
Real-time Image Streaming over a Low-Bandwidth
Wireless Camera Network

Tim Wark 1, Peter Corke 1, Johannes Karlsson 12, Pavan Sikka 1, Philip Valencia 1

1 Autonomous Systems Laboratory, CSIRO ICT Centre, Brisbane, Australia
2 Digital Media Laboratory, Umeå University, Sweden

{tim.wark, peter.corke, johannes.karlsson, pavan.sikka, philip.valencia}@csiro.au

Abstract

In this paper we describe the recent development of a low-
bandwidth wireless camera sensor network. We propose a sim-
ple, yet effective, network architecture which allows multiple
cameras to be connected to the network and synchronize their
communication schedules. Image compression of greater than
90% is performed at each node running on a local DSP co-
processor, resulting in nodes using 1/8th the energy compared
to streaming uncompressed images. We briefly introduce the
Fleck wireless node and the DSP/camera sensor, and then
outline the network architecture and compression algorithm.
The system is able to stream color QVGA images over the
network to a base station at up to 2 frames per second.

1. INTRODUCTION

A. Background

Wireless sensor networks (WSN) have attracted increasing
interest over the last few years, driven by theoretical and
practical problems in embedded operating systems, network
protocols, wireless communications and distributed signal pro-
cessing [1]. To date the focus has been on simple scalar sensors
such as light level, temperature, humidity etc. Sensors such
as microphones and cameras provide very rich information
about the environment, for example security or farming[2]
application, but have the disadvantage of generating very large
quantities of data. However the commodification of color
CMOS imaging sensors and DSP chips, for mobile phone and
other applications, has meant that more capable multimedia
nodes are now starting to emerge in WSN applications [3],
[4].

Recent work has investigated the application of video
coding in WSNs for high-bandwidth networks [5], however
we are particularly interested in image processing for low-
power, low-bandwidth sensor networks for long-term outdoor
deployments [6]. As such our particular focus has been on
ways for compressing images at each node to minimise the
load on the network.

B. Related Work

Webcams are now a ubiquitous (wireless) networked imag-
ing technology, but their high power and high bandwidth

Fig. 1: Illustration of camera stack formed by a Fleck sensor node, DSP
board and CCD camera.

communications are at odds with wireless sensor networks
requirements [4].

More relevant to the sensor network requirement are small
embedded cameras such as CMUcam1 and CMUcam2[7]. The
CMUcam2 comprises a SX52 microcontroller, an OV6620 or
OV7620 Omnivision CMOS camera and can communicate via
a serial port at speeds upto 115,000 baud. Software running
on the CMUcam2 can track coloured blobs at up to 50fps with
an image resolution of 160 × 255.

The Cyclops[8] camera is similar, but uses an Atmega 128
processor and a 352 × 288 pixel Agilent imager. It also has
64kB of off-chip RAM and 512kB of flash memory, and an
interface to a Mica mote. Its significant limitations are the
small amount of memory, and the limited address space and
computational ability of its processor. The Fleck camera[3], to
be described in the next section, overcomes these limitations.

C. Motivation

To meet the needs for additional computation within a sensor
network various approaches have been investigated. One op-
tion is to increase the capability of the nodes at the expense
of cost and power consumption. Another approach is to create
a hierarchical network[9] in which signals are transmitted to
more capable nodes for processing. However this is expensive
in terms of communications and energy. Our motivation in this
work has been to develop a robust methodology for streaming
image data over “Mote-class” wireless sensor networks – that

1-4244-1502-0/07/$25.00 © 2007 IEEE ISSNIP 2007113

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on June 16,2010 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

is, networks with a focus on low-bandwidth communication,
to allow long hop distances for minimal energy consumption.
Our key contributions are:

• Development of a new, expandable hardware platform
“Fleck-3”, to allow multimedia camera nodes to be easily
constructed.

• A camera management framework to allow camera nodes
to be dynamically added and removed from the network.

• An image compression algorithm which runs on-board
nodes, designed specifically for coping with packet-loss
experienced during transmission back to base.

2. HARDWARE PLATFORM

The number of hardware platforms for sensor networks has
grown steadily and the latest TinyOS 2 distribution supports
9 platforms from 5 vendors. Polastre et al [10] provide a
good overview of micro-controllers and low-power radios. The
following subsections describe our custom-designed Fleck-3
platform.

A. Fleck3

The Fleck-3 is a robust platform designed for outdoor sensor
networks for environmental monitoring and applications in
agriculture. It is the latest in a series of devices devel-
oped since 2002[6]. The Fleck-3, consists of an Atmega128
micro-controller running at 8 MHz, a Nordic NRF905 radio
transceiver with bit-rate of around 100 kbits/s, a real-time
clock, a large amount of flash memory (1MB) and a tem-
perature sensor. An integrated solar battery charging circuit
and regulator, with monitoring of battery and solar voltage
and current, makes the platform ideal for outdoor, long-term
deployments. Our first network[11] has been powered by the
sun for over 2 years now.

The Fleck-3 platform is also designed for easy expansion via
add-on daughterboards which communicate via digital I/O pins
and the SPI bus, and we have developed nearly 20 interfaces
for various applications[12]. The DSP daughterboards used for
the camera node is described next.

B. DSP Board

The DSP Daughterboard is responsible for all the onboard
image processing. It contains a 150MHz TMS320F2812 Signal
Processor, with on-chip 128K bytes of program FLASH mem-
ory. The DSP also has dual UARTS, SPI bus and numerous
digital I/Os. The DSP is a 32-bit processor which provides a
large address space required for image processing as well as
high computational power. At 150 (32 bit) MIPS it dramati-
cally outperforms the Atmega 128 at 8 (8 bit) MIPS. Power
consumption however is much higher, 290mA compared to
9mA, but the DSP is more efficient when normalized to MIPS
x width / current: Atmega 128L 0.9MIPS/mA, while the DSP
is 2.1MIPS8/mA.

The DSP supports two interfaces: one for a camera and one
for an audio codec, and these are connected via a Flat-Flex
cable.

Fig. 2: The hardware architecture of a camera node formed by a Fleck sensor
node, DSP board and CCD camera.

(a) Reference Image (b) Input (new) Image
Fig. 3: Illustration of reference and input images. (One hour apart.)

C. Camera Board

The Camera Daughterboard contains the sensor chip, lens
holder and two ultra-bright LEDs for illumination. The sensor
is an OV7640 Color CMOS from OmniVision Technologies
Inc, which outputs VGA (640 x 480) or QVGA (320 x 240)
images at a maximum rate of 30fps or 60fps respectively. It
uses a Bayer pattern filter to achieve color, has progressive
scan and supports windowed and sub-sampled images. The
camera parameters such as exposure time and gain can be set
by the DSP over the local IIC bus.

Combining a Fleck with the DSP board and a camera board
creates a highly functional network camera node, shown in
Figure 1. The hardware architecture is shown in Figure 2.

3. SYSTEM ARCHITECTURE

A. Overview

The overall system architecture is outlined in Figure 4. The
camera network comprises one or more camera nodes in a star-
network configuration with a single base node. The base node
has a serial connection to a gateway computer and performs
two main functions: 1. Any packet received over the radio
will be sent over the serial port; 2. Any packet received over
the serial port will be sent out over the radio. The gateway
computer not only provides the link for sending images back

Camera

Camera Interface
Board

Altera Max 7000 Programmable Logic Device

TI TMS320F2812 DSP
1 MB
SRAM

Fleck3

CameraCodec

Camera Control

Power SPIInterrupt

DSP Board

114

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on June 16,2010 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

Camera
Manager

Cam
1

Camera
Listener 1

Camera
Manager

Camera
Listener 2

Camera Network Base

Cam
1

Cam
2

Cam
1

Cam
2

(1) ADD

(6) ADD

(2) STATUS RF Msg (3) Launches

(4) Setup params for Cam 1

(5) Image Data

(7) STATUS RF Msg (8) Launches

(9) Setup NEW params for Cam 1

(10) Setup params for Cam 2

(11) Image Data

Fig. 5: Illustration of interaction between camera network and base which
takes place when new cameras are added to the network.

to a database, but also runs the camera manager program. This
is described in more detail below.

B. Camera Manager

The role of the camera manager program is to allow dynamic
control of the network, as illustrated in Figure 5. Whenever
a new camera is added to the network, specially assigned
control messages are broadcast to the network. When these
messages get back to base, the manager will spawn a new
listener process for this camera.

The other key role of the camera manager is to dynamically
reschedule all cameras in the network as cameras are added
and removed. Thus, as more cameras are added the duty
cycle for each camera will be reduced proportionally. As
cameras in the network receive their scheduling parameters
from the manager, they will begin sending out compressed
images according to the newly allocated schedule.

It should be noted that given our focus on outdoor applica-
tions, where solar energy is our key source of energy [11], the
camera duty cycles we used were far less than the maximum
duty cycle possible given continuous power, so adding more
cameras to a network would typically not change the duty
cycles. These energy considerations are discussed more in
Section 5-B.

C. Operating System

All software running on the Fleck-3 mainboard used the
TinyOS [13] operating system and was written in the
NesC [14] language. TinyOS is an event-driven, component-
based OS especially developed for platforms such as sensor
network nodes with very limited resources.

4. IMAGE COMPRESSION ALGORITHM

Due to the limited bandwidth of a wireless sensor network
(typically < 100kbps), a key aspect of our work has been
compression of images at the nodes. The additional computa-
tional energy required to compress images is more than offset
by the reduction in data required to be sent over the radio.
This is discussed in more detail in Section 5-B. The other key
advantage of this approach is greatly reducing the amount of
data in the air, allowing for many more cameras to be added
to the network.

A. Encoding

The main steps in the image encoding algorithm are outlined
in Figure 6. As an initial step, the packed YUV422 image
sent from the camera is unpacked and chroma subsampled to
create a YUV420 image with 16-bit pixels which the DSP can
more efficiently manipulate.

The image is then treated as a series of 8× 8 blocks. Each
block is compared with a previously saved reference image
stored on the DSP external SRAM. Three approaches are taken
in the way blocks are dealt with at the encoder (camera node)
side:

1) Skip block: If the mean-square error (MSE) between
this block and corresponding block in the reference
frame is below some threshold then don’t transmit the
block.

2) Intra-block encode: Encoding is performed by encod-
ing the block without using any reference.

3) Inter-block encode: Encoding is performed by encod-
ing the difference between the current block and the
corresponding block in the reference frame.

For non-skip blocks the encoding process very similar to
JPEG compression. The block is converted to frequency space
using a 2D discrete cosine transform (DCT type-II), quantized
and zigzag scanned. Finally it is encoded using run length
encoding (RLE) and Huffman encoding. Both intra and inter-
block encoding is done and the type producing the least bits is
selected for transmission. For the input and reference images
shown in Figure 3, the types of blocks selected are shown in
Figure 8.

B. Packet structure

The structure of radio packet contents is shown in Figure 9. In
each radio packet an integer number of blocks are transmitted.
The benefit of this approach is that no resynchronization
markers are needed in the Huffman encoded bitstream. The
packet header contains information about the index of the first
block within the image and the number of blocks in the packet.
Following this are the bit-encoded blocks, each preceded by a
block type: 1 for skip, 00 for intra-, and 01 for inter-block. A
radio packet of length 32 bytes typically holds several blocks.

C. Decoding

The decoding algorithm is shown in Figure 7 which is im-
plemented by a Java application which processes the packets
at the base and updates the image. Since predictive coding is

115

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on June 16,2010 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

Camera
Manager

(Java)

Camera 2

Camera 3

Camera 4

Base node

Camera 1

JNI
Listen serial

Database

RF comms

Gateway

Camera
Listener
(Java)

One listener
/ camera

Fig. 4: Outline of network architecture. The camera manager process will spawn a new camera listener for each new camera that is detected by the base.

Block

Block type
selection

Type

Ref. block
selection

Type

+Block
memory

Radio

Get
difference

block

-

Source
coding

DCT

Inverse
quanti-
zation

Inverse
DCT

Quanti-
zation

P

I

P

I

Fig. 6: Simplified block diagram of encode algorithm.

Source
decoding

Block type
selection

TypeI or P

Inverse
quant-
ization

Inverse
DCT

Type

Skip

+

Block
memory

Radio

Sum difference
block with ref

Decoded
image

I

P

Fig. 7: Simplified block diagram of decode algorithm.

(a) Skip blocks (b) Intra-encode blocks

(c) Inter-encode blocks (d) Output image (base)
Fig. 8: Illustration of ways in which blocks are encoded to send data.

Packet
Length
(1 byte)

Start block offset
(2 bytes)

Num
blocks
(1 byte)

Header
(2 bits)

Contents of blocks

VLC and Huffman encoded
DCT components

Header format:
1 = SKIP
00 = INTER
01 = INTRA

Fig. 9: Structure of packet contents used for compressed image blocks.

used, a lost packet will not only cause error in the current
frame, but the error will continue to propagate into the
following frames. To stop the error propagation, intra blocks
must be is inserted.

Two strategies are used for deciding when to insert these
intra blocks depending on whether feedback from the decoder
can be provided or not. If feedback can be provided, the
decoder sends information about lost blocks to the encoder and
these blocks are then encoded using intra mode. If no feedback
is provided, as is the case in our current implementation,
the encoder will insert an intra block periodically given a
maximum intra block interval. Error control at block level can
be used since the lack of motion compensation in our scheme
will not cause the error to propagate in the spatial domain.
Ongoing work is investigating the use of feedback messages

116

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on June 16,2010 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

500

550

Image

T
O

S
 p

ac
ke

ts

Intra−block coding
Inter−block coding

Fig. 10: The number of packets requires to transfer an image over an extended
image sequence.

to the camera to determine optimal times to insert forced intra
blocks.

5. EVALUATION

A. Packet Transmission

Figure 10 shows the number of packets transmitted for each
image transferred over a long sequence of images over a period
of several hours with people moving occasionally in front
of an otherwise static scene. We compare two cases, where
intra-block coding is enforced, top curve, and where inter-
block coding is allowed. For the enforced intra-block case the
average number of TOS packets is 395 packets or 10.2kbyte
of data. Assuming 1.5 bytes per pixel in YUV420 format, this
represents a compression to 8.8%. The enforced intra-block
method is quite robust to lost packets, those regions of the
image corresponding to the lost packet will be refreshed in the
next cycle. When allowing inter-block coding, see Figure 11,
we achieve much greater compression to an average of if 106
packets, 2.8bytes or 2.4%. For both these cases a network of
two cameras was used for evaluation.

The Fleck 3 has a typical throughput of 125 packets/second,
allowing a frame rate of one image/second. The average
numbers of the different types of block are 71% skip, 12%
intra- and 17% inter-block coding.

Figure 12 shows 4 images sampled from a long sequence
of images taken over a day once every 5 minutes. The camera
position was static and different objects moved through its
field of view over the day. This particular sequence clearly
shows a puddle of water drying up over the day, providing
new meaning to the phrase “watching the grass grow”.

B. Energy Usage

In order to show the advantage of compressing images at the
node as we have done, we have evaluated the energy required
to compress then send image data over the radio compared
with the energy required in order to send an uncompressed

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

1800

Image

B
lo

ck
s

Skip
Inter
Intra

Fig. 11: The number of the different types of blocks required to transfer an
image over an extended image sequence.

Fig. 12: Four sample images out of a sequence of about 150 images over a
day.

image over the radio. In order to implement this second
configuration, we made another version of the camera node
in which the image was stored on an compact flash memory
(MMC) daughterboard. This allowed the DSP to be switched
off during the extended time taken to transmit the raw image.

The average power and energy consumption during each
phase of operation (for the compressed and uncompressed
configurations) is given in Tables 1 and 2. Aggregating the
data in the tables we can calculate the total energy required to
compress an image then transmit is around 1086mJ whereas
the total energy required to store then transmit an uncom-
pressed image is around 8018mJ – around 8 times more
energy! Clearly the small amount of additional energy required
to compress at the node is highly beneficial.

C. Compression Performance

To assess the actual performance of the compression algorithm
we ran the camera for six days in an outdoor environment,
very similar to the one shown in Figure 8. The environment
was chosen as it provided strong variation in shadows as the

117

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on June 16,2010 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: AVERAGE ENERGY CONSUMED BY FLECK CAMERA NODE
WHERE COMPRESSION (INTER-FRAME) IS USED. IN THIS CONFIGURATION

IMAGE IS COMPRESSED ON THE DSP AND THEN SENT OUT OVER THE

RADIO.

Camera On DSP on DSP → TX
Voltage 3.3V 3.3V 3.3V
Current 30mA 240mA 260mA
Power 99mW 792mW 858mW
Time 0.03s 0.5s 0.8s

Energy 3.0mJ 396mJ 687mJ

TABLE 2: AVERAGE ENERGY CONSUMED BY FLECK CAMERA NODE

WHERE NO COMPRESSION IS USED. IN THIS CONFIGURATION AN IMAGE

IS SENT FROM THE DSP MEMORY TO AN MMC BEFORE TRANSMITTING
FROM THE MMC OVER THE RADIO.

Camera On DSP on DSP → MMC MMC → TX
Voltage 3.3V 3.3V 3.3V 3.3V
Current 30mA 240mA 270mA 50mA
Power 99mW 792mW 891mW 165mW
Time 0.03s 0.1s 1.5s 40s

Energy 3.0mJ 79.2mJ 1336mJ 6600mJ

day passed by, as well as passing vehicles and people. Images
were taken at one hour intervals and constrained to daylight
hours. For each compressed frame we calculated the total
amount of compression and the Peak Signal to Noise Ratio
(PSNR) between the final decoded image and the original raw
image. In order to achieve this, we used an offline version of
the compression algorithm which we ran over a sequence of
uncompressed images which has been sent over the camera
network previously.

The results shown in Figure 13 clearly show the linear
relationship between PSNR and compression. As more change
occurs between shots, the differences between the current
frame and previous reference frame increases which reduces
the amount of compression and the PSNR level proportionally.
Over a wide range of conditions our compression algorithm
has shown very good performance with compression levels
ranging between 90% and 97% and PSNR between 31dB to
36.5dB according.

6. CONCLUSIONS AND FUTURE WORK

This paper has presented our architecture for streaming image
data over a low-bandwidth camera network. The architecture
allows for cameras to be dynamically added and removed
from the network, as well as undertaking compression at each
node to minimise energy in transmitting image data over the
network.

Future work will focus on adding multi-hop functionality
to the network architecture as well as integrating plug’n’play
type functionality to nodes to allow various filter functions
(e.g. low-pass filtering or edge-detection) to be dynamically
added to a node’s operations.

ACKNOWLEDGMENTS

The authors wish to thank Ben McKay, Natasha Mendes and
Michael Ung for their work on low-level DSP video software,
and Les Overs and Stephen Brosnan for the Fleck, DSP and
camera hardware.

31 32 33 34 35 36 37
90

91

92

93

94

95

96

97

PSNR (dB)

C
om

pr
es

si
on

 (
%

)

Compression algorithm performance

Day 1
Day 2
Day 3
Day 4
Day 5
Day 6

Fig. 13: Evaluation of camera compression algorithm over six days. Camera
images were taken at 1 hour intervals during daylight hours. (Each point
represents a single image.)

REFERENCES

[1] B. Krishnamachari, Networking Wireless Sensors. Cambridge University
Press, 2005.

[2] P. Sikka, P. Corke, and L. Overs, “Wireless sensor devices for animal
tracking and control,” in First IEEE Workshop on Embedded Networked
Sensors, pp. 446–454, 2004.

[3] P. Corke, “Non-berkeley platforms.” Presented at TinyOS
Technlogy Exchange (TTX3), Stanford, Feb 2006.
http://www.eecs.berkeley.edu/c̃uller/tinyos/ttx/
slides/Platforms/CSIRO.pdf.

[4] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless
multimedia sensor networks,” Computer Networks, vol. 51, pp. 921–960,
2007.

[5] R. Puri, A. Majumdar, P. Ishwar, and K. Ramchandran, “Distributed
video coding in wireless sensor networks,” IEEE Signal Processing
Magazine, vol. 23, no. 4, pp. 94–106, 2006.

[6] T. Wark, P. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Crossman, P. Valen-
cia, D. Swain, and G. Bishop-Hurley, “Transforming agriculture through
pervasive wireless sensor networks,” IEEE Pervasive Computing, vol. 6,
no. 2, pp. 50–57, 2007.

[7] A. Rowe, C. Rosenberg, and I. Nourbakhsh, “A low cost embedded color
vision system,” in Proc. IROS, 2002.

[8] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin,
and M. Srivastava, “Cyclops: In situ image sensing and interpretation
in wireless sensor networks,” in Proc. ACM SenSys05, (San Diego,
California, USA), November 2005.

[9] W. Hu, V. N. Tran, N. Bulusu, C. T. Chou, S. Jha, and A. Taylor,
“The design and evaluation of a hybrid sensor network for cane-toad
monitoring,” in IPSN ’05, (Piscataway, NJ, USA), p. 71, IEEE Press,
2005.

[10] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low
power wireless research,” in IPSN/SPOTS, 2005.

[11] P. Corke, P. Valencia, P. Sikka, T. Wark, and L. Overs, “Long-duration
solar-powered wireless sensor networks,” in EmNets, 2007.

[12] P. Corke, S. Sen, P. Sikka, and T. Wark, “Wireless sensor network:
two-year progress report,” Tech. Rep. TR 06/249, CSIRO ICT Centre,
August 2006. http://www.csiro.au/files/files/p8zh.pdf.

[13] J. Hill, R. Szeweczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for network sensors,” in Archirectual
Support for Programming Languages and Operating Systems, 2000.

[14] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesc langauge: A holistic approach for network sensors.,” in
Programming Language Design and Implementation, 2003.

118

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on June 16,2010 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

