database during operation will only be kept in mem-
ory or on disk.

� HSQLDB [17] is implemented in Java, and runs within the middleware. It
can be chosen whether the database during operation will only be kept in
memory or on disk.

� MySQL [33] is not implemented in Java and therefore must be run sepa-
rately. The database is stored on disk.

Since synchronization of tables is done by means of standard SQL statements,
different nodes may run different types of databases (e.g., one node may use H2,
while another one uses HSQLDB), not affecting synchronization of shared tables.

4.4 Data Versioning

Contrary to standard relational databases, MDS provides transparent versioning of
data. Instead of doing updates and deletions on the data items, the items are
marked as obsolete and a new prevailing (valid) version is created. For this pur-
pose, each table has a Status field, which can have one of the following values:

� VALID – denotes a valid record, i.e., it will be included into the result set
when an application sends a query, and it will be considered for a user’s
UPDATE or DELETE statement.

4.5 Data Storage and Retrieval 227

� UPDATED – denotes a record that once was valid, but has been updated
since. Such records are kept for book-keeping and auditioning purposes and,
unless explicitly asked for, they will not be included into the result set of a
query, and neither will they be considered for a user’s UPDATE or
DELETE statement.

� DELETED – denotes a record that has been deleted. Such records are kept
for book-keeping and auditing purposes only and will never be considered
for any user request.

All three types of records are used by MDS to perform limited automatic con-
flict resolution during the lazy synchronization process. This process is illustrated
by examples in Section 4.8.

The primary key in a table is a system generated number (incremented for
each new record), called Local_ID. The Local_ID field is only used by the local da-
tabase on each node and is not included in the synchronization process. For syn-
chronization purposes, we have an additional identifier (called ID), consisting of
the fields NodeID_Created and TS_Created. The NodeID_Created and TS_Created
fields are set when a new record is inserted into a table, and contain the node ID
and timestamp respectively, and are later used by MDS to identify whether two
records are actually different versions of the same record.

Since versioning is performed internally by MDS, applications cannot define
primary keys as they would in a traditional relational database. The reason for this
is that, due to versioning, there may exist more than one record having the same
value for such a key. It is however possible to define a so called application defined
key. Each table can have one field that will act as such a key. By doing this, the
application developers tell MDS upfront what they consider to be an identifier, and
MDS later uses that field as the basis for doing conflict resolution.

4.5 Data Storage and Retrieval

MDS allows storage and retrieval of data by means of SQL statements. When a
query is received by MDS, it is the QA component that parses it. After determin-
ing the type of SQL statement and the table or tables being affected, QA needs to
know on which node the query should be run. This procedure can be explained by
the following pseudo code:

if destination node specified {
perform query on specified node

} else {
ask GMDM which nodes have replicas of all the tables in question
if local node on the list

send request to the local LS component
else

send request to a remote node from the list
}

28 MIDAS Data Space

In the current implementation, GMDM first sorts the nodes according the rules
for greylisting and blacklisting, explained later in Section 4.11. Next, the nodes are
sorted by the number of hops. Finally, QA selects the first node from the list if it
is a remote query.

The next step is to process the query. Here, we describe in detail what happens
for each of the four types of queries supported.

SELECT statement

Syntax: SELECT <fields> FROM <table>
[WHERE <condition>]
[GROUP BY <fields>]
[HAVING <condition>]
[ORDER BY <fields> [ASC | DESC]]
[LIMIT <number>]

A SELECT statement is always performed only on one node. It returns the result
of the query as a result set if it succeeds, or a null-pointer if it fails on local que-
ries. On remote queries, a timeout exception is thrown if the remote node does not
respond within the predefined timeout period. The default period is set to 30s,
unless it is overridden in the configuration file, or within the query call itself.

It is possible to specify more than one table on which to perform the query (so
called joined query), however a joined query will only work if there exists a node
hosting replicas of all the tables in question. To be able to use this functionality
and rely on it, applications should have knowledge on where data are stored. This
is, for instance, possible if the applications want to force creation of a table replica
on a certain node. Even though this might contradict with the principle of trans-
parency, it gives applications useful additional functionality that otherwise would
not be available.

Table aliasing in the SELECT statement is not supported.
With respect to versioning, it is possible to specify which and what kind of re-

cords that should be returned. Some examples are presented in Section 4.8.2.

INSERT statement

Syntax: INSERT INTO <table> (<fields>) VALUES (<values>)

An INSERT statement adds a record to the table given in the SQL statement, and
if an instance of this table does not exist yet, it is created on a node picked by DA.
If it is a table with an existing instance, and there are replicas within the network,
the record is immediately sent to all the replicas on the nodes that are reachable
(i.e., eager synchronization is invoked).

If the INSERT statement caused creation of a new table replica, QA notifies
GMDM on this fact, which then makes sure metadata are synchronized on all
nodes. If replicas of the given table already existed prior to the creation, which
could happen if this latest creation was a result of an application forcing the op-

4.6 Data Replication 229

eration to be performed on a specific node, lazy synchronization takes place to
make sure the newly created instance has a copy of the old data as well.

The status of the newly inserted record is automatically marked as VALID.

UPDATE and DELETE statements

Syntax: UPDATE <table> SET <fields_and_values>
 [WHERE <condition>]
 DELETE FROM <table>
 [WHERE <condition>]

From the application point of view, an UPDATE statement updates and a
DELETE statement deletes a record or records, just like any other relational data-
base. As with INSERT, any changes will be immediately propagated to all other
reachable nodes having replicas of the same table. If a remote node or nodes are
not reachable, the eager synchronization operation will not be carried out, and lazy
synchronization will take care of it when these nodes become reachable.

In reality, UPDATE and DELETE statements are transformed by MDS to
perform versioning of data. An UPDATE statement first marks the old record(s)
matching the given condition as UPDATED, after which VALID version(s), with
the new values, are inserted. A DELETE statement marks the old record(s)
matching the given condition as DELETED.

4.6 Data Replication
Multiple instances (replicas) of each table might be present in the network. Con-
trary to some other systems, MDS does not make a distinction between a main
(often called master) copy and secondary ones, i.e., all replicas are treated equally.
The proof-of-concept implementation of MDS includes a simple solution for doing
replication and synchronization, and only a few performance issues are taken into
consideration. When the DA decides where to create a table, it always picks the
local node. For performance and reliability reasons, the application can request
MDS to create a replica of a specific table on a specific node. Information about
this operation is sent to the local GMDM. If the node in question is not reachable
at the given moment, the table will not be replicated. Even though such a solution
was good enough for the MIDAS prototype, it clearly has room for improvements.
Improving the functionality of the DA sub-component is one of the main contribu-
tions of this thesis, presented in detail in Chapter 13 (i.e., Paper #7).

Having multiple table replicas introduces the need for synchronization, to make
sure that data are consistent as much as the situation allows it. MDS supports and
implements two synchronization concepts, namely eager and lazy synchronization.

Eager synchronization takes place whenever a change is done in the data space
(by means of an INSERT, UPDATE or DELETE statement). The change is im-
mediately propagated to all replicas within reach, to ensure that the nodes in the
network have a consistent view of the data. If a node or group of nodes were out of

30 MIDAS Data Space

reach at the moment a change occurred, lazy synchronization takes care of possible
inconsistencies that might be present after the two network partitions have
merged.

Lazy synchronization of data is performed when CRT detects and reports a
new node in the network. To be on the safe side, this is also performed periodi-
cally. The synchronization process between two nodes that have tables in common
is performed by their respective DS sub-components. Synchronization is based on
the records’ key field ID, which uniquely identifies a record and all its versions. In-
consistencies are detected when records with the same key field have differences
within other MDS fields (i.e., multiple versions of a record exist), thus introducing
need for conflict resolution.

The synchronization process in the current implementation of MDS itself is

simple and not scalable. It is divided into four phases, as shown in the message se-
quence diagram in Figure 4.3:

1. Node 1 sends a request for synchronization. In the case Node 2 already has
an ongoing synchronization process and cannot respond, it will queue the
request.

2. When Node 2 is ready for synchronization, it responds with a list of records
it has for each table they have in common. Each record is identified by the
field id. The field TS_Changed (the time when the record has been
changed) is also sent for conflict resolution purposes.

3. Node 1 responds with an equivalent list.
4. Nodes 1 and 2 send each other records the other node does not have or has

an old version of (see below for details); this is done by issuing remote que-
ries using QA.

 NNode 1 Node 2

 sync_req Phase 1

 ready, record_list2 Phase 2

 record_list1 Phase 3

 missing_records Phase 4

Figure 4.3: Lazy synchronization process

4.7 MDS Schema 331

In case of inconsistencies within a table after a network merging, a simple con-
flict resolution strategy is performed, and timestamps are being looked into. Pro-
vided that two nodes had a record in common (i.e., the same version of the record)
before partitioning, the following cases can occur when two nodes compare a pair
of records upon merging:

1. One or both nodes updated the record in the meantime – only the newest
VALID record is kept as such, while the others are marked as UPDATED.
Each node sends over all the versions the other node does not have.

2. One node has deleted the record – the version with the newest timestamp
“wins”.

a. If the deleted record has a newer timestamp, it will be deleted (i.e.,
marked as DELETED) on the other node as well.

b. If the other node performed an update (and thus created a fresh
VALID version) after the first node’s delete, the record will become
VALID again.

Even though the fact that a record is newer or older may not be correct due to

unsynchronized clocks, it will be unambiguous. This is explained in detail in Sec-
tion 4.11.

MDS does have knowledge of what an application considers to be a record key.
If a record is inserted concerning the “same” data (as seen from the application’s
point of view) on two different nodes, this will result in two separate records con-
cerning the “same” data. Therefore, the lazy synchronization process will not com-
pare these records, and conflict resolution will be done either by the application or
by MDS if requested. This has to be done each time a query is performed on such
records.

By performing experiments in the emulation environment NEMAN (see
Chapter 8), we were able to verify that the protocol indeed leads to consistent
state where all nodes have the same view on the tables.

4.7 MDS Schema

The MDS Schema contains definitions of properties that MDS must relate to at
startup, i.e., database table definitions. These definitions cannot be changed until
MDS is terminated and restarted. The MDS Schema is described by one or more
plain text files using a simplified XML. The default file is named mds-schema.xml,
which must be present and unchanged. When MDS is started, all valid files are
loaded into the memory to form one single schema. Therefore, it is important that
tables have unique names and that there is only one definition for each table.

MDS supports two different types of tables: tables that only can be accessed
locally at a node (Local Table) and tables containing information for sharing be-
tween nodes (Shared Table). Local and shared tables have identical structure; the
only difference is that data in shared tables is made available to all nodes and that
shared tables potentially have multiple replicas.

32 MIDAS Data Space

The following properties apply to both local and shared tables:

� Name: A unique name within the active MDS domain.
� Scope: Specification whether the table shall be a Local Table or a

Shared Table.
� Fields: The names and types of all the fields that can hold data when the

table is in use. Supported data types correspond to a subset of the types
supported by the 3rd party DBMS to be used. Optionally, one field in each
table can be set as an application defined key, used by MDS for conflict
resolution.

� Constraints: Possible additional constraints (e.g. secondary keys).

There is a set of fields predefined for every table. The values in these fields are
required for MDS internal “book-keeping” functionality and, in addition to that,
they may be read by MDS users as any other field (but not modified). The follow-
ing default fields are defined:

� Local_ID: The unique identifier of a certain row – this field is not shared
with other nodes as it is automatically assigned by the database and might
otherwise result in conflicts.

� ID: Shared unique identifier of a record or different versions of the same re-
cord, consisting of NodeID_Created and TS_Created. This can be used by
applications and is not dependent on location of data. This serves as the
main key used for identifying records that might be out of sync on various
nodes.

� NodeID_Created: The ID of the node that created the record.
� TS_Created: Timestamp, generated on the node on which the INSERT op-

eration was performed that resulted in creation of the record.
� NodeID_Changed: The ID of the node that last changed the record.
� TS_Changed: Timestamp, generated on the node on which the last

UPDATE, DELETE or INSERT operation was performed that resulted in a
change or creation of the record. This is used for conflict resolution if incon-
sistencies are detected.

� Status: Indicates the status of the records, possible values are: VALID,
UPDATED or DELETED (see Chapter 4.4 for details).

� Record_Replaced: Used for book-keeping purposes, contains the Local_ID of
the previous version of this record (or NULL, if this is the original version).

An example of the MDS Schema can be seen in Figure 4.4. The first line is
present for XML compatibility (although it is optional) in case some other XML
parsers are used rather than the simplified parser developed for this particular im-
plementation of MDS. To reduce processing time and memory, this simplified
parser does not take into account the content (value) within XML tags, i.e., every-
thing needs to be specified as attributes.

The default scope of a table is Shared, unless specified otherwise. If it is speci-
fied as Local, no contact with GMDM is established when performing actions on

4.7 MDS Schema 333

the table. For that reason, there cannot exist both a shared- and a local-scope ta-
ble with exactly the same name.

Optionally, one field in each table can be set to be an application defined key
(as the field description in table burek, in the above example), which does not
guarantee that there will not be more than one record with the same key. This key
is only looked into when MDS performs conflict resolution in the case when multi-
ple rows with the same key are returned as a result of a query using the parameter
VERSION_LATEST. However, since the change on more than one version can
happen at exactly the same time, applications should be able to handle receiving a
response with more than one record. Due to versioning, it is not allowed to have
additional database defined custom keys or unique-constraints.

<?xml version='1.0' encoding='iso-8859-1'?>
<mds>
 <table_definitions>
 <table name="burek">
 <field name="description" type="text" key="yes"/>
 <field name="price" type="int"/>
 </table>
 <table name="pita" scope="local">
 <field name="description" type="varchar(64)"/>
 <constraint/>
 </table>
 <default_fields>
 <field name="local_id" type="int" constraints="auto_increment"/>
 <field name="id" type="varchar(128)"/>
 <field name="nodeid_created" type="varchar(64)"/>
 <field name="nodeid_changed" type="varchar(64)"/>
 <field name="ts_created" type="varchar(16)"/>
 <field name="ts_changed" type="varchar(16)"/>
 <field name="record_status" type="varchar(64)"/>
 <field name="record_replaced" type="int null"/>
 <constraint name="unique (nodeid_created, ts_created, ts_changed,
 record_status)"/>
 </default_fields>
 </table_definitions>
 <type_conversion>
 <database type="h2">
 <convert from="auto_increment" to="auto_increment(1, 1) primary key"/>
 </database>
 <database type="sqlite">
 <convert from="auto_increment" to="primary key autoincrement"/>
 <convert from="varchar" to="text"/>
 <convert from="int" to="integer"/>
 </database>
 <database type="hsql">
 <convert from="auto_increment" to="identity primary key"/>
 <convert from="text" to="varchar"/>
 <convert from="number" to="int"/>
 </database>
 <database type="mysql">
 <convert from="auto_increment" to="primary key auto_increment"/>
 </database>
 </type_conversion>
</mds>

Figure 4.4: Example of the MDS Schema

34 MIDAS Data Space

The default_fields are read from mds-schema.xml and are added to each table
at the moment of its creation. The creation of the abovementioned table burek will
result in the SQL statement towards the DBMS as shown in Figure 4.5.

All the tables have a Local_ID field as the primary key which is an integer and
is automatically incremented. The described syntax for auto_increment is specific
for H2 DBMS and might differ if another DBMS is used. For that reason, MDS
has methods to adjust the syntax of CREATE TABLE to fit other types of
databases (details on how this is done are not described here as it is out of the
scope for this document). The other field types and constraints are standard.

The type_conversion section gives the possibility to define conversion rules for
field types or other syntax that might be different in different databases, making it
sure that a correct CREATE TABLE statement is generated. As an example
(shown in Figure 4.4), the statement to create the table’s primary key, and make
it automatically increment for each newly inserted record, is different in each of
the abovementioned databases.

4.8 Examples
In this section, we show some concrete examples of how MDS uses versioning to
cope with network partitions, as well as an example of what would happen in such
a situation if versioning was not present.

4.8.1 Example: Update While Network is Partitioned

The table Patients is allocated on Node 1 and Node 2. At first the two nodes are
in the same network partition. Then an application on Node 1 inserts data about
patient John into the table. This is also stored on Node 2 by using eager synchro-
nization. Both nodes have the same view of the table, as seen in Table 4.1.

Table 4.1: Patient table on nodes 1 and 2, before partitioning

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1 100 Valid John 80

CREATE TABLE burek (
 description text,
 price int,
 local_id int auto_increment(1, 1) primary key,
 id varchar(128),
 nodeid_created varchar(64),
 nodeid_changed varchar(64),
 ts_created varchar(16),
 ts_changed varchar(16),
 record_status varchar(64),
 record_replaced int references burek(local_id),
 unique (nodeid_created, ts_created, ts_changed, record_status)
)

Figure 4.5: Automatically generated SQL statement for creating tables

4.8 Examples 335

Next, the two nodes end up being out of range of each other.
A new record about a new patient, Paul, is inserted into the table on Node 1.

Node 1 also has an update about the patient John. This results in that record #1
changes the Status and TS_Changed fields accordingly, and there is an insert of a
new record about John (see Table 4.2)

Table 4.2: Patient table on Node 1, during partitioning

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1
1

100
102

Valid
Updated

John 80

2 1 101 1_101 1 101 Valid Paul 90

3 1 100 1_100 1 102 Valid John 90

On Node 2, there is an UPDATE about John at time 103, as well as an
INSERT about patient Paul at time 104 (see Table 4.3).

Table 4.3: Patient table on Node 2, during partitioning

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1
2

100
103

Valid
Updated

John 80

2 1 100 1_100 2 103 Valid John 95

3 2 104 2_104 2 104 Valid Paul 92

When the partitions merge at time 105, and these two nodes meet, lazy syn-
chronization of all records is performed. The results can be seen in Table 4.4 and
Table 4.5.

� Record #1 is considered to be the same.
� Record #3 at Node 1 and Record #2 on Node 2 have the same key (ID)

and are both VALID. Node 1’s record is older and is therefore marked as
UPDATED. Then, both records are exchanged.

� Record #2 at Node 1 and Record #3 at Node 2 are from MDS’ point of
view not the same record, even though it is about the same patient, so each
node sends an INSERT statement to the other node, and there are therefore
two records about Paul that are valid. The result is the following:

Table 4.4: Patient table on Node 1, after the two partitions have merged

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1 102 Updated John 80

2 1 101 1_101 1 101 Valid Paul 90

3 1 100 1_100 1
1

102
105

Valid
Updated

John 90

4 1 100 1_100 2 103 Valid John 95

5 2 104 2_104 2 104 Valid Paul 92

36 MIDAS Data Space

Table 4.5: Patient table on Node 2, after the two partitions have merged

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1 103 Updated John 80

2 1 100 1_100 2 103 Valid John 95

3 2 104 2_104 2 104 Valid Paul 92

4 1 100 1_100 1 105 Updated John 90

5 1 101 1_101 1 101 Valid Paul 90

4.8.2 Example: Query

Here we present a few examples of queries performed with different version control
parameters. The values in the table are as shown in the previous example, and the
applications on both nodes get the same results.

� Query: SELECT id, name, pulse, status FROM Patient
Version Control: LATEST
Result: 1_100 John 95 Valid

 2_104 Paul 92 Valid

Discussion:

Only the newest VALID records (as denoted by the TS_Changed field) are
returned for each application defined key (in this case Name). In the case of
Paul’s record, this means that the record with the ID 1_101 will not be re-
turned since the record 2_104 has a newer timestamp.

� Query: SELECT id, name, pulse, status FROM Patient
Version Control: VALID
Result: 1_100 John 95 Valid

 2_104 Paul 92 Valid

 1_101 Paul 90 Valid

Discussion:

All VALID records are returned, not only the newest ones. Thus, in the
case of Paul’s record, this time both 1_101 and 1_104 are returned.

� Query: SELECT id, name, pulse, status FROM Patient
Version Control: ALL
Result: 1_100 John 80 Updated

 1_100 John 95 Valid

 2_104 Paul 92 Valid

 1_100 John 90 Updated

 1_101 Paul 90 Valid

4.8 Examples 337

Discussion:

All non-DELETED records are returned. The example above does not con-
tain any deleted record, causing all five records to be returned. The applica-
tion should check the Status field to make sure it handles the records cor-
rectly.

4.8.3 Example: Delete or Update While Network is Partitioned

Again, we have a stable network with a situation where both nodes have the same
data, as seen in Table 4.6.

Table 4.6: Patient table on nodes 1 and 2, before partitioning

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1 100 Valid John 80

2 1 101 1_101 1 101 Valid Paul 100

After partitioning, the following events occur:
� Node 1 deletes both the records (John and Paul) at time 105 (see Table 4.7)
� Node 2 updates the record John at time 106 (see Table 4.8)

Table 4.7: Patient table on Node 1, during partitioning

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1
1

100
105

Valid
Deleted

John 80

2 1 101 1_101 1
1

101
105

Valid
Deleted

Paul 100

Table 4.8: Patient table on Node 2, during partitioning

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1
2

100
106

Valid
Updated

John 80

2 1 101 1_101 1 101 Valid Paul 100

3 1 100 1_100 2 106 Valid John 81

Table 4.9 and Table 4.10 show the situation at time 110, after merging has oc-

curred:
� Record #1 on Node 1 and Record #3 on Node 2 are compared. Node 2

made the change most recently, and the record is “reincarnated” on Node 1.
� Record #2 on Node 1 and Record #2 on Node 2 are compared. Node 1

made the change most recently, and the record on Node 2 is also marked as
DELETED.

38 MIDAS Data Space

Table 4.9: Patient table on Node 1,after the two partitions have merged

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1 100
105
110

Valid
Deleted
Updated

John 80

2 1 101 1_101 1 101
105

Valid
Deleted

Paul 100

3 1 100 1_100 2 106 Valid John 81

Table 4.10: Patient table on Node 2, after the two partitions have merged

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1
2

100
106

Valid
Updated

John 80

2 1 101 1_101 1
2

101
105

Valid
Deleted

Paul 100

3 1 100 1_100 2 106 Valid John 81

4.8.4 Example: Problems When No Versioning

The following simple example shows the importance of the versioning mechanism
in dynamic scenarios, such as the ones targeted by this thesis. If versioning were
not available, deleting a record in a table replicated on nodes in different partitions
would create a (clearly undesirable) situation where this record would be inserted
again after merging of two partitions.

Initially, both nodes have the same view, as seen in Table 4.11.

Table 4.11: Patient table on nodes 1 and 2, before partitioning

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1 100 n/a John 80

While the network is being partitioned, the record is deleted at Node 1 (Table

4.12), and the table becomes empty.

Table 4.12: Patient table on Node 1, after the record has been deleted

Local_ID NID_Created TS_Created ID NID_Changed TS_Changed Status Name Pulse

1 1 100 1_100 1 100 Valid John 80

Node 2 does not have knowledge of this and keeps the table unchanged.
After the two partitions merge, synchronization takes place and the record gets

“reincarnated” at Node 1 (again, as seen in Table 4.11), because no mechanism is
in place that would make Node 1 remember it already had deleted that very re-
cord.

4.9 Subscription and Notification Mechanism 339

4.9 Subscription and Notification Mechanism

MDS’ sub-component SM provides applications with a subscription and notifica-
tion mechanism. Subscriptions are stored in a shared table, which means that
every node knows about every other node’s subscriptions.

The main subscribe-method’s parameters are the table name and rules. For a
subscription to be triggered, all the given rules must be satisfied. The operators
supported are: “¡”, “>”, “=”, “¡=”, “>=” and the string contains operator, denoted
by “~”. The subscriber application must implement a call-back method that is
called when a notification is received. In the current implementation, subscriptions
do not have specified time validity, and must therefore be unsubscribed from when
there is no need for them any more.

Since the subscriptions table is updated and synchronized by MDS, it is not
needed to send subscriptions and un-subscriptions to specific nodes having specific
tables, neither it is necessary to keep track of new nodes getting new replicas. This
solution is however not very scalable.

Having a fully replicated subscriptions table may result in multiple notifica-
tions as a notification is going to be sent from each node where a change of a table
that satisfies a subscription is stored, thus increasing the probability that the ap-
plication will receive the notification. The SM component at the subscriber’s node
makes sure that the subscriber only receives the notification once.

4.10 Performance Experiments on the MDS Prototype

Detailed performance experiments of the MDS prototype are presented later in this
thesis, in Chapters 12 and 13 (Papers #6 and #7). A number of experiments,
however, were omitted in those papers due to space limitation. In this chapter, we
present some of these experiments.

4.10.1 Memory Cards in Nokia Internet Tablets

This set of experiments was performed to see whether the physical location of the
database on the device is important, with regards to access times. The experiments
were performed on three generations of the Nokia Internet tablet available at the
time (770, N800 and N810), which were candidates for target devices in the
MIDAS project.

Table 4.13 shows the results for the sqlite database on each of the three de-
vices. The labels I, S, U, and D represent the INSERT, SELECT, UPDATE and
DELETE statements respectively. The numbers represent access time (in millisec-
onds) per record when an SQL statement is run that affects 100 records (except for
INSERT, which had to be run 100 times individually). Empty fields mean that the
given device/memory combination is not supported due to hardware limitations.
Experiments on other supported databases (HSQLDB, H2, and MySQL) followed
the same pattern and are therefore omitted. Sqlite and HSQLDB are the only da-

40 MIDAS Data Space

tabases that support keeping data in memory, instead of storing it on permanent
storage. The reason why the UPDATE numbers are so high lies in the fact that
each original UPDATE statement is, due to versioning, in reality executed as 1x
SELECT, 1x UPDATE and Nx INSERT statements, where N denotes the number
of records affected by the original statement.

It can be seen that data location and type of memory (ram, internal or exter-
nal) can play a difference with regards to access times. If the database is expected
to be large, however, the only practical option remains using an external memory
card. We tested several memory cards (depending on each device’s support), and
results between them did not indicate that the type or speed of external memory
card would make a significant impact.

Table 4.13: Access times for the sqlite database on Nokia Internet tablets

Device Nokia N810 Nokia N800 Nokia 770
Storage location INS SEL UPD DEL INS SEL UPD DEL INS SEL UPD DEL
data stored in RAM 289 5 372 47 350 6 353 57 427 7 412 57
Flash internal 462 6 618 37 402 6 411 58 481 7 504 56
/dev/mmc2 (internal) 496 6 459 38 991 9 1112 55
/dev/mmc1 (miniSD) 824 6 939 44 713 7 799 54
/dev/mmc1 (1GB MMCM) 535 7 555 49 673 7 691 59

4.10.2 Choice of Java Interpreter

Only a few Java interpreters were available for the target devices, each with their
own performance, features and issues. JamVM and Cacao were the ones supported
by the Nokia Internet tablets, where Cacao proved to have a much shorter start-
up time than JamVM. However, both were used interchangeably during the pro-
ject’s duration, due to various issues and limitations encountered in each of them.
On the Zypad device, also tested briefly, the J9 interpreter was the only one avail-
able at the time.

4.10.3 Packet Loss as a Result of Route Changes

In Section 12.4.4, we present results from experiments on an emulated mobile net-
work, with focus put on applications’ experience of packet loss, and ignoring
packet loss at the synchronization components (GMDM and DS). Here, we show
results experienced by the MDS component, which include synchronization mes-
sages as well.

We ran a dynamic scenario having 10 nodes, each sending 1 query per second.
There were 47 neighbor changes during the 60 s of the scenario, causing a total of
342 route changes. The inertness of the underlying routing protocol to react to
changes caused certain packet loss. Figure 4.6 shows that the percentage of lost
packets is mostly influenced by the applications’ access pattern to the database
(i.e., the write to read) ratio, while the amount of replicas in the network does not

4.11 Final Notes on MDS 441

play a big role. This is valid for each of the three ratios, although we can see that
the percentage increases with the increase of read operations. This can be ex-
plained by the relatively low amount of original packets, and a more or less con-
stant amount of synchronization packets, and thus lost packets.

In OLSR, Hello messages are used for neighbor detection. If a node fails to re-
ceive a certain number of consequent Hello messages (the proposed value is 3, i.e.,
6 seconds) from one of its neighbors, the neighboring node is removed from the list
of neighbors. As a consequence, there might be stale routes towards this node in
the given period causing loss of packets. We have tried to reduce the Hello mes-
sage interval from 2 to 1 second (and, consequently, the timeout period from 6 to 3
seconds), to see the impact this would have on the number of lost messages. Con-
trary to our expectations, Figure 4.7 shows that no significant gain has been
achieved in our scenario. The gain is minimal, and in the cases where 50 % or
more nodes host a replica of the table, the results for both cases are virtually the
same.

4.11 Final Notes on MDS

In this section, we briefly present some of the remaining features and issues ad-
dressed by the MDS.

Workload (INSERT / SELECT ratio)
10 no des, mo bile netwo rk, instances o n rando m no des

2000

6000

10000

14000

1 2 3 4 5 6 7 8 9 10

Table instances

Pa
ck

et
s

to
ta

l 90/ 10

50/ 50

10/ 90

Workload (INSERT / SELECT ratio)
10 no des, mo bile netwo rk, instances o n rando m no des

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10

Table instances

Pa
ck

et
s

lo
st

 (%
)

90/ 10

50/ 50

10/ 90

Figure 4.6: Total number of packets vs. lost packets

Hello Message Interval
10 nodes, mobile network, instances on random nodes

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Table instances

Pa
ck

et
s

lo
st

HELLO 2s

HELLO 1s

Figure 4.7: Impact of Hello Message interval on packet loss

42 MIDAS Data Space

Clock Synchronization
Clock synchronization and issues tied to it have been a hot topic in the MIDAS
project. It is clear that in disruptive networks, such as the ones MIDAS is target-
ing, it is unreasonable to expect all nodes to have perfectly synchronized clocks.
Thus, some other mechanisms need to be deployed to avoid this fact causing prob-
lems such as synchronization loops.
In MDS, we do not rely on perfectly synchronized clocks, but we do assume that
the clocks are synchronized before the event takes place, and that they will not
skew noticeably by the end of the event. Under these assumptions, MDS can per-
form automatic conflict resolution by comparing record timestamps to determine
which of the records is considered to be newest. Even though this might not be
perfectly correct with respect to what is newest in reality, it will always give an
unambiguous result at any of the nodes doing the comparison, which is needed to
avoid endless loops that might be present if nodes were not able to agree.
Another approach, presented in [10], introduces the notion of arrogant clocks to
achieve a common notion of time between nodes in the same network. In this sys-
tem, each node thinks its own clock is perfect, and it monitors time differences be-
tween itself and other nodes. To achieve a common notion of time, timestamps on
synchronized records are always updated to the local time on the node receiving
the records.

Storing Binary Objects
To be able to store binary objects (so called blobs) into the database, applications
must encode them into strings using an algorithm such as Base64 (and decode
them afterwards to read the values). Such functionality is provided directly by
MDS. It has to be noted that, by doing this, the size of such objects increases by a
constant factor of 1.3x.

Greylisting
To try to reduce unnecessary timeouts due to nodes being temporarily unavailable,
MDS implements a greylisting scheme. Nodes that fail to respond to remote que-
ries are greylisted locally. When MDS decides where a remote query should be
sent, greylisted nodes will be put at the end of the list returned by GMDM, thus
avoiding (if possible) timeouts from nodes that were detected to be out of reach.
Optionally, it may be chosen on start that such nodes will be completely excluded
from the list (i.e., they can be blacklisted instead). When an INSERT is issued, if
there are no nodes within reach having a replica of a specific table, this will cause
a local instance to be created. Whenever a message is received from a node that
had been greylisted, they are removed from the greylist.

Packet compression and fragmentation
The proof-of-concept implementation of MDS includes automatic compression of
packets. Since messages are sent as Java objects, which often include plain text,
this allows for savings. Fragmentation of packets is also done automatically, to en-
sure that even large messages reach their destination.
These features should ideally be available by the underlying CRT component, but
were for practical reasons related to project development implemented in MDS in-
stead.

5Chapter 5

Overview of the Research
Papers

This thesis comprises seven research papers covering three different, yet strongly
related categories within the main topic. Here we present a short synopsis of these
research papers.

In emergency and rescue operations, where human lives are at stake, the main
focus must be put on fast, efficient and reliable data sharing. Mobile ad-hoc net-
works (MANETs) can provide a platform for efficient data sharing, but in order to
ensure availability and reliability, special mechanisms need to be present. In addi-
tion, the broadcast nature of wireless networks poses security risks that would not
be present (at least not to the same extent) if cables were used.

The first research paper summarizes and describes the main security issues pre-
sent in the target scenario. Some of the issues include securing data exchange (au-
thentication, integrity, confidentiality), with special focus put on routing traffic
which, if left unsecured, can lead to fatal network disruptions. The next research
paper presents a concrete solution to the latter issue, a protocol used for securing
the traffic at the network layer, thus providing the upper layers with a working
network.

For the purpose of developing and testing this protocol, as well as other proto-
cols described in later papers, we developed an emulation environment. This envi-
ronment, described in the third research paper, was a more practical (and cheaper)
alternative to performing pure simulations on one side, or real world experiments
on the other side.

With a secured network in place, focus could be shifted to the main topic,
namely data sharing in MANETs. In order to achieve a reliable service, which is
resilient to network partitions or single nodes disappearing, there should be in the
network more than one copy of each data entity. However, this comes with a price,

44 Overview of the Research Papers

that of transferring copies of data to different locations, and keeping track of all
the replicas. The fourth paper describes how topology information extracted from
the routing protocol can be exploited to optimize various synchronization tech-
niques, while the fifth paper focuses on the metadata management used by the Mi-
das Data Space (MDS) to keep track of the actual location of table replicas is
stored on each node.

The sixth paper presents the first MDS prototype, including a basic evaluation.
Finally, the last paper shows results of a detailed evaluation of different replica
placement strategies that will be used as basis for our future work in optimizing
MDS.

5.1 Paper #1

Title: Security and Privacy Issues in Middleware for Emergency and Rescue Appli-
cations

Authors: Matija Pužar, Thomas Plagemann, Yves Roudier

Publication: The 1st International Workshop on MObile and DIstributed ap-
proaches in Emergency Scenarios (MODIES 2008), Tampere, Finland, January
2008 [43]

Abstract: Mobile ad-hoc networks (MANETs) are a natural candidate for commu-
nication and information exchange in emergency and rescue operations. The per-
sonnel's movements, network disruptions and other system dynamics make it hard
to implement robust applications for such environments. The MIDAS project aims
at creating a middleware platform to simplify the task of developing and deploying
mobile and robust services for events in which the network might be set-up at
short notice. MANETs may be used because infrastructure is non-existing, and the
number of users might be very high. One of the application domains addressed by
MIDAS are emergency and rescue operations. To get a broad acceptance of the
MIDAS solutions, security and privacy issues need also to be addressed. In this
paper, we analyze the security threats and present a two-way approach to securing
the MIDAS architecture. In the bottom-up approach, we use an efficient key man-
agement protocol to establish trust, and in the top-down approach we use dynamic
role based access control to secure the system and provide privacy.

5.2 Paper #2

Title: SKiMPy: A Simple Key Management Protocol for MANETs in Emergency
and Rescue Operations

Authors: Matija Pužar, Jon Andersson, Thomas Plagemann, Yves Roudier

Publication: The 2nd European Workshop on Security and Privacy in Ad hoc and
Sensor Networks (ESAS 2005), Springer-Verlag, LNCS 3813, Visegrad, Hungary,

5.3 Paper #3 445

July 2005 (also published at UiO as Technical Report #319, ISBN 82-7368-272-2,
February 2005) [10]

Abstract. Mobile ad-hoc networks (MANETs) can provide the technical platform
for efficient information sharing in emergency and rescue operations. It is impor-
tant in such operations to prevent eavesdropping, because some the data present
on the scene is highly confidential, and to prevent induction of false information.
The latter is one of the main threats to a network and could easily lead to network
disruption and wrong management decisions. This paper presents a simple and ef-
ficient key management protocol, called SKiMPy. SKiMPy allows devices carried
by the rescue personnel to agree on a symmetric shared key, used primarily to es-
tablish a protected network infrastructure. The key can be used to ensure confi-
dentiality of the data as well. The protocol is designed and optimized for the high
dynamicity and density of nodes present in such a scenario. The use of preinstalled
certificates mirrors the organized structure of entities involved, and provides an ef-
ficient basis for authentication. We have implemented SKiMPy as a plugin for the
Optimized Link State Routing Protocol (OLSR). Our evaluation results show that
SKiMPy scales linearly with the number of nodes in worst case scenarios.

5.3 Paper #3

Title: NEMAN: A Network Emulator for Mobile Ad-Hoc Networks

Authors: Matija Pužar, Thomas Plagemann

Publication: The 8th International Conference on Telecommunications (ConTEL
2005), Zagreb, Croatia, June 2005 (also published at UiO as Technical Report
#321, ISBN 82-7368-274-9, March 2005) [42]

Abstract: Development of applications and protocols for wireless ad-hoc networks
has always been a challenge. Specific characteristics such as frequent topology
changes due to nodes moving around, popping up or being turned off, need to be
considered from the earliest stages of development. Since testing and evaluation
using genuine wireless devices is both expensive and highly impractical, other tools
need to be used in the development phase. Simulators give a very detailed model
of lower layers’ behaviors, but code often needs to be completely rewritten in order
to be used on actual physical devices. Emulators present a trade-off between real
test beds and simulators, providing a virtual wireless network at the lowest layers,
and yet allowing real code to be run on the higher layers. In this paper, we present
such an emulation platform, called NEMAN, that allows us to run a virtual wire-
less network of hundreds of nodes on a single end-user machine. NEMAN has
shown to be an important and very useful tool during development of different ap-
plications and protocols for our project, including a key management protocol and
a distributed event notification service.

46 Overview of the Research Papers

5.4 Paper #4

Title: Cross-layer Overlay Synchronization in Sparse MANETs

Authors: Thomas Plagemann, Katrine Stemland Skjelsvik, Matija Pužar, Aslak
Johannessen, Ovidiu Valentin Drugan, Vera Goebel, Ellen Munthe-Kaas

Publication: The 5th International Conference on Information Systems for Crisis
Response and Management (ISCRAM 2008), Washington DC, USA, May 2008 [38]

Abstract: Mobile Ad-Hoc Networks maintain information in the routing table
about reachable nodes. In emergency and rescue operations, human groups play an
important role. This is visible at the network level as independent network parti-
tions which are for some time stable before their members change through merging
or partitioning. We use the information from stable routing tables to optimize the
synchronization of Mediators in a Distributed Event Notification System. In a sta-
ble partition each node has the same information, thus a single Mediator can effi-
ciently coordinate the synchronization, while all other Mediators just receive up-
dates. We show in our experiments that just a few seconds are needed until rout-
ing tables stabilize and all nodes have a common view of the partition. We present
a heuristic to determine the proper time to synchronize. Furthermore, we show
how exceptions, like disappearing coordinating Mediators and unexpected mes-
sages, can be efficiently handled.

5.5 Paper #5

Title: Information Sharing in Mobile Ad-Hoc Networks: Metadata Management in
the MIDAS Dataspace

Authors: Ellen Munthe-Kaas, Aslak Johannessen, Matija Pužar, Thomas Plage-
mann

Publication: The 10th International Conference on Mobile Data Management: Sys-
tems, Services and Middleware, Taipei, Taiwan, May 2009 [32]

Abstract: An approach to information sharing in mobile adhoc networks
(MANETs) is to store on every node a small amount of metadata describing what
information resources exist in the network and where they reside, allowing applica-
tions to first search locally for information about suitable resources, and next re-
quest relevant information from a node that contains the resource. The character-
istics of MANETs in general and sparse, delay-tolerant networks in particular,
make the task of maintaining and disseminating metadata across all nodes diffi-
cult, particularly in the presence of scarce resources. We have designed and im-
plemented three protocols which use different approaches to metadata dissemina-
tion: epidemic one-to-one routing, one-to-many broadcasting that utilises the char-
acteristics of the shared radio medium of wireless networks, and a protocol where a
group consisting of e.g. rescue team leaders is given priority in the dissemination
process and afterwards serves as multiple starting points for further dissemination.

5.6 Paper #6 447

In the MIDAS project we aim to produce middleware that speeds up MANET ap-
plication development. By prototyping the metadata management component of
MIDAS and testing the prototype with each of the three protocols in the network
emulator environment NEMAN, we have measured bandwidth usage and perform-
ance. The implemented broadcast protocol is measured to use substantially less
bandwidth than epidemic routing. The group protocol shows that the group indeed
gets priority; it is comparable to the broadcast protocol in terms of bandwidth us-
age. The broadcast protocol has been used successfully in field tests of the MIDAS
middleware.

5.6 Paper #6

Title: Information Sharing in Mobile Ad-Hoc Networks: Evaluation of the MIDAS
Data Space Prototype

Authors: Matija Pužar, Katrine Stemland Skjelsvik, Thomas Plagemann, Ellen
Munthe-Kaas

Publication: The 2nd International Workshop on Specialized Ad Hoc Networks and
Systems (SAHNS 2009), Toronto, Canada, June 2009 [44]

Abstract: Information sharing in dynamic mobile ad-hoc networks is a challenging
task. High data availability in the presence of short and long term disconnections
can be obtained by replicating shared data. The number of replicas must however
be balanced against the cost of consistency management. In the MIDAS Data
Space (MDS) we use optimistic replication together with internal versioning of
data; this allows application-specific conflict resolution when reconciling replicas at
network mergings. We have made a proof-of-concept implementation to perform
experiments and to demonstrate through real-life field tests the usefulness of our
design. In this paper we report our results. We have conducted a number of ex-
periments on a small network formed by real devices to obtain a detailed perform-
ance evaluation. Using an emulation environment we have analysed and quantified
the cost of consistency management, the impact of MDS operations, and the rela-
tionship between data availability and replication.

5.7 Paper #7

Title: Evaluation of Replica Placement Strategies for Mobile Ad-Hoc Networks

Authors: Matija Pužar, Thomas Plagemann

Publication: The 13th International Conference on Network-Based Information
Systems (NBiS-2010), Takayama, Gifu, Japan, 2010 [41]

Abstract: The dynamic nature of mobile ad-hoc networks (MANETs) can easily
lead to data being inaccessible due to constant route changes and network parti-

48 Overview of the Research Papers

tions. One method often used for increasing reliability and availability of data is
replication. However, replication comes with costs, those of transferring and stor-
ing data and keeping track of consistency between replicas. For that reason, we
have identified the core factors impacting the resulting network traffic. We have
performed experimental studies with a real world prototype of a distributed data
management system for MANETs. Furthermore, we have done an extensive simu-
lation study showing where table replicas should be placed in the network, in order
to minimize network traffic generated by access to the databases and by the syn-
chronization data. The results of the experiments are consistent and show that by
using clustering techniques we can achieve close-to-optimal traffic by placing repli-
cas on approximately 10 % of nodes.

5.8 Other Publications

In addition to the abovementioned papers, this thesis has also contributed to the
following publications.

� Thomas Plagemann, Ellen Munthe-Kaas, Katrine S. Skjelsvik, Matija
Pužar, Vera Goebel, Ulrik Johansen, Joe Gorman, and Santiago Perez
Marin, A Data Sharing Facility for Mobile Ad-Hoc Emergency and Rescue
Applications, Proceedings of the First International Workshop on Special-
ized Ad Hoc Networks and Systems (SAHNS 2007), Toronto, Canada, June
2007 [37]

� Norun Christine Sanderson, Katrine Stemland Skjelsvik, Ovidiu Valentin
Drugan, Matija Pužar, Vera Goebel, Ellen Munthe-Kaas, Thomas Plage-
mann, Developing Mobile Middleware - An Analysis of Rescue and Emer-
gency Operations, Research Report #358, ISBN 82-7368-316-8, ISSN 0806-
3036, June 2007 [48]

� Erek Göktürk, Matija Pužar, Naci Akkøk, Distributing NEMAN Network
Emulator Using MICA Component Architecture, Proceedings of the Inter-
national Modeling and Simulation Multiconference 2007 (IMSM07) AIS-
CMS, Buenos Aires, Argentina, February 2007 [13]

� Munthe-Kaas et al., Mobile Middleware for Rescue and Emergency Scenar-
ios, The Handbook of Mobile Middleware (chapter), P. Bellavista and A.
Corradi, Auerback Publications, 2006 [31]

� Plagemann et al, Middleware services for information sharing in mobile ad-
hoc networks - challenges and approach, Workshop on Challenges of Mobil-
ity, IFIP TC6 World Computer Congress, Toulouse, France, August 2004
[39]

6Chapter 6

Conclusions and Future Work

In this chapter, we present a short summary of the thesis, followed by a critical
review of the claims presented in the introduction. Finally, we present some open
problems and future work.

6.1 Summary

Due to the dynamic nature and unpredictable location of emergency and rescue
operations, MANETs pose as a natural candidate for data sharing among people
and organizations involved. The Ad-Hoc InfoWare [39] and MIDAS [9] projects
look deeper into how MANETs can be used in such situation, and identify some
important issues that would not be present if traditional static networks could
have been used. In Chapter 3, we present a detailed requirements analysis of emer-
gency and rescue operations, including examples of three different scenarios, and a
description of how MANETs can be used in these.

The broadcast nature of wireless networks introduces specific challenges with
respect to security, compared to wired networks. In wired networks, traffic can be
sent through the wires without worrying about unauthorized access, as long as
their physical access is strictly controlled. In wireless networks, however, anyone in
the near vicinity can eavesdrop on traffic and, what is in some cases even more
dangerous, anyone can generate traffic and induce it into the network. In emer-
gency and rescue operations, where human lives depend on the operation’s success,
it is of outmost importance to make sure that only authorized devices can take
part in the network, to prevent intruders from disrupting the network. In Chapter
7, we present a general overview over security issues in MANETs for emergency
and rescue operations, while Chapter 8 focuses on the particular issue of network
access, and describes a key exchange protocol that can be used on the network
layer to protect the traffic, and to ensure that intruders are being kept out.

50 Conclusions and Future Work

The dynamic nature of wireless networks, especially mobile ones, introduces
challenges with respect to data sharing. In MANETs, it is not uncommon that
nodes constantly join and leave the network, or that routes between existing mem-
bers change. Frequent topology changes and disappearing nodes can have a nega-
tive impact on data availability. In emergency and rescue operations, where data
availability is a critical factor, mechanisms must be present to cope with topology
changes. In Chapters 4, 11 and 12, we present in detail the design and the first
prototype of the MIDAS Data Space (MDS). MDS is a shared data space designed
for such dynamic networks, ensuring data availability by means of replication, and
eventual consistency by means of data versioning. In Chapter 13, we show how
replication can be performed dynamically by monitoring both the applications’ us-
age of MDS, and the network topology. We present also an extensive study of rep-
lica placement in the cases where these two factors are unknown upfront.

Developing applications and protocols requires extensive testing and evaluation
procedures before they are ready to be deployed to target devices. When target
devices are numerous and mobile, like the ones forming MANETs, the cost of using
real devices during the development process is too high. One must have in mind
the amount of people needed to participate, the time needed for test runs and de-
ployment, the fact that experiments need to be re-run when bugs are fixed or
changes are made, etc. For that reason, simulators or emulators are the preferred
method to be used during the initial phases of development. While simulators can
give a more realistic networking layer and better reproducibility, they often require
applications and protocols to be developed especially for the particular simulator
being used. This in turn can induce new bugs when these are rewritten in order to
be deployed on real devices. Emulation, on the other hand, allows for real code to
be run on top of a simulated network, considerably reducing the time needed to
implement an application or protocol, with the possibility to later install them to
target devices with minor changes or no changes at all. As part of this thesis, we
created an emulation platform (see Chapter 9 for details) to facilitate our study
and development, testing and evaluation of various applications and protocols for
MANETs.

6.2 Critical Review of Claims
In Section 1.3, we presented the main contributions of this thesis in form of four
claims. This section revises these claims, each followed by a critical review.

Claim 1:
In emergency and rescue operations, security has to be present at the lowest lay-
ers, in order to prevent malicious nodes from disrupting the network. The hierar-
chical organization of the entities involved in these kinds of operations can provide
a basis for trust establishment between rescue personnel’s devices. We provide a
solution that exploits this fact in order to agree on a shared key. The solution can
be used to ensure that intruders cannot disrupt the network by injecting false
routing information.

6.2 Critical Review of Claims 551

Chapter 7 presents a detailed analysis of security requirements for MANETs in
emergency and rescue operations. In Chapter 8, we present SKiMPy, a key ex-
change protocol designed and optimized especially for highly dynamic ad-hoc net-
works, such as MANETs used in emergency and rescue operations. The protocol
uses to its advantage the fact that organizations participating in emergency and
rescue operations are known upfront, making it possible to pre-install certificates
for efficient off-line cross-authentication of nodes on the spot. By doing this, only
trusted nodes are able to take part in the network, thus preventing non-authorized
nodes from malicious actions such as injecting false routing information. Even
though the protocol achieves its main purpose, in its current form it lacks impor-
tant features such as exclusion of compromised nodes, revocation of keys and cer-
tificates, duplicate key ID numbers, or protection from denial of service attacks.
Since the protocols works above the physical layer, the protocol cannot protect
from attacks such as signal jamming, where other methods need to be used.

Claim 2:
With a secured infrastructure, the system can be used for information sharing be-
tween the rescue personnel. A shared data space, such as MIDAS Data Space, can
be used to efficiently and robustly distribute information, even on small resource-
limited devices. The strict requirement of accounting for such operations can be
achieved by means of versioning.

In Chapters 4 and 11, we present MDS, a shared data space designed to cope with
dynamic environments, such as MANETs in emergency and rescue operations. In
Chapter 12, we analyze the performance of MDS on resource-limited devices, fol-
lowed by a more extensive evaluation of replica placement strategies in Chapter
13. By means of versioning, which allows for permanent storage of data and their
change history, the rescue operation can in the post-processing phase be analyzed
in detail. To achieve that, it is assumed that devices have enough storage place.
One clear limitation of such a system is that it does not support real-time data,
but rather only delay tolerant data. Also, the applications need to be aware that
the system supports only eventual consistency, as strict consistency cannot be
guaranteed (as explained in Section 2.1.3).

Claim 3:
It is possible to achieve a close-to-optimal placement of table replicas within the
network, which works well for most scenarios where the applications’ access pat-
tern to the data space or the network topology are unknown a priori. At a later
point, the system can adjust to the concrete situation by analyzing the applica-
tions’ access pattern and network topology.

In Chapter 10, we show how synchronization protocols can benefit from a cross-
layer approach, such as using topology information from the networking layer to
plan actions on the application layer. In Chapter 13, we investigate this possibility
further and, by means of extensive measurements of clustering methods, we show
how a close-to-optimal placement of table replicas can be achieved without having
information on access pattern to the data space, and by only analyzing the current
network topology. Gaining knowledge of network topology requires both a proac-

52 Conclusions and Future Work

tive protocol and a means to communicate with it, limiting the choice of the rout-
ing protocols that can be used. Like any centralized solution, there is a single point
of failure that needs to be taken care of. In this case, it is possible for any node to
take over the role of Traffic Controller within a few moments, and to start gather-
ing access statistics for future placement decisions. The overhead introduced by
reporting access statistics to the Traffic Controller is minimal, but it does cause
constant traffic as long as a table is being accessed.

Claim 4:
In order to develop and evaluate protocols, an adequate test-bed has to be in
place. An emulation test-bed is the most flexible choice with respect to develop-
ment time and costs, as well as choice of programming languages. We have imple-
mented such an emulation test-bed and used it to develop, test and evaluate a va-
riety of protocols.

Chapters 2 and 9 give an overview of what options one has for testing and evaluat-
ing protocols and applications for MANETs, and argue why emulation is our pre-
ferred method. The emulation test-bed NEMAN, described in Chapter 9, has been
used actively in our research for the last few years, leading to numerous scientific
papers (e.g., [12], [13], [32], [38], [40], to name a few). It has also been used in
teaching courses, as well as part of several master’s theses and doctoral disserta-
tions (e.g., [11], [52], [2], [20], [22], [50]). The test-bed runs on a single PC, making
the server’s resources a bottleneck when simulating larger networks. It is also a
problem if several CPU and memory intensive processes (such as Java programs)
are being run concurrently. Some physical layer issues (e.g., grey zones, packet col-
lisions) are supported, while others (most importantly bandwidth and delays) still
need to be implemented.

6.3 Open Problems and Future Work

The Ad-Hoc InfoWare [39] and MIDAS [9] projects have identified and addressed a
number of issues present when using MANETs in emergency and rescue opera-
tions. The projects resulted in four doctoral dissertations at the University of Oslo
(i.e., [6], [49], [52], and the present one), each addressing a specific issue.

This thesis addresses three of those issues, namely security, data sharing, and
testing and evaluation of protocols in MANETs. Within these topics, several prob-
lems still remain unsolved.

The protocol presented in Chapter 8 enables authorized nodes to establish a
shared key. The protocol is based on the fact that devices have pre-installed cer-
tificates, allowing for a cross-authentication on the spot. However, if a device is
lost or stolen (i.e., compromised), there must be a mechanism to ensure that such
a device’s certificate is revoked and, consequently, that the device does not have
access to the network any more. In its current state, the protocol lacks such a
mechanism for revocation of certificates, a non-trivial issue given the assumption
that an on-line certification authority cannot be counted on. Authentication of us-
ers towards the devices, which is sufficiently user-friendly to be applicable in such

6.3 Open Problems and Future Work 553

a scenario (i.e., which does not hinder the rescue personnel in the rescue opera-
tion), is also a challenge.

The MIDAS Data Space (MDS), presented in Chapter 4, includes a working
implementation of all its sub-components. Some of them, however, either have
trivial functionality, or they might not be scalable. Initial work on a dynamic Data
Allocator (DA) sub-component is presented in Chapter 13. The paper presents
methods for minimizing synchronization traffic in dynamic environments where
replication is necessary or desirable. The paper includes some ideas that should be
looked deeper into, e.g., what gain can be achieved by using the described combi-
nation of warm standby replicas and caching of query results and synchronization
traffic. Designing and implementing an algorithm that includes all the methods
and ideas from Chapter 13 is not a trivial task and is part of future work.

Finally, it would be very interesting to verify all the results and ideas pre-
sented in this thesis on a large scale real world test-bed.

Bibliography

[1] Andersen, A. et al..,“Reflective Middleware and Security: OOPP meets Obol”,
in Proceedings of the 2nd Workshop on Reflective and Adaptive Middleware,
Rio. June 2003

[2] Bjerve, E., “Transparent gateways between OLSR networks”, Master’s thesis,
Department of Informatics, University of Oslo, 2006

[3] Blair, G.S. et al.,“The design and implementation of Open ORB 2”, in IEEE
Distributed Systems Online, 2(6), 2001

[4] Clausen, T., Jacquet, P., “Optimized Link State Routing Protocol (OLSR)”,
RFC 3626, 2003

[5] Devli�, A., Koziuk, M., Horsman, W., “Synthesizing context for sports domain
on a mobile device”, The 3rd European Conference on Smart Sensing and
Context (EuroSSC 2008), Springer-Verlag LNCS 5279, pp. 206-219, Zurich,
Switzerland, 2008

[6] Drugan, O.V., “A Communication Non-Intrusive Middleware for Resource
Management in Sparse Mobile Ad-Hoc Networks”, PhD thesis, Faculty of
Mathematics and Natural Sciences, University of Oslo, nr. 741, Norway, 2008

[7] Earthquake scenario for western Nevada, November 1996,
http://www.nbmg.unr.edu/dox/nl/nl30.htm

[8] Gilbert, S., Lynch, N., “Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant Web services”, ACM SIGACT News, vol.33, nr.2,
2002

[9] Gorman, J., “The MIDAS Project: interworking and data sharing”,
Interworking 2006, Santiago, Chile, January 2007

[10] Gorman, J., Wienhofen, L.W.M., “Common Notion of Time in the MIDAS
MANET: Arrogant Clocks”, Norsk Informatikkonferanse NIK 2008,
Kristiansand, Norway, 2008

[11] Göktürk, E., “MICA: A Minimalistic Component-Based Approach to
Realization of Network Simulators and Emulators” , PhD thesis, Faculty of
Mathematics and Natural Sciences, University of Oslo, nr. 653, Norway, 2007

56 Bibliography

[12] Göktürk, E., “A Stance on Emulation and Testbeds, and a Survey of Network
Emulators and Testbeds”, Proceedings of the 21st European Conference on
Modelling and Simulation (ECMS 2007),

[13] Göktürk, E., Pužar, M., Akkøk, N., “Distributing NEMAN Network Emulator
Using MICA Component Architecture”, Proceedings of the International
Modeling and Simulation Multiconference 2007 (IMSM07) AIS-CMS, Buenos
Aires, Argentina, February 2007

[14] Grace, P., Blair, G. S. and Samuel, S., “Interoperating with Services in a
Mobile Environment”, Technical Report (MPG-03-01), Lancaster University,
2003

[15] Hafslund, A., Tønnesen, A., Rotvik, J.B., Andersson, J., Kure, Ø., “Secure
Extension to the OLSR protocol”, OLSR Interop Workshop, San Diego,
August 2004

[16] Hollick, M., Schmitt, J., Seipl, C., Steinmetz, R., “On the Effect of Node
Misbehavior in Ad Hoc Networks”, Proceedings of IEEE International
Conference on Communications, ICC'04, Paris, France, volume 6, pages 3759-
3763. IEEE, June 2004

[17] HyperSQL Database, http://www.hsqldb.org/

[18] H2 Database Engine, http://www.h2database.com/

[19] Isabelli, M., “Application Scenario – Emergency”, MIDAS Project Deliverbale
D5.2, 2006

[20] Jama, S.H., “Revising the User Interface of NEMAN”, Master’s thesis,
Department of Informatics, University of Oslo, 2007

[21] Johnson et al., “Mobile Emulab: A Robotic Wireless and Sensor Network
Testbed”, Proceedings of the 25th IEEE International Conference on Computer
Communications (INFOCOM 2006), Barcelona, Spain, 2006

[22] Johnsen, J.E., “Physical Layer Issues in NEMAN”, Master’s thesis,
Department of Informatics, University of Oslo, 2006

[23] Johnson, D., Maltz, D., Hu, Y-C., “The Dynamic Source Routing Protocol for
Mobile Ad Hoc Networks for IPv4”, RFC 4728, 2007

[24] Kärpijoki, V., “Security in Ad Hoc Networks”, Tik-110.501, Seminar on
Network Security, HUT TML, 2000

[25] Kropff, M., Krop, T., Hollick, M., Mogre, P.S., Steinmetz, R., “A survey on
real world and emulation testbeds for mobile ad hoc networks”, in Proceedings
of TRIDENTCOM’06. IEEE, March 2006

[26] Kiczales, G. et al., “Aspect-oriented programming”, in Proceedings of the 11th
European Conference on Object-Oriented Programming (ECOOP’97), LNCS
1241, Springer Verlag, pp. 220-242, Jyväskylä, Finland, June 1997

[27] Koziuk, M., Domaszewicz, J., Schoeneich, R.O., “Mobile Context-Addressable
Messaging with DL-Lite Domain Model”, The 3rd European Conference on

 57

Smart Sensing and Context (EuroSSC 2008), Springer-Verlag LNCS 5279, pp.
168-181, Zurich, Switzerland, 2008

[28] Lin, G., Noubir, G., “On Link Layer Denial of Service in Data Wireless
LANs”, Wireless Communications & Mobile Computing, vol. 5, nr. 3, pp. 273-
284, May 2005

[29] Maes, P., “Concepts and experiments in computational reflection”, in OOP-
SLA’87: Conference proceedings on Object-oriented programming systems,
languages and applications, ACM Press, Orlando, Florida, USA, 1987

[30] Mahadevan, P., Rodriguez, A., Becker, D., Vahdat, A., “MobiNet: A Scalable
Emulation Infrastructure for Ad Hoc and Wireless Networks”, ACM
SIGMOBILE Mobile Computing and Communications Review, vol.10, nr.2,
2006

[31] Munthe-Kaas, E., Drugan, O., Goebel, V., Plagemann, T., Pužar, M.,
Sanderson, N., Skjelsvik, K. S., “Mobile Middleware for Rescue and
Emergency Scenarios, Mobile Middleware”, Paolo Bellavista and Antonio
Corradi, ed., CRCPress, 2006

[32] Munthe-Kaas, E., Johannessen, A., Pužar, M., Plagemann, T., “Information
Sharing in Mobile Ad-Hoc Networks: Metadata Management in the MIDAS
Dataspace”, The 10th International Conference on Mobile Data Management:
Systems, Services and Middleware, Taipei, Taiwan, May 2009

[33] MySQL, http://www.mysql.com/

[34] Padmanabhan et al., “A survey of data replication techniques for mobile ad
hoc network databases”, The VLDB Journal - The International Journal on
Very Large Data Bases, v.17 n.5, p.1143-1164, August 2008

[35] Perkins, C., Belding-Royer, E., “Ad hoc On-Demand Distance Vector (AODV)
Routing”, RFC 3561, July 2003

[36] Perkins, C., Bhagwat, P., “Highly Dynamic Destination-Sequenced Distance
Vector (DSDV) for Mobile Computers”, Proc. of the SIGCOMM 1994
Conference on Communications Architectures, Protocols and Applications, pp
234-244, 1994

[37] Plagemann et al., “A Data Sharing Facility for Mobile Ad-Hoc Emergency and
Rescue Applications, Proceedings of the First International Workshop on
Specialized Ad Hoc Networks and Systems (SAHNS 2007), Toronto, Canada,
June 2007

[38] Plagemann et al., “Cross-layer Overlay Synchronization in Sparse MANETs”,
5th International Conference on Information Systems for Crisis Response and
Management (ISCRAM 2008), Washington DC, USA, May 2008

[39] Plagemann et al, “Middleware services for information sharing in mobile ad-
hoc networks - challenges and approach”, Workshop on Challenges of
Mobility, IFIP TC6 World Computer Congress, 2004, Toulouse, France, Aug.
2004

58 Bibliography

[40] Pužar, M., Andersson, J., Plagemann, T., Roudier, Y., “SKiMPy: A Simple
Key Management Protocol for MANETs in Emergency and Rescue
Operations”, Proceedings of the 2nd European Workshop on Security and
Privacy in Ad hoc and Sensor Networks (ESAS 2005), Springer-Verlag, LNCS
3813, Visegrad, Hungary, July 2005

[41] Pužar, M., Plagemann, T., “Evaluation of Replica Placement Strategies for
Mobile Ad-Hoc Networks”, The 13th International Conference on Network-
Based Information Systems (NBiS-2010), Takayama, Gifu, Japan, 2010

[42] Pužar, M., Plagemann, T., “NEMAN: A Network Emulator for Mobile Ad-Hoc
Networks”, Proceedings of the 8th International Conference on
Telecommunications (ConTEL 2005), Zagreb, Croatia, June 2005

[43] Pužar, M., Plagemann, T., Roudier, Y., “Security and Privacy Issues in
Middleware for Emergency and Rescue Applications”, First International
Workshop on MObile and DIstributed approaches in Emergency Scenarios
(MODIES 2008), Tampere, Finland, January 2008

[44] Pužar, M., Skjelsvik, K.S., Plagemann, T., Munthe-Kaas, E., “Information
Sharing in Mobile Ad-Hoc Networks: Evaluation of the MIDAS Data Space
Prototype”, The Second International Workshop on Specialized Ad Hoc
Networks and Systems (SAHNS 2009), Toronto, Canada, June 2009

[45] Rapport fra Åsta ulykken: NOU 2000: 30, Åsta-ulykken, 4. januar 2000, ISBN
82-583-0543-3, Oslo, Norway, 2000

[46] Ratsimor, O. et al., “Allia: alliance-based service discovery for ad-hoc
environments”, in Proc. of the 2nd ACM Mobicom Int. Workshop on Mobile
Commerce (WMC’02), Atlanta, GA, September, 2002

[47] Raychaudhuri et al., “Overview of the ORBIT Radio Grid Testbed for
Evaluation of Next-Generation Wireless Network Protocols”, Proceedings of
the IEEE Wireless Communications and Networking Conference (WCNC
2005), New Orleans, USA, 2005

[48] Sanderson et al, “Developing Mobile Middleware - An Analysis of Rescue and
Emergency Operations”, Research Report #358, ISBN 82-7368-316-8, ISSN
0806-3036, June 2007

[49] Sanderson, N.C., “Network Wide Information Sharing in Rescue and
Emergency Situations”, PhD thesis, Faculty of Mathematics and Natural
Sciences, University of Oslo, nr. 720, Norway, 2008

[50] Spigseth, Ø, “Introducing Name Resolution into OLSR”, Master’s thesis,
Department of Informatics, University of Oslo, 2008

[51] SQLite, http://www.sqlite.org/

[52] Skjelsvik, K.S., “A Distributed Event Notification Service for Sparse Mobile
Ad-hoc Networks”, PhD thesis, Faculty of Mathematics and Natural Sciences,
University of Oslo, nr. 714, Norway, 2008

 59

[53] Svagård, I., “Overall architecture of MIDAS”, MIDAS project deliverable
D2.1, 2008

[54] Sørhus, K.B., “The Optimized Broadcast Manager for MANETs (OBBM)”,
Master’s thesis, Department of Informatics, University of Oslo, 2009

[55] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/

[56] The Norwegian SAR Service,
English: http://odin.dep.no/filarkiv/183865/Infohefte_engelsk.pdf
Norwegian: http://odin.dep.no/filarkiv/183864/Infohefte_norsk-lang.pdf

[57] The ns-3 network simulator, http://www.nsnam.org/

[58] Tønnesen, A., “Implementing and extending the Optimized Link State
Routing protocol”, http://www.olsr.org/, August 2004

[59] Vahdat, A., Becker, D. “Epidemic Routing for Partially Connected Ad Hoc
Networks”, Technical Report CS-2000-06, Department of Computer Science,
Duke University, 2000

[60] Varga, A., “The OMNeT++ Discrete Event Simulation System”, Proceedings
of the European Simulation Multiconference (ESM 2001), Prague, Czech
Republic, 2001

[61] Zec, M., “Virtualized network stack in FreeBSD –CURRENT”, Tutorial talk
given on EuroBSDCon 2007, Copenhagen, Denmark, 2007

[62] Zec, M., Mikuc, M., “Operating System Support for Integrated Network
Emulation in IMUNES”, Proceedings of the 1st Workshop on Operating
System and Architectural Support for the on demand IT InfraStructure /
ASPLOS-XI, Boston, October 2004

[63] Zhao, W., Ammar, M., Zegura, E. “A Message Ferrying Approach for Data
Delivery in Sparse Mobile Ad Hoc Netowrks”, MobiHoc’04, Roppongi, Japan,
2004

[64] Zeng, X., Bagrodia, R., Gerla, M., “GloMoSim: a Library for the Parallel
Network Simulation Environment”, Proceedings of the 12th Workshop on
Parallel and Distributed Systems, 1998

Part II

Research Papers

7Chapter 7

Security and Privacy Issues in
Middleware for Emergency and
Rescue Applications

Authors: Matija Pužar1, Thomas Plagemann1, Yves Roudier2

Affiliations: (1) Department of Informatics, University of Oslo
 {matija, plageman}@ifi.uio.no

 (2) Institut Eurécom, Sophia-Antipolis, France
 yves.roudier@eurecom.fr

Publication: The 1st International Workshop on MObile and DIstributed ap-
proaches in Emergency Scenarios (MODIES 2008), Tampere, Finland, January
2008

Abstract: Mobile ad-hoc networks (MANETs) are a natural candidate for commu-
nication and information exchange in emergency and rescue operations. The per-
sonnel’s movements, network disruptions and other system dynamics make it hard
to implement robust applications for such environments. The MIDAS project aims
at creating a middleware platform to simplify the task of developing and deploying
mobile and robust services for events in which the network might be set-up at
short notice. MANETs may be used because infrastructure is non-existing, and the
number of users might be very high. One of the application domains addressed by
MIDAS are emergency and rescue operations. To get a broad acceptance of the
MIDAS solutions, security and privacy issues need also to be addressed. In this
paper, we analyze the security threats and present a two-way approach to securing
the MIDAS architecture. In the bottom-up approach, we use an efficient key man-
agement protocol to establish trust, and in the top-down approach we use dynamic
role based access control to secure the system and provide privacy.

64 Security and Privacy Issues in Middleware for Emergency and Rescue Applications

7.1 Introduction

The MIDAS project [4] aims at developing a middleware platform to simplify and
speed up the task of developing and deploying mobile services for events in which
the network is set-up at short notice. MANETs may be used because infrastructure
is non-existing, and the number of users might be very large. Besides large sports
events like Tour de France, one of the main scenarios for applications developed
using the MIDAS platform are emergency and rescue operations, where MANETs
are used by the rescue personnel. Such operations are very dynamic and unpre-
dictable, both when it comes to personnel’s movements and membership, causing
network disruptions and frequent changes of nodes within it. Therefore, the project
has put special emphasis on the development of a data space for sharing informa-
tion and a context space for managing context data as reliably as possible, to en-
sure the high availability of services and data, and their graceful degradation in
case of long term network partitioning. While these non-functional requirements
are essential for emergency and rescue applications, security and privacy also need
to be addressed in order to get a broad acceptance of the project results for the
application domain of emergency and rescue.

This paper presents a first conceptual study of how security and privacy can be
supported within MIDAS and which security and privacy issues cannot be solved
through middleware. These solutions are especially tailored for the emergency and
rescue domain, but not necessarily for MIDAS only. Most of the concepts could
also be applied to other distributed software of the same domain running over
MANETs.

The core idea of our design is to combine bottom-up and top-down approaches.
The bottom-up approach is based on earlier research results, namely the design of
an efficient key management protocol, which enables us to efficiently agree on a
shared key to achieve trust among the devices of emergency and rescue personnel.
The top-down approach relies on the fact that roles typically define the duties and
rights of rescue personnel. Due to the dynamics of rescue operations, individuals
might change roles during the operation, which highlights the need for a dynamic
role based access control system.

The remainder of this paper is structured as follows: Section 7.2 briefly de-
scribes the MIDAS architecture and Section 7.3 the basic assumptions for our solu-
tion. A summary of the key management protocol is given in Section 7.4. Section
7.5 introduces dynamic role based access control. Section 7.6 describes how these
two ingredients work together and provide security and privacy in the MIDAS
middleware. Conclusions are given in Section 7.7.

7.2 The MIDAS Architecture
The MIDAS Architecture is shown n Figure 7.1. The main components in MIDAS
are MIDAS Data Space (MDS), Context Space (CXS) and Communication and
Routing (CRT). Access Control (AC) and Network Security (NS) are new security
components that are the contribution of this paper.

7.2 The MIDAS Architecture 665

MDS is a relational data space provided to applications and other MIDAS
components, shared between all the nodes [9]. The users and applications do not
know where exactly in the network data are stored and they only see one single
large data space. The MDS component does this by hiding the physical location of
data from the applications, as well as by taking care of replicating data when there
might be possibility for network partitioning. Replication of data to other nodes
having a replica of the same table is done either eagerly (i.e. as soon as a change is
done) or lazily (for nodes joining the network partition at a later point). From the
application developers’ point of view, only SQL queries have to be issued in order
to use the shared data space; data are published to the data space from where they
can later on be retrieved.

The CXS component is responsible for defining and managing all context data
in the context space. It provides middleware support for domains by implementing
domain-related middleware services. As each MIDAS mobile service targets events
of a specific domain (emergency operations, sports events), the support of domains
helps the developers to create very focused applications within their domain. CXS
allows for simple or complex (synthesized) queries and uses MDS to store and re-
trieve all context information. In addition, the component offers the applications
services for the context addressable messaging, where message recipients are de-
fined as a context (for instance, “all nodes with role MEDIC that still do not have
a patient assigned”).

The CRT component is responsible for providing connectivity between nodes
running the MIDAS middleware. Networks supported by CRT may be disruptive
and even consist of different network technologies, which should all be seamless
from the applications’ and other components’ point of view. CRT has mechanisms

Middleware

Operating System Networking

MIDAS Data Space (MDS)

Communication and Routing (CRT)

Application(s)

Context Space (CXS)

Middleware Core

Routing Protocol NS

AC

Figure 7.1: MIDAS Architecture

66 Security and Privacy Issues in Middleware for Emergency and Rescue Applications

to allow connectivity even in cases when nodes are not in direct range of each
other. If two network partitions have each a connection to the Internet (for in-
stance through a GPRS connection), they can register at a pre-defined central
node. As a consequence, they can merge into a single network by establishing a
link between each other through the Internet.

Applications connect to the middleware using the Java Remote Method Invo-
cation (RMI), in which the core middleware component acts as a façade towards
its components, i.e., it internally performs calls to the requested methods in the re-
spective components. Internally, components use each other’s services either by di-
rect calls or through the core component.

7.3 Basic Assumptions and Our Approach

There are five basic assumptions that were taken into account when designing se-
curity solutions for the MIDAS Architecture.

� Members of the rescue personnel (users) can be trusted.
� Devices are preconfigured before coming to the scene; this includes installa-

tion of the necessary software, certificates, etc.
� Users carry tokens with personal certificates containing their credentials

(name, rank / role within the organization, etc.) and use them to authenti-
cate themselves towards the device.

� The user-to-device authentication process is assumed to be secure enough
� Software developed on top of the MIDAS platform is considered clean (that

is, it is not vulnerable, there are no viruses, trojans, etc.)

The overall security of the system depends on these assumptions to be satisfied

beforehand.
The wireless medium is especially vulnerable to attacks and intrusions by mali-

cious persons with the goal to either just disrupt the functionality of the network
or to steal sensitive data, from health information about patients to possible police
records. External attackers, however, are not the only issue. Not all the personnel
are supposed to have access to all the data within the network. Policemen should,
for example, not be able to access patients’ medical records (privacy). Following
the development of the situation, the personnel’s roles and assignments might also
change dynamically, providing additional challenges to the component enforcing
access control (see Section 7.6 for details). Since accidents naturally happen where
they are least expected or they might in severe cases cause existing communication
infrastructure to collapse, nodes may be left with no reliable possibility of contact-
ing a central authority to, for instance, check a user’s credentials (authentication).
Next, it must be ensured that unauthorized nodes cannot modify existing traffic or
introduce new data into the network (integrity). Finally, it must be ensured that
receipts of given orders cannot be denied at a later point (non-repudiation).

We present a two-way design towards solving the abovementioned security is-
sues, consisting of a bottom-up and a top-down approach.

7.4 The Key Management Protocol 667

The bottom-up approach ensures that data coming from the network are au-
thenticated and that their content’s integrity is verified already at the network
layer. The whole process is hidden from the users and no intervention is required
from them. This is achieved by using a key management protocol such as SKiMPy
[10] to ensure that only authorized nodes are allowed to participate in forming
network. Failure to do so might result in a very small percent of misbehaving
nodes being able to disrupt the whole network [5].

The top-down approach is used to determine what data, services and other re-
sources a certain user has access to. The access control component does this by
taking into account the user’s identity and role when accessing the middleware.

There are still a number of issues to be taken care of, in order for the security
level to be satisfactory. Some of these issues (such as denial of service attacks on
the physical layer, devices being lost or stolen, etc.) cannot be solved by the mid-
dleware and must be addressed separately. Other issues can be solved by the mid-
dleware and, as such, they will be looked into as part of current and future work,
including issuing temporary certificates, revocation of certificates for nodes being
lost or stolen.

7.4 The Key Management Protocol

SKiMPy is a self-organizing distributed key management protocol used at the net-
work layer to secure either all the data coming from and to the node, or only the
routing protocol (such as OLSR [1]). SKiMPy uses certificates that are installed on
the rescue personnel’s devices in advance of the emergency event, i.e. before com-
ing to the rescue scene. These authorized nodes can be called active members of
the network. All the certificates are, at the top of the hierarchy, signed by the
same Certificate Authority and can thus be cross-verified by any node without the
need for contacting a central authority. That way, unauthorized nodes can be ex-
cluded from participation in all or some network activities, while trust can be
achieved among arbitrary devices of rescue and emergency personnel without ac-
cess to the Internet. Not having contact with a central authority leads to problems
in case it is necessary to revoke certificates of devices that have been lost or stolen.
If anyone could issue a certificate revocation, this could also be done by the same
device that is supposed to be cut out of the network, causing a network break-
down. On the other hand, a voting procedure might take place, where for example
k out of n signatures would be necessary to issue a valid revocation. While one
could argue that the authentication of the user to the device provides a certain
level of security to assure that lost or stolen devices cannot be misused, this prob-
lem needs still to be solved to provide full security.

Contrary to the main exclusion policy, it is sometimes useful to grant specta-
tors or media the ability to help at an accident scene. Such nodes might then be
issued temporary certificates on the spot to be able to exchange non-critical data
(i.e., become a passive member of the network, yet unable to influence the core
network’s routing tables). Such temporary certificates are then used by the same

68 Security and Privacy Issues in Middleware for Emergency and Rescue Applications

key management protocol to establish a second shared key between the passive
members. The certificates would be issued by authorized users, depending on the
security policies. In addition to a much shorter validity time of credential, the
abovementioned authorized users would become local authorities in charge of tem-
porary certificates’ revocation with much less likelihood of losing contact.

It has to be noted that the shared key achieved by using SKiMPy can only be
used to verify a message’s integrity, not its source. The same applies in the case
when the key is used to encrypt data. That is, it can only be shown that a message
has been sent by some authorized node, not which one exactly.

7.5 Dynamic Role Based Access Control

The distributed and shared nature of the MIDAS Data Space, explained in Section
7.2, can cause specific issues with regards to access control.

There exist several methods of implementing access control. In Discretionary
Access Control (DAC [2]), users can grant or remove other users access to re-
sources they themselves have access to (a good example for a DAC system is the
UNIX file system). Due to the shared nature of MDS and the number of organiza-
tions involved in emergency and rescue operations, this method is not expressive or
flexible enough. In Mandatory Access Control (MAC [2]), in contrast, resources
have security labels, while users have security clearances, which then must be high
enough to be able to access a given resource. Organizational hierarchy can be the
starting point for defining Role Based Access Control (RBAC [3]) rules used to de-
termine access privileges certain roles have towards certain objects. Having indeed
hierarchical organizations involved in emergency and rescue scenarios, a RBAC so-
lution, such as OrBAC [6], is a clear candidate in our case.

The users identify themselves towards the OS or towards the middleware di-
rectly, while their role or roles are, as a rule, predefined by a person’s rank in the
organizational hierarchy. These a priori roles are defined in the user’s certificates.
However, the users’ roles can be dynamically changed during the rescue operation,
depending for instance on the order in which personnel come to the scene. It
should be possible to reflect these changes in the roles used for access control to
data and resources. Since roles are predefined and embedded within certificates,
they cannot be changed. One step towards a solution might be to use the ideas
from [8], where delegation and supervision are introduced. However, additional
mechanisms might be necessary, e.g. roles issued in separate temporary certificates
(similar to the ones described in Section 7.4) that can be either used in addition to
the preinstalled ones, or they might supersede them. Removing certain roles, on
the other hand, is in general a non-trivial issue, and it must be ensured that a user
cannot choose to ignore a newly installed certificate giving them fewer rights.
However, we assume that the rescue personnel can be trusted and will therefore
also not take countermeasures against those certificates.

In addition to the standard access control rules (e.g. “can read”), emergency
and rescue operations might require a special type of rule, that is, “must read”

7.6 A Combined Solution 669

and/or “confirm receipt”). A typical example would be an order issued by the res-
cue scene leader, whose receipt must be confirmed. Being signed with the recipi-
ent’s certificate, this receipt cannot be repudiated at a later stage. Deontic logic
introduces actions such as “permitted”, “obliged”, and “forbidden”. A RBAC
mechanism based on deontic logic, such as the one described in [7], might be a
possible solution for fulfilling both of the abovementioned needs. However, it might
also be possible to implement it in a simpler way, for instance by moving some of
the extra functionality towards the application.

7.6 A Combined Solution

In this section, we outline how certificates and access control are used to secure
the MIDAS middleware (see Figure 7.1). Being just a conceptual analysis, and due
to space limitations, some details on particular solutions are not specified as of yet.

At the level of network interface to the operating system, all incoming and
outgoing traffic must pass the Network Security Component (NS). NS should run
separately from the middleware as it has to protect not only data going to and
coming from not only the middleware, but also all signalling messages of the rout-
ing protocol. Outgoing traffic is signed with the shared key obtained through key
management protocol. Incoming traffic is first checked for integrity with shared
keys available at the recipient. With regards to the source’s and recipient’s type of
membership, as described in Section 7.4, we have the following four cases:

1. The recipient is an active member
 a) The message is signed by an active member: all the traffic is let through
 b) The message is signed by a passive member: only non-routing messages

 selected according to the security policy are sent through

2. The recipient is a passive member
 a) The message is sent by an active member: all the traffic gets through
 b) The message is sent by a passive member: all the traffic gets through

In addition, the incoming traffic must be checked for replay-attacks, i.e. it
must be ensured that a valid message cannot, at a later point, be re-sent by a ma-
licious node. For instance, routing messages that are re-sent at a later point may
cause the whole network to collapse.

The middleware’s application programming interface (API) is designed so that
all calls issued from the applications towards the middleware are passed through
the Access Control (AC) component. It must be noted that all the inter-
component calls must go through AC as well, since it could happen that a compo-
nent tries to perform an illegal action. It is the task of AC to verify whether the
given user has the necessary credentials for that call. In case it is a query towards
the data space, the user must have the necessary rights to perform that query on
the specified table or tables in the data space.

Remote queries have to be verified twice, first at the source node and then
again at the destination node. This means that the issuer’s credentials (including

70 Security and Privacy Issues in Middleware for Emergency and Rescue Applications

their public key) must be included in the message. The issuer’s public key may be
used to encrypt the response to the query, but a more light-weight solution might
be preferred if such queries are expected to be performed often. The underlying
shared data space could be used to distribute the credentials of all the users pre-
sent at the scene, leaving up to MDS the task of keeping the information in the
data space as consistent as possible.

Access rights are defined by the personnel’s identities or roles, both of which
are specified in their pre-installed certificates. To add or change roles dynamically,
as a consequence of the rescue operation’s development, personnel can be issued
temporary certificates on scene. Given the possible severity of the situation, the
notion of access rights should include access duties as well, meaning that some
messages must be read by the personnel they are addressed to. That way, the re-
ceipt of an order cannot be denied at a later point, making it known who had been
in charge of what at any time in the operation.

7.7 Conclusion

Reliability and availability are important non-functional properties for emergency
and rescue applications. The MIDAS middleware provides these properties through
optimistic replication. In order to achieve also security and privacy for MIDAS in
emergency and rescue applications, we propose in this paper a combined bottom-
up and top-down approach. The dynamic role based access control we propose
comes very close to the way security levels and rights assigned to emergency and
rescue personnel are assigned in the different organizations. Access control is en-
forced with the help of certificates. In addition to the misuse of middleware service,
it is necessary to protect the network itself. Therefore, all traffic is screened at
each node and all packets from non-trusted nodes are simply discarded to disable
attacks on the network.

While this approach provides a high level of security for the network and the
middleware and enables to protect data, there are still certain attacks that cannot
be handled, especially attacks at the link layer, like noise etc.

Our ongoing and future work is concerned with two aspects. First, we aim to
refine the proposed solution and prototype it to be able to perform evaluation test-
ing of the presented solution. Next, we extend the solution also for other applica-
tion domains, like large sports events, where existing infrastructure is an important
part of the network.

Acknowledgments

This work has been performed in the context of the MIDAS project (funded by the
European Commission’s 6th Framework Program, Contract no. 027055), and the
Ad-Hoc InfoWare project (funded by Norwegian Research Council IKT2010, Pro-
ject No. 152929/431).

7.7 Conclusion 771

References

[1] Clausen, T., Jacquet P., “Optimized Link State Routing Protocol (OLSR)",
RFC 3626, October 2003

[2] Department of Defense (DoD) Trusted Computer System Evaluation Criteria
(TCSEC) (DoD 5200.28-STD 1985), Fort Meade, MD, Department of Defense,
1985

[3] Ferraiolo, D.F., Kuhn, D.R., “Role-Based Access Control", Proceedings of the
15th National Computer Society Conference, National Institute of Standards
and Technology, Gaithersburg, MD, October 1992, 554-563.

[4] Gorman, J., “The MIDAS Project: interworking and data sharing",
Interworking 2006, Santiago, Chile, January 2007

[5] Hollick, M., Schmitt, J., Seipl, C., Steinmetz, R., “On the Effect of Node
Misbehavior inAd Hoc Networks", Proceedings of IEEE International
Conference on Communications, ICC’04, Paris, France, volume 6, pages 3759-
3763. IEEE, June 2004

[6] Kalam, A. et al, “Organization Based Access Control", 4th International
Workshop on Policies for Distributed Systems and Networks (Policy 2003),
Como, Italy, June 4-6, 2003.

[7] Kolaczek, G., “Application of deontic logic in role-based access control",
International Journal of Appllied Mathematics and Computer Science, vol. 12,
no. 2, 2002, p. 269-275

[8] Moffett, J.D., Lupu, E.C., “The Uses of Role Hierarchies in Access Control",
Proceedings of the fourth ACM workshop on Role-based access control (RBAC
‘99), Fairfax, Virginia, 1999, p. 153-160

[9] Plagemann, T. et al, “A Data Sharing Facility for Mobile Ad-Hoc Emergency
and Rescue Applications", The First International Workshop on Specialized
Ad Hoc Networks and Systems (SAHNS 2007), Toronto, Canada, June 2007

[10] Pužar, M., Andersson, J., Plagemann, T., Roudier, Y., “SKiMPy: A Simple
Key Management Protocol for MANETs in Emergency and Rescue
Operations", Proceedings of the 2nd European Workshop on Security and
Privacy in Ad hoc and Sensor Networks (ESAS 2005), Springer-Verlag, LNCS
3813, Visegrad, Hungary, July 2005

8Chapter 8

SKiMPy: A Simple Key
Management Protocol for
MANETs in Emergency and
Rescue Operations

Authors: Matija Pužar1, Jon Andersson2, Thomas Plagemann1, Yves Roudier3
Affiliations: (1) Department of Informatics, University of Oslo
 {matija, plageman}@ifi.uio.no
 (2) Thales Communications, Norway
 jon.andersson@no.thalesgroup.com

 (3) Institut Eurécom, Sophia-Antipolis, France
 yves.roudier@eurecom.fr

Publication: The 2nd European Workshop on Security and Privacy in Ad hoc and
Sensor Networks (ESAS 2005), Springer-Verlag, LNCS 3813, July 2005
Abstract. Mobile ad-hoc networks (MANETs) can provide the technical platform
for efficient information sharing in emergency and rescue operations. It is impor-
tant in such operations to prevent eavesdropping, because some the data present
on the scene is highly confidential, and to prevent induction of false information.
The latter is one of the main threats to a network and could easily lead to network
disruption and wrong management decisions. This paper presents a simple and ef-
ficient key management protocol, called SKiMPy. SKiMPy allows devices carried
by the rescue personnel to agree on a symmetric shared key, used primarily to es-
tablish a protected network infrastructure. The key can be used to ensure confi-
dentiality of the data as well. The protocol is designed and optimized for the high
dynamicity and density of nodes present in such a scenario. The use of preinstalled
certificates mirrors the organized structure of entities involved, and provides an ef-
ficient basis for authentication. We have implemented SKiMPy as a plugin for the
Optimized Link State Routing Protocol (OLSR). Our evaluation results show that
SKiMPy scales linearly with the number of nodes in worst case scenarios.

74 SKiMPy: A Simple Key Mgmt Protocol for MANETs in Emergency and Rescue Ops

8.1 Introduction

Efficient collaboration between rescue personnel from different organizations is a
mission critical element for a successful operation in emergency and rescue situa-
tions. There are two central requirements for efficient collaboration, the incentive
to collaborate, which is naturally given for rescue personnel, and the ability to effi-
ciently communicate and share information. Mobile ad-hoc networks (MANETs)
can provide the technical platform for efficient information sharing in such scenar-
ios, if the rescue personnel is carrying and using mobile computing devices with
wireless network interfaces.

Wireless communication needs to be protected to prevent eavesdropping. The
data involved should not be available to any third parties, for neither publication
or malicious actions. Another important requirement is to prevent inducing of false
data. At the application layer this might for example lead to wrong management
decisions. At the network layer it has been shown that a very few percent of mis-
behaving nodes easily can lead to network disruption and partitioning [17]. In both
cases, efficiency of the rescue operation will be drastically reduced and might ulti-
mately cause loss of human lives. In order to prevent such a disaster, all data traf-
fic should be protected, allowing only authorized nodes access to the data. Given
that devices carried by the rescue personnel will mostly have limited resources, any
security scheme based solemnly on asymmetric cryptography will be too costly in
terms of computing power, speed and battery consumption. Therefore, the use of
symmetric encryption with shared keys is preferable for MANETs in emergency
and rescue scenarios. Agreeing on a shared key in a highly dynamic and infrastruc-
ture-less MANET is a non-trivial problem and requires establishing trust relations
between all devices. It is important for emergency and rescue scenarios that corre-
sponding solutions are simple, efficient, robust, and autonomous. User interactions
should be kept at an absolute minimum.

This paper describes a simple key management protocol, called SKiMPy, that
can be used to establish a symmetric shared key between the rescue personnel’s
devices. By this, SKiMPy will set up a secure network infrastructure between au-
thorized nodes, while keeping out unauthorized ones. It may be decided at the ap-
plication layer whether the established shared key is robust enough for achieving
some degree of data confidentiality as well. The basis for this simple and efficient
solution is the fact that rescue personnel are members of public organizations with
strict, well defined hierarchies. This hierarchy can be mirrored into a certificate
structure installed a priori on their devices, i.e., before the accident or disaster ac-
tually happens. As a result, it is possible for the nodes during the rescue activity to
authenticate each other on a peer-to-peer basis, without need for contacting a cen-
tralized server or establishing trust in a distributed approach.

The organization of the paper is as follows. Section 8.2 gives a detailed descrip-
tion of our protocol. In Section 8.3 we show some design considerations and respec-
tive solutions. Section 8.4 describes an implementation of the protocol together
with evaluation results. In Section 8.5 we present related work. Finally, conclusion
and future work are given in Section 8.6.

8.2 Protocol Description 775

8.2 Protocol Description

SKiMPy makes use of the existing traffic in the network to trigger key exchange.
Periodic routing beacons (HELLO), sent by proactive routing protocols, are such
an example. The following two messages are specific to SKiMPy:

� Authentication Request (AUTH_REQ): sent by a node after it detects traf-
fic from a node having a key that is worse than its own one. The message is
used to inform the remote node that the sending node is willing to transfer
its key.

� Authentication Response (AUTH_RESP): sent by a node, as a result of a
re-ceived AUTH_REQ message. The message is used to inform the remote
party that the node is willing to perform the authentication and receive the
remote and better key.

The protocol consists of three phases, namely (I) Neighborhood Discovery, (II)

Batching and (III) Key Exchange.
During phase I, a node listens to all traffic sent by its immediate neighbors. If

it detects a node using a worse key (explained in detail in Section 8.3.2), it will
send an Authentication Request message to it, saying it is willing to pass on its
key. Upon receiving such a message, the other node enters the phase II, waiting for
possible other authentication requests before sending a response. This batching pe-
riod is used for optimization - a node will only perform authentication with the
best of all neighbors. All the other keys will, due to the transitiveness property of
the better than relation, at some point get overruled and therefore there is no
point in getting them. After the node has chosen its peer, it sends an Authentica-

secure tunnel
establishment

2

3

4

1

2

2

3

4

AB C

AUTH_REQ

AUTH_RESP

KC
save(KC)

KB KA KC

KC>KB

KB>KA
AUTH_REQ

HELLO

HELLO HELLO

HELLO

Phase I

Phase II

Phase III

1

1

KC>KA
KB>KA

Figure 8.1: Message Flow Diagram

76 SKiMPy: A Simple Key Mgmt Protocol for MANETs in Emergency and Rescue Ops

tion Response after which its peer initializes the actual authentication procedure,
that is, exchange of certificates, establishing a secure tunnel, and finally transfer of
the key. The reason for having such a hand-shake procedure is to ensure that the
nodes can indeed communicate. In some standards, such as 802.11b [19], traffic like
broadcast messages can be sent on a lower transmitting rate with larger transmis-
sion range than data messages. Thus, broadcast messages might reach a remote
node and trigger a key exchange, even though the nodes cannot directly exchange
data packets.

Figure 8.1 shows an example of the key exchange between three nodes (A, B
and C) and indicates the different phases of the key exchange for node A. Node A
enters phase I when turned on. Nodes B and C do not directly hear each other’s
traffic and are only able to communicate through node A, once the shared key is
fully deployed.

The initial states of the three nodes are as follows: A has the key KA, B has KB
and C has KC. In this example, KC is the best key, whereas KA is the worst key.

Phase I:
1. Node A is turned on. All nodes send periodic HELLO messages which are

part of the routing protocol.
2. A receives a HELLO message from B, notices a key mismatch, but ignores

it because KA is worse than KB.
3. A receives HELLO from C, notices a key mismatch, but ignores it because

KA is worse than KC.
4. B and C receive HELLO from A, they both notice they have a better key

than KA, and after a random time delay (to prevent traffic collisions), send
an AUTH_REQ message to A.

Phase II:
1. A receives AUTH_REQ from B notices that B has a better key and sched-

ules authentication with B. The authentication is to be performed after a
certain waiting period, in order to hear if some of the neighbors has an even
better key.

2. A receives AUTH_REQ from C as well, sees that C has a key better than
KB, and therefore decides to perform authentication with C instead.

Phase III:
1. A sends an AUTH_RESP message to C, telling it is ready for the authenti-

cation process
2. C initiates the authentication procedure with A, they exchange and verify

certificates; the secure tunnel is established.
3. C sends its key KC to A through the secure tunnel.
4. A receives the key and saves it locally; the old key KA is saved in the key

repository for eventual later use; A sends the new key further, encrypted
with KA.

8.3 Design Considerations 777

In the next round, that is, after it hears traffic from node B signed with KB,
node A will use the same procedure to deliver the new key KC to node B, hence es-
tablishing a common shared key in the whole cell.

There are two important parameters which influence the performance of the
protocol and therefore have to be chosen carefully. The delays used before sending
AUTH_REQ are random, to minimize the possibility of collisions in the case when
more nodes react to the same message. On the other hand, the delay from the
moment a node receives AUTH_REQ to the moment it chooses to answer with
AUTH_RESP is a fixed interval and should be tuned so that it manages to hear as
many neighbors as possible within a reasonable time limit. By this, all nodes that
have been heard during the waiting period can be efficiently handled in the same
batch.

8.3 Design Considerations

Our protocol is designed for highly dynamic networks, where nodes may appear,
disappear and move in an arbitrary manner. Topology changes are inevitable. The
key management protocol must have low impact on the available resources, i.e.
battery, bandwidth and CPU time. Here, we analyze the different security and
performance issues that had to be considered while designing the protocol, as well
as respective solutions integrated into SKiMPy.

8.3.1 Authentication

An important characteristic of an emergency and rescue operation is that the or-
ganizations involved (police, fire department, paramedics, etc.) are often well
structured, public entities. Before the rescue personnel comes to the disaster scene,
all devices are prepared for their tasks. One task in the preparation phase, which
we call a priori phase [33], is the installation of valid certificates. The certificates
are signed by a commonly trusted authority, such as the ministry of internal af-
fairs, ministry of defense, etc., on the top of the trust chain. This gives nodes the
possibility to authenticate each other without need for contacting a third party.

Certificates on the nodes can identify devices, users handling them, or even
both. The users would then present their certificate to the device by means of a
token, i.e. smartcard. The decision for this does not impact the key management in
SKiMPy, but it impacts the way how lost and stolen nodes are handled, i.e., re-
voking certificates and/or blacklisting of such nodes. We explain this issue later, in
Section 8.3.5.

8.3.2 Choosing Keys

The main task of SKiMPy is to make sure that all the nodes agree on a shared
key. When a node is turned on, it generates a random key with a random ID num-

78 SKiMPy: A Simple Key Mgmt Protocol for MANETs in Emergency and Rescue Ops

ber. The uniqueness of the key IDs must be ensured by e.g. using the hash value of
the key itself as part of the ID, by including the nodes MAC address, etc. The fi-
nal shared key is always chosen from nodes’ initial keys. To achieve this, we intro-
duce the notions of better and worse keys, together with the relation “>” represent-
ing better than. There are several possible schemes for deciding which of the keys
is better or worse and all schemes can be equally valid, as long as they cannot
cause key exchange loops, are unambiguous and transitive: (A > B and B > C) =>
A > C. The necessary control information, which depends on the scheme chosen, is
always sent with the message signature.

We briefly describe two schemes and their advantages and drawbacks.

The first scheme uses arithmetic comparison of two numbers, i.e. the key hav-
ing a higher or lower ID number, timestamp or a similar parameter, is considered
to be better. The advantage of this scheme is that it is unambiguous, transitive
and easy to implement. In addition, it can be “tweaked” in a way that would pre-
vent a single node to cause re-keying of an already established network cell. For
example, if the scheme defines that the lower ID number means a better key, the
highest bit of the ID number can be always set to “1” when the node is turned on,
and cleared once two nodes merge. Assuming that nodes in a certain area will in
most cases pop up independently, this simple and yet efficient method might pre-
vent a lot of unnecessary re-keying traffic. If we use the keys’ timestamps instead
of the ID numbers, choosing a lower timestamp could imply that the key is older
and that more nodes have it already. SKiMPy does not require the clocks of differ-
ent devices to be synchronized and therefore, the given assumption might not nec-
essarily be true, especially if the key creator’s clock was heavily out of sync. One
major drawback of the presented scheme is that a small cell (consisting of, for ex-
ample, 2 nodes) could easily cause re-keying of a much bigger cell (having, for ex-
ample, 100 nodes), which would be a waste of resources.

The second scheme takes care of this problem by using the number of nodes in
each network cell as the decisive factor. The simple rule for this scheme is to al-
ways re-key the smaller cell, i.e. the one with the lower number of nodes, thus
minimizing resource consumption for the necessary re-keying. The approximate
number of nodes can be either retrieved from the routing protocol state informa-
tion (if, for example, the OLSR routing protocol [17] is used) or maintained at a
higher protocol layer, as it is done in our project. However, if not all of the nodes
have exactly the same information (which is to be expected in a dynamic scenario),
and for some obscure reason we have more simultaneous merging processes be-
tween the same two cells, a key exchange loop may occur. One approach to this
problem is to adjust in each node the state information of the number of nodes in
its cell, always increasing it when new nodes join, but never decreasing it upon
partitioning of the cell.

At the present, we use the first scheme, choosing always a key with a lower ID
number. An in-depth study of both schemes and their variations is subject to on-
going and future work.

8.3 Design Considerations 779

8.3.3 Key Distribution

Once a node gets a new key as a result of network merging, the key should be de-
ployed within its previous network cell. There are several ways to achieve this:

� Proactively - each node receiving the key immediately forwards it to the
others. This approach ensures prompt delivery of the key to all nodes, but it
also generates a lot of unnecessary network traffic.

� Reactively - when a node receives a key, it does nothing. Only after detect-
ing a message sent by a neighbor and signed with the old key, the node
sends the new key further. This approach uses less resources, but it takes
more time for the whole cell to get a stable key.

� Combination - the first node getting the new key (that is, the node which
performed the merge) immediately forwards the key to its one-hop
neighbors, since it knows that no other node in its previous cell has it yet.
The other nodes do not distribute it right away, but rather when (if) they
notice that a node still uses an old key. This approach keeps the number of
necessary broadcast messages containing the key at a minimum.

In any of the given cases, the new key is encrypted using the old one before
sending, giving all the other nodes the possibility to immediately start using it.
The old key is saved for a short period of time, for possible latecomers. This can be
done because in this particular case the key change was not performed explicitly
for the purpose of preventing traffic analysis attacks.

In our implementation, described in Section 8.4.1, we use the combination ap-
proach.

8.3.4 Key Update

When created, each key has a companion key (called update key) used to periodi-
cally update it. The update key is never used on traffic that goes onto the network
and therefore it is not prone to traffic-analysis attacks. The nodes must periodi-
cally update the main key. The new key can be computed using one-way hash
functions such as SHA-1 [25] or MD5 [35], ensuring backward secrecy in the case
the key gets broken at some stage. In addition to the ID of the key used to sign it,
a message contains also the update-number saying how many times the key on the
sender-node has been updated. That way, the receiver can easily compute the new
key if it notices a mismatch, which could happen since we can’t expect all the
nodes to perform the update at exactly the same time. The local update will not
take place if the received message has an invalid signature.

80 SKiMPy: A Simple Key Mgmt Protocol for MANETs in Emergency and Rescue Ops

8.3.5 Exclusion of Nodes

Once authenticated, a node is a fully trusted member of the network. This poses
the evident problem of how to exclude such a node once the device has been lost
or, even worse, stolen by a malicious third party. At the present, exclusion of al-
ready authenticated nodes is not solved in SKiMPy and is part of ongoing and fu-
ture work. Here, we describe some ideas on measures to be taken in order to ensure
that such a node stays out of the network.

First, the node’s certificate must be revoked, preventing the node from re-
authenticating later at some stage. Since there is no central authority, a decision is
reached on which node or person can perform the task of revoking certificates. If
the certificates contain also additional attributes such as rank or role of the per-
sons (assuming that the certificates do in fact represent persons, not devices), it
can be decided that only certain roles/ranks (such as leader) can perform revoca-
tion and blacklisting. In theory, the leaders’ devices might also be stolen, but in
practice they should normally be physically well protected. It is important to en-
sure that the compromised node itself does not revoke and blacklist legitimate ones
or, even worse, the whole network.

Next, the node’s IP address should be put on a common blacklist. Assuming
that IP addresses are bound to the certificates (as presented in e.g. [32]), the nodes
would be unable to change their IP address. However, relying on fixed IP ad-
dresses might introduce new issues and should be considered carefully. Traffic com-
ing from blacklisted nodes must be discarded at the lowest possible layer and, in
case legally signed traffic coming from a blacklisted node is detected, the compro-
mised key must be removed.

Additional methods might be used to ensure that devices cannot be used by
unauthorized persons. One such example is a system relying on short range wire-
less authentication tokens. A token is installed into the personnel’s vests or
watches, ensuring confidentiality of the data and denying unauthorized access to
the devices when they get out of their token’s range [18].

0

50

100

150

200

250

300

350

0 50
measurement

m
es

sa
ge

s

Routing
Key mgmt
Certificates

Figure 8.2: Traffic analysis of the first,
non-optimized protocol implementation

0

50

100

150

200

250

300

350

0 50
measurement

m
es

sa
ge

s

Routing
Key mgmt
Certificates

Figure 8.3: Results for the same scenario,
after introducing the batching process

8.4 Protocol Implementation and Evaluation 881

8.3.6 Batching

To save resources as much as possible, our protocol makes the nodes learn about
their neighborhood before acting, reducing the number of performed authentica-
tions and thus reducing directly CPU and bandwidth consumption. This is possible
due to the fact that all nodes directly trust the same certificate authority and,
therefore, if a node has been successfully authenticated before and has received the
shared secret, we implicitly trust it.

Emphasis has been put on optimization with regards to number of messages
sent out in the air. We measured the number of certificates and key management
messages exchanged, and compared these figures to the number of routing mes-
sages needed from the moment when the nodes were turned on, up to the moment
when a stable shared key was established. To perform these measurements, we
used a static, wired test bed with 16 nodes.

Figures 8.2 and 8.3 show that introducing neighborhood awareness approxi-
mately halved the total number of messages and, proportionally, the time needed
to reach a stable state. Moreover, the number of messages carrying certificates,
whose size is much larger than other key management messages, has been reduced
to approximately 23% of the initial number. The authentication was considered to
be done after the exchange of certificates. Therefore, the results shown here are
only an approximation, and might be slightly different when an actual authentica-
tion algorithm is used.

8.3.7 Additional Issues

The protocol’s goal is to establish a secure network infrastructure. SKiMPy makes
it impossible for a misbehaving node to induce a key that has either expired, or
that would not have been selected in a normal operation. Such keys will be imme-
diately discarded.

Timeouts are used during the Key Exchange phase (explained in Section 8.2)
to ensure that a node does not end up in indefinite wait states or deadlocks as a
result of possible link failures. Care must be taken for possible Denial-of-Service at-
tacks in any of these cases.

In the closing phase of the rescue operation [33], the keys must be removed to
prevent them from being possibly reused afterwards on a different rescue site.

8.4 Protocol Implementation and Evaluation

8.4.1 Implementation

Optimized Link State Routing Protocol (OLSR) [17] is a proactive routing protocol
for ad-hoc networks which is one of the candidates to be used in our solution for
the emergency and rescue operations. The olsr.org OLSR daemon [38] is the im-
plementation we decided to test, since it is portable and expandable by means of

82 SKiMPy: A Simple Key Mgmt Protocol for MANETs in Emergency and Rescue Ops

loadable plugins. One example of such a plugin, present in the main distribution, is
the Secure OLSR plugin [26]. The plugin is used to add signature messages to
OLSR traffic, only allowing nodes that possess the correct shared (pre-installed)
key to be part of the OLSR routing domain. One important functionality this
plugin lacks is a key management protocol. Even though SKiMPy is mainly de-
signed to protect all traffic and not only routing, it is still a good opportunity to
test and analyze it in a realistic environment with a real routing protocol.
The key management protocol has been coded directly into the security plugin, al-
though the plans are to make it as a separate one. X.509 certificates [28] and
OpenSSL [37] are currently used to perform node authentication.

8.4.2 Evaluation Results

To facilitate development of this and other protocols, we created an emulation test
bed, called NEMAN [34]. Routing daemons run independently, each attached to a
different virtual Ethernet device. We use the monitoring channel of the emulator
to analyze the keys used by each of the routing daemons. In order to test perform-
ance and scalability the protocol, we have made measurements from 2 to 100
nodes, with two very different kinds of scenario: chain and mesh. Figures 8.4 and
8.5 show example screenshots taken from the GUI, representing the two different
scenarios.

In a chain scenario, the nodes are lined up in a single chain and the distance

between all nodes in the chain is such that only the direct neighbors can communi-
cate in a single hop with each other. We consider this to be the worst case scenario
still giving full network connectivity. Given that all the nodes have to perform au-
thentication with both their neighbors, this leaves no place for optimization, i.e.
batching during the waiting period.

In a mesh scenario, however, nodes have multiple, randomly scattered
neighbors, as it is natural in ad-hoc networks. Having multiple neighbors allows
the protocol to exploit the batching phase, reducing traffic and resource consump-
tion.

Figure 8.4: Example of a chain scenario

Figure 8.5: Example of a mesh scenario

8.5 Related Work 883

Ten independent runs were performed for each number of nodes and each sce-
nario. All the nodes were started simultaneously (which we assume is the worst
case for our protocol), with a random key and key ID. To be able to meaningfully
compare the results, the nodes were static and the density was constant. The delay
in the batching period was set to be 1 second, i.e. half of the interval used by
OLSR to send HELLO messages.

One important fact that the results on Figure 8.6 immediately show is that the
protocol scales linearly with linear increase of the number of nodes and physical
network area accordingly (thus giving the same density of nodes). After approxi-
mately 10 nodes, the total time became almost independent on the network size.
By the fourth second, most authentications have already been performed and the
key distribution process came into place. In some additional measurements, we in-
troduced node movement using the random waypoint mobility model. As long as
all of the nodes remained reachable and the density was constant, movement did
not induce a notable delay.

We also proved that having multiple neighbors does in fact lower the time nec-
essary to reach a stable state. This scenario gives less deviation as well, which is
understandable since in the case of chain there is more fluctuation of keys, nicely
seen in the GUI.

8.5 Related Work

Different authentication schemes are available as a starting point for key manage-
ment.

Devices can exchange a secret or pre-authentication data through a physical
contact or directed infrared link between them [3, 26]. Another way is for the users
to compare strings displayed on their devices (a representation of their public key,
distance between them, etc. as presented in [19]). Since user interaction in a rescue
operation should be kept as minimum, we need a different approach.

Threshold cryptography schemes, such as [30] and [41] require all nodes that
are going to perform signatures to carry a share of the group private key. The full

0

5

10

15

20

25

30

0 20 40 60 80 100
Number of nodes in the wireless cell

Se
co

nd
s

Mesh
Chain

Figure 8.6: Time needed to achieve a stable shared key

84 SKiMPy: A Simple Key Mgmt Protocol for MANETs in Emergency and Rescue Ops

signature is acquired by a certain, predefined number of nodes who present partial
signatures computed using their shares. These schemes allow a small number of
nodes to be compromised and still not to present a threat for the network. How-
ever, since we do not know the number of nodes that can be expected at the rescue
scene and small partitions might always be present, this approach is not suited for
our scenario.

�apkun et al. [20] present a fully self-organized public-key management system
that does not rely on trusted authorities, developed mainly for networks where us-
ers can join and leave without any centralized control. This is not applicable to
networks used in rescue operations, where only authorized nodes are allowed to
participate. In [21], they present a solution similar to ours, explained in Section
8.3.1, allowing nodes to authenticate each other by means of pre-installed certifi-
cates with a common authority. The advantages of such a system are twofold:
first, the data in the network is more secure. Second, establishing trust and agree-
ing on a shared key is much more efficient, i.e., faster and less resources are con-
sumed.

Related key management protocols can be roughly divided into the following
three categories [16].

The first one relies on a fixed infrastructure and servers that are always reach-
able. Since we never know where accidents will happen, we should expect them to
happen at places where we cannot rely on the fact that fixed infrastructure will be
present.

The next category comprises contributory key agreement protocols, which are
not suited for our scenario for several reasons. Such protocols ([1, 5, 12, 29, 30], to
name a few) are based on Diffie-Hellman two-party key exchange [23] where all the
nodes give their contribution to the final shared key, causing re-keying every time
a new node joins or an existing node leaves the group. In an emergency and rescue
operation, we can expect nodes to pop up and disappear all the time, often causing
network partitioning and merging. Therefore, using contributory protocols would
cause a lot of computational and bandwidth costs which cannot be afforded. Be-
sides, most of these protocols rely on some kind of hierarchy (chain, binary tree,
etc.) and a group manager to deploy and maintain shared keys. In a highly dy-
namic scenario this approach would be quite ineffective. Another reason why such
protocols are not suited for us, is that in order for the nodes to be able to exchange
keys, a fully working routing infrastructure has to be established prior to that.
Since the routing protocol is one of the main things we need to protect, this is a
major drawback. Asokan and Ginzboorg [12] present a password-based authenti-
cated key exchange system. A weak password is known to every member and it is
used by each of them to compute a part of the final shared key. This approach
shares some already mentioned drawbacks and introduces new ones which conflict
with our scenario and requirements. User interaction is needed and it is assumed
that all the members are present when creating the key.

The last category are protocols based on key pre-distribution. The main char-
acteristic of such protocols is that a pair or group of nodes can compute a shared
key out of pre-distributed sets of keys present on each node. These sets of keys are

8.6 Conclusion 885

either given by a trusted entity before the nodes come to the scene [4, 14, 21], or
chosen and managed by the nodes themselves, as it is done in DKPS [16].

SKiMPy is different in the sense that it uses pre-installed certificates to per-
form direct authentication between two nodes. This makes it more simple and effi-
cient.

8.6 Conclusion

In this paper, we presented a simple and efficient key management protocol, called
SKiMPy, developed and optimized especially for highly dynamic ad-hoc networks.
The protocol relies on the fact that there will be an a priori phase of rescue and
emergency operations, within which certificates will be deployed on rescue person-
nel’s devices. Pre-installed certificates are necessary due to the fact that highly
sensitive data may be exchanged between the rescue personnel. The certificates
make it possible for the nodes to authenticate each other without need for a third
party present on the scene.
We described a proof-of-concept implementation, as well as evaluation results. The
results show that SKiMPy performs very well and it scales linearly with the num-
ber of nodes. As part of further work we will analyze more in-depth different key
selection and distribution schemes, authentication protocols, and fine tune certain
protocol parameters, like the delays described in Section 8.2. Open issues like ex-
clusion of compromised nodes, duplicate key ID numbers, denial of service attacks,
etc. are also subject of further investigation.

Acknowledgment

This work has been funded by the Norwegian Research Council in the IKT-2010
Program, Project Nr. 152929/431. It has been also partly supported by the Euro-
pean Union under the E-Next SATIN-EDRF project.

References

[11] Alves-Foss, J., “An Efficient Secure Authenticated Group Key Exchange
Algorithm for Large And Dynamic Groups”, Proceedings of the 23rd National
Information Systems Security Conference, pages 254-266, October 2000

[12] Asokan, N., Ginzboorg, P., “Key Agreement in Ad Hoc Networks”, Computer
Communications, 23:1627-1637, 2000

[13] Balfanz, D, Smetters, D. K., Stewart, P, Wong, H. C., “Talking To Strangers:
Authentication in Ad-Hoc Wireless Networks”, Proceedings of the 9th Annual
Network and Distributed System Security Symposium (NDSS’02), San Diego,
California, February 2002

86 SKiMPy: A Simple Key Mgmt Protocol for MANETs in Emergency and Rescue Ops

[14] Blom, R., “An Optimal Class of Symmetric Key Generation System”,
Advances in Cryptology - Eurocrypt’84, LNCS vol. 209, p. 335-338, 1985

[15] Bresson, E., Chevassut, O., Pointcheval, D., “Provably Authenticated Group
Diffie-Hellman Key Exchange - The Dynamic Case (Extended Abstract)”,
Advances in Cryptology - Proceedings of AsiaCrypt 2001, pages 290-309.
LNCS, Vol. 2248, 2001

[16] Chan, Aldar C-F., “Distributed Symmetric Key Management for Mobile Ad
hoc Networks”, IEEE Infocom 2004, Hong Kong, March 2004

[17] Clausen T., Jacquet P., “Optimized Link State Routing Protocol (OLSR)”,
RFC 3626, October 2003

[18] Corner, Mark D., Noble, Brian D., “Zero-Interaction Authentication”, at The
8th Annual International Conference on Mobile Computing and Networking
(MobiCom’02), Atlanta, Georgia, September 2002

[19] �agalj, M., �apkun, S., Hubaux, J.-P., “Key agreement in peer-to-peer
wireless networks”, to appear in Proceedings of the IEEE (Specials Issue on
Security and Cryptography), 2005

[20] �apkun, S., Buttyán, L., Hubaux, J.-P., “Self-Organized Public-Key
Management for Mobile Ad Hoc Networks”, IEEE Transactions on Mobile
Computing, Vol. 2, No. 1, January-March 2003

[21] �apkun, S., Hubaux, J.-P., Buttyán, L., “Mobility Helps Security in Ad Hoc
Networks”, In Proceedings of the 4th ACM Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc’03), Annapolis, Maryland, June 2003

[22] Di Pietro, R., Mancini, L., Jajodia, S., “Efficient and Secure Keys
Management for Wireless Mobile Communications”, Proceedings of the second
ACM international workshop on Principles of mobile computing, pages 66-73,
ACM Press, 2002

[23] Diffie, W., Hellman, M., “New directions in cryptography”, IEEE Transactions
on Information Theory, 22(6):644-652, November 1976

[24] Eschenauer L., Gligor, Virgil D., “A Key-Management Scheme for Distributed
Sensor Networks”, Proceedings of the 9th ACM Conference on Computer and
Communication Security (CCS’02), Washington D.C., November 2002

[25] Federal Information Processing Standard, Publication 180-1. Secure Hash
Standard (SHA-1), April 1995

[26] Hafslund A., Tønnesen A., Rotvik J. B., Andersson J., Kure Ø., “Secure
Extension to the OLSR protocol”, OLSR Interop Workshop, San Diego,
August 2004

[27] Hollick, M., Schmitt, J., Seipl, C., Steinmetz, R., “On the Effect of Node
Misbehavior in Ad Hoc Networks”, Proceedings of IEEE International
Conference on Communications, ICC'04, Paris, France, volume 6, pages 3759-
3763. IEEE, June 2004

8.6 Conclusion 887

[28] Housley, R., Ford, W., Polk, W. and D. Solo, “Internet X.509 Public Key
Infrastructure”, RFC 2459, January 1999

[29] IEEE, “IEEE Std. 802.11b-1999 (R2003)”,
http://standards.ieee.org/getieee802/download/802.11b-1999.pdf

[30] Luo, H., Kong, J., Zerfos, P., Lu, S., Zhang, L., “URSA: Ubiquitous and
Robust Access Control for Mobile Ad-Hoc Networks”, IEEE/ACM
Transactions on Networking, October 2004

[31] Matsumoto, T., Imai, H., “On the key predistribution systems: A practical
solution to the key distribution problem”, Advances in Cryptology -
Crypto’87, LNCS vol. 293, p. 185-193, 1988

[32] Montenegro, G., Castelluccia, C., “Statistically Unique and Cryptographically
Verifiable (SUCV) Identifiers and Addresses”, NDSS'02, February 2002

[33] Plagemann, T. et al., “Middleware Services for Information Sharing in Mobile
Ad-Hoc Networks - Challenges and Approach”, Workshop on Challenges of
Mobility, IFIP TC6 World Computer Congress, Toulouse, France, August
2004

[34] Pužar, M., Plagemann, T., “NEMAN: A Network Emulator for Mobile Ad-Hoc
Networks”, Proceedings of the 8th International Conference on
Telecommunications (ConTEL 2005), Zagreb, Croatia, June 2005

[35] Rivest, R., “The MD5 Message-Digest Algorithm”, RFC 1321, April 1992

[36] Stajano, R., Anderson, R., “The Resurrecting Duckling: Security Issues for
Ad-hoc Wireless Networks”, 7th International Workshop on Security
Protocols, Cambridge, UK, 1999

[37] The OpenSSL project, http://www.openssl.org/

[38] Tønnesen A., “Implementing and extending the Optimized Link State Routing
protocol”, http://www.olsr.org/, August 2004

[39] Wallner, D., Harder, E., Agee, R., “Key management for Multicast: issues and
architecture”, RFC 2627, June 1999

[40] Wong, C., Gouda, M. and S. Lam, “Secure Group Communications Using Key
Graphs”, Technical Report TR 97-23, Department of Computer Sciences, The
University of Texas at Austin, November 1998

[41] Zhou, L., Haas, Z., “Securing Ad Hoc networks”, IEEE Network, 13(6):24-30,
1999

9Chapter 9

NEMAN: A Network Emulator
for Mobile Ad-Hoc Networks

Authors: Matija Pužar, Thomas Plagemann

Affiliations: Department of Informatics, University of Oslo
 {matija, plageman}@ifi.uio.no

Publication: The 8th International Conference on Telecommunications (ConTEL
2005), Zagreb, Croatia, June 2005

Abstract: Development of applications and protocols for wireless ad-hoc networks
has always been a challenge. Specific characteristics such as frequent topology
changes due to nodes moving around, popping up or being turned off, need to be
considered from the earliest stages of development. Since testing and evaluation
using genuine wireless devices is both expensive and highly impractical, other tools
need to be used in the development phase. Simulators give a very detailed model
of lower layers’ behaviors, but code often needs to be completely rewritten in order
to be used on actual physical devices. Emulators present a trade-off between real
test beds and simulators, providing a virtual wireless network at the lowest layers,
and yet allowing real code to be run on the higher layers. In this paper, we present
such an emulation platform, called NEMAN, that allows us to run a virtual wire-
less network of hundreds of nodes on a single end-user machine. NEMAN has
shown to be an important and very useful tool during development of different ap-
plications and protocols for our project, including a key management protocol and
a distributed event notification service.

90 NEMAN: A Network Emulator for Mobile Ad-Hoc Networks

9.1 Introduction

Information sharing is a mission critical element in rescue and emergency opera-
tions. Mobile ad-hoc networks (MANETs) could provide a useful infrastructure to
support information sharing, but appropriate applications are needed. In addition,
middleware support has to be present to facilitate efficient application develop-
ment for this type of infrastructure. In the Ad-Hoc InfoWare project [9], we are
addressing these needs by developing middleware services for information sharing.
The core building blocks of these services are knowledge management, a local and
a distributed event notification service, resource management, and security and
privacy management. As part of the development process, it is necessary to ana-
lyze and compare design and implementation alternatives for the building blocks,
understand qualitatively and quantitatively the design trade-offs, to test whether
the protocols and algorithms actually work, and to evaluate their efficiency and
compare them with related solutions from others. Basically, there are three kinds
of development environments that support these tasks: simulation, emulation, as
well as implementation and field tests.

The development environment that comes closest to real live deployment are
field tests of MANETs. However, field tests of wireless scenarios are expensive with
respect to the number of devices and persons needed to perform them as well as
the time it takes to prepare them. Furthermore, it is very hard to entirely control
all parameters in a field test and to perform repeatable experiments. Field tests are
clearly not perfectly suited to support the development of middleware protocols,
services and applications for MANETs. On the other hand, both simulation and
emulation provide controlled environments which enable repeatable experiments
and are generally much cheaper than field tests. To facilitate the development and
testing of such applications and protocols, it is important to carefully choose a
suitable simulation or emulation tool.

Simulators, such as GloMoSim [15] and ns-2 [12], have long been used in the
ad-hoc field and make it possible to experience very diverse communication situa-
tions and a large scale of deployment. One of the goals of these simulators is to
give a detailed representation of the physical layer. A major drawback is that
learning how to use and program a simulator like ns-2 takes a substantial amount
of time. Furthermore, the code that has been developed for these simulators needs
to be rewritten for later deployment on real systems. By using an emulating plat-
form, however, real processes run in real time and one can immediately start writ-
ing the very same code that will be later used on wireless devices.

 In particular, we have the following requirements on a simulation or emulation
environment for the development of protocols, middleware services and applica-
tions in the Ad-Hoc InfoWare project:

� Minimal initial effort: installing and learning to use a particular simulation
or emulation environment should not consume too much time and effort, so
that it can also be efficiently used from novices in shorter projects, like mas-
ter theses.

9.1 Introduction 991

� Costs: we need an affordable solution, with regards to hardware and soft-
ware costs, as well as human resources. Thus, the environment should be
able to run on a single standard PC.

� Scalability: the chosen platform should be able to run a high number of
nodes without severe performance loss.

� Portability: the code developed for the applications and protocols should be
portable to genuine wireless devices with minor or no changes at all.

� Realistic network layer: our protocols are supposed to utilize existing ad-hoc
routing protocols, therefore, a real routing protocol should run in the simu-
lation or emulation environment. During the development process, our main
concern is connectivity and loss of connectivity between nodes. Quality of
service and specific lower layer issues such as collisions in the air, hidden
terminals, etc. are of lower importance for us. We mainly need to reflect the
effects of mobility in MANETs on connectivity.

� Possible comparability: much work in the area is being done using ns-2 and
we want to be able to compare our solutions with those from others without
re-implementing them in our simulation or emulation environment. Using
standard formats for scenario files, such as those from ns-2, would enable us
to perform experiments with the same scenarios and to compare our results
with results obtained with other tools.

Many researchers are aware of the need for appropriate development environ-

ments of MANET protocols, but the majority is being focused on link layer and
network layer issues. Therefore, we could not find existing simulation or emulation
environments that completely fulfill our requirements. Inspired by the approach of
the network emulator MobiEmu [16], we have developed an emulation platform
called NEMAN. To the best of our knowledge, NEMAN is the only platform able
to emulate MANETs consisting of hundreds of nodes on a single PC. Based on
scenario descriptions from ns-2, NEMAN controls the physical connectivity be-
tween the virtual mobile nodes. Currently, we use the Open Link State Routing
Protocol (OLSR) [1] with NEMAN to establish and maintain the IP layer of the
emulated network. The processes in these virtual mobile nodes bind to virtual
network interfaces, i.e., TAP interfaces, available in the Linux kernel. By this, the
code developed for NEMAN can be used in real wireless nodes with a minimal ef-
fort. It is the aim of this paper to describe the design, implementation and first
evaluation of NEMAN, and to analyze its strength and weaknesses.

The rest of the paper is structured as follows. Section 9.2 shows some of the
most important related network emulators. In Section 9.3, we present the architec-
ture of NEMAN. Implementation details are described in Section 9.4, while in the
following sections we explain the application development process (Section 9.5)
and describe our experiences in using NEMAN for the development of a key man-
agement protocols and a distributed event notification service in the Ad-Hoc
InfoWare project (Section 9.6). Performance and scalability are described in Sec-
tion 9.7. Finally, Section 9.8 gives a conclusion and ideas for the future work.

92 NEMAN: A Network Emulator for Mobile Ad-Hoc Networks

9.2 Related Work

A common way to perform emulations is to have a single machine for each emu-
lated node. In such cases, filtering at the MAC layer is used to achieve the notion
of wireless topology, often by means of iptables.

MobiEmu consists of several slave nodes, as well as one master node. As the
master gives instructions on topology changes, the slaves set local iptables-rules
preventing them from hearing traffic from those nodes they have no physical con-
nectivity with. However, the concept of having separate physical or virtual ma-
chines for each emulated node, made MobiEmu very impractical for us to use it as
such.

MNE (Mobile Network Emulator [6]) uses a static network infrastructure to in-
terconnect devices. Each device has two interfaces, where one acts as a mobile
emulation control channel while the other is used for the emulated wireless net-
work. The latter can be an actual wireless interface, allowing for some lower layer
effects (such as collisions) to be taken into account as well. Information about to-
pology changes is sent through the control channel, causing the nodes to set or re-
move iptables-rules accordingly, as it is done in MobiEmu. The main problem of
this approach is that it still needs a separate device for each emulated wireless
host.

EMWIN [17] improves the issue with the number of physical machines by al-
lowing each node to have several network interfaces, each acting as a separate
wireless node. EMWIN intends to provide emulation of some MAC layer effects by
introducing an additional emulated MAC (eMAC) layer. Again, due to a relatively
high number of machines required, this approach is still impractical for our needs.

MobiNet [7] consists of core nodes, used to emulate topology-specific and hop-
by-hop network characteristics, and edge nodes. It is able to emulate a much larger
number of virtual wireless devices by having multiple Virtual Edge Nodes (VNs),
with different IP addresses, on each edge node. MobiNet has a built-in routing pro-
tocol (DSR) and emulates MAC layer effects as well. Although the number of
physical devices required to run MobiNet is drastically reduced, and the platform
seems to be very well developed, its setup is still somehow complicated, with re-
gards to our requirements.

JEmu [3] was developed by the Networks & Telecommunications Research
Group (NTRG) to emulate the radio components of their particular communica-
tion stack. To represent nodes in the emulation, JEmu uses genuine wireless de-

Table 9.1: Properties of Various Emulators for Mobile Networks

 MobiEmu MNE EMWIN MobiNet JEmu
Usage �
Low costs �
Scalability � �
Portability � � � � �
Network layer � � � � �
Comparability �

9.3 Architecture 993

vices with different types of wireless communication links, as well as stationary
machines. JEmu has a somehow different approach when it comes to topology
simulation. Every packet is first sent to the emulation engine which then decides
whether certain nodes are able to receive it or whether there should be a collision,
in which case it depends on the specific configuration what should be done.

Table 9.1 summarizes roughly the properties of these related works with re-
spect to our particular requirements. As it can be seen from the table, none of
them fulfills all the requirements.

A different platform, designed for wired networks, is IMUNES [14]. It provides
virtualization of the complete network stack functionality, allowing for simultane-
ous operation of multiple independent network stack instances, i.e. virtual nodes,
within a single FreeBSD kernel. In contrast, NEMAN is implemented in user space
and uses a single network stack of the Linux kernel. Another difference is that
IMUNES provides no support for mobile scenarios.

9.3 Architecture

NEMAN is designed to emulate a relatively large scale wireless network, consisting
of up to hundreds of nodes, within a single physical machine. With that respect,
NEMAN is closest to MobiNet. The NEMAN architecture comprises the following
three elements, as shown on Figure 9.1:

� the user processes represent actual applications and protocols that are being
tested, including routing daemons,

� the topology manager manages virtual network interfaces and performs
packet switching according to the topology information at a certain moment
in time, and

� the graphical user interface (GUI), used to visualize the emulated network

tap1 (...)

monitoring,
logging

control
channel

feedback
channel

>[] ||

monitoring
channel

tap2 tap3 tap0

Topology
Manager

GUI

Processes

Figure 9.1: NEMAN architecture

Figure 9.2: Example screenshot taken from the GUI

94 NEMAN: A Network Emulator for Mobile Ad-Hoc Networks

and to induce the topology information to the topology manager
All the components, including the topology manager, run in the user space of

the Linux operating system. Root-privilege is needed to configure the virtual net-
work interfaces (standard ifconfig command) and to be able to use the required
socket option SO_BINDTODEVICE.

User processes communicate through this basic network infrastructure by hook-
ing to virtual Ethernet network devices, called TAP devices. TAP devices are
available in the Linux kernel and provide low level support for Ethernet tunneling.
User processes can send and receive data via TAP interfaces using the classical
socket API, thus achieving portability of code. The only requirement for the sock-
ets is to use the specific socket option SO_BINDTODEVICE. This is an important
requirement as it ensures that a process’ socket will listen and send only to the
specified interface, and thus not interfere with traffic addressed to other process
running on the same machine. By this, we introduce the notion of virtual nodes,
comprising all processes hooked to a certain TAP interface.

NEMAN by itself operates on the link layer, with minor interventions to the
network layer as well, such as internal hop-by-hop routing. This is necessary be-
cause it is not possible for multiple routing daemons to correctly use the same ker-
nel’s routing table (as explained in Section 9.4). Routing daemons are an example
of standard user level processes that are hooked to the TAP interfaces. They are
needed to provide a working IP infrastructure to all other user level processes that
are communicating via IP based protocols through the TAP interfaces. Thus, rout-
ing daemons are an important prerequisite to implement and test middleware and
application layer protocols, which was exactly our goal.

The topology manager is the core of NEMAN. It is the user-space application
creating and maintaining the TAP devices. Since TAP devices provide Ethernet
tunneling, we ensured the possibility of running any network layer protocol on top.
Every frame received on a TAP interface is available to the topology manager, and
every frame forwarded by the topology manager to a TAP interface is available to
the processes hooked to it. In other words, when the topology manager gets a
frame sent to one of its TAP interfaces, it can then decide to forward it to some of
the other interfaces (or none), according to the topology information it has at the
moment. One TAP interface (in our case, tap0) is reserved as the monitoring
channel, having an open bidirectional connection to all the other TAP interfaces,
independent from the topology. This is a very important feature, allowing us to
perform analysis of the network traffic using standard tools such as tcpdump or
ethereal. Moreover, having in mind that the monitoring channel works both ways,
we are able to use the same channel to induce traffic into the virtual network from
the “outside world”. This feature comes useful when applications or services need
to be triggered at a specific moment of time. An example of such a service is
shown in Section 9.6.2.

The implementation of the GUI is currently based on MobiEmu’s GUI. It is a
Tcl/Tk script, independent from the topology manager and can run on a separate
machine. The GUI shows the current position of nodes, their transmission ranges
and links between nodes that can directly communicate with each other (Figure
9.2). Topology and node movement data are acquired from standard ns-2 scenario

9.4 Implementation Details 995

files, created by, for example, ns-2’s setdest program. Scenario files are interpreted
sequentially, allowing us to introduce some application-specific events at specific
moments in the emulation, thus achieving repeatable results. Information about
topology changes is sent to the topology manager through the control channel, in
form of UDP packets. The GUI allows also any user process to give it some feed-
back, so that important state changes in a user process can be visualized as e.g.
color changes in the GUI. An example, where this has proved to be a very useful
feature, is described in Section 9.6.1.

The current implementation of the emulator provides us a working network in-
frastructure, essential for the development process of higher layer applications. In
the conclusion, we discuss some possible future extensions, including the emulation
of characteristics typical for wireless networks, such as collisions in the air, hidden
terminals, obstacles, etc.

9.4 Implementation Details

One of the major problems we noticed was that the Linux kernel gracefully ignores
all incoming packets that have been sent from one of its own interfaces. Although
in most situations this is a reasonable thing to do, with respect to security issues
and prevention from possible message loops, it was not an option in our case,
where local interfaces were the only ones communicating between themselves. The
solution was to implement the send-to-self (STS) patch developed by Ben Greear,
which fixed the problem, allowing for local traffic to be received as well.

The next problem emerged when the first ARP packets started coming from
our test-applications. For any ARP packet coming to the machine, independent on
the IP address being queried, all local interfaces that hear the query answer with
their own MAC address. Again, this might be a useful feature in most of the stan-
dard situations where an IP address represents a physical machine, but in our case
the amount of unnecessary traffic generated (with false information) was unaccept-
able. There are two possibilities to solve this problem. The first one is to imple-
ment a kernel patch, called hidden, developed by Julian Anastasov. This patch al-
lows for certain devices to be hidden from other devices (hence the name), when it
comes to ARP requests. The second possibility is to let topology manager directly
answer all ARP requests between its TAP interfaces. Although the second ap-
proach might reduce a bit on realism at the lower layers, for our case, where we
are mainly concerned about connectivity and topology changes, it is acceptable.
Furthermore, it turned out that the multi-hop routing problem can be solved in a
corresponding way.

The multi-hop routing problem is caused by the fact that IP addresses of “re-
mote” virtual nodes are tied to local TAP interfaces. This contradiction prevents
the routing protocols to set routes towards such addresses, which is the case for all
our emulated nodes. Therefore, the use of the kernel’s routing table is impossible
in our case. Using dynamically created iptables-rules to perform routing on a single
machine proved not to work either. We decided to solve the problem on a higher
layer, without introducing additional patches into the kernel. The implementation

96 NEMAN: A Network Emulator for Mobile Ad-Hoc Networks

of the OLSR routing protocol we are currently using in NEMAN, the olsr.org
OLSR daemon [13], writes every route change to the standard output. This enables
us to induce that information directly into the topology manager, through a parser
developed especially for that purpose. The parser serves as a bridge between the
routing daemons and the topology manager, translating their outputs to control
messages. The topology manager keeps an internal routing table for each virtual
node, which is then used for hop-by-hop forwarding of packets. In the network,
this forwarding appears as if every intermediate node had retransmitted the packet
until its final destination. By solving the routing issue in the described way, no
changes were needed to the routing daemon and the kernel. Depending on an im-
plementation, this approach might allow us to use other routing protocols as well,
with either no changes at all or just minor changes to the routing daemon’s output
and/or to our parser. Reactive routing protocols, such as AODV [8], present a case
where some code must reside in the kernel. This is necessary since such protocols
need to intercept and hold outgoing packets used to trigger route discovery. Port-
ing such code to NEMAN might prove to be much more difficult than in the case
of OLSR.

9.5 Application Development

One of the main points of using an emulator is to be able to port applications from
the emulating platform to genuine wireless devices without need having to change

run the topology manager,
the GUI and possible helper

applications

if necessary, (re)start all the
processes to be emulated

run the emulation

load the scenario file, (re)start
routing daemons

stop the emulation analysis

generate scenario file,
develop applications

Preparation

Emulation Run

Analysis

adjust applications,
if necessary

Figure 9.3: Workflow diagram of using NEMAN

9.6 Experiences 997

the code. Any application able to use e.g. Ethernet (eth*), 802.11 (wlan*) or simi-
lar devices can be used directly with TAP devices as well. The only precondition is
that, in order not to mix with other applications’ data, an application has to listen
and send only to the specified devices, which is accomplished by using the previ-
ously mentioned SO_BINDTODEVICE option when creating the socket.

Figure 9.3 shows the typical process of using NEMAN. The process is roughly
divided into three phases. In the preparation phase, the scenario files and initial
user process’ code are developed, and the emulator core is initiated. In the next
phase, user processes are started. The analysis phase can overlap with the run-
phase, since traffic can be monitored on the fly through the monitoring channel.
The last two phases are then iterated until the wanted functionality is achieved.

Apart from the applications being tested, additional helper applications might
be needed to, for example, restart routing daemons on demand or to listen to mes-
sages triggered by custom events in the scenario file. The monitoring channel pro-
vides the means to perform analysis on what is going on in the network on the fly,
by hooking to tap0 with e.g. standard tools like tcpdump. In addition, all the traf-
fic can be saved for a later, more detailed analysis.

9.6 Experiences

NEMAN was developed primarily to test and evaluate applications and protocols
for the Ad-Hoc InfoWare project. Here, we present our experiences with some of
the applications and protocols we tested and which already benefit from the emu-
lation platform.

The olsr.org OLSR daemon was the first example showing that already existing
applications might need no modifications to be able to work with NEMAN. Indeed,
at each moment the output from a certain daemon, showing its 1-hop and 2-hops
neighbors, would fully match what was displayed in the GUI.

9.6.1 A Simple Key Management Protocol for MANETs

The SKiMPy key management protocol [10] is used to establish a symmetric
shared key between the rescue personnel’s devices. The key provides the means for
establishing a secure network infrastructure between authorized nodes, while keep-
ing out unauthorized ones. SKiMPy is designed and optimized for highly dynamic
ad-hoc networks and it is completely autonomous, requiring no user interaction at
all. In the current implementation, the key management protocol has been coded
directly into the security plugin [5] of the OLSR routing daemon.
The emulator was an essential tool to test the performance and scalability of
SKiMPy. We tested it for two different static scenarios, namely chain and mesh.

In a chain scenario, all nodes are lined up in a single chain and the distance
between the nodes in the chain is such that only the direct neighbors can commu-
nicate in a single hop with each other. We consider this to be the worst case sce-
nario for SKiMPy, since its performance benefits from having more neighbors.

98 NEMAN: A Network Emulator for Mobile Ad-Hoc Networks

In a mesh scenario, nodes have multiple, randomly scattered neighbors, as it is
natural in ad-hoc networks. Having multiple neighbors allows the protocol to re-
duce traffic and resource consumption.

We have measured the time needed for the whole network to agree on a shared
key. Two different platforms have been used, a Pentium 4 2.4GHz running Linux
2.4.21 (a) and a dual Xeon 2.80GHz running Linux 2.6.10 (b).

Ten independent runs were performed for each number of nodes and each sce-
nario. The results on Figure 9.4 show that the key management protocol scales
linearly with linear increase of the number of nodes and physical network area ac-
cordingly (thus giving the same density of nodes). It can also be seen that in the
first case the machine presented a bottleneck with regards to the ability to deliver
packets in real time (see discussion in Section 9.7). In the second case, the total
time became almost independent on the network size with networks consisting of
10 or more nodes.

One of the useful features of MobiEmu’s original GUI is that it accepts certain
feedback messages. A special application constantly monitors all traffic on the
monitoring channel (tap0) and analyzes signed OLSR packets, containing the ID
number of the key used to perform the signature. When a change is noticed, the
ID number is converted to a 24-bit RGB color code and sent as feedback to the
GUI, which then colors the node on the screen accordingly. That way, we got a
simple and yet effective way to see in real time how the protocol works and how
the keys are spread through the network.

To conclude, NEMAN has played an important role in the process of develop-
ing, testing and evaluating SKiMPy. It presented us both numerical and graphical
proofs that the protocol indeed worked as expected.

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100
Number of nodes in the wireless cell

Se
co

nd
s

Mesh (a)
Chain (a)
Mesh (b)
Chain (b)

Figure 9.4: Time needed to achieve a stable shared key

9.7 Performance and Scalability 999

9.6.2 Distributed Event Notification Service (DENS)

DENS [11] is a communication tool in our architecture, providing an asynchronous
communication mechanism using the publish/subscribe model which is well suited
for a highly dynamic environment such as our scenario. Some of the nodes in the
network are chosen as so called DENS-nodes. These nodes have the role of media-
tors or brokers between the subscribers and publishers, so both subscriptions and
notifications are sent to them. In a MANET, disconnections causing partitioning
are frequent and the DENS-nodes may therefore get disconnected as well. We want
the service to be highly available so our solution should survive such network par-
titions. This is achieved by replicating information about subscriptions among the
DENS-nodes. However, the replication of state information together with network
partitions can easily lead to inconsistent replicas. One important tasks for DENS-
nodes is therefore to regain a consistent state as fast as possible. Scalability is also
an issue since having too many DENS-nodes would create a lot of traffic when
synchronizing and replicating information about subscriptions and notifications, so
we need to run tests to find the right trade-off between availability of the service
and scalability.

The first implementation of the DENS protocol is currently under development
and NEMAN has proven to be an essential tool for analyzing and debugging the
protocol. To trigger DENS-nodes to perform subscriptions and notifications, which
in the real scenario will be done at the application layer, we use the monitoring
channel for its other purpose, i.e. inducing messages. Control messages are sent
through the monitoring channel to DENS nodes either directly from the shell, or
from the GUI. Special lines can be added to the scenario file, causing the GUI to
forward them at the specified time, through a proxy application, into the monitor-
ing channel.

9.7 Performance and Scalability

We have already seen in Section 9.6.1 that the hardware configuration on which
NEMAN is running can present a bottleneck. This bottleneck can have impact on
the accuracy of time related results, because NEMAN is no longer able to deliver
packets in real time. There are several factors that need to be taken into the per-
formance analysis, including CPU time slicing, packet queues, data copying when
forwarding packets, context switching, control messages from the GUI and the
routing parser, quantity of traffic in the network, other external processes running,
etc. All of these factors play an important role in the performance degradation
which is inevitable having many virtual nodes. A detailed analysis is part of ongo-
ing and future work.

One of the main places for performance improvement is the GUI. Although it
is easy to use and to be extended with new functionalities, its ability to accurately
visualize the movements in the scenario is reduced as the number of nodes and ac-
tive links is increased, even with the minimal smoothness factor. To avoid this
problem, the graphical display can be temporarily turned off in cases where results

100 NEMAN: A Network Emulator for Mobile Ad-Hoc Networks

are needed quickly and they do not depend on time. This can be done either by
closing the application or by simply minimizing the window. Another problem with
large scenarios (either with regards to the time domain or number of nodes) is that
the GUI loads the whole scenario in memory before starting to interpret it. Assum-
ing that reading the scenario file on the fly would not impose a new bottleneck,
this might be a point to investigate.

9.8 Conclusion and Future Work
In this paper, we described the requirements, design, implementation, and experi-
ences with our emulation platform for MANETs, called NEMAN. Development of
middleware services for emergency and rescue operations is the main focus of Ad-
Hoc InfoWare project. In this context, NEMAN has already proven to be an im-
portant and very useful tool for the development of our key management protocol
SKiMPy and the distributed event notification service.

There are several other simulation and emulation environments of MANETs,
however, to the best of our knowledge, NEMAN is the only emulation platform al-
lowing to perform MANET emulations of up to hundreds of nodes on a single ma-
chine. By this, NEMAN is a cheap and efficient environment to develop middle-
ware protocols, services, and applications. Furthermore, the code that has been de-
veloped on NEMAN can be easily ported and deployed on genuine wireless devices.
Obviously, this facilitates considerably the step from development in an emulation
environment to “real life” field trials and deployment. We hope that this will also
contribute in the future to increase the number of research results that are not
only developed and evaluated within a simulation or emulation environment, but
are also tested with real devices in field trials.

While the current implementation of NEMAN has already proven to be very
useful, there are still some aspects of NEMAN we would like to improve, respec-
tively to extend. We envisage three possible threads of future work. First, we are
interested to increase the number of nodes that can be efficiently emulated. To
overcome the resource limitations of a single PC, we are looking into design and
implementing a NEMAN version that can run concurrently on multiple PCs. We
might even include heterogeneous computing platforms into the simulation to emu-
late the software where it actually should be running. For creating such a distrib-
uted simulation for ad-hoc networks, we are investigating distributed simulation,
component, and multi-agent architectures and technologies such as the High Level
Architecture (HLA) [2] and Foundation for Intelligent Physical Agents (FIPA) ar-
chitecture [4] for multi-agent systems.

Second, we would like to extend the functionality of the topology manager to
not only emulate the connectivity between nodes according to a scenario descrip-
tion, but also to emulate some other link layer properties, like Quality-of-Service,
hidden terminals, etc. The emulation of these aspects will require much more re-
sources than just deciding whether a virtual device should receive a packet or not.
Thus, the availability of a distributed NEMAN version might be necessary to per-
form such emulations with larger number of nodes.

9.8 Conclusion and Future Work 1101

The third thread of possible future work is concerned with the GUI. The GUI
is currently the performance bottleneck in NEMAN with regards to the graphical
visualization of the mobility. This bottleneck is caused by the fact that the GUI is
implemented in Tcl/Tk. A re-implementation with a language that can be com-
piled should lead to substantial performance improvements. Furthermore, we are
interested to extend the functionality of the GUI. We would like to use the GUI to
turn on and off nodes at any stage of the emulation by just clicking on them with,
be able to create new nodes on the fly, and even influence the link layer properties
by clicking on them.

Acknowledgments

This work has been performed in the Ad-Hoc InfoWare project and we would like
to thank all project team members and related colleagues for many fruitful discus-
sions and other contributions. Special thanks go to Katrine S. Skjelsvik for con-
tributing with valuable feedback on NEMAN as a patient beta tester, and Erek
Göktürk for providing important insights into related work. Furthermore, we
would like to acknowledge the MobiEmu project, whose GUI we used as a starting
point for creating NEMAN.

References

[1] Clausen T., Jacquet P., “Optimized Link State Routing Protocol (OLSR)”,
RFC 3626, 2003.

[2] IEEE-SA Standards Board, IEEE Standard 1516

[3] Flynn, J., Tewari, H., O'Mahony, D., “A Real Time Emulation System for
Mobile Ad Hoc Networks", Proceedings of the Communication Networks and
Distributed Systems Modeling and Simulation Conference, 2002.

[4] Foundation for Intelligent Physical Agents (FIPA) standard no: SC00001L,
FIPA Abstract Architecture Specification, 2002.

[5] Hafslund A., Tønnesen A., Rotvik J. B., Andersson J., Kure Ø., “Secure
Extension to the OLSR protocol”, OLSR Interop Workshop, San Diego,
August 2004.

[6] Macker, J. P., Chao, W., Weston, J. W., “A low-cost, IP-based mobile
network emulator (MNE)", MILCOM 2003 - IEEE Military Communications
Conference, 2003, 22, 481-486.

[7] Mahadevan, P., Rodriguez, A., Becker, D., Vahdat, A., “MobiNet: A Scalable
Emulation Infrastructure for Ad Hoc and Wireless Networks”, UCSD Tech.
Report CS2004-0792, 2004.

[8] Perkins, C., Belding-Royer, E., “Ad hoc On-Demand Distance Vector (AODV)
Routing”, RFC 3561, July 2003.

102 NEMAN: A Network Emulator for Mobile Ad-Hoc Networks

[9] Plagemann, T., et al., “Middleware Services for Information Sharing in Mobile
Ad-Hoc Networks - Challenges and Approach”, Workshop on Challenges of
Mobility, IFIP TC6 World Computer Congress, Toulouse, France, August
2004.

[10] Pužar, M., Andersson, J., Plagemann, T., Roudier, Y., “SKiMPy: A Simple
Key Management Protocol for MANETs in Emergency and Rescue
Operations”, Technical Report #319, Department of Informatics, University of
Oslo, February 2005.

[11] Skjelsvik, K. S., Goebel, V., Plagemann, T., “A Highly Available Distributed
Event Notification Service for Mobile Ad-hoc Networks”, ACM/IFIP/USENIX
5th International Middleware Conference (Middleware 2004), Toronto,
Canada, October 2004.

[12] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/

[13] Tønnesen A., “Implementing and extending the Optimized Link State Routing
protocol”, http://www.olsr.org/, August 2004.

[14] Zec, M., Mikuc, M., “Operating System Support for Integrated Network
Emulation in IMUNES”, Proceedings of the 1st Workshop on Operating
System and Architectural Support for the on demand IT InfraStructure /
ASPLOS-XI, Boston, October 2004.

[15] Zeng, X., Bagrodia, R., Gerla, M., “GloMoSim: a Library for the Parallel
Network Simulation Environment”, Proceedings of the 12th Workshop on
Parallel and Distributed Systems, 1998.

[16] Zhang, Y., Li, W., “An Integrated Environment for Testing Mobile Ad-Hoc
Networks”, MOBIHOC'02, EPFL Lausanne, Switzerland, 2002.

[17] Zheng, P., Ni, L. M., “EMWIN: Emulating a Mobile Wireless Network using a
Wired Network”, 5th ACM international workshop on Wireless mobile
multimedia, Atlanta, Georgia, 2002

10Chapter 10

Cross-layer Overlay
Synchronization in Sparse
MANETs

Authors: Thomas Plagemann, Katrine Stemland Skjelsvik, Matija Pužar,
 Aslak Johannessen, Ovidiu Valentin Drugan, Vera Goebel,
 Ellen Munthe-Kaas

Affiliations: Department of Informatics, University of Oslo
 {plageman, katrins, matija,
 aslakjo, ovidiu, goebel, ellenmk}@ifi.uio.no

Publication: The 5th International Conference on Information Systems for Crisis
Response and Management (ISCRAM 2008), Washington DC, USA, May 2008

Abstract: Mobile Ad-Hoc Networks maintain information in the routing table
about reachable nodes. In emergency and rescue operations, human groups play an
important role. This is visible at the network level as independent network parti-
tions which are for some time stable before their members change through merging
or partitioning. We use the information from stable routing tables to optimize the
synchronization of Mediators in a Distributed Event Notification System. In a sta-
ble partition each node has the same information, thus a single Mediator can effi-
ciently coordinate the synchronization, while all other Mediators just receive up-
dates. We show in our experiments that just a few seconds are needed until rout-
ing tables stabilize and all nodes have a common view of the partition. We present
a heuristic to determine the proper time to synchronize. Furthermore, we show
how exceptions, like disappearing coordinating Mediators and unexpected mes-
sages, can be efficiently handled.

104 Cross-layer Overlay Synchronization in Sparse MANETs

10.1 Introduction

In order to efficiently handle crises and emergencies, emergency and rescue (ER)
teams benefit from well working communication infrastructures for command, con-
trol and coordination. However, first responders are typically confronted with an
environment where no communication infrastructure is available, either because it
was nonexisting, or the earlier existing ones have been destroyed. Therefore, wire-
less Mobile Ad-Hoc Networks (MANETs) formed by devices carried by ER per-
sonnel are often the only means to establish a communication infrastructure. How-
ever, the mobility of the ER personnel combined with the size of the emergency
area (which is typically multiple times larger than the coverage of individual IEEE
802.11 radios) and obstacles in the area reflecting radio waves, leads to the situa-
tion that there is often not one single MANET connecting all ER personnel. In-
stead, multiple partitions might exist and change over time through merging and
partitioning. Typically, these partitions correspond to groups of ER personnel that
have a common task to fulfill. Due to the dynamics of ER operations, groups
might need to change their locations, and group memberships might change. This
is reflected at the network level through changes in the routing table. Evidence for
such group mobility is not only given by our study of ER operations, but also con-
firmed by recent studies of social mobility [2] and community detection [6] in op-
portunistic networks.

We have developed a Distributed Event Notification Service (DENS) [10] to
support remote patient monitoring. DENS uses Mediators to replicate subscrip-
tions, to enable graceful degradation in case of network partitions, and to convey
subscriptions and notifications from source to destination. If there is connectivity
to the destination the Mediator uses the OLSR MANET routing protocol [4] and
IP to transport the packets to their destination. However, if a destination node is
turned off or in a different partition, OLSR and any other MANET routing
protocol fails. Therefore, the Mediators form an overlay on top of the MANET to
perform delay tolerant transport through so-called “store-carry-forward” operations
[10]. The replication of undelivered subscriptions and notifications increases the
probability that one of the Mediators at a later point in time can join a partition
with formerly unreachable destinations. The number of Mediators can be
dynamically adapted to the particular ER operation and by this trade availability
of DENS against resource consumption, i.e., the more Mediators the higher the
availability and the higher the resource consumption.

The message ferry approach [12] is determining the mobility, including speed
and trajectory of special nodes called ferries, to make sure that a previously
unreachable destination and the ferry are coming into communication range. This
is not in general possible in ER operations. Therefore, we replicate undelivered
subscriptions and notifications to all Mediators, similar to the approach in
epidemic routing [11] where packets are forwarded to neighbors and then spreads
through the network, hence the name. However, we make use of a proactive
routing protocol and do not depend on the event that two nodes meet, to enable

10.1 Introduction 1105

exchange of undelivered messages. Instead, we can synchronize Mediators
immediately after they join a common network partition, which are typically
formed by different ER teams.

There exist various works related to routing in intermittently connected
networks, or sparse MANETs. In [13] Zhang gives an overview of different
approaches for the store-carry-forward routing. They differ in how they select the
next-hop-node, e.g. random selection, using knowledge about the whereabouts of
nodes, or predict future location. Other approaches assume some knowledge such
as last known location of the destination, and therefore only forward packets in the
same area. There exist some cross-layer approaches such as EMMA [9] where
synchronous communication is used if possible; in case of no end-to-end
connection, epidemic routing is used instead.

Synchronization of Mediators seems to be simple, but several complicating
factors have to be considered: First, each node has its own view of “its” network
partition which does not necessarily correspond to the view of the other nodes in
this partition. Second, merging of partitions is not an atomic action, the routing
daemon in each node discovers new nodes iteratively over several time steps.
Third, nodes are mobile and there might never be a globally correct definition
whether partition merging has finished or not. Fourth, propagation of messages
from source to destination through epidemic routing might take quite a long time
depending on the network topology and the movement of the nodes; however,
certain messages in ER applications have stringent timing requirements, like an
alarm from a patient monitoring application. Finally, bandwidth is a scarce
resource and synchronization among multiple Mediators should be as efficient as
possible.

We propose in this paper to leverage the existing information about the
network topology from the OLSR routing protocol. By this each Mediator can
establish its own view of the network without putting any additional load onto the
network. Furthermore, we use the fact that ER operations are performed in
groups, resulting in partitions that are stable for some time (with respect to the
nodes that form the partition) before new mergings or partitionings occur. We
show through simulation studies that the time it takes to merge network partitions
and the time it takes until all nodes in the new partition have updated routing
tables, is rather short. By assuming a common view among the Mediators in each
partition, we can for each partition immediately identify a coordinator that acts on
behalf of all Mediators in its partition. This in turn enables us to minimize the
number of exchanged messages in the synchronization process.

In the remainder of this paper, we briefly describe DENS in Section 10.2. In
Section 10.3, we analyze how useful information from the IP layer, i.e., the OLSR
routing table is. In Section 10.4, we outline the basic idea of the synchronization
protocol and describe how exceptions are handled, followed by some conclusions in
Section 10.5.

106 Cross-layer Overlay Synchronization in Sparse MANETs

10.2 DENS

In publish-subscribe systems, subscribers express their interest in events through
subscriptions, and publishers publish events of interest. DENS is designed to sup-
port information exchange even in the presence of network partitions. Subscription
information is therefore replicated in the network. There is a trade-off between of-
fering a reliable service, but at the same time not saturate the network by replicat-
ing too much information. Filtering of events is therefore performed as close to the
source as possible. DENS supports different subscription languages, both simple
subject-based languages, and content-based languages where the subscriber can
specify the content of the notification it wants to receive information on, e.g., a
value range of health sensor data.

DENS has the following components: (1) Subscriber, (2) Publisher and (3) Me-
diator. Subscriber and Publisher run in every node, and the Mediator runs on some
of the nodes. The number of Mediators is dependent on the network size, density
and dynamicity. The Subscriber Component sends subscriptions to a Mediator
running on the same or another node. The Mediator parses received subscriptions
to find keywords that are used to locate potential publisher nodes. The subscrip-
tions are then sent to these publisher nodes. The Publisher filters events according
to the subscriptions. When an event of interest occurs, it sends a notification to a
Mediator. The notifications are matched with the subscriptions, and then delivered
to interested subscribers. Thus, Mediators decouple Subscribers and Publishers.

DENS keeps track of Mediators by listening to beacons sent by such nodes in
its partition. The Mediators form a DENS overlay. In addition to forwarding sub-
scriptions and notifications, Mediators replicate subscriptions and possibly notifica-
tions to obtain a higher degree of reliability in the presence of partitionings caused
by disconnections or that a node is turned off. The task of the overlay formed by
the Mediators is to enhance reliability and support delay-tolerant routing of sub-
scriptions and notifications in case of partitions.

Subscribers and publishers send their subscriptions and notifications to a Me-
diator in their own partition using end-to-end paths set by the network routing
protocol. This means that the Mediator is an indirection. Delivering subscriptions
and notifications, and replicating subscriptions and undelivered notifications, are
done by using the underlying routing protocol and the synchronization protocol.
The synchronization protocol is initiated when there are new nodes in the parti-
tion. The presence of new nodes provides the means for delivering undelivered
stored subscriptions and notifications to the newly connected nodes, and replicat-
ing subscriptions and undelivered notifications to newly arrived Mediators. Be-
cause of the network partitionings, the Mediators can have an inconsistent view of
subscriptions. In the next section, we describe how we can use information from
the routing table to detect topology changes and initiate the synchronization proc-
ess among Mediators.

10.3 Routing Table Information 1107

10.3 Routing Table Information

One important key element to enable efficient design of middleware protocols over
Sparse MANETs, is information about nodes that can be reached through a multi-
hop route at a given point in time and the prediction of future connectivity. Parts
of this information might be gathered from external sources, like GPS satellites or
base stations, but we aim to design our solutions such that they work also when no
external information is available. The other possibility to gather this information is
that the middleware components periodically broadcast messages, like in Hyper-
gossiping [7], to detect partition mergings, etc. Since bandwidth is a scarce re-
source, we aim to minimize the number of broadcast messages.

In order to gather at the middleware layer information about network parti-
tions, mergings, and partition membership information in a non-intrusive manner,
we leverage the information that is already available at the network layer in the
routing table. In our previous studies [5] we have observed that the routing proto-
col holds updated information about the neighborhood of a node if the node is ac-
tively involved in communication. This claim holds for both proactive and reactive
routing protocols. However, proactive routing protocols maintain topology infor-
mation also if there is no (or not sufficient) communication. The proactive routing
protocol OLSR periodically sends beacons (HELLO messages) to inform other
nodes of its presence. In addition, OLSR tries to maintain at each node a consis-
tent view of the network by exchanging topology information with the other nodes
in the network. Whenever there is a change in the topology, the routing table is
recalculated. Each entry in the routing table contains information on the destina-
tion node, the next hop node, the estimated number of hops to the destination,
and the interface used for communication.

In order to optimize the synchronization of Mediators after partition mergings,
we need to understand the dynamics of both the merging process and the parti-

0

25

0 10 20 30 40 50 60 70 80 90

Time (seconds)

N
od

es
 in

 th
e

pa
rt

iti
on

, a
ll

no
de

s'
 v

ie
w

0

20

0

20

Group 1

Group 2

Figure 10.1: Two mobile groups merging and partitioning

(each subgraph represents the view of one group)

108 Cross-layer Overlay Synchronization in Sparse MANETs

tioning process and how it is reflected in the routing tables of the individual nodes.
We have performed a number of experiments with the emulation tool NEMAN [8]
to analyze how often the local routing table changes over time, whether the change
frequency allows us to deduce that a merging or partitioning has finished, and how
long it takes until all nodes in one partition have the same view of their partition.
We instrumented the code of the OLSR daemon to extract and log all changes of
membership information, which enables us to identify how many neighbors each
node's routing protocol reported at any point in time. The OLSR's interval for
sending HELLO messages is set to 1 second in all experiments.

In order to verify our hypothesis that groups which move in larger areas result
in stable membership information for a substantial amount of time, we performed
experiments with non-static groups, moving according to the reference point group
mobility pattern. The nodes were moving at 2 units/s in an area of 600x600 units.
Figure 10.1 illustrates a representative case in which two groups of 10 nodes came
in contact approximately after 11 seconds and remained in contact for approxi-
mately 77 seconds. For each node there is one line in the graph that shows how
many partition members this node has registered. Overlapping lines indicate a con-
sistent view among multiple nodes. The figure shows on each group subgraph a
single line for most of the time, meaning that both groups have a stable view of
the network. Occasionally, due to the mobility of nodes a few nodes have a differ-
ent view.

Table 10.1 shows the results for a selected set of experiments, including two
static groups of 1, 10, or 20 nodes each. Merging and partitioning events were in-
troduced artificially by creating or removing contact between the two groups at a
certain number of merging points. The merging time and partitioning time were
measured on a global basis, i.e. from the moment the first node noticed the change
to the moment when all the nodes in the partition had the same view.

Table 10.1: Resulting times for merging and partitioning

Topology Merging points Groups Merg. time Part. time

Chain 1 20+20 10,97s 8,73s

Mesh 1 20+20 8,47s 6,79s

Mesh 5 20+20 7,40s 7,80s

Full mesh full mesh 20+1 0,28s 2,41s

Full mesh full mesh 10+10 1,17s 1,32s

In addition to experiments with group mobility models and especially designed
topologies, we have also performed experiments with the random waypoint model
as a worst case analysis. We have simulated results for 20 nodes in areas of size
500x500, 1000x1000 and 1500x1500, and 250 units radio range. As expected mem-
bership changes in routing tables for very dense networks are rare, i.e., member-
ship does not change during the entire run. In larger areas there are also longer pe-
riods in which the individual routing tables do not change. In the studied case
where the area size was 1000x1000, this was often more than 10 seconds, while in
larger areas this stable period was often several times longer. When a merging

10.4 Synchronization Protocol 1109

takes place, the routing daemons recalculate old routes and add new routes to-
wards the new nodes. This takes approximately 5 seconds on each node. This is
dependent on the location of the node and the number of new nodes.

10.4 Synchronization Protocol

The basic idea for the synchronization protocol is to use information from the
routing table to initiate synchronizing of data after a merging of two or more par-
titions. The protocol is initiated in a node when it detects a routing protocol
change that indicates a partition merge, but only after it assumes that the routing
table has stabilized. During the synchronization process some of the Mediators re-
sume specialized roles as partition_representatives. A partition_representative is
responsible for synchronizing data in its old partition. The role of being a parti-
tion_representative for an old partition is taken by the Mediator with the highest
node ID. Since we assume that each Mediator keeps a record of all other Mediators
in its partition, the partition_representative’s identity is implicitly known without
any message exchange. Among the partition_representatives one takes the role as
coordinator. The coordinator has the responsibility of coordinating the synchroni-
zation process among the partition_representatives. The coordinator is the parti-
tion_representative having the highest node ID. After the partition_representatives
have synchronized data among themselves, they send updates to the Mediators of
their old partitions.

We first describe the heuristic used to determine when the synchronization
should be initiated, before we explain the basic protocol without exception han-
dling and what kind of conditions we assume. Then we describe how exceptions are
handled if these conditions do not hold.

10.4.1 Synchronization Initialization

The heuristic to determine when to initiate the synchronization uses two time-
stamps and three threshold values:

� Timestamp tstart records the time a new node is registered in the routing
table after a stable period.

� Timestamp tlast records the time the last change of membership
information in the routing table was detected.

� Threshold value Ts is an estimate whether the routing table is stable, i.e.,
there are no membership changes during the period [tlast, tlast + Ts].

� Threshold value TGV estimates the time it takes for all nodes in a partition
to have the same membership information after the last membership change
in the local table was detected.

� Threshold value TE is used to ensure that the heuristic is able to start the
synchronization process from time to time even if there is never a stable
routing table.

110 Cross-layer Overlay Synchronization in Sparse MANETs

The heuristic is started when a new node is registered in the routing table.
Both tstart and tlast are assigned the current time. Each time a change of the mem-
bership information occurs, tlast is updated with the current time. Normally, the
synchronization process is started if the routing table is stable and all nodes have
the same membership information. If the exception occurs that the routing table
changes continuously for a too long time, synchronization is enforced even if the
routing tables are not stable. The pseudo code of the heuristic is given below.

 tstart, tlast := tcurrent;
 repeat {
 if (membership_change) {tlast:=tcurrent;}
 until (tlast + max(TS,TGV) < tcurrent || tstart + TE < tlast) }
 Start_Synch;

Based on our experiments, we are currently using 5 seconds for TS and TGV. TE

has to be adapted to the application requirements to balance between resource
consumption and availability.

10.4.2 Basic Protocol

For each node the protocol has three phases: the Mediator Discovery phase, where
Mediators from merging partitions are discovered and one Mediator from each old
partition takes the role of a partition_representative; the Global Synchronization
phase where the coordinator is selected and the partition_representatives exchange
information; and the Local Update phase where the partition_representatives send
updates to the Mediators in their old partition. In each phase timers are set to en-
sure that the phase always completes. The events triggering the different phases
are shown in Figure 10.2.

Figure 10.2: Mediator and partition_representative states

Sent
updates

Timer

START_SYNCH

G_Synch
finished

Idle M_Disc

G_Synch L_Update

Idle
LOCAL_
UPDATE

REP_BROADCAST

L_Update

M_Disc
START_SYNCH

10.4 Synchronization Protocol 1111

The Basic Protocol runs under these assumptions:
� each node knows about every other node in the new (merged) partition,

� each Mediator knows about every other Mediator in its old partition,

� all Mediators in an old partition are synchronized, and

� during the synchronization process no new nodes arrive, no nodes disappear,
and no new subscriptions or notifications are sent.

In the following we describe the phases, roles, and messages.

Mediator Discovery

A Mediator enters this phase when it receives a START_SYNCH message. The
Mediator starts a timer. Each Mediator examines its set of known Mediators and
decides whether it is a partition_representative. The Mediators taking the role of a
partition_representative, floods a REP_BROADCAST message. This message in-
cludes a list of the Mediators it represents. When a Mediator receives a
REP_BROADCAST from its own partition_representative, it enters the Local Up-
date phase and cancels the timer. The partition_representative listens for
REP_BROADCASTs from the other partitions and waits until there is a timeout.
It then enters the Global Synchronization phase.

Global Synchronization

All Mediators that enter this phase are partition_representatives, in addition one
of them takes the role of being a coordinator. Again, this role is taken by the Me-
diator having the highest node ID. The messages used in this phase are:
SYNCH_C, SYNCH_REP, and SYNCH_TOTAL. A timer is started when the
Mediators enter the phase.

The coordinator sends SYNCH_C containing a summary of its subscriptions to
the other partition_representatives. The other partition_representatives compare
the summary with their own content and reply with the message SYNCH_REP
containing data the coordinator is lacking, in addition to a summary of its own
data. When the coordinator has received replies from all the parti-
tion_representatives, it sends SYNCH_TOTAL updates to the parti-
tion_representatives, i.e., its own subscriptions in addition to subscriptions re-
ceived from the other partition_representatives. The coordinator cancels its timer,

Figure 10.3: Mediator Discovery (messages)

Figure 10.4: Global Synchronization (messages)

REP_BROADCAST

REP_BROADCAST

Rep Rep Med Med

SYNCH_TOTAL
SYNCH_TOTAL

SYNCH_REP

SYNCH_C

SYNCH_REP

Coordinator Rep Rep

SYNCH_C

112 Cross-layer Overlay Synchronization in Sparse MANETs

resumes status as an ordinary partition_representative, and enters the Local Up-
date phase. When the partition_representatives receive the SYNCH_TOTAL mes-
sage from the coordinator, they cancel the timer and enter the Local Update
phase.

Local Update

In the last step of the protocol, the partition_representatives send
LOCAL_UPDATE messages to the Mediators in their old partition. This includes
information about subscriptions, but also about new Mediators. Each ordinary
Mediator in this phase starts a timer, then it awaits the arrival of a
LOCAL_UPDATE message from its partition_representative. When the
LOCAL_UPDATE message arrives, the timer is cancelled and the Mediator re-
sumes ordinary activity.

We have implemented the basic protocol. Figure 10.6 shows the number of
known Mediators from one Mediator’s perspective when testing it in a scenario
where there are two merging events; one at 90 seconds and the second merging at
195 seconds. The increasing number of known Mediators shows that the nodes in
the network have detected a partition merging, the routing tables are stabilized,
and the Mediator Discovery phase is started.

10.4.3 Exception Handling

We now discuss how exceptions are handled in the different phases. Examples of
exceptions are that the Mediators do not have the same view of the partition
membership, that Mediators may appear or disappear during the synchronization
process, and that Mediators in the old partition may not be fully synchronized
when the synchronization protocol starts. It is important to notice that we cannot
assume at any stage that the nodes have the exact same view of where they are in
the synchronization process, and what the members of a partition are. The proto-
col therefore needs to be robust enough to manage these situations. In the follow-
ing, we discuss the different phases of the protocol from one Mediator’s point of
view. The notable exceptions are shown in the Tables 2-5. The handling of the ex-
ceptions is dependent on the phase and the role of the Mediator.

Figure 10.5: Local Update (messages)

Figure 10.6: Nr. of Mediators from one Mediator’s
perspective

LOCAL_UPDATE

Rep Med Med

LOCAL_UPDATE

Rep

10.4 Synchronization Protocol 1113

Table 10.2. Exception Handling when Idle

Role Exception Handling
M REP_BROADCAST Start synchronization

 Table 10.3. Exception Handling in Mediator Discovery phase

Role Exception Handling
M + R START_SYNCH Stack request
 LOCAL_UPDATE Receive data
R timeout without any re-

ceived
REP_BROADCAST

Proceed to L_Update

M REP_BROADCAST
from an unexpected R in
its old partition

Reconsider the identity of
R for its old partition

 timeout, no received
REP_BROADCASTs
from nodes in its old
partition

Reconsider role to R

Table 10.4. Exception Handling in the Global Synch phase

Role Exception Handling
C+ R START_SYNCH Stack request
 REP_BROADCAST Stack request
 LOCAL_UPDATE Receive data
C timeout without having

received any
SYNCH_REPs

Proceed to L_Update

 timeout but has only re-
ceived some of the ex-
pected SYNCH_REPs

Proceed with reduced set
of recipient Rs

R timeout without having
received SYNCH_C

Reconsider role to C

 timeout without having
received
SYNCH_TOTAL

Proceed to L_Update

 SYNCH_C from wrong
C

Respond with
SYNCH_REP but con-
tinue to wait for
SYNCH_C from true C

Table 10.5. Exception Handling in the Local Update phase

Role Exception Handling
M +R START_SYNCH Stack request
 REP_BROADCAST Stack request
M timeout, has not re-

ceived
LOCAL_UPDATE

Proceed

114 Cross-layer Overlay Synchronization in Sparse MANETs

A Mediator enters the Mediator Discovery phase when it receives a
START_SYNCH or a REP_BROADCAST message. It then starts a timer. If a
Mediator receives a new START_SYNCH message during this phase, it will just
stack the request and enter the Mediator Discovery phase again after it has fin-
ished its current synchronization process. If it receives a LOCAL_UPDATE mes-
sage out of order, it receives data that can be handled locally immediately. It may
be the case that the Mediators in the old partition do not have exactly the same
view of the partition membership, so a Mediator can receive a
REP_BROADCAST from a node that it is aware of but did not consider being the
partition_representative. In this case, the Mediator reports to the new parti-
tion_representative. If the timer fires for a node that is assumed not to be a parti-
tion_representative, it will reconsider which Mediator should be parti-
tion_representative. If it is the next Mediator having the highest ID, it sends a
REP_BROADCAST, if not it will restart the timer. If the timer fires for the parti-
tion_representative, it sees if it has received any REP_BROADCAST messages, if
not, it goes directly to Local Update phase.

In the Global Synchronization phase only partition_representatives participate,
and one of them takes the coordinator role. In this phase both START_SYNCH
messages and REP_BROADCAST messages are stacked and handled when the
process is finished. LOCAL_UPDATE messages are just received but not handled.
If the coordinator disappears, the remaining partition_representatives will at time-
out reconsider their roles, and the one with the next highest id becomes the new
coordinator. If all partition_representatives but the coordinator disappear, the co-
ordinator will at timeout enter the Local Update phase. It may happen that none,
two or more elect themselves as a coordinator. If none starts as a coordinator, then
there will be a timeout where the partition_representatives reconsider their role. If
there is a SYNCH_C from a non-assumed coordinator, the parti-
tion_representatives will respond to it but await a SYNCH_C from its true coordi-
nator before proceeding to the Local Update phase.

As in the previous phase, both START_SYNCH messages and
REP_BROADCAST messages received during the Local Update phase are stacked
and handled when the process is finished. If a timeout fires, this indicates that
something went wrong, i.e., the partition_representative is gone.

If subscriptions or notifications are received by a partition_representative at
any phase, it will send it as LOCAL_UPDATE messages. If a Mediator is not a
partition_representative or a coordinator, it will replicate it to the other Mediators.

10.4.4 Complexity

In order to compare the complexity of our synchronization protocol with a simple
gossiping style synchronization, we use a simple analytic model. We assume two
merging network partitions with x respectively y mediators that are synchronized
within their partition. We measure the complexity in terms of number of Mediator
to Mediator update processes. In our synchronization protocol, first the parti-
tion_representatives update each other, and afterwards they update the Mediators
in their old partition, leading to 1 + (x -1) + (y - 1) updates. If instead all Media-

10.5 Conclusions 1115

tors exchange information with all other Mediators, in the best case each Mediator
from partition 1 updates all Mediators from partition 2 or vice versa. This leads us
to x*y updates. The complexity is therefore O(x + y) for our synchronization pro-
tocol and O(x*y) for gossiping style protocols. The synchronization protocol in ad-
dition is deterministic since all Mediators are updated after a merging, and not
only when e.g. Mediators become direct neighbors and initiate synchronization

10.5 Conclusions

One fundamental decision for the design of DENS is to use the proactive MANET
routing protocol OLSR at the IP layer and to establish an overlay of Mediators
that (1) increase availability of DENS through replication, and (2) perform delay
tolerant transport of destinations in different partitions. Beside the advantage that
a standardized routing protocol can be used to forward messages to the destina-
tions if there is a route, we use the routing table information to optimize the Me-
diator synchronization in the overlay. OLSR maintains continuously at each node
membership and topology information about its partition. Changes in the member-
ship indicate a network merging or partitioning. If the set of member nodes in a
partition is for some time unchanged, all nodes in the partition have the same
view. Through simulations we have demonstrated that this assumption is correct,
and we have quantified for different scenarios how long it takes until partitions are
stable and all nodes have the same membership information. By observing the
routing table, we can identify partition mergings and estimate when the merging
has finished without exchanging any additional messages. The fact that all nodes
have the same membership information, enables us to optimize the synchronization
of Mediators since a single Mediator can act on behalf of the others in its partition.
Since all nodes in a partition are known, the “election” of a representative is based
on the node ID and no messages need to be sent. Additionally, all non-
representative Mediators act as hot-standbys in case the representative disappears
unexpectedly.

Different optimizations can be done to improve the efficiency of the protocol.
These include to prevent too frequent synchronizing among Mediators in case of
frequent topology changes; to use a compact representation of the subscriptions in
the summaries sent in the Global Synchronization phase; and to use information
about disappeared nodes from the Mediator’s local routing table. To prevent Me-
diators from repeatedly synchronizing with the same Mediators, the Mediators can
remember when and with which Mediators they have synchronized. Bloom filters
[1] can be used to summarize data. If a node detects disappeared nodes, some of
the timers might be cancelled and the Mediators resume the protocol quicker, e.g.,
if a Mediator is waiting for a REP_BROADCAST from its assumed parti-
tion_representative and it detects that this node is gone, it can resume the proto-
col as if the timer has fired.

However, even without optimizations, the number of messages exchanged in-
creases only linearly with the number of Mediators in the absence of exceptions.
We argue that even in the worst case, our synchronization protocol does not per-

116 Cross-layer Overlay Synchronization in Sparse MANETs

form worse than an approach based on Epidemic Routing in terms of bandwidth
consumption and delivery delay since we are not depending on the fact that two
nodes meet and we in most cases synchronize more than two nodes. We will con-
tinue to work on the implementation of the protocol and evaluate it with real
world traces and compare its performance with Epidemic Routing.

Acknowledgments

This work was funded by the Norwegian Research Council in the IKT-2010 Pro-
gram, Ad-Hoc InfoWare Project No. 152929/431, and supported by the NoE
CONTENT.

10.5 Conclusions 1117

References

[1] Bloom, B., Space/Time Trade-offs in Hash Coding with Allowable Errors,
Communication of ACM, 13(7), July 1970

[2] Boldrini, C., Conti, M., Passarella, A., Impact of Social Mobility on Routing
Protocols for Opportunistic Networks, 1st IEEE WoWMoM Workshop on
Autonomic and Opportunistic Communications (AOC 2007), Helsinki,
Finland, June 2007

[3] Camp, T., Boleng, J., Davies, V., A Survey of Mobility Models for Ad Hoc
Network Research, Wireless Communication and Mobile Computing
(WCMD), 2002

[4] Clausen, T., Jacquet, P., Optimized Link State Routing Protocol (OLSR),
RPC 3626, October 2003

[5] Drugan, O. V., Plagemann, T., Munthe-Kaas, E, Predicting Time Intervals for
Resource Availability in MANETs, The IEEE International Workshop on Ad
Hoc and Ubiquitous Computing (AHUC2006), Taichung, Taiwan, June, 2006

[6] Hui, P., Yoneki, E., Chan, S., Crowcroft, J., Distributed Community
Detection in Delay Tolerant Networks, ACM SIGCOMM Workshop
(MOBIARCH), Kyoto, Japan, August 2007

[7] Khelil, A., Marrón, P.J., Becker, C., Rothermel, K., Hypergossiping: A
General Broadcast Strategy for Mobile Ad Hoc Networks, Ad hoc Networks
Journal, 2006

[8] Pužar, M., Plagemann,T., NEMAN: A Network Emulator for Mobile Ad-Hoc
Networks, 8th Int. Conf. on Telecommunications (ConTEL), Zagreb, Croatia,
June 2005

[9] Musolesi, M. Mascolo, C., Hailes, S., EMMA: Epidemic Messaging Middleware
for Ad hoc Networks Personal and Ubiquitous Computing, Springer, vol. 10,
no. 1, pp. 28-36, February 2006

[10] Skjelsvik, K. S., Goebel, V., Plagemann, T. A Highly Available Distributed
Event Notification Service for Mobile Ad-hoc Networks, ACM/IFIP/USENIX
5th International Middleware Conference (Middleware 2004), October, 2004

[11] Vahdat, A., Becker, D., Epidemic Routing for Partially Connected Ad Hoc
Networks, Technical Report CS-2000-06, Department of Computer Science,
Duke University, 2000

[12] Zhao, W., Ammar, M. Zegura, E., A Message Ferrying Approach for Data
Delivery in Sparse Mobile Ad Hoc Networks, 5th ACM Symp. on Mobile ad
hoc networking and computing (MobiHoc), 2004

[13] Zhang, Z., Routing in Intermittently Connected Mobile Ad Hoc Networks and
Delay Tolerant Networks - Overview and Challenges, IEEE Communication
Surveys and Tutorials, January 2006

11Chapter 11

Information Sharing in Mobile
Ad-Hoc Networks: Metadata
Management in the MIDAS
Dataspace

Authors: Ellen Munthe-Kaas, Aslak Johannessen, Matija Pužar,
 Thomas Plagemann

Affiliations: Department of Informatics, University of Oslo
 {ellenmk, aslakjo, matija, plageman}@ifi.uio.no

Publication: The 10th International Conference on Mobile Data Management: Sys-
tems, Services and Middleware, Taipei, Taiwan, May 2009

Abstract: An approach to information sharing in mobile adhoc networks
(MANETs) is to store on every node a small amount of metadata describing what
information resources exist in the network and where they reside, allowing applica-
tions to first search locally for information about suitable resources, and next re-
quest relevant information from a node that contains the resource. The character-
istics of MANETs in general and sparse, delay-tolerant networks in particular,
make the task of maintaining and disseminating metadata across all nodes diffi-
cult, particularly in the presence of scarce resources. We have designed and im-
plemented three protocols which use different approaches to metadata dissemina-
tion: epidemic one-to-one routing, one-to-many broadcasting that utilises the char-
acteristics of the shared radio medium of wireless networks, and a protocol where a
group consisting of e.g. rescue team leaders is given priority in the dissemination
process and afterwards serves as multiple starting points for further dissemination.
In the MIDAS project we aim to produce middleware that speeds up MANET ap-

120 Information Sharing in MANETs: Metadata Management in the MDS

plication development. By prototyping the metadata management component of
MIDAS and testing the prototype with each of the three protocols in the network
emulator environment NEMAN, we have measured bandwidth usage and perform-
ance. The implemented broadcast protocol is measured to use substantially less
bandwidth than epidemic routing. The group protocol shows that the group indeed
gets priority; it is comparable to the broadcast protocol in terms of bandwidth us-
age. The broadcast protocol has been used successfully in field tests of the MIDAS
middleware.

11.1 Introduction 1121

11.1 Introduction

Efficient information sharing is vital in rescue and emergency operations. Due to
strict requirements in this domain we need information sharing services that work
in environments where no communication infrastructure exists or where it has been
destroyed. Mobile Ad-Hoc Networks (MANET) is a promising technology to be
leveraged for generic information sharing services. However, in MANETs band-
width is strictly limited by the physical characteristics of the shared radio medium.
In our application domain we must expect frequent network partitions and re-
merges due to the possible low density and high mobility of the involved nodes.
The number and type of devices on the site may change substantially over time
during the incident, as rescue team members go to and fro. In addition the devices
may have limited computing and storage capabilities; rescue teams cannot be ex-
pected to carry more than a modern mobile telephone and/or a hand-held device,
e.g. a PDA. Still the devices should be able to set up and partake in the MANET.
Since information sharing is vital, information sharing services in the MANET
must survive short or long term network partitions and function properly also
when networks (re)merge. On the other hand, the duration of such scenarios is
fairly short, from a few hours to a few days.

When density in a MANET increases, the network degrades drastically due to
an increase in packet collisions, thus in a realistic setup the MANET is limited to
less than a hundred nodes. In the presence of heterogeneous storage capabilities
and unpredictable and frequent network topology changes, one should place data
replicas on well-chosen nodes to enhance data availability. The rest of the nodes
then needs to know which nodes keep which data replicas. Such “yellow-page” in-
formation constitutes metadata about available resources.

Due to the small size of MANETs and the typically short duration of a sce-
nario, the amount of globally shared metadata can be kept small, thus it is feasible
to store all globally shared metadata information at all nodes. If the metadata is
kept up to date, an application can query locally what kind of data items exists
and where to find a replica. This does not require any communication and not
much processing. When the application knows where to locate a resource, it can
fetch or update the data item in question.

The focus of this paper is when and how to propagate metadata information,
given that all nodes store all available globally shared metadata items locally and
cooperate to disseminate metadata updates quickly enough to maintain a suffi-
ciently up-to-date view of available resources. Metadata at each node must be kept
consistent in the presence of metadata updates and network topology changes. Any
solutions must take into account that bandwidth is a scarce commodity, and stor-
age space and processing power likewise.

The work of this paper was performed in the context of the MIDAS project [1],
in which we produce middleware that speeds up MANET application development.
As part of the MIDAS prototype we have designed and implemented the Global
Metadata Manager (GMDM) component whose task is metadata maintenance. We

122 Information Sharing in MANETs: Metadata Management in the MDS

present three protocols for metadata propagation: (i) a basic epidemic routing pro-
tocol, (ii) a broadcast protocol using one-to-many communication, and (iii) a pro-
tocol where a group of nodes consisting of e.g. rescue team leaders is given first
priority, and afterwards serves as multiple starting points for further dissemina-
tion. All three protocols are robust to network partitioning and merging. The
MIDAS prototype with the GMDM component has been tested extensively with
each of the three protocols in the network emulator environment NEMAN [2] to
measure their bandwidth usage and performance. In addition proof-of-concept ap-
plications using the broadcast protocol have been successfully exposed to field tests
under the 32nd international super prestige cyclocross race of Gieten in 2007, and
the four day walking event in Nijmegen 2008.

The remainder of the paper is organised as follows: In Section 11.2 the relevant
parts of the MIDAS architecture are presented. Relevant characteristics of
MANETs and MANET routing techniques are reviewed in Section 11.3. In Sec-
tion 11.4 we explain the metadata propagation protocols in detail. We describe the
test setup and test results in Sections 11.5 and 11.6 respectively, and conclude in
Section 11.7.

11.2 MIDAS Architecture

From the MIDAS architecture we primarily present the main ideas behind the
MIDAS Data Space (MDS) component [3, 4], which is responsible for transparent
information sharing. In MDS relational-style tables form the unit of shareable
data. Ideally, if the same unit is accessed simultaneously by different applications
using MDS, it is available for all and with identical contents. In practice however,
data may be unavailable or users perceive different contents due to e.g. network
disruption and propagation delays.

The main components of the MDS architecture are the following: A local stor-
age stores the table replicas, while the Global MetaData Manager (GMDM) keeps
track of on which nodes which replicas are stored. The original decision of where to
store table replicas is made by the Data Allocator. The Data Synchroniser makes
sure that modifications of a table are propagated to all replicas. The Query Ana-
lyser forwards application requests to the local storage or a remote node.

GMDM maintains information about tables and the location of their replicas.
The functionality of GMDM bears some resemblance to the data dictionary in da-
tabase systems, by its maintaining data about (shared) data, i.e., metadata. We
need to keep the amount of metadata and the frequency of metadata updates at a
reasonable level. The total amount of metadata is kept at a minimum by distin-
guishing between two kinds of metadata:

1. Metadata detailed descriptions: Each node that stores a table replica, main-
tains its full metadata description.

2. Globally shared metadata: For each table, the identities of remote nodes
that store replicas of it.

11.2 MIDAS Architecture 1123

In MANETs it is impossible to keep a complete global view of all table replicas
at every node at all times, due to frequent network partitions and merges. Our de-
sign choice is still to let every node maintain locally as complete an overview as
possible. That is, the local overview should comprise information about all table
replicas residing in the node’s own network partition (with a possible propagation
delay), but obviously the local overview is not required to be the same on two
nodes in different partitions unless and until the two partitions are merged. Thus,
if an application requests information about a table, it can consult its local
GMDM. If a replica is stored locally, the application can locally obtain the rep-
lica’s full metadata description, query its contents, and perform updates. If not,
GMDM can furnish the application with a list of nodes that store a replica. It is
thus sufficient to keep at all nodes metadata of the second kind. A more sophisti-
cated classification and utilisation of metadata can be found in [5].

The MDS component relies on the MIDAS Communication and Routing
(CRT) component to provide network services. In MIDAS we have chosen OLSR
[6] as our routing protocol for the case of mobile ad-hoc networks. OLSR maintains
at each node information about the topology of the whole network. A main feature
of OLSR is that it is proactive, i.e., it regularly exchanges topology information
with the other nodes in the network; this is essential since the proper functioning
of MDS requires the routing protocol to maintain at all times a fairly updated view
of the topology.

There are two main situations where the globally shared metadata of a net-
work partition may change:

� When a new table replica is created locally: In this case the Data Allocator
informs GMDM.

� When two networks merge: Whenever CRT registers a topology change, it
reports the change to MDS. If the change implies the arrival of a new
neighbour node, GMDM contacts the new neighbour and exchanges globally
shared metadata information with it.

In both cases GMDM should in a second phase cooperate with GMDM at
other nodes in the network on propagating its new metadata items. Finally, in case
new metadata is received from other nodes, either as a result of the encountering
of new neighbours or as part of the metadata propagation phase, GMDM is re-
sponsible for doing local metadata updates.

In our application domain the size of the globally shared metadata will remain
quite small. As a typical example, consider a MANET of 50 nodes. Each globally
shared metadata item consists of a nodeid and a table name, say a total of 10+40
characters. A few (say 5) administrative tables will have replicas on all nodes. In
addition there might be around 30 shared tables with an average of 5 replicas each.
With a little bit of clever encoding this adds up to a few Kbytes of globally shared
metadata per node.

Our main concern is how and when to perform the exchange and propagation
of the globally shared metadata. In the rest of the paper we for short use the term
“metadata” to mean what is named “globally shared metadata” in the above.

124 Information Sharing in MANETs: Metadata Management in the MDS

11.3 Routing in MANETs

Our main idea for the choice of metadata propagation protocols, is to reuse known
techniques. For this purpose we have looked into routing protocols of dense
MANETs and routing in delay-tolerant networks. Before presenting our design
choices, we give a short recapitulation of the main physical characteristics of and
relevant routing techniques in MANETs since these are both crucial for our
choices.

11.3.1 MANET Characteristics

When using MANETs it is important to be aware of the limitations of the Wi-Fi
IEEE 802.11 [7] standard which makes up the connections. The standard has a
maximum bandwidth of 54 Mbit/s and is suffering from collisions with other stan-
dards and appliances like Bluetooth, cordless phones and microwave ovens. This
becomes an even bigger problem when there are many nodes running in the same
sending area. Since Wi-Fi shares the same restrictions as any other radio technol-
ogy that sends and receives on the same frequency, it is physically required to op-
erate in simplex. This implies a strict control of who is sending and how the radio
frequency is used. The standard provides collision avoidance techniques through
the use of coordination messages.

11.3.2 MANET Routing Techniques and Challenges

Routing protocols in general deliver two important services: The establishing of
routes for transferring packets between nodes in the same network partition, and
topology information, i.e., how nodes in a network partition are connected. Both
these services are concerned with the establishing of space paths. OLSR [6] is an
example of a space path routing protocol. OLSR uses an overlay network to speed
up dissemination; nodes in the overlay gather local topology and distribute it.

In space/time path routing protocols a node A can pass a message to a node B
belonging to a different partition if the system can retain the message for a while,
and later, when A gets within reach of B, forward it to B. An interesting class of
space/time path protocols is message ferrying [8, 9], where some nodes act as fer-
ries that carry messages between different network partitions. However, since this
requires the ferries to follow a preplanned movement scheme, the approach is not
applicable to MANETs in general. In case of the rescue operation application do-
main we must provide solutions that do not rely on pre-planned movement
schemes.

Another class of space/time path protocols is epidemic routing [10]. Epidemic
routing provides a controlled flooding of packets and can e.g. be used for sending a
message to a recipient without known address. A message is spread throughout the
network until the message reaches its destination or a time-to-live counter becomes
zero and the message is dropped. It relies on intermediate nodes to provide large
enough message buffer space to carry all required messages. In general the over-

11.4 Metadata Propagation 1125

head from wrongly directed or misguided messages consumes both buffer space and
network capacity. In the case of metadata propagation, however, all nodes are pos-
sible addressees. The use of epidemic routing for this purpose has some definite
advantages to more basic flooding algorithms: Since the message buffer is exam-
ined at node encounters, the node state is factually taken into account before re-
transmission. In our case aggregated metadata plays the role of the message buffer.
The propagation protocol can take into account the node state when deciding how
to proceed the propagation, like halting further propagation because the metadata
did not change.

Other space/time path techniques include probabilistic routing and location-
aided routing. Probabilistic routing techniques [11] are more relevant for the Data
Synchroniser component than for GMDM’s metadata propagation. In location-
aided routing [12] route discovery is optimised by utilising the nodes’ GPS posi-
tions. Since we cannot in general rely on the use of GPS, e.g., inside buildings and
in train tunnels, we have to base our core solutions on the absence of such services.

11.4 Metadata Propagation

For the design of metadata propagation protocols we use ideas from epidemic rout-
ing. To propagate metadata throughout a network partition, each node is required
to act in a router-like fashion and pass on metadata to other nodes. This can be
done by repeatedly synchronising metadata contents of pairs of neighbour nodes,
which has the side effect that the nodes in addition to routing metadata informa-
tion, also listen in and can gather metadata for their own purpose. In this section
we present three metadata propagation protocols. They all share the same node
synchronisation mechanism and make use of the same kind of triggers for invoking
the protocol; we therefore first present these elements before proceeding with the
ideas and details of each protocol.

11.4.1 Synchronisation

A core element common to all epidemic routing algorithms, is how pairs of nodes
synchronize their message buffers, or in our case, metadata contents. A basic pro-
tocol that is used in e.g. [10], works as follows: (i) Node A makes an overview (a
hash) of its metadata items. A sends the hash to node B. (ii) Node B sends back
the metadata items that B has, but that are not mentioned in the hash from A,
plus a list of the items that B requires from A to get a complete set. (iii) Node A
responds with the items required by B. This protocol works well when there are
differences between the nodes. At rediscovery of an already synchronised node,
some communication is needed to identify this situation.

11.4.2 Triggers

We use local triggers at a node to invoke appropriate sub-protocol instances. Trig-
gers are needed (1) on the event of a new table replica being created locally, (2)

126 Information Sharing in MANETs: Metadata Management in the MDS

when a new one-hop neighbour appears, and (3) when new metadata is received
from another node as a part of follow-up actions on events (1) and (2) elsewhere in
the network. The Data Allocator sub-component fires a trigger of type (1) when it
creates a new table replica locally. As a result a new instance of the metadata
propagation protocol will be invoked; the actual actions taken depend on the pro-
tocol. Triggers of type (2) allow metadata to propagate further at network merges.
The CRT component is responsible for reporting the encountering of new
neighbours. When the trigger is fired, the node will contact the new neighbour and
synchronise its metadata contents with it. GMDM will itself fire a trigger of type
(3) when new metadata is received as part of the synchronisation with another
node. Here too the actual actions taken depend on the protocol.

11.4.3 Metadata Propagation Protocols

We now proceed with a description of the three protocols. Further details can be
found in [13].

The Simple Protocol
Our first protocol is a fairly straight-forward implementation of epidemic routing.
The protocol will try to pass a node’s metadata items to neighbour nodes in a uni-
cast fashion. The protocol is initiated each time one of the triggers are fired, i.e., at
the creation of new table replicas locally, at the event of a new neighbour, and at
the reception of new metadata items from a neighbour. The node in the first case
approaches all its neighbours, in the second case only its new neighbours, and in
the third case all neighbours except the one that provided the metadata item.

The node initiating the protocol (the ’initiator’) starts by sending to each tar-
geted neighbour (the ’listener’) an overview message containing a synopsis of its
metadata items. The listener responds with a message containing those of its
metadata items that are not mentioned in the synopsis and that are thus not
known to the initiator node, and a shortlist of the synopsis indicating which meta-
data items are needed to make its own metadata storage consistent with the initia-
tor’s. If the message is not received by the initiator within a timeout period, the
protocol logs the result and terminates gracefully. This happens e.g. if the initiator
moves out of reach before a return message is sent. The initiator concludes by
sending the requested metadata items. When the requested metadata items are re-
ceived or no message is received within a timeout period, the protocol terminates.
If no metadata items are requested, this last step is skipped and the protocol is
terminated directly.

The Broadcast Protocol
Epidemic routing uses one-to-one communication between synchronising parties.
However, in radio networks every node eavesdrops on every message sent within
its communication range, and then discards messages for which it is not an ad-
dressee. This can be utilised by sending one one-to-many message for getting in
touch with all neighbours at once, thus reducing the number of messages eaves-
dropped on at non-addressee nodes. In the Broadcast Protocol the initiator node

11.5 Test Setup 1127

therefore initially broadcasts an overview message. Only those listeners that re-
ceive the overview message and either have additional metadata items or need
some of the elements, will respond. The initiator will treat each response sepa-
rately and send requested metadata items. If these do not arrive at the listener
within a time frame, a timeout occurs and the protocol terminates.

If there are more than one responder to a broadcast message, the reduction on
the network load is equivalent to n�1 of the Simple Protocol’s overview messages
both in size and transfer time, where n is the number of responders.

The Semantic Protocol
The Broadcast Protocol tends to give a propagation pattern similar to that of a
stone thrown into a pond with islands (nodes). In general the outskirts of the net-
work partition get new metadata last. Thus, if the network tends to be brittle at
the edges, nodes breaking away from the partition may not get new metadata in
time to carry it with them to other partitions. To break this propagation pattern
we have developed the Semantic Protocol, where the idea is to do a broadcast
propagation from multiple points in the network simultaneously. These points can
be chosen in different ways, e.g., nodes that have few connections to other nodes in
the network, or hot spot nodes. A more general approach is to construct the group
of such nodes from information about semantically related nodes, e.g. the group
consisting of all rescue team leaders. Theoretically this will give group members
higher dissemination priority. As a side effect it gives multiple starting points for
the remaining dissemination process and potentially faster overall dissemination;
for instance, if the network is about to partition, the dissemination may reach
some of the partitioning nodes in time to allow the dissemination to spread into
other partitions.

The two phases of the Semantic Protocol propagation are (i) group synchroni-
sation and (ii) neighbour synchronisation. In the first phase the initiator node syn-
chronises with each of the group members by using multi-hop routing. In the sec-
ond phase each of the group members independently starts up the Broadcast Pro-
tocol, and the group members consequently work in parallel on propagating
changes.

11.5 Test Setup

Proof-of-concept applications that use the MIDAS prototype furnished with the
broadcast protocol have been successfully exposed to field tests. In this paper,
however, we present quantitative, reproducible results from tests using NEMAN
[2], an environment that emulates the communication layers of the network stack
in MANETs.

11.5.1 Metrics

We need suitable metrics to measure (i) correctness, i.e., that the protocol dis-
seminates metadata to all nodes, and (ii) communication cost, i.e., the network
load.

128 Information Sharing in MANETs: Metadata Management in the MDS

To test the correctness of the protocols we set up scenarios that each act out a
well-defined dissemination phase which will be the subject of post analysis of each
protocol. The number of table replicas that will be created in each scenario, is
known in advance. Also known a priori is which metadata items should be stored
at each node when the dissemination phase is completed. Thus, one measure is the
metadata count, the accumulated number of metadata items stored throughout the
network. To see how propagation proceeds, we can look at how the metadata
count evolves over time. Since the number of propagated metadata items at each
node is well-defined for stable states, we can use the metadata count to detect
when a dissemination phase begins and completes.

Possible metrics for evaluating the strain that the protocols put on the net-
work, are the message count—the number of protocol messages sent, and the mes-
sage size—the accumulated number of bytes in messages sent. For measuring
bandwidth, the message size is a more accurate measure than the message count.
We shall see in Subsection 11.6.1 that the message count reflects fairly well the
message size. Since the message count is much simpler to record than the message
size, we use the message count throughout our measurements.

11.5.2 Test Scenarios

To expose the behaviour of the protocols we employ four test scenarios, two
static—the Chain and Grid scenarios—where the network’s connectivity remains
unchanged after a start-up phase, to test basic functionality and behaviour of the
protocols, and two dynamic—the Merge and Message Ferry scenarios—to test
network partitioning and merge. At start-up every MIDAS node contains a table
replica used for bookkeeping purposes. Since metadata about these initial replicas
will spread throughout a network partition as part of the ordinary metadata
propagation, after a start-up phase the metadata count will be m2 where m is the
number of nodes in the partition. Likewise, a table replica creation at a node will
in time cause the number of metadata items to increase by one at every node in
the partition, giving a total of m(m+1) metadata items. For the static test scenar-
ios we inject a new table replica into one node in the network to trigger such a dis-
semination phase. For the dynamic scenarios it is sufficient to study the dissemina-
tion phase triggered by network merge and consisting of further propagation of the
initial metadata items as a result of the merge. The four test scenarios are:

[Chain] The chain protocol represents a worst case scenario wrt. connectivity
and number of hops. During the start-up phase 10 nodes form a chain where all in-
ternal nodes have exactly two neighbours within direct communication range. Ini-
tial metadata information is then exchanged throughout the chain. After 35s the
leftmost node creates a new table replica. Metadata for this replica is then propa-
gated throughout the chain according to the protocols. In the Semantic Protocol
the second and next to last nodes form a group.

[Grid] The grid scenario exposes scalability properties of the protocols. In this
scenario 5�4 nodes form a grid where each inner node has exactly four neighbours
within direct communication range. After 60s node 1 creates a new table replica.

11.6 Test Results 1129

In the Semantic Protocol two of the nodes neighbouring the main diagonal’s corner
nodes, form a group.

[Merge] The purpose of this scenario is to stress the message trigger load. It
consists of two network partitions that move towards each other, get in contact at
60s, and continue to move until they totally overlap. At the end of the scenario all
nodes have new neighbours. Each partition consists of a 3�3 grid where all nodes
in a partition are within direct communication range of each other. In the Seman-
tic Protocol the two nodes forming the group initially belong to different partitions
and are not the ones that meet at the first encounter during the merge. Each of
the partitions keep their original intra-node formation throughout the merge.

[Message ferry] This scenario introduces a network partition followed by a
merge. It consists of two static partitions of 7 and 10 nodes respectively, and a
ferry node moving from within the 7-node to the 10-node partition. After an initial
phase the ferry starts moving, collecting metadata from the first partition as it
moves. It loses connectivity with the 7-node partition at 40s and connects with the
10-node partition at 47s, stopping only after reaching the opposite side of its entry
point. In the Semantic Protocol the ferry and the centre of the 10-node partition
form a group.

11.6 Test Results

Table 11.1 shows for each test scenario and protocol the average number of proto-
col-related messages sent from a node during the dissemination phase of the sce-
nario. Also, for comparison we include the average number of messages addressed
to and received by each node, i.e., messages actually received by the CRT compo-
nent and forwarded by it to the MDS component. We will comment on the results
in Table 11.1 as part of the discussion in Subsection 11.6.2.

Table 11.1: Message count during the dissemination phase

Test Protocol Avg. no. of Avg. no. of
scenario msgs sent msgs received
 Simple 29,1 25,3
Chain Broadcast 4,6 2,8
 Semantic 3,1 4,7
 Simple 62,5 57,0
Grid Broadcast 3,1 6,2
 Semantic 3,7 6,8
 Simple 48,1 48,1
Merge Broadcast 18,6 185,9
 Semantic 29,0 44,5
 Simple 21,8 21,8
Ferry Broadcast 3,8 17,7
 Semantic 6,6 12,1

130 Information Sharing in MANETs: Metadata Management in the MDS

11.6.1 Comparison of Metrics

Since the message count obviously at best is an approximation to the message size,
we have performed a comparison of the message count and message size to see how
well the former reflects the latter.

We have obtained message sizes during the dissemination phases of each sce-
nario by doing post analysis on TCP dumps. The start of the dissemination phase
is identified by looking for control packets from the emulator GUI in NEMAN, to
find for the static scenarios when the new table replica was introduced during the
scenario, and for the dynamic scenarios when the first message is sent between the
two first nodes that encounter each other during the network merge. We have then
added up all packet lengths, excluding routing daemon traffic and control packets.
Table 11.2 displays the results.

Table 11.2: Traffic measured during the dissemination phase

Test
scenario

Protocol Bytes sent

 Simple 563727
Chain Broadcast 22115
 Semantic 30188
 Simple 2693948
Grid Broadcast 53895
 Semantic 76641
 Simple 731260
Merge Broadcast 360067
 Semantic 494226
 Simple 359102
Ferry Broadcast 68983
 Semantic 71226

Figure 11.1 shows the relationship between message count and message size,

with message size and message count on the left and right y-axes respectively. In
general the numbers indicate that the message count is a fair measure of the num-
ber of bytes transferred. Two notable exceptions are in the chain scenario, where

 0

 100000

 200000

 300000

 400000

 500000

 600000

Simple Broadcast Semantic
 0

 5

 10

 15

 20

 25

 30

By
te

s
se

nt

N
um

be
r o

f m
es

sa
ge

s
se

nt

Bytes sent
Messages sent

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

Simple Broadcast Semantic
 0

 10

 20

 30

 40

 50

 60

 70

By
te

s
se

nt

N
um

be
r o

f m
es

sa
ge

s
se

nt

Bytes sent
Messages sent

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

Simple Broadcast Semantic
 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

By
te

s
se

nt

N
um

be
r o

f m
es

sa
ge

s
se

nt

Bytes sent
Messages sent

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

Simple Broadcast Semantic
 15

 20

 25

 30

 35

 40

 45

 50

By
te

s
se

nt

N
um

be
r o

f m
es

sa
ge

s
se

nt

Bytes sent
Messages sent

 (1) Chain scenario (2) Grid scenario (3) Merge scenario (4) Ferry scenario

Figure 11.1: Relationship between message count and message size

11.6 Test Results 1131

the Broadcast Protocol sends more bytes and fewer messages than the Semantic
Protocol, and in the merge scenario, where the Broadcast and Semantic Protocols
have about the same byte count, but the Broadcast Protocol uses less messages
than the Semantic protocol. In both cases the Broadcast protocol tends to send
fewer but larger messages than the Semantic Protocol. Thus a comparison of the
Broadcast and Semantic protocols based merely on message count is in general
slightly misleading. Still the message count gives an indication of the active use of
bandwidth, thus a reduction in the message count tends to correspond to a reduc-
tion in the message size.

11.6.2 Dissemination Results

Figures 11.2-11.5 show how the metadata counts and message counts evolve
throughout the scenarios for the different protocols. The x-axes show the number
of seconds from the start of the protocol. The y-axes display the counts. As the
graphs show, each scenario has an initial phase after which the two counts stabi-
lise. This is followed by the dissemination phase, after which the counts again sta-
bilise. In the discussions below we analyse only the dissemination phase.

We have included in the graphs the metadata counts for all protocols even
though they are not easily distinguishable from each other in the figures. Still they
show that the metadata counts in each case reach the predicted level, demonstrat-
ing that the metadata is disseminated properly. The metadata counts reach their
final level before the message counts do, i.e., the actual dissemination phases end
before the message exchange completes.

In the chain scenario (Figure 11.2) the Simple Protocol during the dissemina-
tion phase sends 9 times more messages than the Semantic Protocol and more than
6 times more than the Broadcast Protocol (cf. Table 11.1). These numbers are
supported by the number of bytes transferred (Table 11.2). The Broadcast Proto-
col sends more messages but uses less bandwidth than the Semantic Protocol. The
reason might be that the Broadcast Protocol requires the use of more overview

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80

chain

broadcast message count
broadcast metadata count

simple message count
simple metadata count

semantic message count
semantic metadata count

Figure 11.2: Chain scenario
message and metadata count

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140

grid

broadcast message count
broadcast metadata count

simple message count
simple metadata count

semantic message count
semantic metadata count

Figure 11.3: Grid scenario
message and metadata count

132 Information Sharing in MANETs: Metadata Management in the MDS

messages than the Semantic protocol, which means that the Semantic Protocol’s
multiple starting points for broadcasting in this case is more efficient than plain
broadcast wrt. redundant overview messages. We expected the Semantic Protocol
to use more bandwidth than the Broadcast protocol; the chain scenario confirms
this.

In the grid scenario (Figure 11.3) the Simple Protocol displays its worst per-
formance of all scenarios, both in terms of absolute numbers and relatively to the
other two protocols. This is supported by the byte count in Table 11.2. The
Broadcast and Semantic protocols display almost the same message counts, the
Semantic Protocol being slightly higher. They show almost the same ratio as in the
chain scenario wrt. the number of bytes transferred. The differences in the message
counts reflect how the protocols handle high connectivity. In this scenario the av-
erage connectivity is 3.2 neighbours, thus the broadcasting of overview messages in
the Broadcast and Semantic protocols shows its advantage. We had expected the
Semantic Protocol to show a gain over the Broadcast Protocol in terms of message
count, this was not confirmed; to reveal such a gain we may need a scenario with a
larger distance between the group members. It is however difficult to obtain larger
scenarios in NEMAN due to the use of Java in the project, which puts a limit on
the number of nodes to 30–50.

Figure 11.4 displays the results of the merge scenario. This is the scenario with
the highest neighbour ratio; during the merge phase the massive connection
changes stress the triggers. It is also the scenario where the difference between the
Simple Protocol and the others is lowest. Another noticeable result is the high
number of messages received in the Broadcast protocol (cf. Table 11.1). This is a
direct effect of the high neighbour ratio, which causes each broadcast message to
contribute to a high received message count. It also causes an increase in dissemi-
nation paths, and as a consequence, an increase in redundant overview messages.
We had expected the Broadcast Protocol to display relatively lower bandwidth
than the others, instead the differences are less than in the other scenarios.

The ferry scenario (Figure 11.5) is actually a three-phase scenario consisting of
an initial phase where each partition stabilises, a disconnection phase where the

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140

merge

broadcast message count
broadcast metadata count

simple message count
simple metadata count

semantic message count
semantic metadata count

Figure 11.4: Merge scenario
message and metadata count

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

ferry

broadcast message count
broadcast metadata count

simple message count
simple metadata count

semantic message count
semantic metadata count

Figure 11.5: Ferry scenario
message and metadata count

11.7 Discussion and Conclusion 1133

ferry leaves the smaller partition (this phase does not affect the counts), and a
merge phase when the ferry enters the larger partition. In this scenario the Seman-
tic Protocol sends almost twice as many messages as the Broadcast protocol; this
is a difference not seen equally well in the other scenarios. The byte costs are how-
ever almost the same for the two protocols.

11.6.3 Group Dissemination Results

The Semantic Protocol does in general not show an improvement to the Broadcast
Protocol. However, it is still of interest whether the Semantic Protocol gives a dis-
semination priority to the group members. For this purpose we have investigated
the relative dissemination speeds of the nodes in each scenario for the Semantic
Protocol. In Figure 11.6 we provide the results in case of the merge and ferry sce-
narios. The y-axes show the message count on a per node basis during the dissemi-
nation phase. In the merge scenario the two group members (nodes 1 and 10)
originally belong to different partitions and are not the first to be involved in the
merge process. They receive all new metadata from one message, which explains
the direct jump from metadata count 9 to 18. Node 10 (shown with a bold line) is
the last of the group to reach its new metadata count, but does so well before most
of the other nodes. In the ferry scenario the ferry (represented by the line that
jumps from count 8 to count 18) is part of the group; the other group member
(node 2, shown with a bold line) belongs to the partition into which the ferry
merges. Even though the ferry carries all new metadata, it still does no reach its
new metadata count until the other group member does, and only slightly before
the rest of the nodes complete. The reason is that the ferry completes all of the
protocol, including the broadcasting phase, before it performs any local updates.
The figure confirms that inter-group dissemination gives a priority to the group
members in the merge and ferry scenarios. In the two static protocols the group
members show no improvement over the other nodes (graphs are not included).

11.7 Discussion and Conclusion

We have designed, implemented and performed some initial measurements of three
protocols for metadata propagation in MANETs. The protocols were designed un-
der the assumption that all nodes store and maintain all globally shared metadata;
the choice of metadata is however made carefully to keep the amount small. In
general the Broadcast Protocol shows the best performance results. The Semantic
Protocol is comparable to the Broadcast protocol, but in addition provides dis-
semination priority to a group of nodes. The Simple Protocol, a straight-forward
implementation of epidemic routing, scales considerably worse than the other two.
The correlation between network topology characteristics and dissemination pat-
terns has to be analysed further to see how the dissemination pattern changes with
the protocol and topology.

An issue that remains to be studied, is the impact of broadcast storms [14].
Some redundant broadcasts are avoided because each node considers its already

134 Information Sharing in MANETs: Metadata Management in the MDS

stored metadata before deciding whether to broadcast received metadata to further
nodes. Even so the protocols perform a number of redundant messaging, thus
techniques that enhance performance, like back-off timers, distance from the origi-
nal broadcaster, and cluster-based techniques, should be considered. In addition,
contention and collisions remain a problem. The protocols are also not fail-proof in
the presence of message loss. We might introduce an additional trigger that occa-
sionally floods metadata; on the other hand, allowing a certain amount of redun-
dant metadata propagation might be sufficient to cover for lost messages. Thus
one should balance between optimizing on redundant rebroadcasts and robustness
against lost messages.

All protocols have been implemented in the middleware layer. Moving some of
the functionality into OLSR might prove an advantage, for instance to utilise
OLSR’s overlay network to speed up dissemination.

A major factor in determining the size of the metadata storage at each node is
the number of shared table replicas. The size of each metadata item is small; in
average the size at each node will be in the range of only a few kilobytes and thus
remains manageable even on resource-weak devices.

Acknowledgment

This work has been performed in the context of the MIDAS project, funded by the
European Commission’s 6th Framework Program, Contract no. 027055.

References

[1] J. Gorman, “The MIDAS project: Interworking and data sharing,” in
Interworking 2006, Santiago, Chile, January 2007.

[2] M. Pužar and T. Plagemann, “NEMAN: A network emulator for mobile ad-
hoc networks,” ConTEL 2005: Proceedings of the 8th international conference
on Telecommunications, vol. 1, pp. 155–161, June 2005.

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

Merge scenario

Node 1
Node 10
Node 11
Node 12
Node 13
Node 14
Node 15
Node 16
Node 17
Node 18

Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

Ferry scenario

Node 1
Node 10
Node 11
Node 12
Node 13
Node 14
Node 15
Node 16
Node 17
Node 18

Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Figure 11.6: Metadata dissemination on a per node basis

(the bold lines represent the last of the group members to receive all metadata)

11.7 Discussion and Conclusion 1135

[3] T. Plagemann, E. Munthe-Kaas, K. S. Skjelsvik, M. Pužar, V. Goebel,
U. Johansen, J. Gorman, and S. P. Marín, “A data sharing facility for mobile
ad-hoc emergency and rescue applications,” in ICDCSW ’07: Proceedings of
the 27th International Conference on Distributed Computing Systems
Workshops (The First International Workshop on Specialized Ad Hoc
Networks and Systems (SAHNS’07)).1em plus 0.5em minus 0.4emWashington,
DC, USA: IEEE Computer Society, 2007, pp. 307–316.

[4] T. Plagemann, E. Munthe-Kaas, and V. Goebel, “Reconsidering consistency
management in shared data spaces for emergency and rescue applications,” in
BTW-MDM 2007, Model Management und Metadaten-Verwaltung, workshop
under GI-Fachtagung für Datenbanksysteme in Business, Technologie und
Web, Aachen, Germany, March 2007.

[5] N. Sanderson, V. Goebel, and E. Munthe-Kaas, “Metadata management for
Ad-Hoc InfoWare – a rescue and emergency use case for mobile ad-hoc
scenarios,” in ODBASE05 – On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE, vol. 3761.1em plus 0.5em minus
0.4emSpringer Netherlands, 11 2005, pp. 1365–1380.

[6] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and
L. Viennot, “Optimized link state routing protocol for ad hoc networks,” IEEE
INMIC 2001: Technology for the 21st century. Proceedings of the IEEE
international Multi Topic conference, pp. 62–68, 2001.

[7] 802.11 working group, “IEEE 802.11b 1999: Part 11: Wireless LAN medium
access control (MAC) and physical layer (PHY) specifications,” IEEE, 1999.

[8] M. M. B. Tariq, M. Ammar, and E. Zegura, “Message ferry route design for
sparse ad hoc networks with mobile nodes,” in MobiHoc ’06: Proceedings of
the 7th ACM international symposium on Mobile ad hoc networking and
computing.1em plus 0.5em minus 0.4emNew York, NY, USA: ACM, 2006, pp.
37–48.

[9] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for data
delivery in sparse mobile ad hoc networks,” in MobiHoc ’04: Proceedings of
the 5th ACM international symposium on Mobile ad hoc networking and
computing.1em plus 0.5em minus 0.4emNew York, NY, USA: ACM, 2004, pp.
187–198.

[10] A. Vahdat and D. Becker, “Epidemic routing for partially-connected ad hoc
networks,” Duke Technical Report CS-2000-06, July 2000.

[11] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in intermittently
connected networks,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 7, no. 3, pp. 19–20, 2003.

[12] Y.-B. Ko and N. H. Vaidya, “Location-aided routing (LAR) in mobile ad hoc
networks,” Wireless Networks, vol. 6, no. 4, pp. 307–321, Sep 2000.

136 Information Sharing in MANETs: Metadata Management in the MDS

[13] A. Johannessen, “Information sharing in mobile ad-hoc networks using a
global metadata manager,” Master’s thesis, Department of Informatics,
University of Oslo, April 30, 2008.

[14] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” in MobiCom ’99: Proceedings of the 5th
annual ACM/IEEE international conference on Mobile computing and
networking.1em plus 0.5em minus 0.4emNew York, NY, USA: ACM, 1999, pp.
151–162.

12Chapter 12

Information Sharing in Mobile
Ad-Hoc Networks: Evaluation
of the MIDAS Data Space
Prototype

Authors: Matija Pužar, Katrine Stemland Skjelsvik, Thomas Plagemann,
 Ellen Munthe-Kaas

Affiliations: Department of Informatics, University of Oslo
 {matija, katrins, plageman, ellenmk}@ifi.uio.no

Publication: The 2nd International Workshop on Specialized Ad Hoc Networks and
Systems (SAHNS 2009), Toronto, Canada, June 2009

Abstract: Information sharing in dynamic mobile ad-hoc networks is a challenging
task. High data availability in the presence of short and long term disconnections
can be obtained by replicating shared data. The number of replicas must however
be balanced against the cost of consistency management. In the MIDAS Data
Space (MDS) we use optimistic replication together with internal versioning of
data; this allows application-specific conflict resolution when reconciling replicas at
network mergings. We have made a proof-of-concept implementation to perform
experiments and to demonstrate through real-life field tests the usefulness of our
design. In this paper we report our results. We have conducted a number of ex-
periments on a small network formed by real devices to obtain a detailed perform-
ance evaluation. Using an emulation environment we have analysed and quantified
the cost of consistency management, the impact of MDS operations, and the rela-
tionship between data availability and replication.

138 Information Sharing in MANETs: Evaluation of the MDS Prototype

12.1 Introduction

Mobile Ad-Hoc Networks (MANETs) can provide a useful basis for data sharing in
dynamic scenarios such as emergency operations or larger sports events. The main
objective of the MIDAS project [2] is to define and implement a platform to sim-
plify and speed up the task of developing and deploying highly specialised mobile
services for such scenarios, where networks may consist of a variety of devices with
regards to available resources. One central element of this platform is MIDAS
Data Space (MDS [4]) for asynchronous information sharing. MDS is designed to
work on mobile devices that together form potentially highly dynamic and unsta-
ble MANETs. MDS provides to its users a programming interface that allows the
applications to use SQL operations towards the data space. MDS users can create
tables, insert data, update data, delete data, and retrieve data without caring
where the data is physically stored. As such it resembles a distributed relational
database over MANETs. Internally, MDS addresses the various challenges that
arise from the need to realise this transparency over dynamic MANETs. Especially
the possibility of short term and long term disconnections (i.e., network partitions)
introduces hard problems, like guaranteeing high availability of data through op-
timistic replication and managing the consistency of replicas. In order to enable
application-specific conflict resolution, a major design decision for MDS is to per-
form internally versioning of data instead of updating data.

One important result of the MIDAS project is the proof-of-concept (POC) im-
plementation of the MIDAS platform and of two demo applications that demon-
strate through real-life field tests the usefulness of these results. Therefore, the
main goal of the MDS POC implementation is to provide a stable working plat-
form for higher level MIDAS components and applications. All MDS core concepts,
including metadata management, optimistic replication, versioning etc., are im-
plemented in this prototype. To keep the necessary implementation effort at an
acceptable level, we have chosen to implement simplified solutions for some design
alternatives; this clearly leaves some space for improvement.

On the conceptual level, systems related to MDS include information systems
for disruptive environments, like Bayou [8], ROAM [7] and DHTR [9]. All of these
also use optimistic replication. A detailed comparison of these related systems and
MDS can be found in our earlier work describing the MDS architecture [4] and the
MDS approach of versioning and consistency management [5]. The purpose of this
paper is to report on the use of the MDS POC implementation for a detailed per-
formance evaluation of a real system. This evaluation comprises experiments with
real devices forming smaller networks, in order to gain real performance numbers,
such as response times of local and remote MDS operations, the impact of different
devices on the performance, and the overhead introduced by the versioning ap-
proach. Furthermore, we use an emulation environment to analyse the efficiency of
MDS operations and to study and quantify the relationship between availability of
data, number of replications, and costs of consistency management. These experi-
ments are performed with different MANET topologies to also understand the im-
pact of mobility, number of neighbours, and connection loss.

12.2 MDS Design 1139

The rest of this paper is organised as follows: In Section 12.2, we briefly de-
scribe the main parts of the MDS design and provide some concrete examples of
how versioning and synchronisation are carried out. The MDS prototype imple-
mentation is described in Section 12.3. In Section 12.4 we present our testing ap-
proach, scenarios and metrics, and present and discuss the results. Concluding re-
marks are given in Section 12.5.

12.2 MDS Design

From the point of view of the applications, MDS has been designed to resemble as
much as possible a relational database. However, due to the nature of sparse
MANETs, MDS imposes some distinctive differences compared to a traditional re-
lational database system.

The data in the MDS data space is physically distributed across the network.
Ideally, every application, regardless of the node it resides on and where the data
is actually stored, should have the same view of the data. However, in the presence
of disruptive and unstable networks, not all nodes might be available all the time.
To obtain higher data availability, MDS can replicate existing tables, which means
that replicas must be kept synchronised in order to provide the same view to all
applications. Applications in different network partitions may however experience
different data if each partition contains a replica and updates its contents inde-
pendently. If two partitions later merge, it is not always obvious if and how data
can be synchronised. To allow application-specific conflict resolution, MDS sup-
ports versioning. Versioning implies that no data is actually updated. Instead, a
new version is created and the previous version is marked as updated. Likewise, no
data is actually deleted, but instead only marked as deleted. Applications can
choose whether or not to have a transparent view on data versioning: unless ex-
plicitly stated otherwise, only the currently valid versions are returned within a re-
sult set (see Section 12.2.2 for details on record types). When MDS receives a
query from an application, it first rewrites the query to support versioning, and
then sends it to the appropriate location(s), either directly to the database on the
local node, or as a remote query if the table in question is stored remotely.

Figure 12.1: MDS Architecture

QA

LSDA GMDM DS SM

140 Information Sharing in MANETs: Evaluation of the MDS Prototype

12.2.1 Architecture

The MDS architecture, including the interaction between its sub-components, is
shown in Figure 12.1. The Query Analyser (QA) is the façade component of MDS
and receives queries from the applications or from other MIDAS components (col-
lectively referred to as MDS users). In the network, there may exist one or more
replicas of a certain table. The Data Allocator (DA) initiates the allocation and de-
allocation of table replicas. Information about the whereabouts of these replicas is
stored in a shared metadata table which is maintained at every node. It is the task
of the Global MetaData Manager (GMDM) to keep this table up-to-date by
propagating new metadata information and synchronising metadata tables after a
network merging [3]. The Data Synchroniser (DS) makes sure that data in repli-
cated tables is also synchronised. Additionally, MDS has a subscription-notification
functionality taken care of by the Subscription Manager (SM). SM alerts MDS us-
ers via registered callback functions when some change in data matches a stored
subscription.

12.2.2 Versioning

When an application wants to update a record already present in the database, say
of a patient, instead of altering the data of the original record, MDS inserts a new
version of the record, and the original record is marked as Updated. The automati-
cally generated ID field is used to find versions of the same record and is kept un-
changed when new versions are created. However, it could happen that two
INSERT operations concerning the same patient are performed independently at
two different nodes if the nodes are not within reach of each other at that moment.
These records are then assigned different values in their ID field and are from the
MDS’ point of view two unrelated records. An application that wants to supersede
this can define a query that allows MDS to perform a simple conflict resolution on
its behalf, e.g., for a patient with a given name to choose the valid record with the
latest timestamp. Most applications will only be interested in valid record versions,
in such cases the other versions are preserved for auditing purposes. Applications
can however choose to have invalid versions included in the result sets from que-
ries, for instance to do conflict resolution themselves.

Versioning requires a rewriting of queries and execution of additional queries to
the database. In the current implementation, rewriting is done in the following
manner:

INSERT � SELECTM + SELECTS + INSERT
SELECTn � SELECTM + SELECTn
UPDATEn � SELECTM + SELECTn+ UPDATEn + n*(INSERT + SELECTS)
DELETEn � SELECTM + UPDATEn

An index “M” denotes a query on the metadata table (to find the IDs of nodes
that store replicas of the table), an index “S” is a query on the subscription table
(to check for any subscriptions on data changes), while “n” denotes the actual

12.3 Prototype Implementation 1141

number of processed data records (i.e., records in the result set in case of a
SELECT statement, or records updated in case of an UPDATE).

As an example, an UPDATE statement where 100 records are updated, will
within the MDS produce the following set of queries:

� one SELECT operation on the metadata table, to find the location(s) of the
table replica

� one SELECT finding and returning the 100 records
� one UPDATE operation marking the 100 records as invalid (i.e. “Updated”)
� 100 INSERT operations, one for each of the new versions to be inserted
� 100 SELECT operations on the subscription table, one for each newly in-

serted record

12.2.3 Synchronization

Synchronisation of replicated tables is done using two mechanisms: eager synchro-
nisation and lazy synchronisation. An INSERT/UPDATE/DELETE request to-
wards a replicated table is instantly (eagerly) sent to all nodes having a replica of
the table after first consulting the metadata table to find the IDs of all such nodes.
However, this may not be sufficient due to: a) network partitions, b) lost messages,
and c) not entirely up-to-date information in the metadata table, e.g. due to a re-
cent network merging whose effects have not yet reached this node. Therefore, lazy
synchronisation is performed periodically among neighbours, and it is also trig-
gered by the presence of new nodes in the network.

12.3 Prototype Implementation

The MIDAS middleware has been realised as a proof-of-concept implementation in
two versions: POC 0.5 and POC 1.0. Implementation decisions about software us-
age, hardware platform and implementation environment were done based on the
application domain and scenarios, but also more pragmatic considerations related
to the fact that the development was carried out by different European partners.

The software platform used is Linux and Java. For some of the MIDAS com-
ponents C++ code is also used. The hardware platforms we target are small, port-
able devices running Linux, although more powerful devices might be present as
well. In our experiments, both laptops and various handheld devices were used.

A third party database is used within the Local Storage component. In order
to choose a database, we made a list of requirement and picked candidates that
fulfilled these for further experiments; a) small footprint, b) relational, c) support
for standard SQL, and d) must be able to run on small devices. We tested the fol-
lowing databases: H2, Sqlite, HSQLDB and MySQL. The most interesting metrics
for us are the time to load/start the database and the time to perform the different
queries. The testing of the four databases was performed among others on three
generations of Nokia Internet tablets, namely Nokia 770 (252 MHz), N800 (330
MHz), and N810 (400 MHz).

142 Information Sharing in MANETs: Evaluation of the MDS Prototype

The experiment consisted of running respectively 1 or 100 single INSERT
statements, followed by 1 SELECT/UPDATE/DELETE statement that processed
the newly inserted row(s).

Figure 12.2 shows that HSQLDB and MySQL in general have the lowest re-
sponse time. Having a very small footprint, and without need for compiling (which
is an important factor when deploying on resource-weak devices), HSQLDB was
chosen as the underlying database when evaluating the MDS prototype. Even
though these measurements were not strictly measurements of MDS itself, we in-
clude them in this paper as they might be of interest to others in search for a da-
tabase to be run on resource-weak devices.

12.4 Evaluation

In this section, we present an in-depth evaluation of the MDS prototype. The pri-
mary goal for this implementation is to serve as a stable working prototype for
real-life demonstrations. To keep the development efforts at a feasible level, some
MDS components are implemented in a simplified way and leave space for later
improvements. For example, MDS sends whole Java objects to remote nodes in-
stead of just the relevant data. To compensate for the higher bandwidth consump-
tion in our evaluation, we compress the Java object before sending, and decom-
press it at the recipient. The secondary goal for the MDS prototype is to enable a
detailed performance analysis of a real implementation with real devices, to iden-
tify bottlenecks and options for improvements. The insights of this evaluation are
not only interesting for MDS developers, but also for middleware designers in gen-
eral that focus on solutions for mobile networks.

Methodology
The dynamic nature of MANETs and the heterogeneity of devices represent a high
complexity for the performance evaluation of MDS and the analysis of its results.
We briefly describe the main factors of complexity and our general approach to
considering them in the evaluation. The main factors we focus on here are: a)
nodes, b) network, c) workload, and d) application requirements.

0

10

20

30

40

50

60

70

N800 �N810

St
ar
t�
up

�t
im

e�
(in

�s
ec
on

ds
)

Sqlite
H2
HSQLDB
MySql

0

200

400

600

800

1000

1200

1
rec

100
rec

1
rec

100
rec

1
rec

100
rec

1
rec

100
rec

H2 Sqlite HSQLDB MySql

Q
ue

ry
�t
im

e�
(in

�m
ill
is
ec
on

ds
)

INSERT

SELECT

UPDATE

DELETE

Figure 12.2: Start-up times on Nokia N800 and N810, and query times on N810

12.4 Evaluation 1143

Using multiple nodes in experiments obviously increases the efforts needed for
start-up, coordination, and post-gathering of results. In addition, the project as-
sumes a variety of devices present in the network, often with different physical ca-
pabilities, resources and configurations. In our experiments, we varied both the
number of nodes and the types of devices.

The assumed network is characterised through different mobility scenarios,
stable and unstable connectivity, network partitions, and message loss. Therefore,
we ran experiments on static networks, mobile networks without partitions, and
mobile networks with partitions. To model static networks we used two topologies,
first a mesh network with nodes randomly distributed in an area, and second an
artificial worst case scenario for message propagation, i.e., a chain network where
all nodes are lined up in a chain with a distance between the nodes such that each
node has at most two neighbours (which is much less than the average number of
neighbours in the mesh network).

All applications running on the nodes, including the MIDAS demo applica-
tions, produce a certain workload which in most cases varies and depends on the
situation. In order to systematically study the MDS properties, in our experiments
we use a synthetic workload. Two types of queries that span out the basic func-
tionality, and thus workload, are INSERT (putting data into the database) and
SELECT (retrieving data from the database), performed in different ratios. An-
other issue that is closely tied to the mix of applications used and their require-
ments, is the trade-off between performance and resource utilisation on one hand,
and availability of information and reliability of the whole system on the other
hand. By changing the above-mentioned parameters, we aim to get some insight
into how they could be tuned to meet certain application requirements and at
what cost.

There are three main options for performing experiments to evaluate the per-
formance of the MDS prototype. These are simulation, emulation and real-life test
beds. Simulation is often used because it allows running larger scale networks in
non-real-time, repeating experiments, and reproducing results. The downside of
simulation is that code needs to be written specifically for the chosen simulator.
Emulation, in contrast to simulation, makes it possible to use the very same code
that runs on real devices, in a simulated and reproducible network environment.
Processes run in real time, making the server or servers’ resources an important
factor, and limiting the size of tested networks. Still, emulation gives a good in-
sight into whether the written code would work as expected in a real network.
Moving the code onto target devices and running in a real network is the type of
experiment giving the most realistic results. However, the person efforts and hard-
ware costs involved in performing such field tests are very high. In addition, nei-
ther the network movements nor results can be easily reproduced.

In order to benefit from the different advantages of these options, we use the
two approaches of emulation and real-life test beds, and use in both of them the
same MDS code. For studies of how the implementation behaves locally, as well as
for smaller static networks consisting of up to 3 nodes, we use real devices. For

144 Information Sharing in MANETs: Evaluation of the MDS Prototype

networks of 10 nodes, both static and with introduced mobility, we use the net-
work emulator NEMAN [6]. In this particular environment, all nodes run on a sin-
gle machine, as separate processes each connected to its own virtual network inter-
face. The processes themselves run the very same implementation as on the real
devices. While being a good choice for testing functionality and behaviour in a
network, it would not make sense to measure response time in such an environ-
ment as it is very dependent on the server’s resources.

The experiments described in the remainder of this section are each designed to

answer one of the following questions:

1. What is the general overhead introduced by MDS, and more specifically, in-
troduced by data versioning?

2. How does MDS perform on different devices/platforms, locally and in a real
network?

3. How do network and distribution affect the overall performance of the ser-
vice?

4. How do different network topologies and network disruptions influence the
availability of the service?

To answer these questions, the metrics we use in this performance evaluation
are: 1) overhead that MDS introduces by being a layer between the applications
and the local database, quantified by relating response times of MDS operations to
direct operations in HSQLDB, 2) response time for operations (both local and re-
mote), 3) resource consumption in the network, measured in number of packets
and bandwidth usage, and 4) availability of the service, measured in the number of
successful application queries.

One metric that has not been taken into account, is the disk usage. It is as-

sumed that the devices’ storage is not a bottleneck. The rationale for this assump-
tion is the expected amount of data that can be generated within the limited time
spans imposed by the targeted scenarios. A fact that supports this is that the size
of available memory cards constantly increases while they at the same time be-
come less expensive.

Table 12.1: Results of the MDS overhead experiments

Command F 1 F 2
INSERT 5.4 26.8
SELECT1 5.9 8.0
SELECT1000 5.4 5.8
UPDATE1 5.5 15.5
UPDATE1000 5.0 145.5
DELETE1 9.8 25.2
DELETE1000 1.2 10.7

Average 5.5 33.9

)_(_
)_(_1
setrewrittentimeHSQLDB

setrewrittentimeMDSF �

)_(_
)_(_2

operationoriginaltimeHSQLDB
setrewrittentimeMDSF �

12.4 Evaluation 1145

12.4.1 MDS overhead

To answer the first question, we performed experiments on a single Nokia N810
Internet tablet and compared time needed for a single local database query to
HSQLDB directly and through MDS. Table 12.1 shows the results for 1000 re-
cords. An index “1” or “1000” denotes how many records were processed by the
particular operation. The difference between the two cases is caused by the initial
overhead for each query, which is negligible for queries that process a large amount
of records.

12.4.2 Performance experiments on physical devices

The next set of experiments aimed at answering the second question concerning
MDS’ performance on different types of physical devices, both locally and over the
network. This due to the fact that in both case scenarios for the MIDAS project (a
sports event and an emergency operation) it is assumed that the network will con-
sist of a variety of devices with regards to available resources. In these experiments
we used three different devices: a) Nokia N810, an Internet tablet running Linux
and the Cacao JVM (400 MHz, 128 MB RAM, 2 GB Flash), b) Zypad WL1100, a
wrist wearable device running Linux and J9 JVM (400MHz, 64 MB RAM, miniSD
card), and c) a portable PC running Windows and J2SE JVM, (1.66 GHz, 2 GB
RAM, hard disk).

First, we run local queries to see how the devices perform independently. Table
12.3 shows the average times when querying the database for 1 and 100 records re-
spectively.

Next, we run queries over a network consisting of the same three devices, using
802.11 in infrastructure mode for easier access. Table 12.2 shows the average times
for each source/destination combination. The four numbers in each cell represent
the times for INSERT / SELECT1 / UPDATE1 / DELETE1 respectively.

In general, N810 performed worst whenever network communication was in-
volved, while for local queries it outperformed Zypad. The results show that in this
particular mixed environment, the average time for a single remote query lies
around 240 ms.

As it can be seen, the cost of performing remote operations is very high com-
pared to local operations, giving an increase factor from 5 to 15, thus the applica-

Table 12.2: Results for network queries
(in milliseconds)

Dst �
Src �

N810 Zypad PC

N810 - 391, 173, 505, 191 166, 120, 287, 91

Zypad 358, 122, 616, 151 - 174, 91, 263, 121

PC 371, 94, 475, 277 188, 94, 319, 89 -

Table 12.3: Results for local que-
ries (in milliseconds)

Command N810 Zypad PC
INSERT 146 74 2
SELECT1 27 35 11
SELECT100 44 49 11
UPDATE1 60 142 23
UPDATE100 4500 3600 300
DELETE1 14 67 12
DELETE100 47 117 0

146 Information Sharing in MANETs: Evaluation of the MDS Prototype

tions’ usage pattern should be carefully monitored when deciding on which node or
nodes table replicas should be placed.

12.4.3 Emulation experiments on a static network

All emulation experiments were performed on networks consisting of 10 nodes. All
queries target a single table. We varied the number of available replicas of this ta-
ble from 1 to 10. In addition, there is one shared subscription table always present
on all nodes. When no nodes have a replica at the beginning, the results are un-
predictable as in the prototype instances are created randomly when needed, de-
pending on which nodes started sending queries first. For that reason, in this sec-
tion we omitted results with 0 initial replicas. All the experiments were run up to
10 times to verify the consistency of the results. The graphs presented here show
average values.

In the following experiments we addressed the third question. We used
NEMAN’s monitoring channel to see how many packets are being sent between
MDS instances running on different nodes, as well as how much bandwidth was
used. Experiments were done both with and without lazy synchronisation being in
use, to see its impact on the results.
Figure 12.3 shows how the number of replicas, and thus the amount of data
needed for synchronisation purposes, affect the network usage in a mesh and a
chain network (as explained earlier in the Methodology sub-section). The results
show a constant overhead when lazy synchronisation is present. There is a slight
increase in network traffic as a consequence of increasing the number of table rep-
licas. The figure also shows that having more neighbours (mesh network) causes
more traffic, as more synchronisation is present. In this, as well as in the following
experiments, bandwidth usage follows proportionally the number of packets. For
that reason, we omit bandwidth usage graphs in the remainder of this section.

In the next experiment, we used the synthetic workload as described earlier in
the Methodology sub-section. Ratios between INSERT and SELECT statements
were varied from 90%/10% to 10%/90%. Figure 12.4 shows separate results for the
mesh and the chain network. As expected, having more direct neighbours in the
mesh network increased the probability of finding data on a closer node and, con-

0

200
400

600
800

1000

1 2 3 4 5 6 7 8 9 10
Table instances

M
D

S
Pa

ck
et

s

Mesh, no Lazy Sync
Mesh, wit h Lazy Sync
Chain, no Lazy Sync
Chain, with Lazy Sync

0

100
200

300
400

500

1 2 3 4 5 6 7 8 9 10
Table instances

B
yt

es
 (x

10
00

)

Mesh, no Lazy Sync
Mesh, wit h Lazy Sync
Chain, no Lazy Sync
Chain, wit h Lazy Sync

Figure 12.3: Network traffic during the initialisation process

12.4 Evaluation 1147

sequently the overall traffic in the network was reduced. Results also show that
the usage pattern is an important factor when optimising the number of table rep-
licas in the network. We can see that with a SELECT ratio that was high enough
(approximately 10% for the mesh network and 40% for the chain network), an in-
creased number of instances led to reduced network traffic, as the probability of
finding a local replica increased. On the other hand, when the usage pattern con-
sisted mostly of inserting data (50% or more), having more replicas only increased
the amount of data being replicated in the network, without giving real benefit
(except for very disruptive networks where this would pay off by increasing avail-
ability).

12.4.4 Emulation experiments on a mobile network

In order to answer the fourth and last question, we introduced mobility to see
what impact changes in a node’s neighbourhood have on packet loss. Within
NEMAN the OLSR [1] routing protocol is used. Being a proactive routing protocol,
OLSR generates periodic traffic (HELLO messages) to let the neighbouring nodes
know about its presence. If a node suddenly does not hear HELLO messages from
one of its neighbours, it assumes that the node might be out of reach. However,
since the packet might just have been lost due to a collision, OLSR will wait for
some time (i.e. 2-3 lost HELLO messages) before declaring the neighbour gone and
trying to find a new, indirect route towards it.

It is in this particular period that MDS is most vulnerable and packet loss may
occur. One way of reducing these periods of vulnerability might be to reduce the
interval of HELLO messages. The penalty is increased overall network traffic, and
thus it should be considered carefully. In a specially targeted experiment, increas-
ing the frequency of HELLO messages from 2 seconds to 1 second gave a minimal
gain, only reducing the amount of lost packets by 3 (out of a total of 600) at its
best. Here we focus on packet loss experienced by applications, i.e. failed remote
queries, while ignoring packet loss at the synchronisation components (GMDM and
DS), as this is taken care of by the MDS and is transparent to the applications.

The usage pattern (number of INSERT vs. SELECT operations) proved not to
be a considerable factor with regards to the packet loss, and results were consis-

2000
6000

10000
14000
18000
22000
26000
30000

1 2 3 4 5 6 7 8 9 10

Table instances

M
D

S
Pa

ck
et

s

90/ 10
80/ 20
70/ 30
60/ 40
50/ 50
40/ 60
30/ 70
20/ 80
10/ 90

2000
6000

10000
14000
18000
22000
26000
30000

1 2 3 4 5 6 7 8 9 10

Table instances

M
D

S
Pa

ck
et

s

90/ 10

80/ 20

70/ 30

60/ 40

50/ 50

40/ 60

30/ 70

20/ 80

10/ 90

Figure 12.4: Network traffic when workload is added

(in a mesh and a chain network)

148 Information Sharing in MANETs: Evaluation of the MDS Prototype

tently very similar for these. As expected, one factor that did play a big role in
packet loss, was the number of table replicas in the network. If only one node has
a replica, the probability of reaching it in a disruptive network will be much lower
than if more nodes have it. On the other hand, if all nodes have a replica, all the
queries will be performed locally and the application will not experience packet loss
at all, something results shown in Figure 12.5 confirm.

We ran the experiment on a mobile network having an area of 400x300 m,
where each of the 10 nodes had a 150 m wireless range. The random waypoint
model was used for the mobility pattern. The same experiments were performed in
three different dynamic network topologies.

In the first topology, there were frequent changes in each node’s neighbour-
hood (a total of 350 route changes in the network were reported during the 60 s
the scenario was running), but there were no partitions, i.e. all the nodes should
have been reachable all the time. In the second topology, there was a network split
for 15 s during which two partitions, each having 5 nodes, could not communicate.
It can be seen that with a low number of table replicas, and especially when there
was only one replica, the number of lost packets came to its maximum. By adding
just one replica into the second partition, the packet loss was notably reduced. In
the third topology, there were no changes in the nodes’ neighbourhood except for a
network split similar to the one in the second topology. As a control experiment
we ran the same scenario with no partitions and no route changes (getting a com-
pletely static network) and, as expected, no packets were lost.

These results show that a dynamic environment does indeed affect the success-
fulness of the queries. However, the overall number of unsuccessful queries is rela-
tively small compared to the total number of queries (3-5% at most). By having
knowledge of the application requirements, MDS can adjust the number of replicas
to achieve a good trade-off between cost and performance.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10
Table instances

Un
su

cc
es

sf
ul

 q
ue

rie
s

1) No partitions, unstable
2) Partitions, unstable
3) Partitions, stable

Figure 12.5: Unsuccessful queries due to packet loss

12.5 Conclusion 1149

12.5 Conclusion

In this paper, we have presented an evaluation of the MDS prototype implementa-
tion. MDS replicates data in order to achieve high availability, in particular in the
presence of partitioning. Inconsistency of data is handled by not deleting or updat-
ing data but instead storing a new version, and through this providing the applica-
tions the means for imposing their own conflict resolution policies.

Evaluating a distributed system prototype for use in a disruptive environment
is a challenging task. We have therefore conducted both field tests and emulation
experiments. In more detail, we have used a step-by-step approach, first evaluating
MDS on different single stand-alone devices, then investigating response times for
remote queries through varying the kind of device sending and receiving the query,
and finally using network emulations and varying the topology and the application
workload. In short our findings are as follows: (1) The general overhead, i.e., the
response time introduced by MDS processing application queries and executing of
the resulting set of internal queries, gives an average factor of 34. (2) As expected,
the kinds of devices/platforms used, impact both the local and remote query re-
sponse time, ranging from tens to hundreds of milliseconds. The increase of re-
sponse time of remote queries compared to local queries is between 5 and 15 times.
(3) By varying the ratio of INSERT and SELECT operations and the number of
replicas in a static network, we observed an interesting trend revealing what im-
pact the number of replicas has on bandwidth usage and response time. These re-
sults can be used for tuning the number of replicas based on either predicted ap-
plication behaviour or by monitoring the MDS usage at run-time. (4) The avail-
ability of the data was measured by counting the number of unsuccessful queries
during the experiments. In our test scenarios these vary from 0 to 5%.

The results presented in this paper show that the choice of data placement is a
very important factor when considering the resource usage and the applications’
perceived quality of the overall system. The results provide a good basis for our
further work, where we focus on replication strategies that adapt to dynamic
changes in network topologies.

Acknowledgment

This work has been performed in the context of the MIDAS project (funded by the
European Commission's 6th Framework Program, contract no. 027055), and the
SIRIUS project (funded by the Norwegian Research Council, project no. 186954).

150 Information Sharing in MANETs: Evaluation of the MDS Prototype

References

[1] Clausen, T., Jacquet P., “Optimized Link State Routing Protocol (OLSR)”,
RFC 3626, October 2003

[2] Gorman, J., “The MIDAS project: Interworking and data sharing”,
Interworking 2006, Santiago, Chile, January 2007

[3] Johannesen, A., “Information sharing in mobile ad-hoc networks using a global
metadata manager”, Master’s thesis, Department of Informatics, University of
Oslo, April 2008

[4] Plagemann et al., “A data sharing facility for mobile ad-hoc emergency and
rescue applications”, Proceedings of the First International Workshop on
Specialized Ad Hoc Networks and Systems (SAHNS 2007), Toronto, Canada,
June 2007

[5] Plagemann, T., Munthe-Kaas, E., Goebel, V., “Reconsidering consistency
management in shared data spaces for emergency and rescue applications”,
Workshop “Tailor-made Data Management”, BTW2007, Aachen, March 2007

[6] Pužar, M., Plagemann, T., “NEMAN: A network emulator for mobile ad-hoc
networks”, Proceedings of the 8th International Conference on
Telecommunications (ConTEL 2005), Zagreb, Croatia, June 2005

[7] Rathner, D., Reiher, D., Popek, G.J., “Roam: A scalable replication system for
mobility”, Mobile Network Applications, Vol. 9, No. 5, Oct 2004

[8] Terry et al., “Managing update conflicts in Bayou, a weakly connected
replicated storage system”, Proceedings of the fifteenth ACM Symposium on
Operating Systems Principles, Copper Mountain, Colorado, United States,
December 1995

[9] Yu, H., Martin, P., Hassanein, H.S., “Cluster-based replication for large-scale
mobile ad-hoc networks”, International Conference on Wireless Networks,
Communications and Mobile Computing, Vol. 1, June 2005

13Chapter 13

Evaluation of Replica
Placement Strategies for a
Shared Data Space in Mobile
Ad-Hoc Networks

Authors: Matija Pužar, Thomas Plagemann

Affiliations: Department of Informatics, University of Oslo
 {matija, plageman}@ifi.uio.no

Publication: The 13th International Conference on Network-Based Information
Systems (NBiS-2010), Takayama, Gifu, Japan, 2010

Abstract: The dynamic nature of mobile ad-hoc networks (MANETs) can easily
lead to data being inaccessible due to constant route changes and network parti-
tions. One method often used for increasing reliability and availability of data is
replication. However, replication comes with costs, those of transferring and stor-
ing data and keeping track of consistency between replicas. For that reason, we
have identified the core factors impacting the resulting network traffic. We have
performed experimental studies with a real world prototype of a distributed data
management system for MANETs. Furthermore, we have done an extensive simu-
lation study showing where table replicas should be placed in the network, in order
to minimize network traffic generated by access to the databases and by the syn-
chronization data. The results of the experiments are consistent and show that by
using clustering techniques we can achieve close-to-optimal traffic by placing repli-
cas on approximately 10 % of nodes.

152 Evaluation of Replica Placement Strategies for a Shared Data Space in MANETs

13.1 Introduction

Replication is a well known method for increasing reliability and availability of
data. This is especially important in mobile ad-hoc networks (MANETs), where
the network topology is constantly changing. Moreover, whole groups or nodes
might detach from the rest of the network, forming their own partitions. By repli-
cating data, we minimize the probability that data is unavailable in such cases.
However, this comes with costs, those of transferring and storing data multiple
times, and managing consistency between replicas.

The MIDAS middleware [2] aims to provide applications an environment for
sharing data, with special focus on MANETs and their disruptive nature. As part
of the project, a working prototype of MIDAS has been implemented and used in
two real world field tests. The MIDAS Data Space (MDS) [12] is a component in
MIDAS providing a distributed data space, where the actual location of data is
transparent to the applications. To the applications, MDS looks like a single ordi-
nary relational database, with support for standard SQL queries. In reality, in-
stances of tables (i.e. replicas) are distributed among different nodes in the net-
work, and MDS keeps track of their location. MDS analyzes each query and, when
necessary, issues remote queries to nodes in the network having a replica of the ta-
bles being queried.

One important aspect of such a distributed system is replica placement, i.e. to
decide how many replicas are needed and where they should be placed, something
MDS is in charge of. Well chosen placement of replicas makes it possible to mini-
mize network traffic and provides robustness and redundancy in case of network
partitioning. It is therefore important to understand how the MDS access pattern,
the replica placement, and the network topology impact the network traffic. Bad
placement of replicas can lead to two problems. First, too few replicas might cause
read operations being forwarded to distant nodes, or important data not being ac-
cessible due to network partitioning. Second, too many replicas can lead to excess
synchronization traffic which in turn can cause link saturation and, as a conse-
quence, a part of the network not being usable at all. The same situation can hap-
pen if the locations for replicas are not well chosen. This is especially important for
write operations, since changes need to be propagated to all replicas. The network
topology determines the path used for forwarding packets and directly affects
bandwidth usage and power usage on nodes on the path. However, due to the
broadcast nature of wireless networks one must not only take the links of the end-
to-end path into account, because all nodes in transmission range of all forwarding
nodes are also affected. In the measurements performed in this paper, we take into
account the impact MDS traffic has on nodes in close vicinity to the packets’ end-
to-end paths, something that is often ignored, yet important. Such collateral traffic
not only uses nodes’ bandwidth, but also other resources such as CPU and, as a
consequence, battery power.

In order to perform good replica placement in MDS, i.e. a placement that in-
creases data availability and decreases network traffic and energy consumption, we
have developed a Traffic Controller for MDS. It monitors the network topology

13.2 Related Work 1153

and the applications’ access pattern to MDS in real-time, and makes decisions on
replica placement based on this information. The current network topology is ac-
quired non-intrusively from the underlying proactive routing protocol. MDS access
statistics are reported constantly by all nodes hosting replicas. By analyzing access
statistics and network topology, the Traffic Controller can calculate the costs or
savings of potential changes in the replica placement, including the cost of trans-
ferring data to replicas. However, these relationships are quite complex and the
problem space defined by the range of possible access patterns and the range of
possible network topologies is extremely large. Therefore, we have performed a sys-
tematic, but still extensive empirical study varying the abovementioned factors, to
determine proper replica placement strategies.

The results of the experiments are consistent and show that by using clustering
techniques we can, as a rule, achieve better results than by using random place-
ment. In the cases where workload is not known upfront, we can achieve close-to-
optimal traffic by placing replicas on approximately 10 % of nodes, if chosen cor-
rectly (e.g., by using clustering techniques). We have also analyzed the costs of re-
configuration of clusters, in different cases of adaptation to changes in network to-
pology. The results show clearly that the system should not react blindly to topol-
ogy changes, as it might cause undesired network traffic. Even though this study
has been made with the MDS implementation, its results are also useful for other
replication problems in MANETs. To the best of our knowledge, no similar study
of this complexity or with corresponding insights has been performed yet. Fur-
thermore, we consider in our evaluation the intrinsic property of the broadcast na-
ture of wireless networks, which is ignored in most existing works. Based on the
evaluation results, we have developed a new approach for further reduction of syn-
chronization traffic, based on a combination of warm standby and caching tech-
niques.

The rest of this paper is organized as follows: Section II gives an overview of
some related work. In Section III, we present shortly the current state of MDS,
and describe in detail the Traffic Controller mechanism. The methodology used for
performing the experiments is described in Section IV, followed by a description of
experiments on static networks in Section V, and mobile networks in Section VI.
Finally, in Section VII we give a conclusion and present ideas for future work.

13.2 Related Work

Existing work on data replication in MANETs typically takes the nodes’ physical
locations into consideration to determine what group or cluster a node is member
of and to predict partitioning. In [11], the authors present a comprehensive survey
of different replication techniques, placing them into five main categories depend-
ing on whether the techniques are power-aware, real-time-aware or partition-
aware. Several techniques ([3], [16], to name a few) take into consideration nodes’
physical locations to determine what group or cluster a node is member of, as well
as for predicting partitioning. Even though physical location can give an indication

154 Evaluation of Replica Placement Strategies for a Shared Data Space in MANETs

on nodes’ present and future connectivity, we argue that one must not rely solely
on this information. Nodes that are physically in close proximity might for various
reasons (obstacles, traffic congestion, etc.) not have network connectivity at all. In
addition, target devices might not be equipped with a GPS receiver, and target
scenarios might be places in locations where GPS signal might not be present (e.g.
in a large building, tunnel, etc.). Supported by results in [5], we rely in our work
instead on the actual connectivity for replica placement, as reported by the routing
protocol. By using clustering techniques based on nodes’ neighborhoods, MDS can
partially predict partitions and act accordingly. MDS does not support real-time
transactions, nor does it (in its current implementation) take into consideration
the nodes’ resources. As such, MDS can be placed into the non-power-aware, non-
real-time-aware and partition-aware category. REDMAN [1] is a middleware for
managing replicas in dense MANETs, defined as networks where each node has at
least a certain number of direct neighbors, and where the node density in the de-
ployment area is relatively constant during time. Like in MDS, REDMAN distrib-
utes metadata information about replica placements, however unlike in MDS, it is
not distributed on all nodes. In [19], the ARAM algorithm and two enhancements
are presented. The number of hops is used as the main metric of the communica-
tion cost of data access. In ARAM, nodes containing replicas decide locally on rep-
lica placements, based on periodic analysis of information on access from their
neighbors. Like in MDS, both read and write operations are performed on the clos-
est node, while write operations are then forwarded to all other replicas. Also, like
in MDS, nodes hosting replicas keep access statistics locally, but unlike MDS, the
decisions regarding replica placements are done locally in the ARAM family of al-
gorithms. In [18], the same authors present a clustering-based algorithm, where
nodes’ position and the distance between them are used as the basis for calcula-
tions. The algorithm presented in [17] has a goal similar to ours, i.e., to minimize
replication cost, given as a compound of several factors, but is developed for static
networks.

Another characteristic of MDS distinguishing it from some other systems (such
as [16]), is the fact that MDS does not make a distinction between a main (often
called master) copy and secondary ones, i.e., all replicas are treated equally. In
that respect, MDS can be considered as being a peer-to-peer system.

13.3 MDS and the Traffic Controller

As part of the MIDAS project, we developed a working proof-of-concept
implementation of the MDS. The implementation includes a fully functioning
metadata managing system [9], data versioning system, subscription and
notification mechanism, as well as eager and lazy synchronization [14]. Due to time
constraints, however, only very simplified versions of some of the other sub-
components are present in the implementation. One of them is the Data Allocator
(DA) sub-component, responsible for placing replicas in the network. In this paper,
we present a solution for the DA sub-component based on a Traffic Controller
mechanism.

13.3 MDS and the Traffic Controller 1155

The Traffic Controller (TC) is the node monitoring the network traffic caused
by MDS usage, and the network topology, to decide where to place replicas; and
by this how to control the MDS traffic in the network. The core challenge we ad-
dress in this paper is how to determine good placement strategies for the possible
MDS access patterns and network topologies. It is also important to make sure
that there is exactly one TC instance in every partition and that all nodes in the
partition know about it. A detailed description of how to assure this in dynamic
MANETs is out of the scope of this paper, but we briefly sketch the basic idea of
our approach. First of all, on all MDS nodes there is a TC instance, but only one
is supposed to be active in each partition. Since the routing table gives any node in
each partition a quite good view of the network topology, it is possible to simply
choose the node with the highest ID to be the TC. The TC announces its presence
by sending periodic beacons. Incomplete or outdated topology information can lead
to more than one active TC instance or no instance at all, but both cases are iden-
tified by detecting irregularities in beacon announcements and can be afterwards
corrected. Please note that the proper functioning of MDS is not depending on the
TC; fixing a missing TC or too many TCs in one partition only shortly delays the
possibility to adapt the replica placement.

Each node having a replica of one or more tables sends periodical messages to
the TC with its own usage statistics. These data are grouped by tables and source
nodes, and include the total incoming and outgoing traffic generated by their que-
ries. By putting the usage statistics together with the knowledge about the current
network topology, the TC can easily calculate the usage of each and every link in
the network and, as a consequence, choose to do reconfiguration. This would typi-
cally be done in the case a different configuration would cause less bandwidth us-
age. Using the statistical data, the TC node can predict what the future band-
width usage will be if it indeed decides to perform reconfiguration of replicas. An-
other case where reconfiguration might be triggered is when TC notices that a link

Figure 13.1: Screenshot from the test application

on top of the real MDS prototype, showing in addition the report channels towards the TC

156 Evaluation of Replica Placement Strategies for a Shared Data Space in MANETs

(or more of them) became saturated. TC uses an adjustable parameter to define
the threshold of when a link becomes saturated. Through this parameter, the TC
can also implicitly consider non-MDS traffic in the decision making. The cost of
gathering statistics at the TC node is negligible compared to the regular traffic
(typically a few hundreds of bytes per packet, sent every 10 seconds), and for that
reason it was not taken into consideration in the following experiments.

In order to visualize the protocols and to see how the system reacts on concrete
actions, we have developed a test application that can be run on the TC node.
Figure 13.1 shows a screenshot of the test application running in real time on one
of the nodes in the emulated environment. The thickness of the lines represents
bandwidth usage on a particular link, while a thicker round border means that a
node has a replica of the table being monitored. The application illustrates the
network, as well as link usage in real time, as reported by the nodes gathering sta-
tistics. It also gives the possibility to manually create or remove replicas, start and
stop queries at given nodes, change clustering parameters, etc. That way, we can
instantly see how the network reacts to any action. The figure shows also how the
DA sub-components on the nodes having replicas communicate with the TC node.

There are two main types of queries towards MDS that cause very different ef-
fects with respect to network traffic, i.e. read and write (issued by the applications
as SELECT and INSERT SQL statements, respectively). A read operation com-
prises typically a short query message and a possibly large response from the single
node having the nearest replica. A write operation comprises a short query mes-
sage (possibly large if images are inserted), a short acknowledgement from the
nearest node, and the messages needed to perform instant (eager) update of all the
remaining replicas within the network partition. It is important therefore to match
the number and location of replicas as closely as possible to the applications’ ac-
cess pattern on the various nodes.

Network topology is the second factor that has a major impact on the overall
network traffic. During a short period of time, the topology can be considered be-
ing static and MDS can configure the replica placement accordingly. However, mo-
bility can cause constant reconfiguration of routes within the network, as well as
network partitioning. Both of these can have a huge impact on replica placement
choices. While in practice nothing much can be done after partitioning has already
happened, there are several ways MDS can react to an internal reconfiguration of
the network. It can decide to remove some of the existing replicas or add one or
more new ones. However, the latter comes with a cost, that of copying data to a
new location, so any such decision has to be planned carefully to see whether such
a reconfiguration would pay off in a short or long term. The two most important
parameters TC needs to consider when deciding whether to perform reconfigura-
tion or not, can be put in the following simple equation:

sync_traffic � �app_traffic

where sync_traffic denotes the cost of creating a new replica and synchronizing
it (i.e. copying all necessary old data to it), and �app_traffic denotes the pre-
dicted difference in the traffic between the current status and the new placement,

13.4 Methodology 1157

in a certain period of time. In short, the cost of creating a replica should not be
bigger than the gain achieved by doing it. However, there are a few challenges that
arise, e.g. to determine what is the period to be looked in, and then how exactly
the replica location should be reconfigured.

The TC can recalculate the assumed future network traffic if any of the repli-
cas is removed or a new is added. One way to minimize the effect of re-clustering
might be to always only move the replica or replicas that have the worst statistics,
i.e. cause a lot of traffic that might have been avoided if a change was made.

To understand more in-depth the relation between the network traffic and rep-
lica placement, a more thorough study had to be made. The following sections pre-
sent the experiments we performed, and some conclusions we drew out of their re-
sults. These results will help us to better design the algorithms within the TC and
MDS in general.

13.4 Methodology

To be able to perform a thorough study and get meaningful and reproducible re-
sults, we had to run simulation or emulation experiments. In our emulation tool
NEMAN [13], we can perform network experiments on a single machine. Even
though a working implementation of MDS in Java already exists, which runs in
NEMAN, we could not use it for large scale experiments due to high resource us-
age present when running a larger number of Java processes on the same machine.
Therefore, we created a simulation model of MDS and verified its correctness by
comparing it in simple scenarios with the real implementation. In the simulated
experiments, the most important features of MDS, i.e. remote queries and eager
synchronization, are modeled to match the existing implementation. In the simu-
lated MDS, it was necessary to determine which path (i.e. which links) a packet
would go through from the source to the destination node. Since these runs were
not performed in real-time, the tested scenarios were first put into NEMAN, with
the OLSR routing protocol [1] running on top, to gather routing information for
the simulated MDS. As a consequence, the simulated MDS was able to calculate
the exact same paths the real MDS would have used in the same situation. To cal-
culate each link’s bandwidth usage, the path for each packet was followed hop-by-
hop to see which links would be used when it was resent. This includes also links
towards nodes which are not on the end-to-end path, but which do hear the packet
due to the broadcast nature of the wireless medium.

In our experiments, we varied the following parameters: a) number and place-
ment of readers and writers, b) number of nodes, c) size of the area, d) mobility,
and e) number and placement of replicas. Links were considered to be ideal, i.e. we
did not take into consideration the possible bandwidth saturation. Since it would
be computationally unfeasible to study all possible combinations, we have used a
systematic approach in choosing test cases. We have identified some extreme cases
(e.g. placing replicas on one node on the border of the network, as opposed to plac-
ing them on all nodes), as well as some sample cases in between. We have then
identified three typical static scenarios, and a mobile one. To be able to analyze

158 Evaluation of Replica Placement Strategies for a Shared Data Space in MANETs

the mobile scenario, we took static snapshots of the network topology every 60
seconds. The location of replicas was chosen in two ways. First, they were placed
manually (for small amounts) and randomly (for larger amounts) varying from
having only 1 replica at different places in the network, to having replicas on all
nodes. Later, different clustering algorithms were used, where replicas were placed
on the chosen cluster heads, to see the effect that clustering has on performance.

The first set of experiments was run on 3 different static scenarios, by varying
the placement of replicas and application generated traffic. The scenarios are simi-
lar in that the average number of neighbors (i.e. network density) is the same,
while the number of nodes and the network configuration are varied.

The first scenario to be tested (S1, as seen in Figure 13.1) was a snapshot from
a scenario generated by RoboCup Rescue [8] and consisted of 40 nodes (of which 2
were disconnected at that very point in time when the snapshot was taken). In this
scenario, each node has an average of 3.75 neighbors. We call this parameter net-
work density. Since network density is an important factor for the performance of
MDS, this number was used as a reference when creating the next two scenarios,
to be able to compare the results. The second and third scenario (S2 and S3) con-
sist of 100 nodes within an area of 4000x1000 and 2000x2000 respectively. The
scenarios are generated by using the network simulator ns2’s tool setdest, with mi-
nor manual adjustments to match the desired average density.

In all scenarios, the traffic was varied from having almost no traffic at all, to
having all nodes performing both read and write operations. Table 13.1 shows the
queries that were used in the experiments, with the respective request and re-
sponse sizes. The request and response sizes were obtained from empirical experi-
ments with real MDS and are very dependent on the queries themselves and the
current status of the database, especially the request size for write queries and re-
sponse size for read queries.

Table 13.1: Request and response size of the queries
used in the experiments

Type Actual query Req Resp
read SELECT * FROM table LIMIT 10 90 bytes 1900 bytes
write INSERT INTO table (descr) VALUES (’val’) 220 bytes 680 bytes

13.5 Static Network Experiments

All the experiments presented in Sections 13.5 and 13.6 are based on the current
MDS implementation, as described in Section 13.3. This includes the present solu-
tions for eager and lazy synchronization. The results of the experiments are pre-
sented as graphs showing bandwidth usage (in bytes per second) for each of the di-
rect bidirectional links in the simulated wireless network, both individually and
cumulative for several experiments. In the graphical interpretation, the links are
always sorted ascending by bandwidth usage to make it easier to analyze the re-

13.5 Static Network Experiments 1159

sults visually. The rightmost links are the ones being used most in a single run.
The surface under each line represents the total bandwidth usage in the network.

Scenario S1. This experiment consisted of runs having 18 different replica place-
ments, each analyzed with 6 different configurations of readers and writers. Figure
13.2 shows a few representative runs (with 1, 5 and 38 replicas) for an example
with 4 readers and 4 writers. The number in the brackets for the cases 1a and 1c
denotes the node hosting the replica (node 1 is a border node, whereas node 24 is
placed centrally).

In the first 6 runs there was only one replica in the network, placed on the re-
spective node. The graph shows clearly the difference between placing a replica on
a border node as opposed to placing it centrally.

The next four runs had 3 replicas in the network, followed by two runs with 5
replicas, then two runs with 10 replicas, and continuing to up to 38 replicas (i.e. all
nodes having a replica). It can be seen that increasing the number of replicas re-
duces the individual and total bandwidth usage, but only up to a certain point. In
this case, 3 or 5 well placed replicas (in Figure 13.2 we show only the case with 5,
denoted as 5a) gave the best results. Having more than 5 replicas started increas-
ing the bandwidth usage due to synchronization traffic, with only 4 writers already
(see the extreme case with 38 replicas, denoted as 38a). With more writers, this in-
crease is even more visible.

After comparing all the six configurations of readers and writers (i.e. read-
ers/writers: 12/1, 12/4, 12/12, 4/4, 1/12, and 38/38), the overall conclusion is that

0

5

10

15

20

25

1 21 41 61
Link

B
an

dw
id

th
 u

sa
ge

 (K
B/

s)

1a (1)

1c (24)

38a

5a

Figure 13.2: Link usage, S1, manual replica
placement

0

1

2

3

4

5

6

1a 1b 1c 1d 1e 1f 3a 3b 3c 3d 5a 5b 10a 10b 15a 20a 30a 38a
Number of replicas (incl. different configurations for same number)

Ba
nd

w
id

th
 u

sa
ge

 (M
B/

s)

Figure 13.3: Cumulative bandwidth usage, S1,
manual replica placement

0

5

10

15

20

25

1 21 41 61
Link

Ba
nd

w
id

th
 u

sa
ge

 (K
B/

s) Betw1
Betw2
Betw3
Betw4
Betw5
Betw6
KMean
Rec
Spin1
Spin2
Spin3
5a

Figure 13.4: Link usage, S1, using clustering
algorithms

0
1
2
3
4
5
6

Betw
6 (

2)

Rec
 (3

)

Betw
5 (

3)

Spin
3 (

4)

Betw
4 (

4)

Spin
2 (

4)

Spin
1 (

4)

Kmea
n (

4) 5a

Betw
3 (

6)

Betw
2 (

14
)

Betw
1 (

25
)

Clustering algorithm (with the number of replicas in the network)

B
an

dw
id

th
 u

sa
ge

 (M
B

/s
)

Figure 13.5: Cumulative bandwidth usage, S1,
clustering algorithms

160 Evaluation of Replica Placement Strategies for a Shared Data Space in MANETs

the configuration 5a gave the lowest total bandwidth usage. The total bandwidth
usage presented in Figure 13.3 is a sum of bandwidth usages in each of the 6 con-
figurations.

In the next experiment, different clustering algorithms were tested to see the
potential benefits of using clustering techniques, compared to manual or random
placement. In Figures 13.4 and 13.5, we can see that the results for most of the
clustering algorithms are comparable to the best results achieved with careful
manual placement. To illustrate this, the previously described 5a configuration is
added to the graphs below for comparison. In Figure 13.5, the numbers in brackets
represent the number of replicas in the given configuration.

We used the following clustering techniques: Recursive clustering [10], K-Mean
[7], Spinglass [15] (with 3 differently chosen cluster heads) and Betweenness [2]
(with maximal diameter varying from 1 to 6). The general conclusion after the ex-
periments with scenario S1 is that, without prior knowledge of applications’ access
pattern (i.e. the amount of nodes reading and writing), it is safe to choose between
4 and 6 replicas in the network. In this particular scenario, this number represents
10-15 % of nodes.

Scenarios S2 and S3. This experiment consisted of runs having 10 different replica
placements, each analyzed in 8 different configurations of readers and writers. Fig-
ures 13.6 and 13.7 show two very different examples, one with 1 reader and 100
writers, compared to one with 100 readers and 1 writer. The most relevant runs
(i.e. those having 1, 10 and 100 replicas) are marked using thicker lines.

The line showing 100 replicas (i.e. one replica on each node) shows clearly
what happened in both situations. When all nodes performed write operations, this
would create enormous amounts of traffic due to data synchronization. On the
other hand, when there were almost no nodes performing write operations, there
was no traffic at all, i.e. any node wanting to read something had a local replica
and did not need to query a remote node. What can be seen from these graphs is
that having between 10 and 15 replicas gave most stable results with regard to
changes in the applications’ access pattern. The total bandwidth usage was lowest
between 3 and 20 replicas (as seen in Figure 13.8).

Next, we used the Betweenness clustering algorithm to see the potential bene-
fits of using clusters, compared to manual or random placement. We varied the

0
50

100

150
200
250
300

350
400

1 51 101 151
Link

B
an

dw
id

th
 u

sa
ge

 (K
B

/s
) 1

2
3
5
10
15
20
30
40
100

Figure 13.6: Link usage, S1, manual replica
placement

0

50

100

150

200

250

300

350

400

1 51 101 151
Link

B
an

dw
id

th
 u

sa
ge

 (K
B

/s
) 1

2
3
5
10
15
20
30
40
100

Figure 13.7: Cumulative bandwidth usage, S1,
manual replica placement

13.6 Mobile Network Experiments 1161

maximal diameter (from 1 to 10), getting as a result 3 to 46 clusters, i.e. replicas.
Figure 13.9 presents a case with 1 reader and 100 writers. With 10 replicas (de-
noted as Betw05 in the graph), the network traffic proved to be least susceptible
to the variation in applications’ access pattern.

The experiments made on scenario S3 gave results comparable to those from
S2. There were only minor differences in the results caused by the different con-
figuration of the network, which do not impact the conclusions.

13.6 Mobile Network Experiments

Mobility might cause clusters to constantly change, something that would also
change the desired location of replicas. It can be a very costly process to con-
stantly move replicas around in the network. In the following experiments we have
investigated how TC can react to topology changes caused by mobility, and what
the costs or gains of such actions might be.

13.6.1 Frequent Reconfiguration vs. Static Configuration

To see the effect that mobility has on data distribution and replica placement, we
used the original RoboCup Rescue scenario from which the snapshot S1 was taken.
This scenario (S4) is 18000 seconds (5 hours) long, of which, due to table size re-
strictions in Microsoft Excel, only the first 15000 seconds were considered. Snap-
shots were taken every 60 seconds to see the topology changes and cluster configu-
rations at those moments, and how these affect traffic caused by the usage of
MDS.

Figure 13.10 shows a comparison of the total traffic in the four cases where we
had (a) the ideal placement of replicas achieved by calculating all possible combi-
nations, (b) re-clustering every 60 seconds and creating new replicas accordingly,
(c) random placement of replicas, and (d) the worst possible placement achieved
by calculating all possible combinations. For visual clarity, only the first 5000 sec-
onds are shown here, but the rest of the scenario follows the same trend. In all four
cases, all 40 nodes were constantly performing both read and write operations. For

0

10

20

30

40

50

1 2 3 5 10 15 20 30 40 100

Replicas in the network

Ba
nd

w
id

th
 u

sa
ge

 (M
B/

s)

Figure 13.8: Cumulative bandwidth usage, S2,
manual placement

0

50

100

150

200

250

300

350

400

1 51 101 151
Link

B
an

dw
id

th
 u

sa
ge

 (K
B

/s
) Betw01

Betw02
Betw03
Betw04
Betw05
Betw06
Betw07
Betw08
Betw10

Figure 13.9: Link usage, S2, using clustering, 1
reader / 100 writers

162 Evaluation of Replica Placement Strategies for a Shared Data Space in MANETs

fair comparison, there was always one replica in each partition, since the clustering
algorithm (Betweenness, with the maximal cluster diameter of 4) in all cases chose
only one cluster (and, as a consequence, only one replica) per partition. The cost of
creating new replicas and copying data into them is not yet taken into considera-
tion.

The average bandwidth usage was about 2.5 MB/s. The average savings of
having the ideal choice compared to the worst possible choice were approximately
790 KB/s. Using random placement saved approximately 480 KB/s, while per-
forming constant clustering saved approximately 570 KB/s compared to the worst
case. To put it the other way around, the random placement was 380 KB/s, while
clustering was only 216 KB/s more expensive than the ideal placement. Since the
ideal placement is only theoretical and might not be computationally feasible in
real time, the results show that by doing active re-clustering, to adapt to the new
network topology, we do achieve considerable savings in bandwidth usage if only
user generated traffic is considered. However, creating new replicas comes with a
cost, that of transferring old data to the newly generated replicas in order to have
a consistent view on the shared space. This cost is represented by the series in the
graph marked Lazy synchronization and is explained later.

13.6.2 Gains and Costs of Frequent Reconfiguration

The next experiment was performed to see what is the actual saving (if any) at
each point in time (t) when clusters are re-configured, as opposed to keeping the
current configuration (t-60). Figure 13.11 shows the results of the experiment.

At each point in time where reconfiguration was to be done, there might have
been replicas that should have been removed, and there might have been new ones
to be created. The ones to be removed are not taken into consideration at this
time as that action does not cause any considerable traffic. The amount of newly

0

1

2

3

4

0 1000 2000 3000 4000 5000
Time (s)

B
an

dw
id

th
 u

sa
ge

 (M
B

/s
)

Worst selection

Random
placement of 1
replica
Re-clustering
every 60 s

Ideal placement

Lazy
synchronization -
Re-clustering

Figure 13.10: Total bandwidth usage in 4 different cases, S4

13.6 Mobile Network Experiments 1163

created replicas varied from 0 to 6, with an average of about 1.91. The reconfigu-
ration that included creation of new replicas was desirable in about 30 % of checks,
i.e. there was at least 1 new replica to be created. The savings at each step varied
from about 550 KB/s in one end to negative numbers (i.e. reconfiguration would
be more expensive than keeping the current state) in the other. If only the positive
numbers are taken into consideration, which is the only case where we benefit from
making changes, we have to see what is the maximal cost of creating each new rep-
lica (i.e. maximal table size). If the table at that moment is larger than the given
value, the cost of reconfiguring is larger than the short-term gain that would be
achieved by doing it. In this very experiment, the average savings were about 140
KB/s. It has to be noted that, if a node already has had a replica of the table in
the past, it will not be necessary to re-synchronize the whole table but only the
newly added or changed records since it had been deactivated. This is possible as
long as replicas are only deactivated and not physically removed, i.e., by having
them in warm standby. In addition, nodes on the end-to-end path (who anyway
receive all the packets) might transparently cache queries and synchronization traf-
fic going through them. This, in combination with replicas in warm standby, might
significantly reduce network traffic when a new replica is created.

Another important thing to remember is that, when a new replica is created
due to partitioning of the network, this will not cause any traffic at the moment of
creation since the partition is isolated. This can be clearly seen as negative spikes
in Figure 13.11, implying that not doing reconfiguration would have given consid-
erably better results (e.g. at 4400 s). This is due to 4 new replicas that were to be
created if clustering was done, and which would not be there if clustering was not
done (i.e. there was no replica in the partition so the nodes seemingly performed
local queries and thus generated no traffic). In reality, only the first node perform-
ing a query would create a local replica, while the rest would then continue to use
that one, making the replica placement random, and real results would follow ac-
cordingly. Also, the minute the partition would come in contact with another one
having a replica, lazy synchronization would have taken place to make sure all rep-
licas were up to date.

In this particular scenario, the total generated network traffic during the 15000
seconds was calculated to be 36 430 MB. Synchronization costs due to reconfigura-
tion (i.e. lazy synchronization), in the case where clustering is performed every
minute, and under the assumption that data from de-allocated replicas was kept
for possible future re-allocation, came to a total of 3 419 MB per hop (i.e. it is de-
pendent on where the nearest replica is located). This is the worst case where each
record to be synchronized was sent uncompressed. In reality, MDS has imple-
mented batching, i.e. grouping all messages to be sent to one destination into one
single message, in combination with compression. The real total cost for lazy syn-
chronization, when both batching and compression are taken into consideration,
would be significantly lower, with an estimated total of about 73 MB per hop (in
average, about 300 KB every minute when synchronization would take place).
Such a compression is possible due to the fact that the queries are plain-text, in

164 Evaluation of Replica Placement Strategies for a Shared Data Space in MANETs

addition to be similar. The standard traffic generated during the scenario by the
applications, as well as eager synchronization performed immediately, do not allow
for savings in such a degree, since the messages are sent separately.

The line in Figure 13.10, marked as lazy synchronization, shows the estimated
cost for lazy synchronization with constant re-clustering. For comparison, the
other three cases have very similar total estimated cost (ranging from 70 to 95
MB) and similarly distributed throughout the simulation, which makes the total
usage generally follow the pattern of the data-only distribution.

13.7 Conclusion

Due to the dynamic nature of mobile ad-hoc networks, the availability of remotely
located data might decrease substantially. Data replication provides a means for
increasing data availability, but the location and number of replicas must be
planned carefully. In this paper, we have presented an extensive study of different
replica placement strategies for the MIDAS Data Space. Our experiments have
confirmed that placement of replicas plays a big role in the amount of traffic in the
network caused by usage of MDS (either direct or indirect, i.e. synchronization
protocol). We could also see that having replicas on approximately 10 % of the
nodes in the network gave balanced overall results when applications' access pat-
tern was not known beforehand. These replicas also needed to be carefully placed,
and different clustering algorithms have shown to be helpful in that matter, com-
pared with arbitrary placement. We have also analyzed the possible gains and
costs of performing reconfiguration of replicas in the network. The results have
shown that the Traffic Controller should not blindly react to topology changes,
since reconfiguration could cause a lot of undesired network traffic.

By constantly monitoring the applications' access pattern, network topology,
and table sizes, the Traffic Controller can deviate from the default placement algo-

-3

-2

-1

0

1

2

3

4

5

0 5000 10000 15000
Time (s)

Ba
nd

w
id

th
 u

sa
ge

 (M
B

/s
) Re-clustering

every 60 s

Potential traffic
if the change
was not made

Potential
savings (+)
and costs (-)

Figure 13.11: Potential bandwidth savings or costs

when reconfiguration is done

13.7 Conclusion 1165

rithm, and adapt to the situation that takes all of the factors into consideration.
As part of future work, we intend to work further on optimizing the algorithm
used by the Traffic Controller, as well as other protocols used in MDS. We will
continue analyzing how a node's resources are affected by the overall situation in
its neighborhood, as opposed to only looking at each node or link separately. Fi-
nally, we will take a deeper look into what gain can be achieved by implementing
the presented idea of warm standby replicas combined with caching.

Acknowledgment

This work has been performed in the context of the MIDAS project (funded by the
European Commission's 6th Framework Program, contract no. 027055), and the
Ad-Hoc InfoWare project (funded by the Norwegian Research Council, IKT2010,
Project No. 152929/431).

References

[1] Bellavista, P., Corradi, A., Magistretti, E., “REDMAN: A Decentralized
Middleware Solution for Cooperative Replication in Dense MANETs”,
International Conference on Pervasive Computing and Communications
Workshops, 2005

[2] Brandes, U., “A Faster Algorithm for Betweenness Centrality”, Journal of
Mathematical Sociology 25(2):163-177, 2001

[3] Chen, K., Nahrstedt, K., “An Integrated Data Lookup and Replication Scheme
in Mobile Ad Hoc Networks”, SPIE International Symposium on the
Convergence of Information Technologies and Communications (ITCom 2001),
Denver, Colorado, USA, 2001

[4] Clausen, T., Jacquet P., “Optimized Link State Routing Protocol (OLSR)”,
RFC 3626, October 2003

[5] Drugan, O., Plagemann, T., Munthe-Kaas, E., “Predicting time intervals for
resource availability in MANETs”, The IEEE International Workshop on Ad
Hoc and Ubiquitous Computing (AHUC2006), Taichung, Taiwan, July 2006

[6] Gorman, J., “The MIDAS project: Interworking and data sharing”,
Interworking 2006, Santiago, Chile, January 2007

[7] Kaufman, L., Rousseeuw, P.J., “Finding Groups in Data: An Introduction to
Cluster Analysis”, Wiley Series in Probability and Statistics, Wiley-
Interscience, 9th Edition, 1990

[8] Kitano, H., “RoboCup Rescue: a grand challenge for multi-agent systems”, the
International Conference on Multi-Agent Systems (ICMAS-2000), Boston,
Massachusetts, USA, July 2000

166 Evaluation of Replica Placement Strategies for a Shared Data Space in MANETs

[9] Munthe-Kaas, E., Johannessen, A., Pužar, M., Plagemann, T., “Information

Sharing in Mobile Ad-Hoc Networks: Metadata Management in the MIDAS
Dataspace”, The 10th International Conference on Mobile Data Management:
Systems, Services and Middleware, Taipei, Taiwan, May 2009

[10] Newman, M.E.J., Girvan, M., “Finding and Evaluating Community Structure
in Networks”, Physical Review E 69 (2), 2004

[11] Padmanabhan et al., “A survey of data replication techniques for mobile ad
hoc network databases”, The VLDB Journal - The International Journal on
Very Large Data Bases, v.17 n.5, p.1143-1164, August 2008

[12] Plagemann et al., “A data sharing facility for mobile ad-hoc emergency and
rescue applications”, Proceedings of the First International Workshop on
Specialized Ad Hoc Networks and Systems (SAHNS 2007), Toronto, Canada,
June 2007

[13] Pužar, M., Plagemann, T., “NEMAN: A network emulator for mobile ad-hoc
networks”, Proceedings of the 8th International Conference on
Telecommunications (ConTEL 2005), Zagreb, Croatia, June 2005

[14] Pužar, M., Skjelsvik, K.S., Plagemann, T., Munthe-Kaas, E., “Information
Sharing in Mobile Ad-Hoc Networks: Evaluation of the MIDAS Data Space
Prototype”, The Second International Workshop on Specialized Ad Hoc
Networks and Systems (SAHNS 2009), Toronto, Canada, June 2009

[15] Reichardt, J., Bornholdt, S., “Statistical Mechanics of Community Detection”,
Physical Review E 74 (1), 2006

[16] Tamori, M., Ishihara, S., Watanabe, T., Mizuno, T., “A Replica Distribution
Method with Consideration of the Positions of Mobile Hosts on Wireles Ad
Hoc Networks”, Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCSW’02), Vienna, Austria, 2002

[17] Yu, H., Vahdat, A., “Minimal Replication Cost for Availability”, Proceedings
of the 21st ACM Symp. on Principles of Distributed Computing, pp 98–107,
Monterey, CA, July 2002

[18] Zheng, J., Su, J., Lu, X., “A Clustering-Based Data Replication Algorithm in
Mobile Ad Hoc Networks for Improving Data Availability”

[19] Zheng, J., Su, J., Kan, Y., Yijie, W., “Stable Neighbor Based Adaptive
Replica Allocation in Mobile Ad Hoc Networks”, International Conference on
Computational Science (ICCS 2004), LNCS 3036, Krakow, Poland, 2004

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

