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Abstract—This paper presents a class of nonsmooth convex
optimization methods for the passivity enforcement of reduced-
order macromodels of electrical interconnects, packages and
linear passive devices. Model passivity can be lost during model
extraction or identification from numerical field solutions or
direct measurements. Non-passive models may cause instabil-
ities in transient system-level simulation, therefore a suitable
postprocessing is necessary in order to eliminate any passivity
violations. Different from leading numerical schemes on the
subject, passivity enforcement is here formulated as a direct,
frequency-domain, .. norm minimization through perturbation
of the model state-space parameters. Since the dependence of
this norm on the parameters is nonsmooth but continuous and
convex, we resort to the use of subdifferentials and subgradients,
which are used to devise two different algorithms. We provide
a theoretical proof of the global optimality for the solution
computed via both schemes. Numerical results confirm that these
algorithms achieve the global optimum in a finite number of
iterations within a prescribed accuracy level.

Index Terms—Linear macromodeling, Passivity, Nonsmooth
optimization, Subgradient techniques, Convex optimization

I. INTRODUCTION

Computer-Aided Design flows heavily rely on models for
all those parts of a system that influence its performance. In
common situations, such models are available through some
identification process from input-output responses, which are
available by direct measurements or by numerical simula-
tions. Depending on the structure of the model, different
identification strategies can be pursued. For linear structures,
usually characterized by a state-space form [1], several well-
consolidated time-domain and frequency-domain identification
methods exist [2], [3]. Most prominent methods are based
on rational approximation via iterative weighted least-squares
(Vector Fitting) [4], [5], [6].

The main subject of the present work is passivity enforce-
ment on the identified models [7], [8]. A given physical
structure is passive if unable to generate energy. Examples
of passive structures are the electrical interconnect networks
that provide signal and power distribution in any electrical
and electronic system [9], [10]. Preserving passivity also in the
extracted models is very important, since numerical (transient)
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simulation of non-passive models may lead to instability and
fail [11], [12], even if the terminations or loads are passive.

Model passivity may be lost due to numerical approxima-
tions during the identification stage, unless suitable passivity
constraints are explicitly accounted for. This latter approach,
however, requires very high computational costs both in terms
of memory and CPU time, even for moderately complex
models. Therefore, the most common approach in the literature
is a two-step flow that first identifies an initial model, and then
enforces passivity through a suitable perturbation stage. This
work provides a new approach for this second perturbation
step.

Significant efforts have been devoted to the development of
robust and efficient passivity check and enforcement methods.
The most notable techniques can be classified in three groups.
Direct methods enforce passivity through Positive Real or
Bounded Real Lemma [13] constraints [14], [15], [16]. The
main advantage is the formulation of passivity enforcement
as a convex optimization problem based on Linear Matrix
Inequalities (LMI). This problem admits a unique global so-
lution for which reliable optimization methods exist [17]. The
main drawback of these methods, however, is the excessive
computational cost, due to the introduction in the optimization
problem of a large slack Lyapunov matrix variable, which
prevents a good scalability to complex models characterized
by a large dynamical order and/or number of inputs and
outputs. A second class of methods is based on Hamiltonian
eigenvalue extraction and perturbation [12], [18], [19], [20],
[21], [22], [23], [24]. It can be shown that a model is not
passive if and only if some associated Hamiltonian matrix
has purely imaginary eigenvalues. Finding and perturbing
such eigenvalues to move off the imaginary axis has been
quite successful [12], [19], [24]. The main drawback of
this technique is a non-convex formulation, which does not
guarantee convergence. The last class of methods is based on
iterative perturbation of the frequency-dependent energy gain
of the model [20], [21], [25], [26]. The corresponding schemes
are based on the solution of suitably constrained linear or
quadratic programs at each iteration. Such “local” problems,
however, are only approximated and do not guarantee that
the global optimum is found. Variants of the above schemes
have been presented in [27], [28], [29], [30], [31], [32]. A
comprehensive comparison of main techniques is available
in [33].

This paper presents a new approach to passivity enforce-
ment. The passivity constraint is formulated as a unit bound
on the H,, norm of the model, and this constraint is tackled
directly in the frequency domain, thus avoiding to resort
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to the Bounded Real Lemma, which is the main source of
difficulties in the usual LMI formulation, due to introduction
of the large Lyapunov matrix. A closer look at the dependence
of the Ho, norm on the model parameters in the frequency
domain reveals a convex continuous but non-smooth behavior.
Therefore, standard descent methods based on gradients and
derivatives are ruled out, since such quantities may not be de-
fined everywhere in the parameter space. Therefore, we adopt a
generalization of such methods based on subdifferentials and
subgradients, which exist also in case of non-differentiabile
but convex forms. A complete characterization of the H.,
norm subgradients with respect to model parameters is derived
and used to construct two schemes for passivity enforcement.
These schemes provide a convex optimization framework and
are thus guaranteed to attain the global optimum in a finite
number of steps and within a prescribed tolerance.

This paper is organized as follows. Section II states the main
problem. Section III presents preliminaries and background
material. Section IV introduces a characterization for the
subdifferential of the H,, norm. Sections V and VI present a
projected subgradient algorithm and an alternate subgradient
algorithm, respectively, for passivity enforcement. Numerical
results are presented and discussed in Section VII.

II. PROBLEM STATEMENT

We consider a nominal state-space macromodel character-
ized through its n, X n, transfer matrix

H(,5)=C(sI - A 'B+D, (1)

where s is the Laplace variable, with state-space matrices
A e R*"™ B e R¥" C € R"™"™ D € R""™ . The first
argument of H, which is set to 0 in (1), will be used in
the following to parameterize a perturbation of the transfer
matrix. We suppose that the macromodel (1) is available
through some identification or approximation process. A very
common scenario in the microwave area is the availability of
frequency samples {(wk, Sk), k = 1,..., K} of the scattering
matrix for some linear device such as a filter or an electrical
interconnect, coming from direct measurement or from a
full-wave electromagnetic field simulation. Common rational
approximation schemes such as Vector Fitting [4], [5], [6] can
be applied to these samples in order to find the state-space
macromodel (1) with minimal deviation from the raw data. In
a least-squares formulation, this amounts to solving

K
IniIlZ | H(0,jwy) — Skl?
k=1

for unknown matrices A, B,C,D. This problem is well
addressed in the literature, so we consider the nominal macro-
model (1) as our starting point.

System (1) is assumed to be asymptotically stable, and the
state-space realization is assumed to be minimal. A stable
system (1) is passive if and only if

[H(0)|#.,., = sup o1(H(0,jw)) <1, (2)

where o7 denotes the maximum singular value, and where
the supremum sup X of a set X represents the smallest real

number that is greater than or equal to every number in X.
In case (2) does not hold, we want to perturb the state-space
matrices such that the resulting perturbed system is passive,
under some minimal perturbation condition. As typical in the
extensive literature on the subject (see [33] for an overview),
we choose to perturb only the state-space matrix C', which
usually stores the residues of a partial fraction expansion
of H(0,s). Matrix A is preserved in order to maintain
the system poles, and matrix B does not need perturbation
since it provides a static input-to-state map. Matrix D, which
corresponds to the high-frequency (s — oo) response, is
assumed to fulfill the condition ||D||z = o1(D) < 1, which
is necessary for passivity. This condition is easy to enforce
during the model identification stage.

We define the perturbed system as

H(Cy,5)=(C+Cy)(sI-A)'B+D, (3

where the perturbation term C), is unknown. Supposing that
the nominal system H (0, s) is not passive, our goal is to find
the minimal perturbation that renders passive the perturbed
system. Therefore, we need to solve the optimization problem

st [H(Cp)lln. <1, (4)

min |G|,

where the minimal perturbation condition is expressed without
loss of generality in terms of the Frobenius norm. Other norms,
including frequency-dependent and weighted norms, can be
used as well [29], [30].

A more abstract formulation of (4) can be obtained by
collecting all decision variables in a vector = vec(C)).
Operator vec(-) stacks in a single column all elements of its
matrix argument. The reconstruction of C),, whose size is
defined by the context, is obtained using the “inverse” operator
C, = mat(x). The optimization problem (4) can thus be
restated in terms of the euclidean norm

f@) =zl = CypllF- (5)
Setting now H (z,jw) = H(C),jw) and defining

ho(®) = o1 (H (z, jw)),
as the maximum singular value of the perturbed transfer matrix
at frequency w, we have the following characterization of its
Hoo nOrm
h(@) = [|H (Cp)lln = sup (). ()
we
The above definitions lead the following two complemen-
tary formulations of (4).
e The minimal perturbation on « that is able to achieve
system passivity according to (4) is obtained by solving
the following optimization problem

mﬂin f(x), st h(x)<l1. (7

This problem admits a global optimum x* if both f and
h are convex and the problem is feasible.

¢ A second alternative formulation is based on a predefined
bound on the perturbation amount. We define a set

X, ={z: f(z) <v}
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including all parameter configurations defining perturbed
models that differ from the nominal system less than v.
Among all such models, we seek the one with minimal
Ho norm by solving problem

mwin h(z), st xzelX,, )
which admits a global optimum x* if h is convex and
X, is a compact nonempty convex set. We shall show in
Section V-B how a simple bisection loop on v achieves
macromodel passivity with the least possible perturbation,
thus providing a solution to our original problem (4).
Since convexity plays a crucial role in the following deriva-
tions and in the global solvability of (7) and (8), we briefly
review main definitions and concepts in next section.

III. PRELIMINARIES

We next review some fundamental facts on convexity,
subgradients, and standard subgradient-based iterative mini-
mization algorithms for nonsmooth (i.e., non differentiable)
convex optimization. This material is quite standard, but needs
be synthesized for the purposes of our specific applications;
relevant references include [34], [35], [36], [37].

A. Convexity

A set S is convex if for any x1,x2 € S and for any ¢ with
0 <9 <1, we have

?9$1+(1—19)$2€S.

The convex hull of a set S, denoted as conv S is the set

k
convS = {Zﬂixi:
i=1
k
2 € 8,9 ZO,izl,...,k,Zﬁizl},
i=1

and it represents the smallest convex set containing S. A
function f : R” — R is convex if its domain is a convex
set and if for any @1, x5 in the domain and for any ¢ with
0 <9 <1, we have

[z + (1= D)wz) <Of(w1) + (1 —0)f(22) -

In particular, it follows from the triangle inequality that any
norm is convex, therefore both f(x) in (5) and h(x) in (6)
are convex functions.

B. Gradients and Subgradients

A vector g € R" is a subgradient of a convex function f
at , if for all z in the domain of f, it holds that

f(z)> f(@)+g" (z— ). 9)

If f is convex and differentiable at x, then g = V f () is the
unique subgradient. However, subgradients exist also at points
where f is non differentiable. The set

Of (x) ={g: g is a subgradient of f at x}

f(@) = max{a?, L(@ + 1)} f(@) = max{a?, L (@ + 1)}

Fig. 1. A non-differentiable convex function. The shaded region represents
the set of all lines defined in (9). The subdifferential of f at the two points
x = —1/2 and x = 1 is the interval defined by the slopes of these lines.

o1,2(z, jw)
11/5

19/10 |
5/3

Fig. 2. Non-differentiability of Hc-norm in case of multiple peaks.

is called the subdifferential of f at x. The set Of(x) is always
closed and convex; if f is convex then, for any € intdomf,
Jf(x) is also nonempty and bounded.

Figure 1 provides a graphical illustration for function

f(z) = max{z?, 3 (z + 1)}

B z? if z € (—o0,—3) U (1, +00)
| i@+1) ifze[-3,1]
1

The two points where f(z) is non-differentiable are 21 = —3
and o = 1, whose subdifferentials can be readily computed

as 0f (z1) = [-1,1] and Of(x2) = [3, 2], respectively.

C. An example

It turns out that the Ho, norm h(z) defined in (6) is convex
but nonsmooth as a function of the perturbation parameters .
We illustrate this fact through a simple example. Consider the
transfer function

aiz+by . 0
H(337 S) = (S_pl)és_pl) azx+by

(s—p2)(s—p3)

with
by =01 p;=-01+]j,

a2:O.5 b2:1 p2:—0.1+3j.

Since H is a diagonal matrix, the singular values coincide
with the magnitudes of Hi; and Hao,

o1a(z,jw) = layx 4 by
1,2 ) -
' \/w4 + aq pw? + [p12)?

a1:1
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where
12 = 4AR{p12}> — 2[p12|° .

A straightforward computation gives the locations of the
maxima of the singular values

Wiz =1/—a12/2,

therefore, the H,,-norm can be evaluated as
| H (). =max{o1(z,jw1),o2(z, jw2)}

The H.-norm, as function of z, is depicted in the right panel
of Fig. 2, while the left panel reports the plot of the two
singular values for three different values of x. In particular,
when o1 (z,jw1) = oa(x, jws), that is when the parameter z
is

B1ba + Baby
Boar — Brag’
the two maxima are equal, and the supremum over w is
attained at two different frequency points. As shown in Fig. 2,
for x = Z, the | H (z)||%., is non-differentiable. This example
confirms that this case needs particular attention and motivates
the introduction of subgradients and subdifferentials, to be
derived in Section IV.

T = Brz = 2R{p12}*/Ip1,2|> — R{p1,2}

D. Subgradients and descent directions
Let f be a convex function. The directional derivative of f
at « in direction v € R"” is defined as
. + hv) — f(x)
fla; v) = Tim A
If f is differentiable at x, then f'(z; v) = v Vf(x). If f is
non differentiable at a, then

(10)

(1)

! (e _ T

S = v
Direction v is called a descent direction for f at x, if
f'(x; v) < 0. The meaning is indeed intuitive: if one moves
away from x along a descent direction v, then f locally
decreases. If f is differentiable at , then it is immediate
to verify that v = —V f(x) is a descent direction (actually, it
is the steepest descent direction), and this fact is exploited
in the well-known standard gradient descent algorithm for
minimizing f, where the solution is found by iteratively
applying an update rule of the following type

2 ) = g®) _ o, Vf(x®),

where oy, is a suitable stepsize. Clearly, such a minimization
scheme cannot be adopted as-is if f is non smooth. The idea
in subgradient algorithms is to use a subgradient instead of
the gradient in the update step, thus obtaining an update rule
of the type

2FtD) = gk _ o, g, (12)

where ¢®) € 9f(x®). It is important to remark that this
subgradient step does not in general decrease the objective
value. This is due to the fact that a negative subgradient —g
need not be a descent direction for f (contrary to what happens
in the smooth case, where the negative gradient —V f is always

the steepest descent direction). If desired, however, the method
can be modified so that the subgradient step in (12) is indeed
a descent step. In order to do this, we need to select an
appropriate subgradient in the subdifferential. Indeed, if we
have available the whole subdifferential of f, we can search
this set for a subgradient which is also a descent direction. To
this end, it suffices to minimize f’(x; v) over all directions,
and check if the minimum is negative

min f'(x; v) =

min max v'g
llvll=1

llvll=1g€df (=)

max min v
geof(z) [lv||=1

[using saddle point theorem] = T

[min is achieved for v* = —g/||g||] = max —|g||
geof(=)
= — min .
youin gl

For additional details and proofs see [38]. Therefore, we may
solve the convex optimization problem

g* = arg min

13
geof(x) (13

lgll

in order to find a subgradient which is also a descent direction.

IV. SUBDIFFERENTIAL OF H.,-NORM

In this section we illustrate how to compute the subdif-
ferential and a subgradient for the ., norm. To this end,
we first state preliminary results on subgradients of functions
defined as the supremum of parameterized functions. Let us
thus consider a function h defined, as in (6), as the supremum
over a possibly infinite family of functions:

h(z) = 21618 he(x).

If  is compact and the map w — h,,(x) is continuous for all
x, then [39]

Oh(x) = conv { U{0hy(x) : hy(x) = h(z)}}.

In words, the subdifferential of h at x is the convex hull of
the union of the subdifferentials of the h,, functions that attain
the supremum. If the supremum is attained at a unique w = @,
then the above statement reduces to

Oh(x) = Ohg(x).
Let us now recall the definition of function h(x) in (6):
h(z) = [ H(Cyp)ll.. = [H(z)|ln.. = sup hu,(@) - (14)
where
he(x) = o1 (H (2, jw)) -

We shall next derive explicit expressions for the subdifferential
of h(x), under different cases. Some of the concepts presented
next are adapted from [40] (see also the references therein),
where the subgradient of ||G(x)||#.. is characterized for any
general smooth operator G.
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A. Simple singular value at a single frequency

We start by assuming that the supremum over w in (14) is
attained at a single frequency point w, we will release this
assumption later. Let

H(zx,jo) =UxXV#? (15)
be the singular value decomposition of the transfer function
evaluated at frequency w = w. Further, let ¢ be the dimension
of the eigenspace of H (z, jo)H" (z,j®) associated with the
largest eigenvalue, and let U,, V1 be the first ¢/ columns
of U and V, respectively (we use the vector notation ui,
v1 when ¢ = 1). Finally, in order to make the notation more
compact, we define

®(jw) = (jwI — A)~* (16)

The top and bottom left panels in Fig. 3 provide a graphical
illustration for the cases £ = 1 and ¢ = 2, respectively.

o(jw)

I

|

I

|

|

|

I

I
w

Fig. 3. Frequency-dependent trajectory of the singular values of a transfer
function with unit H o norm. Four possible cases are depicted, corresponding
to a largest singular value with unit and higher multiplicity (top and bottom
rows) at single and multiple frequencies (left and right panels).

In the simplest case with ¢ = 1 the function h(x) is differ-
entiable and the gradient Vi (x) can be easily derived. Let us
denote the maximum singular value as a function of design
parameters C), as 01(C),). If we apply a small perturbation
dC',, we obtain the following first order expansion of transfer
function

H(C,+dC,,jw)

where

=H(C,,jw) + dH(C,,j®)
dH(C),jw) ~ dC,®(j©)

A corresponding perturbation will be induced in the maximum
singular value as

Ul(Cp —+ de) = O’l(Cp) + dal(Cp) .

Standard results on eigenvalue perturbation can be applied
in order to derive a first-order approximation of doy(C))
(see [41])
do1(Cp) ~ R {u{’dH (C), jw)v, }
o~ §R{u1 dC,®(jo)v, }

=R {v{ ®(j©)" @ uf} vec(dC))

a7

where ® denotes the Kronecker product [42] and R extracts
the real part. Expression (17) can be restated in terms of the
vectorized decision variables x as

dh(z) = R{v{ ®(j©)" @ ul}de,

where da = vec(dC',). This result implies that the subdiffer-
ential of h(x) has only one element, which corresponds to the
gradient

Vh(z) =% {v] ®()T @ull}’

= vec (%{q»( )vlul} ) (1%

B. Simple singular value at multiple frequencies

We now consider the more general case of the supremum
in (14) being attained at more than one frequency, as depicted
in Fig. 3, top right panel. Let us define as Q = {@1,...,&,}
the set of frequencies where

h(z) = sup ho () = he, (),

Y, € Q.

As a generalization to (15), we denote the singular value
decomposition of the transfer function at each frequency point
w; €  as

H(z,jo,) =UYsOyvOHE 5 cq. (19)

Let ¢; be the dimension of the -eigenspace of
H(z,jo;)H" (z,jw;) associated with its largest eigenvalue,
and let Ugi), Vg) be the first £; columns of U™ and V¥,
respectively. When the largest singular values have unit
multiplicity with ¢, = --- = {, = 1, the subdifferential
can be computed following (IV) as the convex hull of the
individual vectors computed as in (18) at each individual
frequency w;. The result is
)

,Yp) belongs to the set

Oh(x) = {vec (Zyﬂ%{@ (jaoi )" (20)

where the p-tuple (y1, ...

Yp = {(y17-.~,yp):yi ZO,iyz:l}.

i=1

C. Multiple singular values at a single frequency

The bottom left panel of Fig. 3 depicts the case where the
supremum in (14) is attained at a single frequency, but the
largest singular value has multiplicity larger than one. So, the
singular value decomposition in (15) holds with £ > 1. In this
case, it can be shown (see eq. (9) in [40] and Theorem 3 in
[43]) that the subdifferential of the H ., norm can be expressed
as

Oh(z) = {vec (?R{@(jw)leUfI}T) Y € yg}, 1)

where ), is the set of positive semidefinite symmetric ¢ x ¢
matrices having unit trace,

Vi={YeR: Y=Y, Y>0,TrY =1}. (22
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D. Multiple singular values at multiple frequencies

The most general case, depicted in the bottom right panel
of Fig. 3, occurs when the supremum in (14) is attained at
multiple frequencies w; € (2, and at those frequencies the
multiplicity of the largest singular value is larger than one.
So, the singular value decomposition (19) applies with ¢; > 1
for some :. For this case, it can be shown by combining (20)
and (21) that the subdifferential of the 4., norm can be
expressed as

Oh(z) = {vec (zp: %{@(jwi)V(i)YiU(i)H}T) } (23)

where the p-tuple (Y'q,...,Y,) ranges over the set

Vs, ..0p) =

P
{Y:Y,eR4Y YV, =Y/, YV,>0, ZTrYizl}.
=1

(24)

E. Descent direction in the case of simple eigenvalues

The most prominent case (i.e., the one that occurs in our
practical application) is that either the H., norm is attained
at a single frequency, or it is attained at multiple frequencies,
but in both situations the maximum eigenvalue happens to be
simple. It is seen from (20) that, in the case when ¢; = 1, i =
1,...,p, all subgradients are found as convex combinations
(weighted aVTerage) of the individual ‘gradients’ at w;. Let y =

[y1,---,yp] »and

p
g: =D yiR{®(j@)oul T,

=1
p
Sp={y:y>0i=1....p,> yi =1}
=1

In order to find the steepest descent direction we need to solve
a simple quadratic optimization problem (13)

p
min | > yig,ll7, sty €,
i=1

and then choose g* = le y;g; as a descent direction,
where y; are the coefficients of the optimal solution. By using
the definition of Frobenius norm and the properties of vec

operator, the optimization problem can be written as
miny ' Gy, st ye Xp,

where G € RP'P is the matrix with the entries

(G)ij = vec(g;) " vec(g,).

V. A PROJECTED SUBGRADIENT ALGORITHM
A. General description
Consider the generic optimization problem

minh(x), st xeX, (25)

Fig. 4. Projected subgradient algorithm. The contour lines of the objective
function h(x) are depicted in gray and the feasible set X is the red shaded
region. The first three iterations of the subgradient algorithm are depicted,
distinguishing between the step towards the direction fg(k) (black solid line)
and the projection step onto the feasible set X" (black dashed line).

where h(x) and X are a convex function and a nonempty
convex compact set, respectively. This problem admits a global
optimal solution that can be found with a simple iterative
scheme, as illustrated in Fig. 4: we pick a generic initial
point 2(9), and we generate the next point by performing a
step in the direction —g(®)

0 — 50 0

— &g
where g(©) is a subgradient of the function h(x) in xy and
o 18 a suitable stepsize (the specific rule for computing the
stepsizes is reported in eq. (37) in the Appendix). Generally,
(9 does not belong to the feasible set X (highlighted in red
in Fig. 4), therefore we project the z© on the set X obtaining
the new candidate solution

z® = 20y = [2© — apg@]x

where [-]x is the operator that performs an orthogonal Eu-
clidean projection of its argument onto X. The above process
is repeated following the iterative scheme

pF+D) — [a:(k) _ Oékg(k)]x (26)

until convergence. Technical details on fundamental assump-
tions of this method and a proof of its convergence are reported
in Appendix A.

B. Passivity enforcement via a projected subgradient algo-
rithm

We illustrate in this section how the basic projected sub-
gradient algorithm described in Section V-A can be applied
in order to solve our main passivity enforcement problem (4).
Recalling the problem statement (8)

minh(x), st xei,.

x

27

we consider the set of all macromodels X, that differ less than
v from the nominal system, where v is some prescribed and
controlled accuracy. We search this set for the macromodel
with minimum H., norm by applying the above projected
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Pyl
Il
W

k=3

e
S=——

Fig. 5. First three iterations of the outer bisection loop on the macromodel
perturbation amount v. For each iteration, * denotes the optimal solution
of problem (27). Bottom right panel depicts the situation at convergence,
where v* denotes the optimal accuracy of the optimal passive macromodel
H(x*,s).

\

subgradient scheme, and we denote the optimal solution as
x*. The following two cases may apply

1) if hA(x*) < 1, we have found a passive macromodel
with controlled accuracy with respect to nominal macro-
model; in other words, problem (27) with the additional
passivity constraint hA(x) < 1 is feasible;

2) if instead h(x*) > 1, we can conclude that there exist
no passive macromodel which deviates less than v from
the original model.

We then argue that there exists an optimal accuracy v* such
that problem

min h(x),
x

st.x € Xy, h(x)<1 (28)

is feasible. We will look for the optimal accuracy v* by an
outer bisection loop, as illustrated in Fig. 5 and described
below.

Let us assume that at the first iteration £ = 1 (top left
panel) problem (28) is not feasible. Therefore, the accuracy
v is too stringent and the set &}, is too small. We then need
to relax the accuracy to a larger value 1o > v, which makes
problem (28) feasible. The top right panel in Fig. 5 illustrates
this situation, highlighting that the intersection of sets &, and
{x : h(x) < 1} is nonempty. The optimal accuracy is such
that v* € 11, v2]. We then define v3 = (11 + 12)/2 and solve
problem (28) again (bottom left panel). This bisection process
on v is repeated until convergence (bottom right panel). We
remark that we do not need to obtain the optimal solution x*
of the projected subgradient problem (28). Rather, we need to
determine only the feasibility of this problem. If the problem
is feasible, we decrease v. If the problem is infeasible, we
increase v.

Fig. 6. Alternate subgradient algorithm. The level sets of h(x) and f(x) are
depicted with solid and dashed gray lines, respectively. The region h(x) < 1
is colored in red. The iteration steps in a direction in h(x) and O f(x) are
depicted with solid and dashed arrows, respectively.

VI. AN ALTERNATE SUBGRADIENT ALGORITHM
A. General description

Consider the following optimization problem

mwin f(x), st h(x)<1. (29)
where, h(x) and f(x) are convex functions. Figure 6 depicts
an alternate subgradient algorithm for solving this problem.
We start from some initial point xg, which is assumed,
for the purpose of the example, to be outside the feasible
region h(x) < 1 highlighted in red. The first iteration step
has thus the purpose of decreasing h(x). We perform a step

0 (30)

2 = 20 _ 4,0

where g(©) is a subgradient of h(zx) at ®) and ag is some
suitable stepsize (see eq. (33)). The updated point (") may
satisfy the constraint h(x)—1 < 0 (as in the example depicted
in Figure 6), but it is not necesarily the point corresponding to
the minimum of the objective function f (). The second step
is thus performed, with a suitable stepsize a1, so to decrease
the objective:

z® =z — q,gW | (31)

where g(1) is a subgradient of the objective function f(zx).
The process is repeated by performing steps
2 D) = g®) _ o, g®)

where the direction of each step is defined according to the
alternate subgradient rule

<m€{8ﬂﬂ“>ﬁh@@»s1

32
on(x™) if h(x®) > 1. 2

Technical details on the implementation of this scheme, and a
proof of its convergence are reported in Appendix B.

B. Passivity enforcement via alternate subgradients

Macromodel passivity can be easily achieved by applying
the alternate subgradient scheme described in Section VI-A.
We can choose as the objective function the square of the
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Frobenius norm of the perturbation, (5): f(x) = %[ ||2. Our

2
main problem thus becomes
1
miniHa:H%, s.t. h(x) <1,

which is fully equivalent to (4). Since f(x) is smooth and
differentiable, its subdifferential contains only one element,
which coincides with its gradient &. Each step of the alternate
subgradient algorithm thus applies the following update

2D = 2 ®) _ ) o)

where
g® = gy =a® it h(@®) <1,
g e on@™) if nz®) > 1.

The step size «y, is computed by using the adaptive method
described in Appendix C, i.e.,

~GiGimr +/GRGE L + B + 6

ap =
Gy

(33)

where " "
k Kk
G =gy I + llgy” 1%,

constants (1 and &y, are defined in (36) and R is any
constant such that ||z() — z*|| < R. In other words, for each
step, feasible or infeasible, it is necessary to calculate both
subgradients in order to derive the correct value for the step
size.

VII. NUMERICAL EXPERIMENTS
A. PCB interconnect

We applied the proposed passivity enforcement algorithms
to a practical case. The 4-port scattering matrix of a coupled
Printed Circuit Board interconnect has been measured from
DC up to 20 GHz with resolution 10 MHz, obtaining the raw
data S;;(jwg), 4,5 € {1,...,4} and k € {1,...,2000}. These
samples have been processed by the well known Vector Fitting
algorithm [4], [5], [6] to obtain an initial macromodel (1),
with n = 272 states and n, = n, = 4 inputs/outputs.
Figure 7 demonstrates the accuracy of this initial model by
comparing its responses to the raw data. However, even with
this aggressive accuracy the model exhibits some non-passive
bands between 0 and 4 GHz highlighted in Figure 10, even if
all singular values of the raw data are unitary bounded at all
frequencies.

The projected subgradient method in Section V-B has been
applied to the model in order to enforce its passivity. The
initial Frobenius norm of the state matrix under perturbation
is |C||r = 3.33 x 105. We then selected an accuracy ¢ = 1
on the unknown perturbation term in order to stop the outer
bisection loop on v. The algorithm required 22 outer iterations
before reaching this accuracy. The number of inner iterations
resulted highly dependent on the current value of v. During
early outer iterations, when the current solution estimate is
still far from the optimal solution, only few inner iterations
(about 20) are sufficient to establish if the problem (27) is
feasible or not. When v approaches its optimal value v*, the

0.8 T
Data
= = = Model
0.6 .
U_)‘; 041
0.2 .
O L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

_4 Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20

Frequency (GHz)

Data
0.8 - = =Model
— 06
S
(%)
— 041
0.2
0 L
0 2
4
1
2k -
- |
&
2 0 H
= (
© |
ol H
\ \
\ Y
_4 Il Il Il Il L L L L L
0 2 4 6 8 10 12 14 16 18 20

Frequency (GHz)

Fig. 7. Comparisons between original data and model generated with Vector
Fitting algorithm [4], [5], [6].

number of inner iterations increases. This effect is intrinsic in
the algorithm structure.

The alternate subgradient algorithm is more efficient, since
significantly less total iterations are required. If a stopping
condition is applied to enforce the theoretical error estimate
0 (see (35) in Appendix C) to be less than &, about 900 total
iterations are needed. However, very accurate estimates are
available after only few tens of iterations. As a comparison,
one of the best passivity enforcement algorithms available
in the literature [12], [19], [24] obtains, for this case, a
solution with ||C7 || =~ 500. The presented scheme reaches
a better accuracy after about 100 iterations, as depicted in
Figure 8. This figure reports with different colors (blue and
red, respectively) the values of the objective function ||C}||»
for both feasible and infeasible iterations. Figure 9 reports the
evolution of the H., norm through iterations.

Finally, Figure 10 and Figure 11 compare the frequency-
dependent singular values of original and optimal perturbed
models obtained by the two proposed schemes. The two figures
are almost undistinguishable since the two algorithms provably
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Fig. 8. Trend of objective function C?; for alternate subgradient algorithm
of Section VI. Feasible and infeasible iterations are plotted in blue and red,
respectively.
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Fig. 9. Trend of Ho-norm for alternate subgradient algorithm of Section VI.
Feasible and infeasible iterations are plotted in blue and red, respectively.

converge to the same optimal solution.

For this example, the computational cost is about 0.5
seconds per iteration on a standard laptop with a 2 GHz
clock. Passivity enforcement is thus achieved in few minutes
with both projected and alternate subgradient techniques. It
is important to note that the total runtime can be traded
with accuracy with both schemes. Since upper bounds on
the macromodel perturbation are available at each step of the
algorithm, iterations can be stopped at any time as soon as
this upper bound is satisfactory, even if successive iterations
would further improve the solution. This possibility is ruled
out for common non-convex passivity enforcement schemes.

B. Guaranteed convergence

We show in this second example the reliability of the new
proposed strategy by processing a model for which the state-
of-the-art passivity enforcement methods [12], [19], [24] fail.
The nominal macromodel is obtained by applying the Vector
Fitting algorithm to the scattering responses of a sharp filter.
The model order is n = 60, with a number of ports n, =
Ny = 2.

We analyze first the strategy presented in [12], based on an
iterative perturbation of the model, where the constraints are
derived from a linearized expression of the singular values as
a function of residues. Figure 12 depicts the singular values
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Fig. 10. Passivity enforcement of an electrical interconnect model via the

projected subgradient algorithm of Section V. Singular values of original non-
passive (solid blue) and perturbed passive (dashed red) models are plotted
versus frequency.

14 T

T
Original
- = = Passive (alternate subgradient)

°
o

o
)

Singular values

o
~

0.2

L
0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz)

T
Original
- = = Passive (alternate subgradient)

o
S ©
o o

Singular values
o
O w
o o

0.75
0.7
0.651 i
0 0.5 1 15 2 25 3 35 4
Frequency (GHz)
Fig. 11.  As in Fig. 10, but using the alternate subgradient algorithm of
Section VI
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Fig. 12.  Singular values trajectories of the first iterations of the passivity
enforcement scheme [12]. Similar results are obtained with the scheme [19].

trajectories during the first iterations of the tentative passivity
enforcement. The top panel shows that the original singular
values of the unperturbed model are only slightly larger than
one, with a corresponding small non-passive band at low
frequencies. Starting from the first iteration, we see that very
large perturbations of the singular values and model responses
are induced throughout the frequency axis. This is a clear
evidence of the ill-conditioned nature of this scheme, which
diverges in very few iterations. We obtained the same negative
results (not shown here) with the Hamiltonian perturbation
scheme of [19]. Both these schemes solve a nonconvex for-
mulation of the passivity enforcement. Therefore, convergence
is not guaranteed.

We then applied to this model the alternate subgradient
algorithm presented in Section VI. After 30 iterations we
obtained a passive model with a very good accuracy, as
demonstrated in figure 13, where the scattering parameters of
original and passive model are compared.

For this example, we investigated also an acceleration
strategy on the algorithm, which is useful to improve the con-
vergence speed. We implemented a method where the update
direction is a conic combination of the current subgradient and
the last search direction,

s = g®) 4 g g(k=1)
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Fig. 13. Comparison between original and perturbed scattering responses.

In the literature, these acceleration techniques are referred as
the “heavy ball” methods. In particular we use the solution
proposed in [44], where

i = max{0, (s Tg®) /s )}

and with v, = 1.5 (as the authors suggest). This method
guarantees that this update has a smaller angle towards the
optimal set than the standard negative subgradient direction.
Figure 14 shows a comparison between the standard update
method and the heavy ball method. A relative perturbation
norm of 5.34 x 10~° is reached at iteration 270 with standard
negative subgradient and at iteration 75 with the heavy ball
strategy, with a speed-up factor of about 3.6.

This last example shows that the proposed algorithms based
on subgradient techniques are able to manage cases where
other state-of-art methodologies fail to converge.

VIII. CONCLUSION AND DISCUSSION

This paper introduced a novel formulation of passivity
enforcement schemes for linear macromodels in state-space



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

5.48

—— Heavy ball
—— Standard subgradient

5.46

5441

5421

IS JIIC
(4]
~

50 100 150 200 250 300 350 400 450 500
No. of iteration

Fig. 14. Relative error perturbation norm of the standard update technique
(blue solid line) and heavy ball method (red solid line).

form. The theoretical framework that we have discussed in
the paper shows that the problem of finding the least perturbed
macromodel under passivity constraints is convex. Therefore,
when solved through a convex optimization scheme, such as
the projected subgradient method, or the alternate subgradient
method, there is a theoretical guarantee that the global optimal
solution is found up to any prescribed accuracy within a
finite number of steps or iterations. This fact is a distinctive
advantage over most existing schemes in the literature. Some
of these schemes are not convex at all, and are not guaranteed
a priori to converge. Some other schemes perform some
approximation such as linearization, projection, or similar,
which lead to locally convex problems at each iteration. Yet,
global convexity is lost during the approximation stage, thus
loosing global optimality.

The nice theoretical features of the proposed schemes
come with a cost. Although convergence to the optimum is
guaranteed, this convergence may require many iterations.
This is mainly due to the global structure of the problem,
ultimately to the non-smooth behavior of the ., norm with
respect to the decision variables in the optimization process.
This lack of regularity called for generalizations of standard
descent methods involving subgradients and subdifferentials.
The result is a possibly slower convergence rate with respect to
regular Newton-like methods for smooth problems. However,
a substantial speedup of subgradient-based methods seems to
be achievable via simple modifications, such as the heavy-ball
technique, as demonstrated in the examples.

APPENDIX A
CONVERGENCE RESULT FOR ALGORITHM (26)

Proposition 1: Assume that

(a) problem (25) admits an optimal solution x*;

(b) there exist a finite constant G' such that ||g(®)|| < G for
all &;

(c) a constant R is known such that ||z(!) — z*|| < R.

Let hj, denote the best value achieved by algorithm (26) up
to iteration k (note that this need not be the value of h at

iteration k),
=min{h(z@):i=1,... k}.

Then,

2 2 Nk 2
< RP+G*Y o
-_— k M
2> i
In particular, if the oy sequence is non-summable and dimin-

ishing (i.e., &y — 0 as k — oo, and Y ,-, ap = oo; for
example, o = v/k for some v > 0), then

hi — h* (34)

lim hf — h* =0.

k—o0

Proof: A proof of the previous proposition can be found
in [35], see also [34]. |
It can be checked that, given the total number of itera-
tions K, the upper bound in (34) is minimized by the choice
of a constant stepsize o; = o = (R/G) /'K, for which we
obtain
RG
e

This means that if we stop the algorithm when exit accuracy

f—f< R—\/% < e is achieved, then we need at least O(1/¢€?)

iterations.

hj, —h* <

APPENDIX B
CONVERGENCE RESULT FOR ALGORITHM (VI-A), (32)

Proposition 2: Assume that

(a) problem (29) admits an optimal solution x*;

(b) there exist a strictly feasible point xqs;

(c) there exist a finite constant G' such that ||g(®)|| < G for
all k;

(d) a constant R is known such that ||z(!) — 2*|| < R and
|£®) — 24| < R.

We denote with f;' the value of the best feasible point up to

iteration k in algorithm (VI-A), (32) :

fr=min{f(x): (W) <1,i=1,...,k}.

Then,
fi—=f"<en, hp<1—pu,
where .
R*+G?*Y af
€ + ke < e
i=1 Qi

Proof: We proceed by contradiction. Assume that there
exist € > 0 such that f > f* 4 2¢ for all £, so that

F@®) > f + 2

for all k for which z(®) is feasible. We will show that this
assumption leads to a contradiction. Let first

z=(1-0)x*+0xy, 0c(0,1).
By convexity of f we have

f@) < (1 =0)f" +0f( ).
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By choosing § = min{1, e/(f(xs) — f*)}, this implies that
f(@) < f"+e
that is, & is e-suboptimal. Moreover

h(z) <

therefore

(1 — O)h(x*) + Oh(xs) < Oh(xy),

hME)<1—pu, 1—p=_0h(xg).

Consider now an i € {1,...,k} for which x(® is feasible.
Then, ggf) € Of(z™) and f(z™) > f* + 2e which, from
(B), gives

f@D) - f(&) >,
and therefore
2+ — )2 =
i ~ )T i
= & — &|* — 20:9} T (2 ~ &) + a2 g} |

<@~ &[* - 20:(f(2?) ~ f(@) + ofllg} |
< 2 — & - 204e + ?llg} 1%,
Suppose instead that i € {1,...,k} is such that (¥ is

infeasible. Then, g ) e Oh(z) w1th h(z™) > 1, and from
(B) we have that

h(x™) — h(&) > p.

Repeating the above derivation yields
(i+1) _ (2)||2 )

[Eg > < [la® — 2| — 20i0+ o | gy,

Therefore, for any iteration (feasible or infeasible), we have

2 — &) < [le® — &2 — ;B + 2a?C?,
where
B=e+p, GI=lgil*+lghll.
Applying this inequality recursively for ¢ = 1,...,k, we
obtain
k
lz* ) — &) < |l — 2| — Zaz Z a;Gy.
i:l
From this it follows that
k k
BZO@ < R? +G22a?,
i=1 i=1
hence
R? + G* Ziﬂl o?
B< s .
Dim1
Now, if the stepsize sequence is diminishing and non-

summable, then the right-hand side of the previous expression
goes to zero as k — oo, thus leading to a contradiction. M

APPENDIX C
ADAPTIVE STEPSIZES

We observe that if we use a constant step-size o =
(R/G)/VK in algorithm (26), then we can estimate a lower
bound of the optimal solution, in particular

RG
Vk
where h* is the optimal solution and hj is the best value of
h(x) over the first k iterations. To perform this estimation
we have to determine explicitly the constants R and G. In
particular, we have that R = v, and an upper bound on the

norm of the subgradient can be found from (23). Let ¢ be an
element of Oh(x), then

lellz < ZII‘P

1@ (@)l F VYU | e

h* > hj —

V(1 Y U z)H”

<

N
P%
i

=1

(55 e/ TV Y U U YV

< 1@l Z YIY;

< ||4’||Hw

Il
H'P_ﬂw

where the last inequality follows from the fact that
(Yy,...,Y,) belongs to the set YV, ., ) defined in (24).

Even if the constant step-size method is formally correct,
it may require too many iterations to reach the requested
accuracy. Therefore, we use in the implementation another
strategy based on an adaptive selection of the step-size. Since
for the subgradient method it holds that

R+ Hg“)l
221 1 @
then at step £ we can bound the optimality gap as

R? + [lg™ 2o,

2a?

o1 — 0T <

+ &kt

hi —h* <6, 0= , (35)
F ke O 2(a + Ck—1)
where
k—1
Z g™ 1%e?, G =) ai. (36)
i=1
and with £y = (y = 0. The uncertain J; in (35) is minimized

when d (o) = 0, that is for

~lg® i1 +/llg® G2y + R2 + & )
qp =
l9®]
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