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Abstract—Popular services such as Doodle Mobile and Tymelie
are extremely useful planning tools that enable mobile-phone
users to determine common meeting time(s) for events. Similar
planning tools for determining optimal meeting locations, based
on the location preferences of the users, are highly desirable
for event planning and management in popular mobile phone
applications, such as taxi sharing, route planning and mobile
participatory sensing. Yet, they have received very little attention
by researchers. An important, and often overlooked, facet of
such planning applications is the privacy of the participating
users and their preferences; users want to agree on a meeting
location without necessarily revealing their location preferences
to the service provider or to the other users. In this paper,
we address the problem of privacy-preserving optimal meeting-
location computation, especially focusing on its applicability to
current mobile devices and applications. We first define the notion
of privacy in such computations. Second, we model the problem
of optimal meeting-location computation as a privacy-preserving
k-center problem and we design two solutions; both solutions
take advantage of the homomorphic properties of well-known
cryptosystems by Boneh-Goh-Nissim, ElGamal and Paillier in
order to perform oblivious computations. Third, we implement
the proposed solutions on a testbed of the latest generation Nokia
mobile devices and study their performance. Finally, we assess
the utility and expectations, in terms of privacy and usability,
of the proposed solutions by means of a targeted survey and
user-study of mobile-phone users.

I. INTRODUCTION

Technology used in mobile devices has come a long way

since the introduction of GSM, almost two decades ago.

Wide-area broadband connectivity and miniaturization enable

lightweight smartphones to be used increasingly as personal

computers, which makes them a critical tool for improving

the efficiency of service-oriented businesses. A recent survey

shows that 37% of IT organizations are planning to signifi-

cantly increase their spendings for mobile devices and their

support, and almost 48% of the IT companies recognize that

mobile devices and applications are critical for their business

processes [1].

One such important application/service for mobile devices

is activity management. For example, activity management

applications such as Microsoft Outlook [2], Apple iCal [3] and

Doodle [4], are becoming increasingly popular [5]. Colleagues

can use these applications on their mobile devices to organize

business meetings, groups of friends can organize parties on

weekends and people unbeknownst to each other can get dating

recommendations based on their common time availabilities.

Calendar sharing and automatic meeting scheduling, based on

common time availabilities, are the two main features of such

applications and services.

Although current activity management applications focus

primarily on time-related scheduling, little attention has been

devoted to the spatial constraints. Determining a suitable

location of a meeting or activity is as important as identifying

the commonly acceptable time slot. Several providers already

offer variants of this service (such as finding the location

that is in the middle between two user-defined locations)

either as on-line web applications ([6], [7], [8]) or as stand-

alone applications for mobile devices [9]. Not only is such

a feature desirable, but it also increases both the efficiency

and the productivity of all the involved parties. For instance,

companies could set cost-minimizing travel policies, such that

meeting locations are optimized with respect to travel time or

distance for each participant, and colleagues would not need to

manually search and unanimously agree for a suitable meeting

location. Moreover, preferences of companies and employees

would be taken into consideration, and the overall meeting

costs would be optimized.

One important aspect of such a service is the privacy of

users’ meeting location preferences. Let us explain this by

means of a practical example. Assume representatives of three

competing companies X,Y and Z are exploring new regions



for profitable business opportunities. If these representatives of

X,Y and Z would need to meet, it is very likely that none of

them would like to reveal their strategic interest in a position.

In other words, they would like to conceal the association

between the meeting participants and their preferred meeting

locations. Yet, they would like to find a place that is easy

to reach for all of them. In such a scenario, determining

the optimal meeting place while preserving the privacy of

individuals’ preferred locations is of utmost importance. For

instance, a global telecom operator recently announced a taxi-

sharing application [10], where the users have to reveal their

departure and destination points to the server. If such a server

is not fully trusted by the users, revealing sensitive locations

(such as users home/work addresses) could pave the way for

financial and social inference attacks by third-parties.

Popular meeting scheduling services, such as Doodle [4]

or Outlook [2], require each participant to indicate his time

availabilities in order to find a common time slot. Clearly, in

such services, third-party providers and other participants can

find out the private schedule information of other participants.

If providers offered to find the optimal meeting location in a

similar fashion, they would need to know each participant’s

personal location preferences, which would pose an even

greater privacy risk. For instance, if Doodle users were asked

to introduce their preferred location in addition to their time

availabilities, it would be even easier to abusively track them

and profile their habits and mobility patterns. As an example,

a popular service offering real street images has been used in

a divorce case [11] by a spouse against her husband (after he

denied being where he was filmed). Undoubtedly, the privacy

of users’ personal information is a very sensitive issue, and

people are increasingly worried about data disclosure risks

and their negative social and financial consequences.

Although there is a strong correlation between time and

space dimensions (e.g., a person’s location is closely corre-

lated with the time of the day), transposing the mechanisms

developed for time scheduling to location determination is very

challenging. In the scheduling scenario, for instance, users

specify whether they are available or not for each known

time slot, and the common availabilities are then computed by

aggregating the individual schedules. The common availabil-

ities are then obtained simply by checking whether all users

are available in a given time slot. Determining the optimal

meeting location, on the contrary, is not as straightforward.

For instance, in the space domain users can choose the

precision of their coordinates, depending on their level of

anonymity, by providing only an approximate region or a

highly populated public space. Moreover, a meeting location

might not be one of the locations that each user proposes but,

on the contrary, it might be a different location that is easily

reachable by all participants, and therefore simply aggregating

the individual locations might not result in an optimal meeting

place. Clearly, as the approach of the time-scheduling problem

is fundamentally different from the optimal meeting-location

problem, solutions to the former cannot be directly applied to

the latter. Additionally, the privacy requirements of hiding the

location preferences from the computing party and the other

participants make this problem even more challenging.

Our work: In this work, we address the problem of

finding the optimal meeting location in a way that preserves

the privacy of users’ personal location preferences vis-à-vis
other users and any third-parties that might be involved. To

the best of our knowledge, this is the first paper that presents

solutions to the privacy-preserving optimal meeting-location

problem. Moreover, the design of such solutions is particularly

targeted at mobile devices, with limited computational and

communication capabilities. The proposed application is inde-

pendent of any underlying service or network provider, and

it can be included in an existing online meeting management

services as an add-on feature.

Previous research on related problems, albeit without the

privacy considerations, has been carried out mostly in the

operations research domain, where the challenge is to find

an optimal location (for a warehouse, an ATM machine or a

power plant) that minimizes a given cost function (longest dis-

tance, shortest time or best connectivity). The purpose of such

solutions is purely an optimization goal, without any require-

ments on the privacy front, mostly because solutions are found

in-house, without involving a potentially untrusted third-party

or external partners. However, when considering independent

users with private information, such solutions based on re-

vealing location preferences to a central entity are no longer

applicable or desired. Untrusted infrastructure and potentially

competing partners represent two crucial distinguishing factors

with respect to the pure optimization techniques studied in

operation research. Privacy-preserving schemes, although only

for time scheduling, have received significant attention from

the research community, and several algorithms that preserve

the privacy of individual availabilities have been developed.

Protocols based on secure multiparty computation [12] and

distributed constraint satisfaction problems ([13], [14]) have

been designed and evaluated with respect to the privacy guar-

antees they offer. Nevertheless, as time scheduling and location

determination are two fundamentally different problems, no

such work seems to exist for the privacy-preserving meeting

location problem.

Contributions: In this paper, we design the first privacy-

preserving, optimal meeting-location service for mobile de-

vices. The main contributions of this work are:

• Two novel algorithms for the privacy-preserving optimal

meeting-location (POML) problem

• A formal framework for representing privacy require-

ments in the POML problem and analysis of the privacy

provided by the proposed algorithms

• Implementation of the proposed algorithms on mobile

devices, including the first known implementation of the

Boneh-Goh-Nissim encryption scheme [15] used in one

of the algorithms.

• Extensive performance measurements of the proposed

solution on a test-bed of commercial mobile devices, as

well as a targeted user-study on mobile-phone users.



The rest of the paper is organized as follows. In Section II

we describe the system architecture and threat model, whereas

in Section III we define the privacy-preserving meeting-

location problem and the privacy requirements. In Section

IV we present and analyze our solution, and in Section V

we present its implementation on mobile devices and the

performance results. In Section VI we discuss the security and

optimization extensions to our solutions, and in Section VII

we present the results of our user-study. In Section VIII we

discuss the related work and we conclude the paper in Section

IX.

II. SYSTEM ARCHITECTURE

In this section, we outline the network and threat models

that are considered in the paper.

A. System Model

Our system is composed of two main entities: (i) a set of

users1 (or mobile devices) U = {u1, . . . , uN} and (ii) a third-

party service provider, called Location Determination Server
(LDS). The N users want to determine the optimal meeting

location that is computed by the LDS.

Each user’s mobile device is assumed to be able to establish

communication with the LDS either directly or through a fixed

infrastructure, such as the Internet. The mobile devices are

able to perform public-key cryptographic operations, such as

encryption, decryption and digital signature. Moreover, we

assume that each user ui ∈ U has means of determining

the position Li = (xi, yi) ∈ N
2 of his preferred meeting

location (or his own location) by using a common coordinate

system. We consider a two-dimensional position coordinates

system, but the proposed schemes are general enough and can

be easily extended to three dimensions. These coordinates can

be mapped from/to real geographic coordinates, either locally

(using a GPS receiver on his mobile device) or through an

optional third-party positioning service (PS), such as Google

My Location [16]. For instance, such definition of Li can

be made fully compliant with the UTM coordinate system

[17], which is a plane coordinate system where points are

represented as a 2-tuple of positive values (distances in meters

from a given reference point). As UTM divides the globe in

grid zones, our solution applies best to such regional scenarios.

We define the set of the preferred meeting locations of all

users as L = {Li}Ni=1. For the sake of simplicity, we assume a

flat-Earth model and we consider line-of-sight Euclidian dis-

tances between preferred meeting locations. Even though the

actual real-world distance (road, railway, boat, etc.) between

two locations is at least as large as their Euclidian distance,

the proportion between distances in the real world is assumed

to be correlated with the proportion of the respective Euclidian

distances.

We assume that each of the N users has his own pub-

lic/private key pair (Kui

P ,Kui
s ), certified by a trusted CA,

which is used to digitally sign the messages that are sent to the

1Throughout this paper, we use the words users and devices interchange-
ably. The meaning is clear from the context, unless stated otherwise.

LDS. Moreover, we assume that the N users share a common

secret that is utilized to generate a shared public/private key

pair (KMv

P ,KMv
s ) in an online fashion for each meeting setup

instance v. The private key KMv
s generated in this way is

known only to all meeting participants, whereas the public key

KMv

P is known to everyone including the LDS. This could be

achieved through a secure credential establishment protocol

such as in ([18], [19], [20]).

The LDS executes the optimal meeting-location algorithm

on the inputs it receives by the users in order to compute the

optimal meeting location. The LDS is also able to perform

public-key cryptographic functions. For instance, a common

public-key infrastructure using the RSA cryptosystem [21]

could be employed. Let KLDS
P be the public key, certified

by a trusted CA, and KLDS
s the corresponding private key

of the LDS. KLDS
P is publicly known and users encrypt

their input to the meeting-location algorithm using this key;

the encrypted input can be decrypted by the LDS using its

private key KLDS
s . This ensures message confidentiality and

integrity for all the messages exchanged between users and

the LDS. For simplicity of exposition, in our protocols we do

not explicitly show these cryptographic operations involving

LDS’s public/private key.

B. Threat Model

a) Location Determination Server: The LDS is the entity

that performs the computations in order to determine the

optimal meeting location for the users. The LDS is assumed

to execute the algorithms correctly, i.e., take all the inputs

and produce the output according to the algorithm. However,

the LDS may try to learn information about user meeting-

location preferences from the received inputs, the intermediate

results and the produced outputs of the meeting-location

computations. This type of adversarial behavior is usually

referred to as honest-but-curious adversary (or semi-honest)

[22]. In most practical settings, where service providers have

a commercial interest in providing a faithful service to their

customers, the assumption of a semi-honest LDS is generally

sufficient.

b) Users: The participating users also want to learn the

private location preferences of other users from the output

of the algorithm they receive from the LDS. We refer to

such attacks as passive attacks. As user inputs are encrypted

with the LDS’s public key KLDS
P , there is a confidentiality

guarantee against basic eavesdropping by participants and non

participants. In addition to these passive attacks, participating

users may also attempt to actively attack the protocol by, for

instance, colluding with other users or manipulating their own

inputs to learn the output.

A complete list of symbols can be found in Table I.

III. PROBLEM AND PRIVACY DEFINITIONS

In this section, we define the privacy-preserving optimal

meeting-location (POML) problem and the necessary privacy

requirements that have to be met by any algorithm that solves

the POML problem.



Table I
TABLE OF SYMBOLS.

SYMBOL DEFINITION 
AdvIDT Identifiability advantage 

Advd-LNK Distance-linkability advantage 
Advc-LNK Coordinate-linkability advantage 

dij 
Euclidian distance between two 
points in the plane 

Di
M Maximum Euclidian distance of user 

i to any other user j � i 

f Public transformation function 
based on secret key (for privacy) 

g Optimization function 
LDS Location Determination Server 

Li 
Desired meeting location of user i, 
Li = (xi, yi) 

Lopt Optimal meeting location 
PS Positioning Service 

ua 
Attacker (a user participating in the 
POML protocol) 

E(.) Encryption of (.) (the encryption 
scheme is clear from the context) 

ElG(.)/ 
Pai(.) 

Encryption of (.) using the 
ElGamal/Paillier encryption scheme 

�, � Element-permutation functions 
 

A. Privacy-Preserving Optimal Meeting-Location Problem

In this work, we consider the problem of finding, in a

privacy-preserving way, the optimal meeting location among

several participants, such that (i) each of the users gets to

know only the final optimal location and (ii) no user or third-

party server knows any other private location information

about any user involved in the computations. We refer to

an algorithm that solves such problem as privacy-preserving
optimal meeting-location (POML) algorithm. In general, any

POML algorithm A should work as follows. Given a set of

N users U, where each user ui, i ∈ {1, . . . , N}, has a private

preferred location Li, and a transformation function f , the

POML algorithm takes f(Li), ∀i ∈ {1, . . . , N}, as inputs and

computes the location function f(Lopt) as output, where Lopt

is the optimal location as computed by an optimization func-

tion g, given the private inputs f(L1), . . . , f(LN ). Moreover,

the inputs to the algorithm and the outputs it produces should

satisfy the two privacy requirements described earlier. Figure

1 shows a functional diagram of a POML protocol, where the

POML algorithm A is executed by an LDS.

Formally, a POML algorithm A works as follows:

• Input: a transformation f of private locations Li

f(L1)||f(L2)|| . . . ||f(LN )

where f is a one-way public function (based on secret

key) such that it is hard (success with only a negligible

probability) to determine the input Li without knowing

the secret key, by just observing f(Li).

Each user i
Preferred 

meeting location
Li (by GPS or PS)

Transformation 
function f

Location Determination Server

POML algorithm A

Optimization 
function g

f(Li)

f(Lopt) = g(f(L1),...,f(LN))

Inverse 
function f--1

Optimal meeting 
location Lopt

Figure 1. Functional diagram of the POML protocol, where the POML
algorithm is executed by an LDS.

Lopt,a=ga(f(L1)...f(L4))

Lopt,b=gb(f(L1)...f(L4))

Lopt,c=gc(f(L1)...f(L4))

L3 (x3,y3)

L2
(x2,y2)

f(ff L(( 4)44 ))) L2
(x((

L4
(x4,y4)
LLLL444L1 (x1,y1)LLL1 (x((

Figure 2. General POML scenario, where three distinct optimiza-
tion functions ga, gb, gc output three different optimal meeting loca-
tions Lopt,a, Lopt,b, Lopt,c, given the user-preferred meeting locations
L1, . . . , L4.

• Output: an output f(Lopt) = g(f(L1), . . . , f(LN )),
where g is an optimization function and Lopt = (xl, yl) ∈
N

2 is the optimal meeting location that has been selected

for this particular set of users, such that it is hard for

the LDS to determine Lopt by just observing f(Lopt).
Given f(Lopt), each user is able to compute Lopt =
f−1(f(Lopt)) using his local data.

The optimization function g can be defined in several ways,

depending on the preferences of the users, their employers or

policies. For instance, users might prefer to meet in locations

that are close to their offices, and their employers might

prefer a place that is closest to their clients. Figure 2 shows

three different optimal locations for three distinct optimization

functions g. In Section IV-A we describe one such function

that we use throughout this paper, and in Section VI-B we

discuss other optimization functions that can be used in any

POML algorithm.

B. Privacy Requirements and Definitions

The generic POML protocol represented in Figure 1 in-

volves several operations, some of which are executed on

the user device and some on a third-party LDS. Moreover,

the PS is optionally required by the users in order to obtain

the location coordinates of POIs in a given area. In order to

guarantee that private information about users is not leaked to

other users or third-parties during the execution of the POML

algorithm, we need to formally define requirements that any

such algorithm has to satisfy. Afterwards, we will evaluate the



proposed POML algorithms based on these privacy definitions.

Informally, the privacy requirements can be stated as follows.

After the execution of the POML algorithm, any user ui should

not be able to infer (i) the preferred location Lj of any other

user uj �= ui nor (ii) the relative distances dij between any

two users ui �= uj . Likewise, any LDS (and PS) should not be

able to infer (iii) the preferred location Li of any user ui, (iv)

the relative distance dij between any two users ui �= uj nor

(v) the final meeting location Lopt. Such privacy requirements

can be grouped in two components, called as user-privacy and

server-privacy, defined as follows.
1) User-Privacy: The user-privacy of any POML algo-

rithm A measures the probabilistic advantage that an attacker

a (a user participating in the POML protocol or an external

user) gains towards learning the preferred location Lj of at

least one other user j ∈ {1, . . . , N}, except the final optimal

meeting location Lopt, after all users have participated in the

execution of the POML protocol. Clearly, an external user does

not learn about any preferred locations as it does not receive

the output of the algorithm. Therefore, we only consider the

non-trivial case of users participating in the POML protocol

as attackers, i.e., ua where a ∈ {1, . . . , N}.
We express the user-privacy in terms of three adversary

advantages. First, we measure the identifiability advantage,

which is the probabilistic advantage of ua in correctly guess-

ing the preferred location Li of any user ui �= ua. We

denote it as AdvIDT
a (A). Second, we measure the distance-

linkability advantage, which is the probabilistic advantage of

ua in correctly guessing whether the distance dij between

any two users ui �= uj , is greater than a given parameter

s, without necessarily knowing any users’ preferred locations

Li, Lj . We denote this advantage as Advd−LNK
a . Finally, we

measure the coordinate-linkability advantage, which is the

probabilistic advantage of ua in correctly guessing whether

a given coordinate xi (or yi) of a user ui is greater than

the corresponding coordinate(s) of another user uj �= ui, i.e.,

xj (or yj), without necessarily knowing any users’ preferred

locations Li, Lj . We denote this advantage as Advc−LNK
a . The

next observation follows from the above definitions.
Observation 1: If an adversary has an identifiability advan-

tage over any two distinct users ui �= uj , this implies it has

distance- and coordinate-linkability advantages over those two

users as well. However, the inverse is not necessarily true.
We semantically define the identifiability and linkability

advantages by using a challenge-response methodology, which

has been widely used to prove the security of cryptographic

protocols. We now describe such a challenge-response game

for the identifiability advantage AdvIDT
a (A) of any adversary

ua in a POML algorithm A.

1) Initialization: Challenger privately collects L = {Li}Ni=1,

where Li = (xi, yi) is the preferred meeting location of

user ui, and f(Li), ∀i ∈ {1, . . . , N}.

2) POML algorithm: Challenger executes the POML algo-

rithm A with the N users and computes f(Lopt) =
g(f(L1), . . . , f(LN )). It then sends f(Lopt) to each user

ui, ∀i ∈ {1, . . . , N}.

3) Challenger randomly chooses a user ua, a ∈ {1, . . . , N},

as the adversary.

4) ua chooses uj �= ua and sends j to the challenger.

5) Challenge: Challenger chooses a random

k ∈ {1, . . . , N}, k �= a and sends Lk to the adversary.

The challenge is to correctly guess whether Lk = Lj .

6) The adversary sends L∗
j to the challenger. If the adversary

thinks that Lk is the preferred meeting location of user

uj , i.e., if Lk = Lj then the adversary sets L∗
j = 1. If

the adversary thinks that Lk is not the preferred meeting

location of user uj , then he sets L∗
j = 0.

The identifiability advantage AdvIDT
a (A) can be defined as

AdvIDT
a (A) = |Pr[(L∗

j = 1 ∧ Lk = Lj)∪
(L∗

j = 0 ∧ Lk �= Lj)]− 1/(N − 1)|
where Pr[L∗

j = Lk] is the probability of user ua winning the

game by correctly answering the challenge, computed over

the coin tosses of the challenger, L∗
j is ua’s guess about the

preferred location of user uj �= ua, Lk is the preferred location

of user uk �= ua and 1/(N −1) is the probability of a random

guess.

Similarly, we define the distance-linkability advantage

Advd−LNK
a (A) of any adversary ua in a POML algorithm

A by means of the following challenger-adversary game.

1) Initialization: Challenger privately collects L = {Li}Ni=1,

where Li = (xi, yi) is the preferred meeting location of

user ui, and f(Li), ∀i ∈ {1, . . . , N}.

2) POML algorithm: Challenger executes the POML algo-

rithm A with the N users and computes f(Lopt) =
g(f(L1), . . . , f(LN )). It then sends f(Lopt) to each user

ui, ∀i ∈ {1, . . . , N}.

3) Challenger randomly chooses a user ua, a ∈ {1, . . . , N},

as the adversary.

4) ua chooses uj , uk �= ua and sends (j, k) to the challenger.

5) Challenge: Challenger computes a value s,

e.g., the average Euclidian distance d =∑N−1
n=1

∑N
m=n+1 dnm/(2N(N − 1)) between any

two users un �= um, and sends (j, k, s) to the adversary.

The challenge is to correctly guess whether djk < s.

6) The adversary sends d∗ to the challenger. If the adversary

thinks that djk < s then he sets d∗ = 1, otherwise d∗ = 0.

The adversary wins the game if: (i) d∗ = 1 ∧ djk < s or

(ii) d∗ = 0 ∧ djk ≥ s. Otherwise, the adversary loses.

The distance-linkability advantage Advd−LNK
a (A) can be

defined as

Advd−LNK
a (A) = |Pr[(d∗ = 1 ∧ djk < s)∨

(d∗ = 0 ∧ djk ≥ s)]− 1

2
|

where Pr[.] is the probability of the adversary ua winning the

game by correctly answering the challenge, computed over the

coin tosses of the challenger, d∗ is the guess of the adversary,

djk is the distance between Lj , Lk and s is a parameter chosen

by the challenger.



Finally, we define the coordinate-linkability advantage

Advc−LNK
a (A) of any adversary ua in a POML algorithm

A by means of the following challenger-adversary game.

1) Initialization: Challenger privately collects L = {Li}Ni=1,

where Li = (xi, yi) is the preferred meeting location of

user ui, and f(Li), ∀i ∈ {1, . . . , N}.

2) POML algorithm: Challenger executes the POML algo-

rithm A with the N users and computes f(Lopt) =
g(f(L1), . . . , f(LN )). It then sends f(Lopt) to each user

ui, ∀i ∈ {1, . . . , N}.

3) Challenger randomly chooses a user ua, a ∈ {1, . . . , N},

as the adversary.

4) ua chooses uj , uk �= ua and sends (j, k) to the challenger.

5) Challenge: Challenger chooses a coordinate axis c ∈
{x, y} and sends (j, k, c) to the adversary. The challenge

is to correctly guess whether cj < ck.

6) The adversary sends c∗ to the challenger. If the adversary

thinks that cj < ck then he sets c∗ = 1, otherwise c∗ = 0.

The adversary wins the game if: (i) c∗ = 1 ∧ cj < ck or

(ii) c∗ = 0 ∧ cj ≥ ck. Otherwise, the adversary loses.

The coordinate-linkability advantage Advc−LNK
a (A) can be

defined as

Advc−LNK
a (A) = |Pr[(c∗ = 1 ∧ cj < ck)∨

(c∗ = 0 ∧ cj ≥ ck)]− 1

2
|

where Pr[.] is the probability of the adversary ua winning the

game by correctly answering the challenge, computed over the

coin tosses of the challenger, c∗ is the guess of the adversary,

cj is the spatial coordinate (xj or yj) randomly chosen by the

challenger. ua sets c∗ = 1 if he thinks cj − ck < s, otherwise

c∗ = 0.

We now define the user-privacy of any POML algorithm A
on a per-execution basis in the following way.

Definition 1: An execution of the POML algorithm A
is user-private if the identifiability advantage AdvIDT

a (A),
the distance-linkability advantage Advc−LNK

a (A) and the

coordinate-linkability advantage Advc−LNK
a (A) of each par-

ticipating user ui, i ∈ {1, . . . , N} are negligible in the number

of user-preferred meeting locations Li.

In general, a function f(x) is called negligible if, for any

positive polynomial p(x), there is an integer B such that

for any integer x > B, |f(x)| < 1/p(x) [22]. According to

Definition 1, an execution of the POML algorithm is user-

private if and only if any user ua does not gain any (actually,

negligible) additional knowledge about the preferred meeting

locations Lj of any other user uj �= ua, except the value of

the final optimal meeting location Lopt.
2) Server-Privacy: The server-privacy of any POML al-

gorithm A measures the probabilistic advantage that the LDS

gains in learning the preferred meeting locations Li of any

user ui, i ∈ {1, . . . , N}. As in the case of user-privacy,

we express the server-privacy by means of three advantages.

First, we measure the probabilistic advantage of an LDS in

correctly guessing the preferred location Li of any user ui,

called identifiability advantage and denoted as AdvIDT
LDS(A).

Second, we measure the probabilistic advantage of an LDS in

correctly guessing whether the distance dij between any two

users ui �= uj is greater than a given parameter s, without

necessarily knowing any users’ preferred locations Li, Lj . We

call this the distance-linkability advantage and we denote

it as Advd−LNK
LDS (A). Third, we measure the probabilistic

advantage in correctly guessing whether a given coordinate

xi (or yi) is greater than the same coordinate of another

user j �= i, i.e., xj (or yj), without necessarily knowing any

users’ preferred locations Li, Lj . We call this the coordinate-
linkability advantage and we denote it as Advc−LNK

LDS (A).
The server identifiability and linkability advantages are

defined in a similar fashion as the user advantages, and are

presented in Appendix A. The server-privacy of a POML

algorithm A on a per-execution basis can then be defined as

follows.

Definition 2: An execution of the POML algorithm A is

server-private if the identifiability advantage AdvIDT
LDS(A), the

distance-linkability advantage Advc−LNK
LDS and the coordinate-

linkability advantage Advc−LNK
LDS of an LDS are negligible.

However, it is reasonable to assume that in practice users

will be able to perform multiple executions of the POML

protocol, possibly with different sets of participating users

at each time. This is particularly true if such a meeting-

location service is offered, for instance, by providers to their

subscribers. As a consequence, privacy of a POML should be

defined over multiple executions.
3) POML Privacy: We now formally express the privacy

conditions that any POML algorithm A has to satisfy, based

on the above definitions. First, we define a private execution

of a POML algorithm as follows.

Definition 3: A private execution of any POML algorithm

A is an execution which does not reveal more information than

what can be derived from the inputs, the intermediate results

and its output.

Based on how memory is retained over sequential execu-

tions, we define two types of algorithm executions, namely,

dependent and independent.

Definition 4: An independent (respectively dependent) ex-
ecution is a single private execution of the POML algorithm

defined in Section III-A in which no (respectively some)

information of an earlier and current execution is retained and

passed to future executions.

The information that might be transferred from an earlier

execution to the next can include past inputs to the algo-

rithm, intermediate results (on the LDS) and the outputs of

the algorithm. Based on the type of execution, the privacy

conditions of a privacy-preserving meeting-location algorithm

can be defined as follows.

Definition 5: A meeting-location algorithm A is execution
(respectively fully) privacy-preserving if and only if for every

independent (respectively all) execution(s)

1) A is correct; All users are correctly able to compute the

final optimal meeting location Lopt;

2) A is user-private;

3) A is server-private.



A fully privacy-preserving meeting-location (POML) algo-

rithm is a much stronger (and difficult to achieve) privacy re-

quirement. In this first work, we focus on achieving execution

privacy. The relationship between a fully POML and execution

POML algorithm is given by the following observation.

Observation 2: Any POML algorithm A, as defined in

Section III-A, is execution privacy-preserving if it is fully

privacy-preserving, but the inverse is not true.

In the next section, we present our solutions to the POML

problem and analyze them with respect to their complexity

and privacy aspects.

IV. SOLUTIONS AND ANALYSIS

In the previous section, we have defined the fundamental

building blocks that constitute a POML problem, both from

a functional perspective (as in Figure 1) and from a privacy

context. From a practical point of view, however, the problem

is to design specific solutions and protocols that can be

implemented on existing commercial mobile devices. In order

to achieve the integration between resource-constrained mobile

devices and the existing client-server network paradigm, our

solutions have to be efficient in terms of computations and

communication complexities, while taking advantage of the

increasingly available mobile broadband. Such criteria have to

be carefully considered when choosing the optimization and

transformation functions g and f , respectively.

In this section, we present our solution to the POML

problem as follows. First, we discuss the mathematical tools

that we use in order to model the optimization function g and

the transformation functions f . In the following subsections,

we define the optimization function g by taking advantage of

the properties of three well-known cryptographic primitives

that are used to implement the transformation function f .

These primitives, in turn, will guarantee that no private in-

formation about the preferred locations of any user is leaked

to any other user or third-party involved in the computations.

Finally, by merging the f and g components of the POML

algorithm, we design our complete POML protocol. We then

analytically evaluate its privacy properties and its computation

and communication complexities.

In order to separate the optimization part of the POML

algorithm A from its implementation using cryptographic

primitives, we first discuss the optimization function g and

then the transformation function f .

A. Optimization Function g

In order to determine an optimal meeting location, there

are several factors that need to be considered. First, the

optimality criterion needs to consider the spatial constraints

present in the problem. For example, a meeting location

Lopt = (xl, yl) among N users U = {ui}Ni=1 might be optimal

when all users can reach Lopt in a “fair” amount of time.

Another criterion might be to minimize the total displacement

of all users in order to reach Lopt, or simply making sure

that no user is “too far” from Lopt with respect to another

user. Second, computing an optimal meeting location in a
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Figure 3. POML scenario, where the optimization function is g =
argmin(maxi D

M
i ). The dashed arrows represent the maximum distance

DM
i from each user ui to any user j �= i, whereas the solid line is the

minimum of all such maximum distances. The optimal meeting location is
Lopt = L2 = (x2, y2).

privacy-preserving way requires g to perform optimization

operations in an oblivious fashion, by taking into account

the properties of appropriate cryptographic schemes. Features

such as homomorphic encryption and semantic security are of

particular interest in this work, as they allow operations on the

plain text components to be accomplished by computations on

encrypted elements (homomorphic encryption), while ensuring

that two identical plain-text components are encrypted in

indistinguishable and unlinkable ciphertext elements (semantic

security).

In this work, we consider the optimality criterion that

has been widely used in operations research to solve the k-
center problem. In the k-center problem, the goal is to find

L1, . . . , Lk locations among N given possible places, in order

to optimally place k facilities, such that the maximum distance

from any place to its closest facility is minimized. For a

two dimensional coordinate system, the Euclidian distance

metric is usually employed. As the POML problem consists in

determining the optimal meeting location from a set of user-

desired locations, we focus on the k-center formulation of the

problem with k = 1. This choice is also grounded on the fact

that not choosing Lopt from one of the location preferences

L1, . . . , LN might potentially result in a location Lopt that

is not suited for the kind of meeting that the participants

require. Usually, a business meeting has different logistics

requirements than a student party, and therefore the k-center

formulation ensures that the final optimal location is a location

that has been proposed by one of the participants. Figure 3

shows an example POML scenario modeled as a k-center

problem, where four users want to determine the optimal

meeting location Lopt.

In order to formally define the POML problem using the

k-center formulation, we need to introduce the following

notation.

• dij ≥ 0 is the Euclidian distance between two points

Li, Lj ∈ N
2

• DM
i = maxj �=i dij is the maximum distance from Li to

any other point Lj (j �= i).

Based on such notation, we can now formally define the



POML problem as follows.

Definition 6: The Privacy-preserving Optimal Location
(POML) problem is to determine a location Lopt such that

Lopt ∈ L = {L1, . . . , LN}, where opt = argmin
i

DM
i

In other words, solving the POML problem is equivalent

to finding the optimal meeting location, among the set of

proposed (and user-desired) locations, such that the distance of

the furthest desired location to the optimal one is minimized.

There are two important steps involved in the computation

of the optimal location Lopt. The first step is to compute

the pairwise distances dij among all users i, j ∈ {1, . . . , N}
participating in the POML algorithm. The second step requires

the computations of the maximum and minimum values of

such distances. Before proceeding with these computations,

in the following subsection we examine the features provided

by the cryptographic functions that will ensure the privacy of

individual user-desired locations Li, ∀i = 1, . . . , N .

B. Transformation Functions f

The optimization function g, as defined in the previous

subsection, requires the computation of two functions of the

private user-desired locations Li, ∀i ∈ {1, . . . , N}: (i) a

function that computes the distance between any two locations

Li �= Lj and (ii) a function that minimizes the maximum of

these distances. In order to achieve the final result and preserve

the privacy of the personal information, we need to rely on

computationally secure functions that possess the features that

are required for such computations.

There are several cryptographic schemes that can be used,

but not all of them provide the same features. We are interested

in using secure schemes that allow us to compute the Euclidian

distance between two points in the plane and the maximiza-

tion/minimization functions. In our protocol, we consider three

such encryption schemes: the Boneh-Goh-Nissim (BGN) [15],

the ElGamal [23] and the Paillier [24] public-key encryption

schemes.

Specifically, we are interested in the homomorphic proper-

ties of these schemes, such as the multiplicative and additive

properties, as well as the randomness in the encryption.

Given two plaintexts m1,m2 with their respective encryp-

tions E(m1), E(m2), the multiplicative property states that

E(m1)	E(m2) = E(m1 ·m2), where 	 is an arithmetic op-

eration in the encrypted domain that is equivalent to the usual

multiplication operation in the plaintext domain. The additive

homomorphic property states that E(m1)⊕E(m2) = E(m1+
m2), where ⊕ is an arithmetic operation in the encrypted

domain which is equivalent to the usual sum operation in the

plaintext domain. The randomness in the encryption ensures

that even if m1 = m2, E(m1) �= E(m2) if two distinct

random numbers are used for the encryption. We now briefly

describe such homomorphic properties of the three encryption

schemes BGN, ElGamal and Paillier. For conciseness, we omit

the details of the initialization and operation of these schemes,

which can be found in the respective references.

a) BGN: Given two plaintexts m1,m2 ∈ Z
∗
T (where

T < q and q is a large prime) with their respective encryptions

E(m1), E(m2), the BGN possesses the following multiplica-
tive and additive homomorphic properties

E(m1 ·m2) = e(E(m1), E(m2)) · hr
1 mod n

E(m1 +m2) = E(m1) · E(m2) · hr mod n

where e : G×G → G1 is an admissible bilinear map, G,G1

are two bilinear groups of composite order n = pq (p, q are

two large primes), h, g are public, h1 = e(g, h) and r ∈ Zn is

a random integer. BGN is an elliptic curve-based scheme and

therefore much shorter keys can be used compared to ElGamal

and RSA. A 160-bit key in elliptic curve cryptosystems is gen-

erally believed to provide equivalent security as a 1024-bit key

in RSA and ElGamal [25]. However, due to the construction

of the BGN scheme, only one homomorphic multiplication on

each encrypted element is allowed, whereas an infinite number

of homomorphic additions can be performed.

b) Paillier: Given m1,m2 ∈ Z
∗
n, it can be verified

that the Paillier encryption scheme satisfies the following

multiplicative and additive homomorphic properties

E(m1 ·m2) = Er(m1)
m2 mod n2

E(m1 +m2) = Er1(m1) · Er1(m2) mod n2

where ri, r ∈ Z
∗
n are random integers and n = pq where p, q

are two large primes.

c) ElGamal: Given m1,m2 ∈ Z
∗
n, where n is a large

prime, the ElGamal encryption schemes satisfies the following

multiplicative property

E(m1 ·m2) = E(m1) · E(m2) mod n

Based on the three aforementioned encryption schemes, we

now describe the distance computation algorithms that are used

in our solution.

C. Distance Computations

Computing the pairwise distance dij between any two user-

desired locations Li, Lj is the main requirement for solving

the POML problem. In order to determine the optimal meeting

location, we need to find the location Lopt, where opt ∈
{1, . . . , N}, that minimizes the maximum distance between

any user-desired location and Lopt. In our algorithms, we work

with the square of the distances, as they are much easier

to compute in an oblivious fashion using the homomorphic

properties of the cryptographic schemes. The problem of

finding the argument that minimizes the maximum distance

is equivalent to finding the argument that minimizes the

maximum distance squared (provided that all distances are

greater than 1).

Hereafter we propose two distance computation modules

that will be used in our POML protocol. Each of these modules

computes the square of all pairwise distances between any two

user-desired locations, and preserves the privacy of each user’s

preferred location Li, ∀i ∈ {1, . . . , N}.



1. Each user i generates
Ei(a) = <ai1|...|ai6> = 
< E(xi

2) | E(T-2xi) | E(1) |
E(T-2yi) | E(yi

2) | E(1) >
Ei(b) = <bi1|...|bi6> = 
< E(1) | E(xi) | E(xi

2) |
E(yi) | E(1) | E(yi

2) >

2. Server computes
For i =1...N-1

For j = i+1…N
For k = 1...6

choose random r � Zn
cij,k = e(aik,bjk)·hr

end for
cij

tot = cij,1· ...· cij,6
end for

end for       

Ei(a),
Ei(b)

Users LDS

Figure 4. Distance computation protocol based on the BGN encryption
scheme.

1) BGN-distance: The first distance computation algo-

rithm is based on the BGN encryption scheme and is shown

in Figure 4. This novel protocol requires only one round

of communication between each user and the LDS, and it

efficiently uses both the multiplicative and additive homomor-

phic properties of the BGN scheme. The algorithm works as

follows. In step 1, each user ui, ∀i ∈ {1, . . . , N} creates the

vectors

Ei(a) =< ai1| . . . |ai6 >

=< E(x2
i )|E(T − 2xi)|E(1)|E(T − 2yi)|E(y2i )|E(1) >

Ei(b) =< bi1| . . . |bi6 >

=< E(1)|E(xi)|E(x2
i )|E(yi)|E(1)|E(y2i ) >

where E(.) is the encryption of (.) using the BGN scheme

and Li = (xi, yi) is the desired meeting location of user ui.

Afterwards, each user sends the two vectors Ei(a), Ei(b) over

a secure channel to the LDS. In step 2, the LDS computes the

scalar product of the received vectors by first applying the

multiplicative and then the additive homomorphic property of

the BGN scheme, as shown in Figure 4. For example, in a

scenario with two users, one can easily verify that

Ei(a) • Ej(b) = E(x2
i + xj(T − 2xi) + x2

j

+ yj(T − 2yi) + y2i + y2j mod T )

= E(d2ij mod T )

where T is chosen such that ∀i, j ∈ {1, . . . , N}, d2ij < T . At

this point, the LDS has obliviously computed E(d2ij), which

is the (encrypted) square of the pairwise distances between all

pairs Li, Lj of user-desired locations, where i �= j.

2) Paillier-ElGamal-distance: An alternative scheme for

the distance computation is based on both the Paillier and

ElGamal encryption schemes, as shown in Figure 5. As neither

Paillier or ElGamal possess both multiplicative and additive

properties, the resulting algorithm requires one extra step in

order to achieve the same result as the BGN-based scheme,

i.e., obliviously computing the pairwise distances d2ij . The

distances are computed as follows. In step 1, each user ui,

∀i ∈ {1, . . . , N} creates the vector

Ei(a) =< ai1| . . . |ai4 >

=< Pai(x2
i )|ElG(xi)|Pai(y2i )|ElG(yi) >

where Pai(.) and ElG(.) refer to the encryption of (.)
using the Paillier or ElGamal encryption schemes, respectively.

Afterwards, each user ui sends the vector Ei(a) to the

LDS, encrypted with LDS’s public key. In step 2.1, the LDS

computes the scalar product of the second and fourth element

of the received vectors (as shown in Figure 5). In order to hide

this intermediate result from the users, the LDS obliviously

randomizes these results with random values rs, rt. At the

same time, the LDS computes the multiplicative inverse of

such values, denoted as r−1
s and r−1

t respectively. These ran-

domized scalar products are denoted as cij,s and cij,t. In step

2.2, the LDS permutes the order of all cij,s and cij,t with its

private element-permutation function σ = [σ1, . . . , σN(N−1)],
and sends N such distinct elements to each user ui. In step

3, each user simply decrypts the received elements with the

ElGamal private key and re-encrypts them with the Paillier

public key. Then each user sends the re-encrypted elements to

the LDS in the same order as he received it. In step 4, the LDS

reverts the element-permutation function σ, and in step 4.1 it

finally computes the d2ij for all i, j, after having removed the

randomizing factors rij,s, rij,t with their inverses rij,sinv and

rij,tinv . At this point, the LDS has securely computed E(d2ij),
the (encrypted) square of the pairwise distances between all

pairs of user-desired locations Li �= Lj .

As the ElGamal-Paillier based distance computation in-

volves decryption/re-encryption operations, it may be possible

for participants to maliciously change the masked values. For

instance, such an active attack could be performed in order to

disrupt the distance computations or to manipulate the result

for personal advantage (such as a personally convenient but

generally suboptimal meeting location). We discuss such active

attacks and defense mechanisms in Section VI.

D. The POML Protocol

In the previous subsections, we defined all the necessary

operations and cryptographic tools that are required in order

to solve the POML problem. We now describe our algorithm

that solves the POML problem in an efficient and privacy-

preserving way, as shown in Figure 6. The protocol has three

main modules: (A) the distance computation module, (B) the

MAX module and (C) the ARGMIN MAX module.
Distance computations: The first module (distance com-

putation) uses one of the two protocols defined in the previous

subsection (BGN-distance or Paillier-Elgamal distance). We

note that modules (B) and (C) use the same encryption scheme

as the one used in module (A). In other words, E(.) of Figure

6 refers to the encryption of (.) using either the BGN or the

Paillier encryption scheme. Once the distance protocol has

been decided, the next modules (B) and (C) are executed as

follows.



1. Each user i generates
Ei(a) = <ai1|...|ai4> = 
< Pai(xi

2) | ElG(xi) | 
Pai(yi

2) | ElG(yi) >

2.1 Server computes
For i =1...N-1

For j = i+1…N
choose random rs, rt � Zn

*       

find their multipl. inv. rs
-1, rt

-1

rij,s = rs      ;  rij,sinv = rs
-1

rij,t = rt      ;  rij,tinv = rt
-1

cij,s = ai2 · aj2 · ElG(n-2rij,s)
cij,t = ai4 · aj4 · ElG(n-2rij,t)

end for
end for       

2.2 Chooses random element-permut.   
fct. � = (�1,..,�N(N-1)) and selects cij,. 
accordingly

Ei(a)
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3. Each user i decrypts the    
received elements c�.. using  
the ElGamal key, obtaining
F�.. = DElG(c�..)
and re-encrypts them using   
the Paillier encryption 
scheme, obtaining Pai(F�..) 

All users
P(F�.. )

4.  Server inverts the   
permutation � with �-1 of        
on the received encrypted   
elements P(F�)

4.1 For i =1...N-1
For j = i+1…N

cij
tot = ai1·Pai(cij,s)rij,sinv·
aj1·ai3·Pai(cij,t)rij,tinv·aj3

Figure 5. Distance computation protocol based on the ElGamal and Paillier
encryption schemes.

MAX computations: In step B.1, the LDS needs to be

obliviously hide the values within the encrypted elements (i.e.,

the pairwise distances computed earlier), before sending them

to the users, in order to avoid leaking any kind of private

information such as the pairwise distance or desired locations

to any user2. In order to obliviously mask such values, for

each index i the LDS generates two random values ri, si
that are used to scale and shift the ctotij (the encrypted square

distance between Li, Lj) for all j, obtaining d∗ij . This is done

in order to (i) ensure privacy of real pairwise distances, (ii) be

resilient in case of collusion among users and (iii) preserve the

internal order (the inequalities) among the pairwise distance

from each user to all other users. Afterwards, in step B.2 the

LDS chooses two private element-permutation functions σ (for

i) and θ (for j) and permutes d∗ij , obtaining the permuted

values d∗σiθj
, where i, j ∈ {1, . . . , N}. The LDS sends N such

distinct elements to each user. In step B.3, each user decrypts

the received values, determines their maximum and sends the

index σMAX
i of the maximum value to the LDS. In step B.4

2We note that, after the distance computation module (A), the LDS
possesses all encrypted pairwise distances. This encryption is made with
the public key of the participants and therefore the LDS cannot decrypt the
distances without the corresponding private key. The oblivious (and order-
preserving) masking performed by the LDS at step B.1 is used in order to
hide the pairwise distances from the users themselves, as otherwise they would
be able to obtain these distances and violate the privacy of the users.

Users LDS
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A. Distance computations using any of the two described protocols

Figure 6. Privacy-preserving Optimal Meeting-Location protocol (POML).

of the MAX module (B), the LDS inverts the permutation

functions σ, θ and removes the masking from the received

indexes corresponding to the maximum distance values.

ARGMIN MAX computations: In step C.1, the LDS

masks the true maximum distances by scaling and shifting

all of them by the same amount, such that their order (the

inequalities among them) is preserved. Then the LDS sends

to each user all the masked maximum distances. In step C.2

each user decrypts the received masked maximum values, and

determines the minimum value among all maxima. In step C.3,

each user knows which identifier corresponds to himself, and

the user with the minimum distance sends to all other users

his desired meeting location in an anonymous way.

After the last step, each user receives the final optimal



Table II
ASYMPTOTIC COMPLEXITY OF THE PROPOSED POML PROTOCOLS. THE

VALUES IN BOLD CORRESPOND TO THE MOST EFFICIENT PROTOCOL WITH

RESPECT TO THE GIVEN OPERATION, AND N IS THE NUMBER OF MEETING

PARTICIPANTS.

CLIENT PROTOCOL BGN 
(mod n) 

ELGAMAL-
PAILLIER 
(mod n2) 

Multiplication Distance O(1) O(N) POML 

Exponentiation 
Distance O(�) 

O(N) POML O(N��)

Memory Distance O(1) O(N) POML O(N) 

Communication Distance O(1) O(N) POML O(N) 

LDS    

Multiplication, 
exponentiation 

Distance O(N2) O(N2) POML 

Bilinear mapping Distance O(N2) ------- POML 

Memory Distance O(N2) O(N2) POML 

Communication Distance O(N) O(N2) POML O(N2) 

meeting location, but no other information regarding non-

optimal locations or distances is leaked. In order to assess

the efficiency and to know whether the proposed POML

protocol fulfills the privacy requirements defined in Section

III, we present the complexity and privacy analysis in the next

subsection.

E. Analysis

Our POML protocol, shown in Figure 6, is based on

the interaction between users and a third-party LDS. Each

of these parties performs operations on both plaintext and

encrypted elements, and the resources available on the user

devices are usually lower than those of the LDS. Hereafter

we discuss the asymptotic complexities of our two distance

and POML protocols, by considering both client and LDS

computation, communication and memory complexities. We

summarize these results in Table II.

1) Client complexity: The number of multiplications for

the BGN-based distance protocol (Figure 4) is independent

on the number of participating clients (O(1)), as opposed to

the ElGamal-Paillier based protocol (O(N)). However, this

is not true for the number of exponentiations. As stated

in the seminal paper [15], a single decryption in the BGN

cryptosystem requires O(
√
T ) exponentiations, where T is the

order of the plaintext domain. This can be improved by using

pre-computation, allowing only integer comparisons (instead

of exponentiations) to successfully decrypt an element. On

the contrary, the alternative algorithm is much more efficient

(O(N)) for a reasonable number N of participants (compared

to O(N
√
T )), because the number of exponentiations is inde-

pendent on the plaintext domain.

The memory requirements for the BGN-based distance

protocol (O(1)) are lower than for the alternative one (O(N)),
mainly because the former does not need to store values

(masked pairwise distances) that depend on other users’ inputs.

Similarly, the BGN-based distance protocol is more efficient

(O(1) compared to O(N)). The homomorphic properties of

BGN allow for the pairwise distance computations to be

computed in a single round, avoiding unnecessary message

exchanges. However, the complete POML protocol has the

same communication complexity (O(N)) for both BGN and

ElGamal-Paillier primitives.

2) LDS complexity: Both BGN- and ElGamal-Piallier-

based POML algorithms have quadratic complexity (O(N2))
on the server side. However, the BGN scheme uses O(N2)
additional bilinear mappings in order to perform the homomor-

phic multiplication, which are expensive. These bilinear map-

pings are not required in the ElGamal-Paillier scheme. Nev-

ertheless, the exponentiation operations can be pre-computed

in BGN (because the h value is public), as opposed to the

ElGamal-Paillier-based approach.

The memory and communication requirements are also sim-

ilar for both the BGN- and ElGamal-Paillier-based protocols.

The former is, however, more efficient with respect to the

number of message exchanges in the distance computation

phase (O(N)), compared to the latter (O(N2)).

3) Privacy: Informally, a POML algorithm A is private if

an adversary (participating user or LDS) does not learn the

preferred meeting locations, the mutual distances and coordi-

nate relations of any user, after A’s execution. According to the

previously outlined privacy definitions, we have the following

result.

Proposition 1: The BGN and ElGamal-Paillier based

POML algorithms are execution privacy-preserving.

In simple words, Proposition 1 states that both proposed

algorithms correctly compute the optimal meeting location,

given the received inputs, and that they do not reveal any

users’ preferred meeting locations to any other user, except

the optimal meeting location Lopt. Moreover, the LDS does

not learn any information about any user-preferred locations.

The proof can be found in Appendix B.

V. IMPLEMENTATION PERFORMANCE AND DISCUSSION

In this section, we discuss the results of the performance

measurements of our two POML algorithms, conducted on a

testbed of Nokia N810 mobile devices (Figure 7). Readers

should note that we measured only the computation time on

the devices, without the message communication delays. As

we use wireless peer-to-peer communication, such delays are

negligible. For the elliptic curve BGN-based POML algorithm,

we measured the performance of using both a 160-bit and

a 256-bit secret key, whereas for the ElGamal-Paillier based

algorithm we used the standard 1024-bit secret keys. As

mentioned in Section IV, a 160-bit key in elliptic curve
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Figure 7. Prototype POML application running on a Nokia N810 mobile
device. The image on the left is the main window, where users add the
desired meeting participants. The image on the right is the map that shows the
optimal meeting location (green pin, thick solid arrow) and the user-desired
meeting location (red pin, thin dashed arrow), after the execution of the POML
protocol. In this particular example, the optimal meeting location is not this
user’s preferred location, but the location preference of some other participant.

cryptosystems provides an equivalent resistance to attacks of

a 1024-bit RSA key [25].

The client devices (N810s) are based on the ARM 400 MHz

CPU and have 256 MB RAM. Their operating system is the

Linux-based Maemo OS2008, and we wrote our applications

using the Qt programming language, which is optimized for

such OS. The LDS has been implemented on a 2 GHz Intel

CPU with 3 GB RAM, running the Ubuntu 9.04 Linux.

Hereafter we discuss the main performance measurements.

A. LDS performance

Figure 8(a) shows the time required by the LDS in order to

perform the pairwise distance computations (module A of Fig-

ure 6). We can see that the computation time increases as the

number of meeting participants increases, due to the greater

quantity of pairwise distances that need to be computed. The

ElGamal-Paillier algorithm is the most efficient, requiring 2

seconds to compute the distances among 10 participants. The

two BGN-based algorithms are less efficient, but are still

practical enough (7 seconds) when using a comparable security

level to the ElGamal-Paillier algorithm. The CPU-intensive

bilinear mappings in BGN are certainly one important reason

for such results. This fact is even more evident when the

security parameter in BGN is increased from 160 to 256 bits.

Regarding the subsequent modules B and C of the POML

protocol, we observe a that the BGN-based algorithms out-

perform the ElGamal-Paillier one (Figure 8(b) and 8(c)). The

maximum computations on the LDS require 0.5 seconds for

the 160-bit BGN algorithm, whereas the ElGamal-Paillier

takes almost 2 seconds. A similar result can be observed for the

minimum computations. There are two main reasons for this.

First, there are no bilinear mappings involved in these modules

and second, the BGN-based algorithms use much smaller key

sizes. From a practical perspective, both the ElGamal-Paillier

and the BGN algorithms have good performance in modules

B and C of the POML protocol.

B. Client performance

Figure 8(d) shows the time required to compute the distance

(module A) on the Nokia N810 mobile device. As it can

be seen, the BGN-based algorithm is the most efficient,

requiring only 0.3 seconds, compared to the 1.4 seconds of the

ElGamal-Paillier one with 2 users. Thanks to the homomorphic

properties of BGN, the pairwise distances can be obliviously

computed by the LDS, without involving any decryption/re-

encryption operation from the clients (as opposed to the

ElGamal-Paillier alternative). Even with a comparatively larger

security resistance, the BGN scheme is still faster than the

alternative one. It is also important to notice that the design

of the proposed BGN distance algorithm allows it to perform

well, independently of the number of participants.

The performance of the maximization/minimization com-

putations are shown in Figure 8(e). As it can be seen, the

performance of the BGN-based algorithm in computing such

operations (10 seconds for 10 participants) is significantly

worse than the comparably secure ElGamal-Paillier based

algorithm (2 seconds for 10 participants). The maximiza-

tion/minimization operations require the client to decrypt the

obliviously masked pairwise distances. This is mainly due to

the complexity of this operation using the BGN cryptosys-

tem, which depends on the number of participants and the

value inside the encrypted message [15]. On the contrary,

the ElGamal-Paillier based decryptions are independent of the

value inside the encrypted message.

C. Total runtime

Figure 8(f) shows the total runtime for the client and the

LDS, computed as the sum of the time required for one

complete execution of the POML protocol (Figure 6, time for

module A + B + C), excluding the communication delays. As

it can be seen, the total runtime for both client and LDS is

lower by using the ElGamal-Paillier based POML algorithm,

compared to the BGN-based one. With 10 participants, the

former algorithm requires 6 seconds to obtain the optimal

meeting location on the clients, whereas the LDS needs 4.5

seconds. Using the BGN-based POML algorithm, each client

needs more than 20 seconds and the LDS requires approxima-

tively 8 seconds. In other words, the ElGamal-Paillier based

POML algorithm is almost two times faster than the BGN-

based one.

D. Discussion

The implementation measurement results of our two POML

algorithms show that the ElGamal-Paillier based algorithm has

a better overall performance than the BGN-based alternative.

On a comparable security level and without considering com-

munication delays, both the LDS and the client device require

less computation time for the former algorithm compared to

the latter. However, aside from the performance, the BGN-

based algorithm presents several advantages. First, it involves

three less message exchanges between each client and the

LDS (Figure 4) compared to the alternative algorithm. Second,

much shorter security parameters can be used in order to

achieve the same resistance to attacks, and thus lower the

memory requirements on the client devices. Third, mali-

cious users cannot change the masked user-preferred meeting-

location coordinates once they have been sent to the LDS, as
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Figure 8. Implementation performance measurements.

there are no decryption/re-encryption operations in the BGN-

based algorithm, as opposed to the ElGamal-Paillier based one.
In the next section, we discuss other security and optimiza-

tion issues related to the two proposed POML algorithms.

VI. EXTENSIONS

In the previous sections we presented our two POML algo-

rithms and evaluated their performance on commercial mobile

devices. In this section, we present some enhancements of the

proposed algorithms in order to better cope with malicious

attacks and to further increase the optimization properties of

the final meeting location Lopt.

A. Security
According to Proposition 1, the two proposed POML al-

gorithms are execution privacy-preserving. In other words, no

(actually negligible) private information about users’ preferred

meeting locations or pairwise distances is leaked to any other

user or third-party LDS. However, active malicious attacks

are still possible, and we need to evaluate their feasibility and

consequences on the user-privacy. Hereafter we discuss some

possible active attacks on our POML protocols, and we present

defensive mechanisms in order to thwart them.
There are three main categories of active attacks that could

be perpetrated against our POML protocols, namely (i) the col-

lusion among users and/or LDS, (ii) the fake user generation

and/or replay attacks and (iii) preferred location modification.

With respect to the collusion attack, there could be scenarios

where participants collude among themselves or where the

LDS colludes with some participants. In the first case, the

colluding participants would be able to know their preferred

locations and their respective distances, but they will not

be able to infer crucial information about the honest users’

locations with certainty. Regardless of the protocol used or

the encryption methods, the published optimal result (together

with the additional information malicious users may get from

colluders) can be used to construct exclusion zones, based on

the set of equations and known parameters. An exclusion zone

is a region that does not contain any location preferences,

and the number of such exclusion zones increases with the

number of colluders. We are currently working on quantifying

this impact on our optimization and encryption methods.

However, in the unlikely case of collusion between the LDS

and the participants, the latter will be able to obtain other

participants’ preferences. In order to mitigate such a threat,

the invited participants could agree on establishing a shared

secret using techniques from threshold cryptography, such as

[26]. The LDS should then collude with at least a predefined

number of participants in order to obtain the shared secret and

learn the individual preferred meeting locations. Nevertheless,

considering both malicious users and malicious LDS at the

same time is a rather strong assumption, due to the commercial

interests service providers have in guaranteeing a faithful



service to their customers.

Generating fake users can be attempted both by the LDS and

by any meeting participant, in order to disrupt or manipulate

the computations of the optimal meeting location. However,

the security of our algorithms prevents such attacks from

succeeding. In case the LDS generates fake users, it would not

be able to obtain the secret that is shared among the honest

users and which is used to derive the secret key KMv
s for

each session v. This attack is more dangerous if a legitimate

participant creates a fake, because the legitimate participant

knows the shared secret. In this scenario, however, the LDS

knows the list of meeting participants (as it is computing

the optimal meeting location) and therefore it would accept

only messages digitally signed by each one of them. Replay

attacks could be thwarted by adding an individually signed

nonce, derived using the shared secret, in each user’s meeting

request and reply. These nonces would be forwarded to all

other meeting participants, who would be able to verify the

signature and check whether all received nonces are equal.

A failure in this process would suggest that there has been

tampering with the POML protocol.

The last type of active attack could lead to the determination

of a suboptimal meeting location. Maliciously modifying or

untruthfully reporting the maximum masked values (step B.3

of Figure 6) could deviate the LDS in accepting the false re-

ceived index as the maximum value, and therefore potentially

lead to the determination of a suboptimal meeting location.

However, this is rather unlikely to happen in practice. For

instance, even if in step B.3 a user falsely reports one of his

values to be the maximum when actually it is not, this would

cause the algorithm to select a suboptimal meeting location

if and only if no other user selected a smaller value as the

maximum distance.

B. Optimization

The optimal meeting location Lopt is determined based on

the k-center problem formulation (Section IV). This fairness

criterion chooses Lopt in a way to minimize the maximum

displacement from any participant’s preferred location to Lopt.

Although appropriate, individual fairness might be comple-

mented with aggregated displacement costs. For instance, min-

imizing
∑N

i=1 |Li −Lopt|2 (which is the sum of all distances

to Lopt) may be taken into consideration together with the

aforementioned fairness criterion. This would de facto force

the system to find a compromise between the two criteria.

Such complements to the original optimality criterion can

be easily integrated in the proposed POML algorithms. For

instance, the total sum-displacement of all participants to

Lopt can be easily (and obliviously) performed by the LDS,

after the pairwise distances have been computed. Thanks to

the additive homomorphic properties of the Paillier and the

BGN cryptosystems, the sum of pairwise distances squared

is a simple operation for both schemes: it requires the LDS

to simply sum up all pairwise distances for each candidate

meeting location. Then, the LDS masks and appends these

sums to the already computed distances in step B.2 (Figure

6), and in step B.3 each client determines the maximum of

such received values, in addition to the maximum of the

masked distances squared. As the complexity of this operation

is linear, with respect to the number of preferred locations,

the proposed POML algorithms would not suffer from an

increased computational demand.

In addition to the proposed k-center formulation of the

POML problem, a different approach could be envisaged in

scenarios where participants could choose more than one

preferred meeting location, i.e., Li = {Li,1, . . . , Li,h}, and

then apply the optimization to the set of private user-preferred

locations. Alternatively, participants could propose a set of

locations that are the furthest places where they are willing to

meet. Then, given these locations, the POML problem could

be solved by constructing, for each user, the minimum convex

hull (containing each user’s set of constraints) that would

represent the region in which each user is willing to meet.

The optimal meeting location Lopt would then be defined in

the intersection (if any) of the private individual convex hulls.

Depending on the context and the utilization scenario, this

geometric intersection approach to the POML problem might

be more suited than the proposed ones (based on the k-center

formulation).

VII. USER STUDY RESULTS

Based on guidelines from ([27], [28]), we prepared and

conducted a user study on 35 subjects, sampling a population

of university students, faculty members and non-scientific

staff. The goal of the study was to assess the sensitivity of

the subjects to privacy issues in meeting-location applications,

as well as to obtain feedback with respect to our prototype

application. The questionnaire was based on 32 questions.

The results show that 63% of the respondents use the

calendar/agenda on their mobile device to organize meetings.

57% of such meetings involve 4-6 participants, and only 14%

have more than 6 participants. When asked about optimal

meeting-location applications, 91% claim that they would be

at least a little interested in such applications, and among those

52% would be very interested.

With respect to privacy in such applications, 66% agree

that it is important to reveal only the necessary information to

the system, in order to compute the optimal meeting location

(Figure 9). The percentage grows to 89% if we include

respondents who tend to agree with such statement as well.

After having used our prototype application, 71% of the users

tend to or appreciate that their meeting-location preferences

were not revealed to others by the algorithm, and only 8% do

not care about the privacy of their meeting-location preference.

VIII. RELATED WORK

To the best of our knowledge, this is the first work to address

the optimal meeting-location problem with privacy guarantees.

Hereafter, we first present recent works that address, without

protecting privacy, strategies to determine the optimal meeting

location. Then, we discuss contributions in secure multiparty

computation (SMC) on point-distance computations.
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Figure 9. Extract of the user study questionnaire, regarding opinions about
privacy issues related to meeting locations, as well as our prototype applica-
tion. Note that we conducted the experiments in groups of 4-5 participants,
hence one user out of 4-5 was the one who recognized his own location as
being the optimal location. Thus the 20-25% of users who agree with the
second statement.

In their recent work, Santos and Vaughn [29] present a

survey of existing literature on meeting-location algorithms,

and propose a more comprehensive solution for such a prob-

lem. Although considering aspects such as user preferences

and constraints, their work (or the surveyed papers) does

not address any security or privacy issues. Similarly, Berger

et. al [30] propose an efficient meeting-location algorithm

that considers the time in-between two consecutive meetings.

However, all private information about users is public.

In the domain of Secure Multiparty Computation (SMC),

several authors have addressed privacy issues related to the

computation of the distance between two routes [31] or points

[32], [33]. Frikken and Atallah [31] propose SMC protocols

for securely computing the distance between a point and a

line segment, the distance between two moving points and

the distance between two line segments. Due to the fully

distributed nature of their protocols, the computational and

communication complexities increase significantly with the

size of the participants and inputs. Moreover, all parties that

are involved in the computation of the mutual routes’ distances

need to be online and synchronized. Solanas and Martı́nez-

Ballesté [33] present a distributed protocol for securely com-

puting the centroid of a set of points through a privacy

homomorphism, in order to protect users’ location privacy

from an untrusted service (LBS) provider. After the distributed

computation of the centroid location, only the LBS provider

is able to decrypt this value and deliver the service to the user.

IX. CONCLUSION AND FUTURE WORK

Activity management applications are frequently used by

people in order to facilitate the planning of their daily duties.

Privately establishing common time availabilities is an impor-

tant task for all participants, and substantial research effort has

already been devoted to such a challenge.

In this work, we addressed the complementary problem

of efficiently and privately computing the optimal meeting

location, and presented two privacy-preserving protocols that

solve such problem. To the best of our knowledge, this is

the first work that addresses the privacy concerns in optimal

meeting-location determination. By means of analytical eval-

uation and practical implementation on real mobile devices,

we showed that our schemes efficiently compute the optimal

meeting location and do not reveal any private information.

Moreover, our user-study showed that people are concerned

about sharing personal location preferences with untrusted

parties, which increases the relevance of our research efforts

and reinforces the need for further exploration. As part of our

future work, we are considering the inclusion of the extended

security and optimality criteria that we discussed in this paper,

as well as releasing to the public the source code and our

implementation, under the GPL license.
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APPENDIX A

SERVER ADVANTAGES

The server advantages are defined in a similar fashion as

the user advantages. For instance, the server identifiability

advantage AdvIDT
LDS(A) of an LDS (executing the POML

algorithm A) is defined as follows.

1) Initialization: Challenger privately collects L = {Li}Ni=1,

where Li = (xi, yi) is the preferred meeting location of

user ui, and f(Li), ∀i ∈ {1, . . . , N}.

2) POML algorithm: LDS executes the POML algorithm A
and computes f(Lopt) = g(f(L1), . . . , f(LN )). It then

sends f(Lopt) to each user ui, ∀i ∈ {1, . . . , N}. The LDS

is the adversary.

3) LDS chooses a user ui, i ∈ {1, . . . , N}, and sends i to

the challenger.

4) Challenge: Challenger chooses a random k ∈ {1, . . . , N}
and sends Lk to the LDS. The challenge is to correctly

guess whether Lk = Li.

5) The LDS sends Li∗ to the challenger. If the LDS thinks

that Lk is the preferred meeting location of user ui, i.e.,

if Lk = Li then the LDS sets Li∗ = 1. If the LDS thinks

that Lk is not the preferred meeting location of user ui,

then he sets Li∗ = 0. If Li∗ = Lk the LDS wins the

game, otherwise it loses.

The distance- and coordinate-linkability advantages of any

LDS are defined similarly to the respective user advantages.

APPENDIX B

PROOFS

A. Correctness

Given the encrypted set of user-preferred locations

f(L1), . . . , f(LN ), the proposed POML algorithms compute

the pairwise distance between each pair of users dij , ∀i, j ∈
{1, . . . , N}, according to the schemes of the respective dis-

tance computation algorithms. Following the sequence of steps

for such computation, one can easily verify that the ElGamal-

Paillier based distance computation algorithm computes

Pai(d2ij) = Pai(x2
i ) · Pai(−2xixj) · Pai(y2j )·

Pai(y2i ) · Pai(−2yiyj) · Pai(y2j )

= Pai(x2
i − 2xixj + x2

j + y2i − 2yiyj + y2j )

which is the same result that is achieved by the BGN-based

distance algorithm.

After the pairwise distance computations, the POML al-

gorithm computes the masking of these pairwise distances

by scaling and shifting operations. The scaling operation is

achieved by exponentiating the encrypted element to the power

of ri, where ri ∈ N
∗
w is a random integer and r−1

i is

its multiplicative inverse. The shifting operation is done by

multiplying the encrypted element with the encryption (using

the public key of the users) of another random integer si
privately chosen by the LDS. These two algebraic operations

mask the values d2ij (within the encrypted elements), such that

the true d2ij are hidden from the users. Nevertheless, thanks

to the homomorphic properties of the encryption schemes,

the LDS is still able to remove the masking (after the users

have identified the maximum value) and correctly re-mask

all maxima, such that each user is able to correctly find the

minimum of all maxima.

In the end, each user is able to determine Lopt where opt =
argmini maxj d

2
ij from the outputs of the POML algorithm,

and therefore the POML algorithms are correct.

B. User-privacy

Hereafter we provide sketches of the proofs of user-privacy,

after a private execution of the POML algorithm A.

1) Identifiability Advantage: In our submitted work we

define the identifiability advantage of an attacker ua as

AdvIDT
a (A) = |Pr[(L∗

j = 1 ∧ Lk = Lj)∪
(L∗

j = 0 ∧ Lk �= Lj)]− 1/(N − 1)|

where Pr[L∗
j = Lk] is the probability of user ua winning the

game by correctly answering the challenge, computed over the

coinflips of the challenger, and 1/(N-1) is the probability of

a random guess over the N possible user-preferred locations.

Now, at the end of the POML protocol, the attacker knows

Lopt and its own preferred location La = (xa, ya) ∈ N
2.

Assuming that all users other than ua have executed the

protocol correctly, ua does not know any preferred location Li,

for i �= a. Therefore, the attacker has not gained any additional

knowledge from the execution of the POML algorithm with

respect to what he already knows by himself and from the

output. Hence, the probability Pr[L∗
j = Lk] of him making a

correct guess j∗ about the preferred meeting location Lk of

user uk equals the probability of a random guess, which is

1/N −1. Thus, the identifiability advantage of the attacker ua

is negligible.



2) Distance-Linkability Advantage: The distance-

linkability of an attacker ua is defined as

Advd−LNK
a (A) = |Pr[(d∗ = 1] ∧ djk < s)∨

(d∗ = 0 ∧ djk ≥ s)]− 1

2
|

where Pr[.] is the probability of the adversary ua winning the

game by correctly answering the challenge, computed over the

coinflips of the challenger, d∗ is the guess of the adversary, djk
is the distance between Lj , Lk and s is a parameter chosen by

the challenger. In this case, the attacker has to guess whether

the distance djk between two users j, k is greater than s, and

clearly if he at some point in the protocol obtains any pairwise

distance djk, his advantage is non-negligible. However, as

explained in the correctness proof, each user gets to know

only N masked (and anonymized) values of the squares of

pairwise distances. With this information, the attacker wants

to solve a system of linear equations of the following form:⎧⎪⎪⎨
⎪⎪⎩

Cσa,θ1 = ra · d2σ1,θ1
+ sa

...

Cσa,θN = ra · d2σ1,θN
+ sa

where Cij is the received masked value of the pairwise

distances and ra, sa are random integers privately chosen

by the LDS. Hence, possessing only the knowledge of his

own preferred location and the optimal meeting location, the

attacker cannot uniquely solve this system of equation, because

it is still under-determined. Therefore, the distance-linkability

advantage of ua is negligible.

3) Coordinate-Linkability Advantage: In order to have non-

negligible coordinate-linkability advantage, an attacker ua

needs to have additional information regarding at least one

of the two coordinates of any other user’s preferred meet-

ing location. As discussed in the identifiability and distance

linkability advantage proofs, after a private execution of the

POML algorithm A, the attacker does not gain any additional

information about any other user’s locations. Therefore, not

knowing any other user’s coordinate, an attacker does not

gain any probabilistic advantage on correctly guessing the

relationship between their spatial coordinates. Hence, the

coordinate-linkability advantage of an attacker ua is negligible.

C. Server-privacy

All elements that are received and processed by the LDS

have previously been encrypted by the users with their com-

mon public key. In order to efficiently decrypt such elements,

the LDS would need to have access to the private key that has

been generated with the public key used for the encryption.

In most practical settings, where service providers have a

commercial interest in providing a faithful service to their

customers, the LDS would not try to maliciously obtain the

secret key. Therefore, all the LDS does in the POML algorithm

is to obliviously execute algebraic operation on encrypted

elements, without knowing the values within the encrypted

elements. Hence, the POML algorithms are server-private.


