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Abstract

In this paper, we define a discrete analogue of the continuous diffracted projection. We define

the discrete diffracted transform (DDT) as a collection of the discrete diffracted projections taken

at specific set of angles along specific set of lines. The ‘discrete diffracted projection’ is defined to

be a discrete transform that is similar in its properties to the continuous diffracted projection. We

prove that when the DDT is applied to a set of samples of a continuous object, it approximates a set

of continuous vertical diffracted projections of a horizontally sheared object and a set of continuous

horizontal diffracted projections of a vertically sheared object. A similar statement, where diffracted

projections are replaced by the X-ray projections, holds for the discrete 2D Radon transform

(DRT), is also proved. We prove that the discrete diffraction transform is rapidly computable and

invertible. Some of the underlying ideas came from the definition of DRT. Unlike the DRT, though,

this transform cannot be used for reconstruction of the object from the set of rotated projections.

Key word: diffraction tomography, discrete diffraction transform, Radon transform.
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1 Introduction

Ultrasound imaging is an example of diffracted tomography (see [4]). X-ray tomography, mathe-

matically described by the continuous Radon transform, is an example of non-diffracted tomography

imaging. In both cases, the transforms act on a physical body that result in projection, which is

continuous in theory, but in practice it is always discrete, because the number and the size of the

receivers that collect the energies, be it X-ray or ultrasound, which are used to illuminate the body,

are finite .

In practice, the fact that projections are always discrete, it gives rise to the question whether there

exists a transform that accepts a discrete set of samples of a continuous object and produces a set of

discrete projections that approximates the actual projections of the object. If such transform exists

and it is invertible, we can use the inverse transform to reconstruct the samples of the original object

from its projections.

∗This author was supported in part by the Eshkol Fellowship Grant administrated by the Ministry of Science, Israel
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The notion of a 2D Radon transform, which acts on discrete 2D objects, is defined in [6]. Actually,

the 2D Radon transform of a discrete object along a line can be viewed as a ‘discrete projection’ of

the object. The discrete Radon transform (DRT) is a collection of these projections along a specific

set of lines. This transform is invertible and rapidly computable. Its complexity is O(N log N), where

N = n2 is the number of pixels in the image. The DRT is used to approximate the X-ray projections

of the object. It is based on a discrete set of samples of the continuous object. The inverse DRT is

used to reconstruct the object from the set of rotated projections.

In this paper, we use the ideas, which underly the definition of the 2D Radon transform, to define a

‘discrete diffracted projection’, which is a discrete transform similar in its properties to the continuous

diffracted projection. We also define a discrete diffraction transform (DDT) as a collection of discrete

diffracted projections along specific set of lines. We explain how the DDT is related to the continuous

diffracted projections. We prove that the discrete diffraction transform is rapidly computable and

invertible. Unlike the discrete Radon transform, this transform cannot be used to reconstruct the

object from the set of rotated projections.

In this paper, we consider two-dimensional objects only. A two-dimensional physical object in

the continuous case is represented by a real-valued ‘object function’ f(x, y) of two real arguments,

which describes some physical characteristic of the object. The object function represents the density

of the object in X-ray tomography and the refractive index of the object in diffraction tomography.

Suppose f(x, y) represents some two-dimensional physical object bounded in space. Since the object

is bounded, there exists a constant D such that f(x, y) = 0 outside the square [−D, D] × [−D, D].

In the discrete setting, the object is described by a discrete set of values where the Cartesian set of

samples is o[u, v] = f
(

2D
M u, 2D

M v
)
, u, v ∈ [−N : N ], M = 2N + 1, for some positive integer N . The

discrete object of size M × M is the square matrix
{
o[u, v] ∈ R

∣∣u, v ∈ [−N : N ]
}
.

In the rest of the paper, we assume that N is a positive integer, M = 2N + 1 and o[u, v] is a

discrete object of size M × M . The notation o[u, v] will denote either the value of the matrix (the

discrete object) at indices u and v or the discrete object (the matrix) itself.

The discrete Fourier transform (DFT) of a discrete object means either the trigonometric polyno-

mial defined by

ô(ω1, ω2)
∆
=

N∑

u=−N

N∑

v=−N

o[u, v] e−i 2π
M

(ω1u+ω2v) ω1, ω2 ∈ R, (1.1)

or the set of samples of this trigonometric polynomial on the discrete set ω1, ω2 ∈ [−N : N ].

The paper is organized as follows. Section 2 describes the trigonometric interpolation and the

shear transformation, which play a major role in the derivation of the discrete diffraction transform.

Section 3 reviews the discrete Radon transform [6], which establishes the framework for the proposed

discretization. Section 4 reviews the continuous diffraction tomography, including the physical back-

ground and the continuous diffraction theorem. Section 5 describes a discretization of a continuous

diffracted projection along the y-axis. Definition of the discrete diffracted projection in section 6 is

based on this discretization. Section 6 presents the definition of the discrete diffraction projections,
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which forms a basis for a definition of the discrete diffraction transform in section 7. Section 8 analyzes

the relation between the discrete diffracted projections and the continuous diffracted projections of a

sheared object. Section 9 describes the implementation of the discrete diffraction transform and its

numerical results. Section 10 contains extensive proof of the theorem from section 5.

2 Trigonometric interpolation and shear transformation

We mentioned in the introduction that both the 2D Radon Transform and the discrete diffracted

projections, which we define in Section 6, act on a discrete object o[u, v], where N is some positive

integer and u, v ∈ [−N : N ]. In both cases, we first define a discrete transform for the case when the

projection is taken along the x-axis or along the y-axis, and then expand the definition for projections at

the other directions. The expansion to non-vertical and non-horizontal directions requires interpolation

of a discrete object o[u, v] (for the reasons that will be explained later).

In this section, we define the scaled trigonometric interpolation which has certain properties that

make it well-suited for use with DFT, define the shear transformation of discrete objects using this

interpolation and show that the DFT of a sheared discrete object is the shear of the object’s DFT just

like the continuous Fourier transform of a sheared object is a shear of the object’s Fourier transform.

2.1 Trigonometric interpolation

Definition 2.1. Trigonometric polynomial of order N is an expression of the form

T (x) =

N∑

n=−N

cneinx, (2.1)

where cn are complex numbers.

Theorem 2.2. ([7](pg.1) Uniqueness of a trigonometric interpolating polynomial)

Given 2N + 1 points x−N , . . . , x0, . . . , xN , which are distinct modulo 2π, and arbitrary num-

bers y−N , . . . , y0, . . . , yN , there always exists a unique polynomial (2.1) such that T (xk) = yk k =

−N, . . . , N .

The polynomial T (x) is called the (trigonometric) interpolating polynomial corresponding

to points xk and values yk. The points x−N , . . . , x0, . . . , xN are often called fundamental or nodal

points of the interpolation, or “interpolation nodes”.

The trigonometric interpolating polynomial, which corresponds to {xn}N
n=−N and nodes {2π

M n}N
n=−N

is, explicitly given by

x(t) =
1

M

N∑

k=−N

x̂ke
ikt =

N∑

n=−N

xnDM

(
2π

M
n − t

)
, (2.2)

where M = 2N + 1, {x̂k}N
k=−N is the 1D DFT of {xn}N

n=−N and DM (t)
∆
= 1

M

sin(M
2

t)

sin( 1
2
t)

= 1
M

∑N
k=−N eikt

is the Dirichlet kernel of order N .
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Definition 2.3. Scaled trigonometric polynomial of order N with a scaling factor α is an

expression of the form Tα(x)
∆
=
∑N

n=−N cneiαnx where cn are complex numbers and α is a positive real

number.

Theorem 2.4. (Uniqueness of a scaled trigonometric interpolating polynomial)

Let N be a positive integer, α be a positive real number. Given 2N +1 points x−N , . . . , x0, . . . , xN ,

which are distinct modulo 2π
α , and arbitrary numbers y−N , . . . , y0, . . . , yN , there always exists a unique

scaled trigonometric polynomial of order N with a scaling factor α such that Tα(xk) = yk k =

−N, . . . , N .

Proof. Follows from Theorem 2.2.

The polynomial Tα(x) is called the scaled trigonometric interpolating polynomial of order

N with a scaling factor α that corresponds to points xk and values yk.

One way to interpolate the sequence of values {xn}N
n=−N at equidistant nodes {nT}N

n=−N , where

T ∈ R
+, is to use the xT (t)

∆
= x

(
2π

MT t
)
, where x(t) is given by Eq. 2.2. xT (t) is a scaled trigonometric

interpolating polynomial with the scaling factor 2π
MT that corresponds to points {nT}N

n=−N and values

{xn}N
n=−N .

When T = 1, we denote the corresponding scaled trigonometric polynomial by by x̃(t). Thus,

x̃(t)
∆
= x

(
2π

M
t

)
=

1

M

N∑

k=−N

x̂ke
i 2π

M
kt =

N∑

n=−N

xnD̃M (n − t), (2.3)

where D̃M (t)
∆
= DM

(
2π
M t
)

is called a scaled Dirichlet kernel.

Definition 2.5. A two-dimensional trigonometric polynomial of order N is an expression of the form

T (x, y) =
N∑

k=−N

N∑

l=−N

ck,le
ı[kx+ly],

where ck,l are complex numbers.

A two-dimensional trigonometric polynomial of degree N that interpolates an arbitrary set of

values {xu,v}N
u,v=−N at nodes

{(
2π
M u, 2π

M v
)}N

u,v=−N
is explicitly given by

x(t, s) =
1

M2

N∑

k=−N

N∑

l=−N

x̂k,le
ı[kt+ls] =

N∑

u=−N

N∑

v=−N

xu,vDM

(
2π

M
u − t,

2π

M
v − s

)
,

where M = 2N + 1, {x̂k,l}N
u,v=−N is the 2D DFT of {xu,v}N

u,v=−N and

DM (t, s)
∆
= DM (t)DM (s) =

1

M2

N∑

u=−N

N∑

v=−N

eı[ut+vs] (2.4)

is the two-dimensional Dirichlet kernel of order N . Such an interpolating polynomial is unique.
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2.2 Shear transformation and its properties

Definition 2.6. (Continuous shear) Let f(x, y) be a real-valued function. For a fixed s ∈ R, the

real-valued function fh
s (x, y)

∆
= f(x + sy, y), is called a ‘horizontal shear’ of f(x, y). Similarly, the

real-valued function fv
s (x, y)

∆
= f(x, y + sx), is called ‘vertical shear’ of f(x, y). The parameter s

describes the ‘shear’ size applied to the object.

Theorem 2.7 establishes the relation between the Fourier transform of a sheared object and the

Fourier transform of the original object.

Theorem 2.7. (2D continuous Fourier transform of a sheared object)

Let f(x, y) be a real-valued function of two real variables. Let s be a real number. Then,

f̂h
s (ωx, ωy) = f̂(ωx, ωy − sωx) and f̂v

s (ωx, ωy) = f̂(ωx − sωy, ωy)

where f̂(ωx, ωy) is the 2D Fourier transform of f(x, y).

This theorem states that the 2D Fourier transform of a horizontally sheared object is a vertical

shear of the object’s 2D Fourier transform, and 2D Fourier transform of a vertically sheared object is

a horizontal shear of the object’s 2D Fourier transform.

A similar result to Theorem 2.7 holds for discrete objects. Let N be a positive integer and let

o[u, v] be a discrete object defined on u, v ∈ [−N : N ]. We cannot directly apply the same formula

as in the continuous case in order to define horizontal shear of o[u, v], since u + sv is, in general, not

an integer. We therefore begin by defining horizontal and vertical interpolation of a discrete object

o[u, v].

Definition 2.8. (Horizontal and vertical interpolation of a discrete object) Let o[u, v], u, v ∈ [−N : N ],

be a discrete object. Then, õh(x, v)
∆
=
∑N

u=−N o[u, v]D̃M (u − x), x ∈ R, v ∈ [−N : N ] is called

a horizontal interpolation of the discrete object o[u, v], and õv(u, y)
∆
=
∑N

v=−N o[u, v]D̃M (v − y),

u ∈ [−N : N ], y ∈ R, is called a vertical interpolation of the discrete object o[u, v]. The subscripts

h and v mean horizontal and vertical, respectively. D̃M (t) is a scaled Dirichlet kernel defined by Eq.

(2.3).

For a fixed v, õh(x, v) is the scaled trigonometric interpolation of the sequence {o[u, v] | u ∈
[−N : N ]}. Since the first argument of õh(x, v) is continuous, we can shear it horizontally using

the continuous shear transformation. We define the horizontal shear of a discrete object o[u, v] by

resampling õh(x, v) on the set {(u, v) | u, v ∈ [−N : N ]}.

Definition 2.9. (Horizontal and vertical shear of a discrete object) Let o[u, v], u, v ∈ [−N : N ], be a

discrete object. Let s be a real number. The discrete object oh
s [u, v] = õh(u + sv, v), u, v ∈ [−N : N ],

where õh(x, v) is given by Definition 2.8, is called a horizontal shear of o[u, v]. Similarly, the discrete

object ov
s [u, v] = õh(u, v + su), u, v ∈ [−N : N ], is called a vertical shear of o[u, v]. The superscripts

h and v mean horizontal and vertical, respectively.
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The following theorem relates the 2D DFT of a sheared discrete object to the 2D DFT of the

original object.

Theorem 2.10. (Discrete 2D Fourier transform of a sheared discrete object)

Let o[u, v], u, v ∈ [−N : N ], be a discrete object. Let s ∈ R. Then, ôh
s (k, ω) = ô(k, ω − sk) and

ôv
s(ω, k) = ô(ω − sk, k), where ω ∈ R, k ∈ [−N : N ] and ô(ω1, ω1) is given by Eq. (1.1).

Proof.

ôh
s (k, ω) =

∑N
u=−N

∑N
v=−N oh

s [u, v]e−i 2π
M

[uk+vω] =
∑N

u=−N

∑N
v=−N õh(u + sv, v)e−i 2π

M
[uk+vω]

=
∑N

v=−N e−i 2π
M

vω
(∑N

u=−N õh(u + sv, v) e−i 2π
M

uk
)
.

(2.5)

By definition 2.8, õh(t, v) is a scaled trigonometric interpolation of
{
o[u, v]

∣∣u ∈ [−N : N ]
}

at integer

nodes [−N : N ]. The bracketed expression in Eq. (2.5) is the DFT of the sequence {õh(u+ sv, v)
∣∣u ∈

[−N : N ]} for k. In [1] we show that when we use scaled trigonometric interpolation, the DFT shift

property can be generalized for the case of a non-integer shift, i.e.

N∑

u=−N

õh(u + sv, v) e−i 2π
M

uk =
N∑

u=−N

o[u, v] e−i 2π
M

uk e−i 2π
M

(−sv)k. (2.6)

From Eqs.(2.5) and (2.6) we conclude that

ôh
s (k, ω) =

∑N
v=−N e−i 2π

M
vω∑N

u=−N o[u, v] e−i 2π
M

uk e−i 2π
M

(−sv)k =
∑N

u=−N

∑N
v=−N o[u, v] e−i 2π

M
(vω+uk−svk)

=
∑N

u=−N

∑N
v=−N o[u, v] e−i 2π

M
(uk+v(ω−sk)) = ô(k, ω − sk).

The proof of the second statement is similar.

3 2D discrete Radon transform

In this section, we briefly review the 2D discrete Radon transform that is introduced in [6]. We keep

our current notation for the discrete object, but in addition, we assume that N is an even positive

integer and o[u, v] = 0 whenever (u, v) /∈
[
−N

2 : N
2 − 1

]
×
[
−N

2 : N
2 − 1

]
. This assumption is introduced

in order to comply to the definition of the discrete Radon transform from [6], which was defined for

discrete objects of size N × N .

The continuous Radon transform is defined by the set of all line integrals of the object. Loosely

speaking, the 2D discrete Radon transform is defined by summing the values of a discrete object o[u, v]

along a discrete set of lines. Discrete Radon transform along vertical lines is defined by

Definition 3.1. (2D Radon transform along vertical lines) Let N be an even positive integer, o[u, v]

be a discrete object. Then, Radon({x = t}, o) ∆
=
∑N

v=−N o[t, v], t ∈ [−N : N ].

Similarly, we define

Definition 3.2. (2D Radon transform for horizontal lines) Let N be an even positive integer, o[u, v]

be a discrete object. Then, Radon({y = t}, o) ∆
=
∑N

u=−N o[u, t], t ∈ [−N : N ].
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The key question is how to process lines of the discrete transform that do not pass through grid

points. In [6], all the lines in R
2 are partitioned into two families, namely, basically vertical lines and

basically horizontal lines. A basically vertical line is a line of the form x = sy + t where the slope

|s| ≤ 1. A basically horizontal line is a line of the form y = sx + t where the slope |s| ≤ 1.

Definition 3.3. [6](2D Radon Transform along basically vertical lines) Let N be an even positive

integer, M = 2N + 1 and s ∈ [−1, 1]\0. Then, for all t ∈ [−N : N ] Radon({x = sy + t}, o) ∆
=

∑N
v=−N õh(sv + t, v), where õh(x, v) is given by Definition 2.8.

Definition 3.4. [6](2D Radon transform along basically horizontal lines) Let N be an even positive

integer, M = 2N + 1 and s ∈ [−1, 1]\0 . Then, for all t ∈ [−N : N ] Radon({y = sx + t}, o) ∆
=

∑N
u=−N õv(u, su + t), where õv(u, y) is given by Definition 2.8.

Equivalently, we can define the 2D discrete Radon transform for basically vertical lines as

Definition 3.5. Let o[u, v] be a discrete object, s ∈ [−1, 1]\0. Then, for all t ∈ [−N : N ], Radon({x =

sy + t}, o) = Radon({x = t}, oh
s ), where oh

s [u, v] is given by Definition 2.9.

To verify that Definition 3.5 is indeed equivalent to Definition 3.3, we fix s ∈ [−1, 1] and t ∈ [−N :

N ]. Then,

Radon({x = t}, oh
s ) =

N∑

v=−N

oh
s (t, v) =

N∑

v=−N

õh(t + sv, v) = Radon({x = sy + t}, o).

Thus, a basically vertical 2D Radon of a discrete object o[u, v] along the line x = sy + t is equivalent

to a vertical 2D Radon of a horizontally sheared object oh
s [u, v]. Similarly, for a basically horizontal

lines we have

Definition 3.6. Let o[u, v] be a discrete object and s ∈ [−1, 1]\{0}. Then, for all t ∈ [−N : N ],

Radon({y = sx + t}, o) = Radon({y = t}, ov
s) where ov

s [u, v] is given by Definition 2.9.

Thus, a basically horizontal 2D Radon of a discrete object o[u, v] along the line y = sx + t is

equivalent to a horizontal 2D Radon of a the vertically sheared object ov
s [u, v].

4 Continuous diffraction tomography

In this section, we briefly review the continuous theory of diffraction tomography. We describe the

physical settings of diffraction tomography, give an expression for the scattered field, and state the

Fourier diffraction theorem. The material in this section is borrowed from [4](chapter 6).

4.1 Typical diffraction tomography experiment

In a typical diffraction tomography experiment, a physical body, suspended in a homogeneous medium,

is illuminated by a plane wave and the scattered field is measured by detectors located on a line normal
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Figure 4.1: Typical diffraction tomography experiment

to the direction of the wave propagation. This line is called the receiver line. In transmission

tomography, this line is located at the far side of the object (see Fig. 4.1).

In this paper, we consider only the 2D case, although the theory can be readily extended to 3D.

In cases where a 3D varies slowly along one of the dimensions, the 2D theory can be applied. This

assumption is often made in conventional computerized tomography where 3D models are generated

using 2D slices of the object.

We describe next the conventional mathematical model for computing a projection of an object for

a given plane wave. The object is described by an ‘object function’ f(x, y), which is a linear function

of the refractive index of the object at location (x, y). A two-dimensional plane wave in homogeneous

medium is described by

uo(x, y) = ei(ωxx+ωyy). (4.1)

This expression is completely specified by the vector (ωx, ωy) that is called a propagation vector or

a wave vector. The length ω0 =
√

ω2
x + ω2

y of this vector is called wave number of the plane wave.

The wavelength of the plane wave is given by λ = 2π
ω0

. The wave propagates in the direction given

by (ωx, ωy). The orientation of the receiver line depends on the direction of the wave propagation.

However, all receivers are assumed to be located at the same distance from the origin.

The total field is the field that results from illuminating the measured body with a plane wave.

A projection is generated by measuring the total field on the receiver line. To compute a projec-

tion we need an expression that describes the total field. Since the measured body usually contains

inhomogeneities, Eq. (4.1) is not applicable.

We consider the total field u(x, y) as the sum of two components uo(x, y) and us(x, y). uo(x, y),

known as the incident field, is the field present without any inhomogeneities, as given by Eq. (4.1).

us(x, y), known as the scattered field, is the part of the total field that can be attributed solely to the

inhomogeneities. We use an approximated expression for us(x, y), called the first Born approximation.
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The Born approximation for the incident field in Eq. (4.1) is given by

us(x
′, y′) =

i

4π

∫ ∞

−∞

∫ ∞

−∞
f(x, y)ei[ωxx+ωyy]

∫ ∞

−∞

1

β
ei[α(x′−x)+β|y′−y|] dα dy dx β =

√
ω2

0 − α2. (4.2)

The inner integral in Eq. (4.2) represents a cylindrical wave that is centered at (x, y) as a super-

position of plane waves. For points with y′ > y, the plane waves propagate upward, while for y′ < y

the plane waves propagate downward. In addition, for |α| ≤ ω0, the plane waves are of the ordinary

type, propagating in the direction given by tan−1(β/α). However, for |α| > ω0, β becomes imaginary,

the waves decay exponentially and they are called evanescent waves. Evanescent waves are usually

of no significance beyond about 10 wavelengths from the source, so in the subsequent discussion they

will not be taken into consideration.

4.2 The continuous Fourier diffraction theorem

The Fourier diffraction theorem relates the Fourier transform of a diffracted projection to the Fourier

transform of the object. It will be established for the case where the direction of the incident plane

wave is along the positive y-axis. In this case, the incident field is given by uo(x, y) = eiω0y, and the

scattered field is measured by a linear array of receivers located at y = l0, where l0 is greater than

any y-coordinate within the object (see Fig. 4.1). The term |y′ − y| in Eq. (4.2) can be replaced by

l0 − y and the resulting formula is rewritten as

us(x
′, l0) =

i

4π

∫ ∞

−∞

∫ ∞

−∞
f(x, y)eiω0y

∫ ∞

−∞

1

β
ei[α(x′−x)+β(l0−y)] dα dy dx, β =

√
ω2

0 − α2. (4.3)

Let ûs(ω, l0) denote the Fourier transform of us(x, l0) with respect to x. The physics of wave

propagation dictates that the highest angular frequency in the measured scattered field on the line

y = l0 is unlikely to exceed ω0. Therefore, in almost all practical situations, ûs(ω, l0) = 0 for
∣∣ω
∣∣ > ω0.

This is consistent with neglecting the evanescent waves as was described earlier. By taking the Fourier

transform of the scattered field (Eq. (4.3)), we get

ûs(ω, l0) =
i√

ω2
0 − ω2

ei
√

ω2
0−ω2l0 f̂(ω,

√
ω2

0 − ω2 − ω0) for |ω| < ω0, (4.4)

where f̂(ω1, ω2), which is a two-dimensional Fourier transform of f(x, y), given by

f̂(ωx, ωy) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i(ωxx+ωyy)dx dy.

The proof of Eq. (4.4) can be found in [4], chapter 6.

Assume that −ω0 ≤ ω ≤ ω0. The points (ω,
√

ω2
0 − ω2 − ω0) form a semicircular arc in the

frequency plane. Equation (4.4) is a particular case of the Fourier diffraction theorem for the case of

a plane wave directed along the positive y-axis. In the general case, the continuous Fourier diffraction

theorem is:
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Theorem 4.1. (The continuous Fourier diffraction theorem) Given an object f(x, y), the continuous

Fourier transform of the forward scattered field us, measured on the receiver line y = l0, is equal to

the 2D Fourier transform f̂(ω1, ω2) of the object along a semicircular arc. That is,

ûs(ω, l0) =
i√

ω2
0 − ω2

ei
√

ω2
0−ω2l0 f̂(ω,

√
ω2

0 − ω2 − ω0), |ω| < ω0.

Figure 4.2: Visualization of the continuous Fourier diffraction theorem

In the general case, when the direction of the plane wave is different from the direction of the

y-axis, the Fourier transform of the diffracted projection is a slice of the 2D Fourier transform of the

object along a semicircular arc rotated in the direction of the plane wave, as shown in Fig. 4.2.

Depending on the context, the terms ‘diffracted field’ and ‘diffracted projection’ are used for de-

scribing either the physical measurements performed during the diffraction tomography experiment

or the Born approximation of the scattered field with discarded evanescent waves. The Born approx-

imation with discarded evanescent waves is given by

ud(x
′, y′)

∆
=

i

4π

∫ ∞

−∞

∫ ∞

−∞
f(x, y)ei[ωxx+ωyy]

∫ ω0

−ω0

1

β
ei[α(x′−x)+β|y′−y|] dα dy dx, β =

√
ω0

2 − α2.

5 Discretization of a vertical diffracted projection

In order to define a discrete counterpart of the continuous diffracted projection, we take a closer look

at the definition of the 2D Radon transform. It was shown in [6] that the discrete 2D Radon transform

along the vertical lines approximates the continuous vertical projection of the object when it applied

to samples of a continuous object on a Cartesian grid, .

In this section, we propose a discretization that approximates the vertical diffracted projection.

The definition of a discrete diffracted projections in section 6 is based on this proposed discretization.

Consider the object function f(x, y). If we ignore the evanescent waves, then the Born approximation

of the vertical diffracted field is given by

ud(x
′, y′) =

ı

4π

∫ ∞

−∞

∫ ∞

−∞
f(x, y)eıω0y

∫ ω0

−ω0

1√
ω0

2 − α2
eı[α(x′−x)+

√
ω0

2−α2|y′−y|] dα dy dx. (5.1)
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In section 5.1, we introduce a discretization of the inner integral in Eq. (5.1). Using this dis-

cretization, we introduce in section 5.2 a discretization of the triple integral in Eq. (5.1). In section

8.2, we show that if o[u, v] is a discrete object that was obtained by sampling f(x, y) on a Cartesian

grid, then, the proposed discretization approximates the samples of the continuous vertical diffracted

projection of f(x, y).

This approximation is valid for a specific choice of the wavenumber of the plane wave that is used

for illumination. In section 8.3, we show that this choice of the wavenumber is in some sense optimal.

5.1 The Inner integral in Eq. (5.1)

In this section, we prove that the inner integral in Eq. (5.1) is a Lipschitz function, propose for it a

discretization and prove the convergence of its discretization.

We introduce a special notation for the inner integral in Eq. (5.1).

Definition 5.1. Let ω0 ∈ R
+. For arbitrary x, y, x′, y′ ∈ R we define

K(x, y, x′, y′)
△
=

∫ ω0

−ω0

1√
ω2

0 − α2
eı[α(x′−x)+

√
ω2

0−α2|y′−y|] dα. (5.2)

Definition 5.2. (Lipschitz class LipC(α,Ω)) Let Ω ⊆ R
n. If f : R

n → C satisfies the condition

|f(x) − f(y)| ≤ C‖x − y‖α, 0 < α ≤ 1

for all x, y ∈ Ω, then, we say that f belongs to the class LipC(α,Ω). When the value of the constant

C is not important, we say that f is Lipschitz α on Ω.

Theorem 5.3. K(x, y, x′, y′) in Definition 5.1 is a continuous function. Moreover, for any D ∈ R
+

there exists C ∈ R
+ such that for any fixed x′ ∈ [−D, D] the expression K(x, y, x′, D), as a function

of x and y, belongs to LipC(1; Ω), where Ω = {(x, y) |x, y ∈ [−D, D]}.

Proof.

Consider the integrand from the definition of K(x, y, x′, y′) given by Eq. (5.2)

fα(x, y, x′, y′)
∆
=

1√
ω2

0 − α2
eı[α(x′−x)+

√
ω2

0−α2|y′−y|]. (5.3)

This is a complex-valued function of the real variable α. Therefore,

ℜeK(x, y, x′, y′) = ℜe

∫ ω0

−ω0

fα(x, y, x′, y′)dα =

∫ ω0

−ω0

ℜefα(x, y, x′, y′)dα. (5.4)

Similar equality holds for the imaginary part of K(x, y, x′, y′).

The absolute value of ℜefα(x, y, x′, y′) is dominated by the function 1√
ω0

2−α2
, which is inte-

grable on [−ω0, ω0]. Consequently, the integral in Eq. (5.4) converges uniformly in x, y, x′, y′. Also,

ℜefα(x, y, x′, y′) is continuous for α ∈ (−ω0, ω0) and x, y, x′, y′ ∈ R. Consequently, ℜeK(x, y, x′, y′) is

a continuous function of x,y,x′ and y′ ([2] p.465). The same is true for ℑmK(x, y, x′, y′), therefore,
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K(x, y, x′, y′) is a continuous function of x,y,x′ and y′. The integrand has a continuous derivative with

respect to x: ∂fα

∂x (x, y, x′, y′) = −ıα√
ω2

0−α2
eı[α(x′−x)+

√
ω2

0−α2|y′−y|]. Since fα is a complex-valued function

of a real variable α, we have

∂ℜefα(x, y, x′, y′)
∂x

= ℜe
∂fα(x, y, x′, y′)

∂x
(5.5)

and similar equality holds for the imaginary part.

The absolute value of ℜe∂fα

∂x (x, y, x′, y′) is dominated by the function |α|√
ω0

2−α2
, which is inte-

grable on [−ω0, ω0]. Therefore, the integral
∫ ω0

−ω0
ℜe∂fα

∂x (x, y, x′, y′)dα converges uniformly in x, y, x′, y′.

Hence, the expression in Eq. (5.4) can be differentiated with respect to x under the integral ([2] p.467),

and
∣∣∣∂ℜeK(x,y,x′,y′)

∂x

∣∣∣ ≤
∫ ω0

−ω0

|α|√
ω0

2−α2
dα = 2ω0. A similar inequality holds for the ℑmK(x, y, x′, y′).

Therefore,
∣∣∣∂K(x,y,x′,y′)

∂x

∣∣∣ ≤ 2
√

2ω0 that is, ∂K
∂x (x, y, x′, y′) is uniformly bounded in x, y, x′ and y′.

In particular, for any y, x′ ∈ [−D, D], the function K(x, y, x′, D), as a function of x, belongs to

Lip2
√

2 ω0
(1, [−D, D]).

Now, we fix y′ = D. For any small positive real number ε, fα(x, y, x′, D) has a continuous

derivative with respect to y on any interval [−D, D − ε]. The derivative is given by ∂fα(x,y,x′,D)
∂y =

−ieı[α(x′−x)+
√

ω2
0−α2|y′−y|]. The absolute value of ∂fα

∂y (x, y, x′, D) is less or equal to 1. Using the same

reasoning as in the case of the x-derivative above, we conclude that the expression at the right-hand

side of Eq. (5.2) can be differentiated under the integral with respect to y and
∣∣∣∂K(x,y,x′,D)

∂y

∣∣∣ ≤ 2
√

2ω0,

that is, Ky(x, y, x′, D) is bounded uniformly in x, y and x′. In particular, for any x, x′ ∈ [−D, D],

the function K(x, y, x′, D), as a function of y, belongs to Lip2
√

2ω0
(1, [−D, D)). Since K(x, y, x′, D) is

continuous as a function of y, it belongs to Lip2
√

2ω0
(1, [−D, D]).

We conclude that for x, y, x′ ∈ [−D, D], the function K(x, y, x′, D) is uniformly Lipschitz in both

x and y coordinates. The Lipschitz constant in both cases is C
△
= 2

√
2ω0. Consider an arbitrary

x′ ∈ [−D, D]. For any x1, y1, x2, y2 ∈ [−D, D] we have

|K(x1, y1, x
′, D) − K(x2, y2, x

′, D)| ≤ |K(x1, y1, x
′, D) − K(x2, y1, x

′, D)| + |K(x2, y1, x
′, D) −

K(x2, y2, x
′, D)| ≤ C|x1 − x2| + C|y1 − y2| ≤

√
2C
√

(x1 − x2)2 + (y1 − y2)2.

Therefore, for any x′ ∈ [−D, D], the expression K(x, y, x′, D), as a function of x and y, belongs to

Lip4ω0(1; Ω).

We approximate the integral in Eq.(5.2) by means of its Riemann sum with equispaced nodes.

The choice of equispaced nodes is not arbitrary. In fact, it is this choice of nodes that allows for an

efficient computation of the discrete diffraction transform defined in section 7 to take place.

Definition 5.4. Let ω0 ∈ R
+, N ∈ N, M = 2N + 1. Let f : R

2 → R. For arbitrary x, y, x′, y′ ∈ R,

we define

KN (x, y, x′, y′)
△
=

2ω0

M

N∑

k=−N

1√
ω2

0 −
(

2ω0k
M

)2
e
ı

"
2ω0k

M
(x′−x)+

r
ω2

0−
�

2ω0k
M

�2
|y′−y|

#
. (5.6)
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Theorem 5.5. Let Ω ⊆ R
4 be a bounded set, ω0 ∈ R

+,N ∈ N. Then, KN (x, y, x′, y′) converges to

K(x, y, x′, y′) uniformly in (x, y, x′, y′) ∈ Ω.

The proof of theorem 5.5 is given in section 10

5.2 Discretization of a vertical diffracted projection

In this section, we discretize the integral given in Eq. (5.1). We denote by C
0(R2) the set of all the

continuous functions from R
2 to R. Given a function f(x, y) ∈ C

0(R2), we assume that there exists

D such thatf(x, y) = 0 whenever |x| > D or |y| > D. In what follows, we assume that the constant

D and the wavenumber ω0 in Eq. (5.1) are known and fixed.

Definition 5.6. Let D, ω0 ∈ R
+. Let f ∈ C

0(R2). For arbitrary x′, y′ ∈ R, we define

T [f ](x′, y′)
△
=

∫ D

−D

∫ D

−D
f(x, y)eıω0y K(x, y, x′, y′) dy dx. (5.7)

Note that the function T [f ] in Eq. (5.7) depends on both D and ω0 though they do not explicitly

appear in the notation.

Definition 5.7. Let D, ω0 ∈ R
+, N ∈ N, M = 2N + 1. Let f : R

2 → R. For arbitrary x′, y′ ∈ R we

define

TN [f ](x′, y′)
∆
=

(
2D

M

)2 N∑

u=−N

N∑

v=−N

f

(
2D

M
u,

2D

M
v

)
eıω0

2D
M

v KN

(
2π

M
u,

2π

M
v, x′, y′

)
. (5.8)

Lemma 5.8. Let Ω ⊆ R
n be a closed bounded set. Let 0 < α ≤ β ≤ 1, f ∈ LipC1(α,Ω), and

g ∈ LipC2(β,Ω). Then, there exists a positive constant C such that fg ∈ LipC(α,Ω).

Proof. The proof is straightforward.

Theorem 5.9. (Approximation of a vertical diffracted projection)

Let C ∈ R
+, α ∈ (0, 1]. Let N ∈ N, M = 2N + 1. Denote Ω = {(x, y) |x, y ∈ [−D, D]}. Let

f ∈ C
0(R2) ∩ LipC(α,Ω). Then, TN [f ] (x′, D) converges to T [f ](x′, D) uniformly in x′ ∈ [−D, D].

Proof.

By the triangle inequality

|T [f ](x′, D) − TN [f ](x′, D)| ≤
∣∣∣
∫ D
−D

∫ D
−D f(x, y)eıω0yK(x, y, x′, D)dy dx−

4D2

M2

∑N
u=−N

∑N
v=−N f

(
2D
M u, 2D

M v
)
eıω0

2D
M

vK
(

2D
M u, 2D

M v, x′, D
) ∣∣∣+∣∣∣4D2

M2

∑N
u=−N

∑N
v=−N f

(
2D
M u, 2D

M v
)
eıω0

2D
M

v
(
K
(

2D
M u, 2D

M v, x′, D
)
− KN

(
2D
M u, 2D

M v, x′, D
)) ∣∣∣,

(5.9)

where T [f ] is given by Eq. (5.7) and TN [f ] is given by Eq. (5.8).

It follows from the continuity of f(x, y) that there exists a positive constant A such that
∣∣∣f(x, y)

∣∣∣ ≤
A for all (x, y) ∈ Ω. Consequently,

∣∣∣f(x, y)eıω0y
∣∣∣ ≤ A on Ω.
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Assume ε > 0 is arbitrary. From Theorem 5.5, there exists N1 ∈ N such that for any N > N1 and

x, y, x′ ∈ [−D, D] we have |K (x, y, x′, D) − KN (x, y, x′, D) | < ε
4D2A

. Then, for any N > N1 and any

x′ ∈ [−D, D], the last term on the right-hand side of Eq. (5.9) is less than ε.

The first term on the right-hand side of Eq. (5.9) is the absolute value of the difference between

the definite integral of f(x, y)eıω0yK(x, y, x′, D) and its corresponding Riemann sum. From Theorem

5.3, there exists C0 ∈ R
+ such that for any fixed x′ ∈ [−D, D], the expression K(x, y, x′, D) belongs

to LipC0(1, Ω) as a function of x and y. Also, eıω0y ∈ Lipω0

√
2(1, Ω). Then, from Lemma 5.8, there

exists C1 ∈ R
+ such that for any x′ ∈ [−D, D], the expression f(x, y)eıω0yK(x, y, x′, D), as a function

of x and y, belongs to LipC1(α,Ω). Hence, the absolute value of the first term on the right-hand side

of Eq. (5.9) is bounded by

4D2

M2

N∑

u=−N

N∑

v=−N

C1

(
2
√

2D

M

)α

= 4D2C1

(
2
√

2D

M

)α

.

This expression tends to zero as N grows, and therefore, for any ε > 0 there exists N2 such that

for any N > N2 and any x′ ∈ [−D, D] the absolute value of the first term on the right-hand side of

Eq. (5.9) is less than ε. Therefore, if we take N0 = max (N1, N2) then, for any N greater than N0

and any x′ ∈ [−D, D], we have |T [f ](x′, D) − TN [f ](x′, D)| ≤ 2ε, which completes the proof of the

theorem.

Corollary 5.10.

Let C ∈ R
+, α ∈ (0, 1]. Denote Ω = {(x, y) |x, y ∈ [−D, D]}. Let A ∈ R

+. Denote S =
{
f ∈ C

0(R2) ∩ LipC(α,Ω) | |f(x, y)| ≤ A on Ω
}
. Then, the convergence of TN [f ] (x′, D) to T [f ](x′, D)

is uniform in both x′ ∈ [−D, D] and f ∈ S.

Proof. The class S is uniquely defined by C,α and A. To prove the corollary, it is sufficient to show

that N1 and N2, from the proof of Theorem 5.9, depend on S but not on a specific f ∈ S.

The number N1 depends only on A since the convergence of KN (x, y, x′, y′) to K(x, y, x′, y′) is

independent of f . The number N2 depends on C1 and α. From the proof of Lemma 5.8 we see that C1

depends on the Lipschitz constant C of f(x, y) and on the maximal value A of f(x, y) on Ω. Therefore,

N2 depends on C, α and A but not on a specific f ∈ S.

5.3 Vertical discrete diffracted projection

Let f(x, y) be an object function. Consider the discrete object that is obtained from sampling f(x, y)

on a Cartesian grid:

o[u, v] = f

(
2D

M
u,

2D

M
v

)
, u, v ∈ [−N : N ]. (5.10)

Equation 5.8 defines an approximation of a vertical diffracted projection along y-axis. We define

the vertical discrete diffracted projection of o[u, v] as samples of TN [f ](x′, y′) on the receiver line

y′ = D at points x′ = 2D
M u′ for a specific wavenumber ω0 = πM

2D . The reason for this specific choice of

the wavenumber is given in section 8.3.
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We substitute ω0 = πM
2D into the definition of TN [f ](x′, y′), to obtain

TN [f ](x′, y′) =

(
2D

M

)2 N∑

u=−N

N∑

v=−N

f

(
2D

M
u,

2D

M
v

)
eıπv KN

(
2D

M
u,

2D

M
v, x′, y′

)
. (5.11)

Then, we expand KN

(
2D
M u, 2D

M v, x′, y′
)

using its definition (Eq. (5.11)) with ω0 = πM
2D .

TN [f ](x′, y′) =

(
2D

M

)2 N∑

u=−N

N∑

v=−N

f

(
2D

M
u,

2D

M
v

)
eıπv

N∑

k=−N

e
ı π

D

�
k(x′− 2D

M
u)+

q
(M

2 )
2−k2|y′− 2D

M
v|
�

√(
M
2

)2 − k2

.

(5.12)

We substitute x′ = 2D
M u′ and y′ = D in Eq. (5.12) and we get for the left side of Eq. (8.6)

TN [f ]

(
2D

M
u′, D

)
=

(
2D

M

)2 N∑

u=−N

N∑

v=−N

f

(
2D

M
u,

2D

M
v

)
eıπv

N∑

k=−N

e
ı 2π

M

�
k(u′−u)+

q
(M

2 )
2−k2|M

2
−v|
�

√(
M
2

)2 − k2

.

(5.13)

The definition of the vertical discrete diffracted projection of a discrete object o[u, v] in Section 6

is based on a modification of this expression. We replace f
(

2D
M u, 2D

M v
)

by o[u, v]. To eliminate the

constant D, which is related to physical dimensions of the object that makes no sense in the discrete

setting, we multiply Eq. (5.13) by factor D2

π2 . This results in

(
2π

M

)2 N∑

u=−N

N∑

v=−N

o[u, v]eıπv
N∑

k=−N

e
ı 2π

M

�
k(u′−u)+

q
(M

2 )
2−k2|M

2
−v|
�

√(
M
2

)2 − k2

. (5.14)

6 Discrete diffracted projections (DDP)

The 2D Radon transform along basically vertical lines wass defined in section 3 in two steps: first, a

vertical projection is defined, and then, general basically vertical projections are defined as vertical

projections of a horizontally sheared object. Discretization of the 2D diffracted transform follows the

same lines.

First, we define the vertical discrete diffracted projection of a discrete object based on Eq. (5.14).

This definition, being applied to samples of a continuous object on a Cartesian grid, approximates

continuous vertical diffracted projection of the object. Then, we define the basically vertical discrete

diffracted projection as a vertical discrete diffracted projection of a horizontally sheared discrete

object. The same principle, where the words ‘vertical’ and ‘horizontal’ being swapped, is used to

define a discrete diffracted projections along basically horizontal lines.

The rest of the section is organized as follows. We formally define the vertical/horizontal diffracted

projections. Next, we define the basically vertical/horizontal discrete diffracted projections. We

conclude by formulating and proving the discrete Fourier diffraction theorem, which relates the 1D

DFT of the discrete diffracted projection to the 2D DFT of the object.
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6.1 Projection types
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Figure 6.1: Division of all the directions to quarters

Each direction vector in R
2 can be specified by the angle it creates with the x-axis. We divide the set

of all possible directions to four quarters

Q1
∆
= {θ | θ ∈ [π/4, 3π/4]} , Q2

∆
= {θ | θ ∈ [3π/4, 5π/4]}

Q3
∆
= {θ | θ ∈ [5π/4, 7π/4]} , Q4

∆
= {θ | θ ∈ [−π/4, π/4]} .

Q1–Q4 are illustared in Fig. 6.1. Quarters Q1 and Q3 together form the set of all the “basically

vertical” directions. The projections along the directions from Q1 are called the “basically vertical

up-going” projections. Projections along the directions from Q3 are called “basically vertical down-

going” projections. A projection in a “basically vertical” direction is specified as a pair (i, s) where

i = 1, 3 is the number of the quarter and s ∈ [−1, 1] is the slope between the y-axis and the line x = sy

in the direction where the projection is taken.

The quarters Q2 and Q4 together form the set of all “basically horizontal” directions. Projections

along the directions from Q2 are called “basically horizontal left-to-right” projections. Projections

along the directions from Q4 are called “basically vertical right-to-left” projections. A projection in

a “basically horizontal” direction is specified by the pair (i, s) where i = 2, 4 is the number of the

quarter and s ∈ [−1, 1] is the slope between the x-axis and the line y = sx along which the projection

is taken.

6.2 Definition of the discrete diffracted projections

The definition of the discrete diffracted projections is based on Eq. (5.14). We denote by pi,s
[o](u) the

discrete diffracted projection of an object o[u, v] in the direction specified by quarter i and slope s.

Definition 6.1. (Discrete diffracted projection along a vertical line) Let o[u, v] be a discrete object.

• A vertical up-going discrete diffracted projection of o[u, v] is defined by

p1,0
[o] (u

′)
∆
=

(
2π

M

)2 N∑

u=−N

N∑

v=−N

o[u, v]eiπv
N∑

k=−N

1√(
M
2

)2 − k2

e
i 2π

M

 
k(u′−u)+

r(
M
2

)2
−k2 |M

2
−v|
!
.
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• A vertical down-going discrete diffracted projection of o[u, v] is defined by

p3,0
[o] (u

′)
∆
=

(
2π

M

)2 N∑

u=−N

N∑

v=−N

o[u, v]e−iπv
N∑

k=−N

1√(
M
2

)2 − k2

e
i 2π

M

 
k(u′−u)+

r(
M
2

)2
−k2 |−M

2
−v|
!
.

Definition 6.2. (Discrete diffracted projection along a horizontal line) Let o[u, v] be a discrete object.

• A horizontal left-to-right discrete diffracted projection of o[u, v] is defined by

p4,0
[o] (v

′)
∆
=

(
2π

M

)2 N∑

u=−N

N∑

v=−N

o[u, v] eiπu
N∑

k=−N

1√(
M
2

)2 − k2

e
i 2π

M

 
k(v′−v)+

r(
M
2

)2
−k2 |M

2
−u|

!
.

• A horizontal right-to-left discrete diffraction projection of o[u, v] is defined by

p2,0
[o] (v

′)
∆
=

(
2π

M

)2 N∑

u=−N

N∑

v=−N

o[u, v] e−iπu
N∑

k=−N

1√(
M
2

)2 − k2

e
i 2π

M

 
k(v′−v)+

r(
M
2

)2
−k2 |−M

2
−u|

!
.

We define the DDP of a “basically vertical” line as a vertical projection of a horizontally sheared

object.

Definition 6.3. (Discrete diffracted projection along basically vertical lines) Let o[u, v] be a discrete

object, s ∈ [−1, 1]\{0}. Let oh
s [u, v] be the horizontal shear of o[u, v] given by Definition 2.9. Then,

• The basically vertical up-going DDP along the line x = sy is defined as

p1,s
[o] (u)

∆
= p1,0

[oh
s ]

(u), u ∈ Z. (6.1)

• The basically vertical down-going DDP along the line x = sy is defined as

p3,s
[o] (u)

∆
= p3,0

[oh
s ]

(u), u ∈ Z. (6.2)

We define the DDP of a “basically horizontal” line as a horizontal projection of a vertically sheared

object.

Definition 6.4. (Discrete diffracted projection along basically horizontal lines) Let o[u, v] be a discrete

object, s ∈ [−1, 1]\{0}. Let ov
s [u, v] be a vertical shear of o[u, v] given by Definition 2.9. Then,

• The basically horizontal left-to-right DDP along the line y = sx is defined as

p4,s
[o] (v)

∆
= p4,0

[ov
s ](v), v ∈ Z. (6.3)

• The basically horizontal right-to-left DDP along the line y = sx is defined as

p2,s
[o] (v)

∆
= p2,0

[ov
s ](v), v ∈ Z. (6.4)
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Having defined the discrete diffracted projections, we now provide an alternative definition that is

based on the two-dimensional Fourier transform of the object.

Theorem 6.5. (Fourier representation of DDP)

Let N be a positive integer, M = 2N + 1. Let o[u, v] be a discrete object and let

w(k) =
4π2

M

1√
(M/2)2 − k2

eiπ
√

(M/2)2−k2
. (6.5)

Then, for any s ∈ [−1, 1] and t ∈ N

p1,s
[o] (t) =

1

M

N∑

k=−N

w(k) ei 2π
M

kt ôh
s

(
k,−

(
M

2
−
√

(M/2)2 − k2

))
, (6.6)

p3,s
[o] (t) =

1

M

N∑

k=−N

w(k) ei 2π
M

kt ôh
s

(
k,

(
M

2
−
√

(M/2)2 − k2

))
, (6.7)

p4,s
[o] (t) =

1

M

N∑

k=−N

w(k) ei 2π
M

kt ôv
s

(
−
(

M

2
−
√

(M/2)2 − k2

)
, k

)
, (6.8)

p2,s
[o] (t) =

1

M

N∑

k=−N

w(k) ei 2π
M

kt ôv
s

((
M

2
−
√

(M/2)2 − k2

)
, k

)
. (6.9)

Proof. We prove Eq. (6.6). The proofs of Eqs. (6.7), (6.8) and (6.9) are similar.

From Definition 6.3, p1,s
[o] (u

′) = p1,0
[oh

s ]
(u′). Expanding the right-hand side using Definition 6.1 we get

p1,s
[o] (u

′) =

(
2π

M

)2 N∑

u=−N

N∑

v=−N

oh
s [u, v]eiπv

N∑

k=−N

1√
(M/2)2 − k2

(6.10)

·ei 2π
M

�
k(u′−u)+

√
(M/2)2−k2|M

2
−v|
�
.

Since v ∈ [−N : N ] we can replace |M2 − v| by (M
2 − v). Equation 6.10 can then be rewritten as:

p1,s
[o] (u

′) =

N∑

k=−N

(
2π

M

)2 1√
(M/2)2 − k2

eiπ
√

(M/2)2−k2
ei 2π

M
ku′

(6.11)

·
[

N∑

u=−N

N∑

v=−N

oh
s [u, v]e

−i 2π
M

�
ku−
(

M
2
−
√

(M/2)2−k2
)
v
�]

.

Using the weight function defined by Eq. (6.5), we can rewrite Eq. (6.11) as

p1,s
[o] (u

′) =
1

M

N∑

k=−N

w(k) ei 2π
M

ku′

ôh
s

(
k,−

(
M

2
−
√

(M/2)2 − k2

))

which completes the proof of Eq. (6.6).

From Eqs. (6.6)–(6.9), we see that the discrete diffracted projection is periodic with period M =

2N + 1.
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6.3 The discrete Fourier diffraction theorem

The continuous Fourier diffraction theorem, given by Theorem 4.1, relates the one-dimensional Fourier

transform of a continuous diffracted projection of an object with the of two-dimensional Fourier trans-

form of the object along a semicircular arc. In this section, we prove the discrete Fourier diffraction

theorem, which establishes a similar result for the discrete case. We denote the DFT of the sequence{
pi,s
[o](n)

}N

n=−N
by p̂i,s

[o](l), l ∈ [−N, . . . , N ].

Theorem 6.6. (Discrete Fourier diffraction theorem)

Let o[u, v] be a discrete object and s be a real number such that |s| ≤ 1. Let w(k) be a weight

function defined by Eq. (6.5). Then, for any l ∈ [−N : N ]

p̂1,s
[o] (l) = w(l) · ô

(
l,−sl −

(
M

2
−
√

(M/2)2 − l2
))

, (6.12)

p̂3,s
[o] (l) = w(l) · ô

(
l,−sl +

(
M

2
−
√

(M/2)2 − l2
))

, (6.13)

p̂4,s
[o] (l) = w(l) · ô

(
−sl −

(
M

2
−
√

(M/2)2 − l2
)

, l

)
, (6.14)

p̂2,s
[o] (l) = w(l) · ô

(
−sl +

(
M

2
−
√

(M/2)2 − l2
)

, l

)
. (6.15)

Proof.

We prove Eq. (6.12). The proofs of Eqs. (6.13),(6.14) and (6.15) are similar. From Theorem 6.5

p1,s
[o] (t) =

1

M

N∑

k=−N

w(k) ei 2π
M

kt ôh
s

(
k,−

(
M

2
−
√

(M/2)2 − k2

))
.

By taking the 1-D Fourier transform of both sides we get

p̂1,s
[o] (l) =

N∑

t=−N

1

M

N∑

k=−N

w(k) ei 2π
M

kt ôh
s

(
k,−

(
M

2
−
√

(M/2)2 − k2

))
e−i 2π

M
tl.

Rearranging the terms at the right-hand side yields

p̂1,s
[o] (l) =

1

M

N∑

k=−N

w(k) ôh
s

(
k,−

(
M

2
−
√

(M/2)2 − k2

)) N∑

t=−N

ei 2π
M

t(k−l).

Since
∑N

t=−N ei 2π
M

t(k−l) = M · δM (k− l), where δM is the periodic Kronecker Delta with period M , we

obtain

p̂1,s
[o] (l) = w(l) ôh

s

(
l,−

(
M

2
−
√

(M/2)2 − l2
))

. (6.16)
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For any l ∈ [−N : N ] and ω ∈ R in Theorem 2.10 we get

ôh
s (l, ω) = ô(l, ω − sl). (6.17)

We combine Eqs. (6.16) and (6.17) to get

p̂1,s
[o] (l) = w(l) ô

(
l,−sl −

(
M

2
−
√

(M/2)2 − l2
))

,

which completes the proof of Eq. (6.12).

6.4 Geometric illustration of the discrete Fourier diffraction theorem

The discrete set of points used by the discrete diffraction theorem has a special structure. According

to Theorem 6.6, for a basically vertical up-going projection p1,s
[o] (l), we sample the Fourier transform

of the object o on the set
{(

l,−sl −
(

M

2
−
√

(M/2)2 − l2
)) ∣∣∣ l ∈ [−N : N ]

}
. (6.18)

Let φ1
s(x)

∆
= −sx −

(
M
2 −

√
(M/2)2 − x2

)
. The set of points, described by Eq. (6.18), consists of

points with integer abscissae that lie on the curve

y = φ1
s(x) , x ∈ [−M/2, M/2] (6.19)

in the Fourier domain. For s = 0 and x ∈ [−M/2, M/2], Eq. (6.19) becomes y = φ1
0(x) =

−
(

M
2 −

√
(M/2)2 − x2

)
. This equation describes the upper half-circle of the circle x2 +

(
y + M

2

)2
=

(
M
2

)2
. The corresponding curve for s 6= 0 and x ∈ [−M/2, M/2] is y = φ1

s(x) = −sx + φ1
0(x). It is the

same half circle that is vertically sheared by (−sx). The left part of Fig. 6.2 presents some examples

of these curves for different values of s. For each fixed s, points with integer coordinates that lie on

each curve correspond to the set defined by Eq. (6.18).
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Figure 6.2: Samples in the Fourier domain that correspond to p1,s
[o] (left) and p3,s

[o] (right)

20



Similarly, for basically vertical down-going projections p3,s
[o] , theorem (6.6) states that we sample

the Fourier transform of the object o on the set

{(
l,−sl +

(
M

2
−
√

(M/2)2 − l2
)) ∣∣∣ l ∈ [−N : N ]

}
. (6.20)

The right part of Fig. 6.2 presents an example of these curves for different values of s. For each

fixed s, points with integer coordinates, which lie on each curve, correspond to the set defined by Eq.

(6.20).

For basically horizontal left-to-right projections, the corresponding set of points p4,s
[o] in the Fourier

domain is given by

{(
−sl −

(
M
2 −

√
(M/2)2 − l2

)
, l

) ∣∣∣ l ∈ [−N : N ]

}
. This set is obtained from

the set described by Eq.(6.18) by swapping the axes – see Fig. 6.3 for an illustration. Finally, for

basically horizontal left-to-right projections, the corresponding set of points p2,s
[o] in the Fourier domain

is given by

{(
−sl +

(
M
2 −

√
(M/2)2 − l2

)
, l

) ∣∣∣ l ∈ [−N : N ]

}
. This set is obtained from the set

described by Eq. (6.20) by swapping the axes – see Fig. 6.3 for an illustration.
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Figure 6.3: Samples in the Fourier domain that correspond to p4,s
[o] (left) and p2,s

[o] (right)

7 The discrete diffraction transform (DDT)

In this section, we define the DDT as a collection of discrete diffracted projections. We prove that

this transform is invertible and rapidly computable.

7.1 Definition of the discrete diffraction transform

Let N be a positive even integer and M = 2N +1. Let o[u, v] be a discrete object of size M ×M . The

DDT is defined as a collection of discrete diffracted projections that correspond to the set of slopes
{
s = l

N

∣∣ l ∈ [−N : N ]
}

. Formally, we define

21



Definition 7.1. (Discrete diffracted transform) Let o[u, v] be a discrete object. For i = 1, . . . , 4 and

k, l ∈ [−N : N ]

D[o](i, l, k)
∆
=





p
1, l

N

[o] (k) if i = 1

p
2, l

N

[o] (k) if i = 2

p
3, l

N

[o] (k) if i = 3

p
4, l

N

[o] (k) if i = 4.

Thus, the DDT is a transform that maps a discrete object of size (2N + 1) × (2N + 1) into an

array of size 4 × (2N + 1) × (2N + 1). In the following sections, we show that the DDT is invertible

and can be computed in O(N2 log N) operations.

The discrete Fourier diffraction theorem maps the discrete diffracted projection into a set of samples

of ô(ω1, ω2). We want to find the set of samples ô(ω1, ω2) that corresponds to a collection of projections

that form the DDT.

Denote A(k)
∆
= M

2 −
√

(M/2)2 − k2. The sample points that correspond to projections pi, l
N

form, for l, k ∈ [−N : N ], the sets S1 =
{(

k,− l
N k − A(k)

)}
, S2 =

{(
− l

N k + A(k), k
)}

, S3 =
{(

k,− l
N k + A(k)

)}
and S4 =

{(
− l

N k − A(k), k
)}

.
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Figure 7.1: Sample set S1
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Figure 7.2: Sample set S3
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Figure 7.3: Sample set S4
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Figure 7.4: Sample set S2

Figures 7.1 through 7.4 provide geometrical illustration of these sets when N = 4. We denote the

set of points that correspond to the DDT in the Fourier domain by

SD
∆
= S1 ∪ S2 ∪ S3 ∪ S4. (7.1)
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7.2 Efficient computation of the DFT on non-Cartesian grids

Consider the set G = G1 ∪ G2 where

G1 =
{
(l · f(k) + g(k), αk)

∣∣l, k ∈ [−N : N ]
}

, G2 =
{
(αk, l · f(k) + g(k))

∣∣l, k ∈ [−N : N ]
}

, (7.2)

α ∈ R
+, f(k) and g(k) are arbitrary real-valued functions. The Cartesian grid is a special case of the

grid G for α = 1, f(k) = 1 and g(k) = 0. The pseudo-polar grid, given in [5], is a special case of the

grid G when α = 1, f(k) = −2k/N and g(k) = 0. We present an algorithm that for a given discrete

object o[u, v], samples its Fourier transform ô(ω1, ω2) on G in O(N2 log N) operations.

The algorithm for computing the Fourier transform of an object o[u, v] in the grid G is based on

the fractional Fourier transform (FrFT).

Definition 7.2. [3](Fractional Fourier transform) Let {xn}N
n=−N be a sequence of complex numbers.

Then, for an arbitrary α ∈ R and k ∈ [−N : N ], the fractional Fourier transform is defined as[
f̂αX

]
(k)

∆
=
∑N

n=−N xne−i 2π
M

αnk.

Lemma 7.3. [3](Efficient computation of the Fractional Fourier Transform)

Let {xn}N
n=−N be a sequence of complex numbers. For an arbitrary α ∈ R, the fractional Fourier

transform
{[

f̂α {xn}
]
(k) | k ∈ [−N : N ]

}
can be computed in O(N log N) operations assuming that

the exponential factors are precomputed.

Fractional Fourier transform ([3]) is based on the same idea (originally by Bluestein [9]) as the

chirp z-transform [10].

There is a number of techniques, commonly known as unequally spaced FFT (USFFT) that allow

for an efficient evaluation of the DFT at arbitrary set of points within a prescribed precision [8].

Following [5], we use the Fractional Fourier transform rather than USFFT in our algorithm, since

it does not include interpolation step, unlike USFFT methods, therefore,it is theoretically exact.

However, in practical computations with a prescribed accuracy, there are situations when USFFT is

more effective than FrFT [12] (pp778-779). Therefore, either FrFT or USFFT can be used in the

implementation of the algorithm.

Next, we use the fractional Fourier transform to derive an efficient algorithm for sampling ô(ω1, ω2)

on G1 given by Eq. 7.2.

Lemma 7.4. (Efficient computation of ô(ω1, ω2) on G1)

Let f(k) and g(k) be two real-valued functions that are defined for k ∈ [−N : N ]. Let α ∈ R
+. Then,

the values {ô(lf(k) + g(k), αk)| l, k ∈ [−N : N ]} can be computed in O(N2 log N) operations, assuming

that the exponential factors e−i 2π
M

αku, e−i 2π
M

f(k)lu and e−i 2π
M

g(k)u are precomputed for all values k, u, l ∈
[−N : N ].
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Proof.

ô(lf(k) + g(k), αk) =
∑N

u=−N

∑N
v=−N o[u, v]e−i 2π

M
([lf(k)+g(k)]u+αkv) =

∑N
u=−N

(
N∑

v=−N

o[u, v]e−i 2π
M

αkv

)

︸ ︷︷ ︸
A(u,k)

·e−i 2π
M

lf(k)ue−i 2π
M

g(k)u =
∑N

u=−N

(
A(u, k)e−i 2π

M
g(k)u

)

︸ ︷︷ ︸
B(u,k)

e−i 2π
M

lf(k)u =
∑N

u=−N B(u, k)e−i 2π
M

lf(k)u.

(7.3)

For a fixed u, the set {A(u, k) | k ∈ [−N : N ]} can be computed in O(N log N) operations, because

it is the fractional Fourier transform of o[u, v] on the second variable, and the exponential factors

were precomputed. Thus, the set {A(u, k) | u, k ∈ [−N : N ]} can be computed in O(N2 log N) oper-

ations. Based on {A(u, k) | u, k ∈ [−N : N ]}, we can compute {B(u, k) | u, k ∈ [−N : N ]} in O(N2)

operations, because B(u, k) was obtained from A(u, k) using multiplication by a precomputed value.

Remains to estimate the complexity to compute Eq. (7.3). For a fixed k, xu
∆
= B(u, k) and β

∆
= f(k),

this expression is the fractional Fourier transform
∑N

u=−N xue−i 2π
M

βul.

From Lemma 7.3, this expression can be computed in O(N log N) operations for l ∈ [−N : N ].

Thus, for k, l ∈ [−N : N ], the expression in Eq. (7.3) can be computed in O(N2 log N) operations.

Consequently, {ô(lf(k) + g(k), αk)| l, k ∈ [−N : N ]} can be computed in O(N2 log N) operations.

The algorithm, which computes ô(ω1, ω2) on G2, is similar.

7.3 Efficient computation of the DDT

Theorem 7.5. (Efficient computation of the discrete diffraction transform)

Let N be a positive even integer and M = 2N + 1. Let o[u, v] be a discrete object of size M × M .

Then, the set
{
D[o](i, l, k)

∣∣ i ∈ {1, 2, 3, 4}, l, k ∈ [−N : N ]
}
, given by Definition 7.1, can be computed

in O(N2 log N) operations.

Proof. From the definition of the DDT, the set described by D[o](i, l, k) is the union of the sets

Si =

{
p

i, l
N

[o] (k)
∣∣ l, k ∈ [−N : N ]

}
, i = 1, . . . , 4. We show that S1 can be computed in O(N2 log N)

operations. The proofs for S2, S3, and S4 are similar. From the Fourier diffraction theorem for

k ∈ [−N : N ], we have p̂
1, l

N

[o] (k) = w(k) · ô
(

k,− l
N k −

(
M
2 −

√
(M/2)2 − k2

))
. By choosing α = 1,

f(k) = − k
N , g(k) = −

(
M
2 −

√
(M/2)2 − k2

)
and by the application of Lemma 7.4, we get that

{
ô

(
k,− l

N
k −

(
M

2
−
√

(M/2)2 − k2

)) ∣∣∣ k, l ∈ [−N : N ]

}
(7.4)

can be computed in O(N2 log N) operations. If w(k) are precomputed, we get that the set

{
̂
p
1, l

N

[o] (k)
∣∣ k, l ∈ [−N : N ]

}
(7.5)
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can be computed in O(N2 log N) operations using the values given by Eq. (7.4). For a fixed l ∈
[−N : N ], the values

{
p
1, l

N

[o] (k)
∣∣ k ∈ [−N : N ]

}
can be computed from the set of frequency samples

{
̂
p
1, l

N

[o] (k)
∣∣ k ∈ [−N : N ]

}
in O(N log N) operations by using the 1D inverse FFT. Repeating this for

all l ∈ [−N : N ], gives a total of O(N2 log N) operations. Hence, the set S1 can be computed in

O(N2 log N) operations. The proofs for S2, S3, and S4 are similar.

7.4 Invertibility of the DDT

Theorem 7.6. (Invertibility of the discrete diffraction transform)

The discrete diffraction transform of any discrete object o[u, v] is invertible.

Proof.

Let D[o](i, l, k), i = 1, . . . , 4, l, k ∈ [−N : N ]. We want to reconstruct the original object

o[u, v]. We prove a stronger result, namely, that o[u, v] can be reconstructed from D[o](i, l, k) for

i = 1, 4, l, k ∈ [−N : N ].

Assume that D[o](i, l, k) is known for i = 1, 4, l, k ∈ [−N : N ]. From Definition 7.1, this means

that p
1, l

N

[o] (k) and p
4, l

N

[o] (k) are known for any k, l ∈ [−N : N ]. Denote A
∆
=

(
M
2 −

√
(M/2)2 − k2

)
. By

using the discrete Fourier diffraction theorem (Theorem 6.6), we can compute the values of ô(ω1, ω2)

on the sets S1 =
{(

k,− l
N k − A

)}
and S4 =

{(
− l

N k − A, k
)}

for l, k ∈ [−N : N ]. We show that the

values of ô(ω1, ω2) on the Cartesian grid
{
(kx, ky)

∣∣ kx, ky ∈ [−N : N ]
}

can be found from the values

of ô(ω1, ω2) on the sets S1 and S4. Let choose 0 6= kx ∈ [−N : N ].

ô(kx, ω) =
N∑

u=−N

N∑

v=−N

o[u, v]e−i 2π
M

(kxu+ωv) =
N∑

v=−N

(
N∑

u=−N

o[u, v]e−i 2π
M

kxu

)
e−i 2π

M
ωv.

Denote yv
∆
=
∑N

u=−N o[u, v]e−i 2π
M

kxu. Let ŷ(ω) =
∑N

v=−N yve
−i 2π

M
vω be the discrete Fourier transform

of {yn}. Then, ŷ(ω) is a scaled trigonometric polynomial of order N with scaling factor 2π
M . We

can find the values of ŷ(ω) on the set S =

{
−kx

N l −
(

M
2 −

√
(M/2)2 − kx

2

) ∣∣∣ l ∈ [−N : N ]

}
from

the values of ô(ω1, ω2) on the set S1 from ô(kx, ω) = ŷ(ω). The set S consists of M distinct points

since kx 6= 0 by choice. The maximal distance between two points in the set S is 2 |kx| ≤ 2N < M .

Consequently, the points in S are distinct modulo M . We get that ŷ(ω) is uniquely defined by its

samples on the set S. Sampling ŷ(ω) at ky ∈ [−N : N ], gives us the values of ô(ω1, ω2) on the set

{(kx, ky) | ky ∈ [−N : N ]}. Since kx was chosen as an arbitrary non-zero element of [−N : N ], we

can find the values of ô(ω1, ω2) on the set
{
(kx, ky)

∣∣ kx ∈ [−N : N ] \ {0} , ky ∈ [−N : N ]
}
. The set

{
(0, ky)

∣∣ ky ∈ [−N : N ]
}

is a subset of S4 and we get the values of ô(ω1, ω2) on this set as well.

Thus, we found the values of ô(ω1, ω2) on the set
{
(kx, ky)

∣∣ kx, ky ∈ [−N : N ]
}
. This set forms

the 2D DFT of o[u, v]. By applying the inverse 2D DFT, we find o[u, v] for all u, v ∈ [−N : N ].

25



In the proof of Theorem 7.6, we reconstructed the original object from a subset of the projections

that forms the DDT of the object, namely, projections that belong to quarters 1 and 4. In the same

way, we can reconstruct the object from the projections that belong to any pair of quarters, where one

of the quarters consists of basically vertical directions and the other for basically horizontal directions.

8 DDP as an approximation of diffracted projection of a sheared

object

DDP was defined in section 6. It is based on the discretization of a continuous diffracted projection

along the y-axis. In section 8.1, we describe an expression that approximates the vertical diffracted pro-

jection of a sheared object f(x, y) based on samples of f(x, y) on the set
{(

2D
M u, 2D

M v
)
| u, v ∈ [−N : N ]

}
.

In section 8.2, we show that DDP approximates a diffracted projection of a sheared object for a specific

wavenumber choice. In section 8.3, we show that this wavenumber choice is, in some sense, optimal.

8.1 Discretziation of a vertical diffracted projection of a sheared object

Definition 8.1. Let f : R → R. We denote by fN (x) the one-dimensional trigonometric interpolating

polynomial of degree N corresponding to points
{

2π
M u
}N

u=−N
and values

{
f
(

2π
M u
)}N

u=−N
.

Definition 8.2. Let f : R
2 → R. We denote by fN (x, y) the two-dimensional trigonometric interpo-

lating polynomial of degree N corresponding to points
{(

2π
M u, 2π

M v
)
| u, v ∈ [−N : N ]

}
and values

{
f
(

2π
M u, 2π

M u
)
| u, v ∈ [−N : N ]

}
.

Definition 8.3. Let D ∈ R
+,f : R

2 → R. We define

fD
N (x, y)

∆
=

N∑

u=−N

N∑

v=−N

f

(
2D

M
u,

2D

M
v

)
DM

(
2π

M
u − π

D
x,

2π

M
v − π

D
y

)
.

This is a two-dimensional scaled trigonometric interpolating polynomial that corresponds to the samples

of f(x, y) on the set
{(

2D
M u, 2D

M v
)
| u, v ∈ [−N : N ]

}
.

Note that when D = π, we have fD
N (x, y) = fN (x, y).

Lemma 8.4. Let f : R
2 → R, N ∈ N, v ∈ [−N : N ]. Let g(x)

△
= f

(
x, 2π

M v
)
. Then gN (x) =

fN

(
x, 2π

M v
)
.

Proof. The expression fN

(
x, 2π

M v
)
, which is considered as a function of x, is a trigonometric polynomial

of degree N . For any u ∈ [−N : N ], we have fN

(
2π
M u, 2π

M v
)

= f
(

2π
M u, 2π

M v
)

= g
(

2π
M u
)
. The claim of the

lemma follows from Theorem 2.2 on the uniqueness of the one-dimensional trigonometric interpolating

polynomial.

Definition 8.5. Let s ∈ [−1, 1], f : R
2 → R. The horizontal shear of f is defined as fs(x, y)

∆
=

f(x + sy, y).
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Definition 8.6. Let s ∈ [−1, 1] and f ∈ C
0(R2). For arbitrary x′,y′ ∈ R, T s[f ](x′, y′)

△
=
∫ D
−D

∫ D
−D f(x+

sy, y)eıω0y K(x, y, x′, y′) dy dx, where T [f ] is given by Eq. (5.7).

Note that T s[f ](x′, y′) = T [fs](x
′, y′).

Definition 8.7. Let s ∈ [−1, 1], N ∈ N, M = 2N + 1. Let f : R
2 → R. For arbitrary x′, y′ ∈ R

T s
N [f ](x′, y′)

∆
=

(
2D

M

)2 N∑

u=−N

N∑

v=−N

f

(
2D

M
u + s

2D

M
v,

2D

M
v

)
eıω0

2D
M

v KN

(
2π

M
u,

2π

M
v, x′, y′

)
.

Note that T s
N [f ](x′, y′) = TN [fs](x

′, y′).

Lemma 8.8. [1](p.104)(Uniform convergence of a shifted interpolation)

Let A ∈ [0, π], C ∈ R
+, α ∈ (0, 1], N ∈ N. Let f(x) ∈ LipC(α, R) such that f(x) = 0 whenever

|x| ≥ A. Then, for any |δ| ≤ π − A, we have |fN (x − δ) − f(x − δ)| ≤ Φ(C, α, N), x ∈ [−π, π],

where fN (x) is the one-dimensional trigonometric interpolating ploynomial of degree N corresponding

to points {2π
M u}N

u=−N and values {f
(

2π
M u
)
}N

u=−N and Φ(C, α, N) is a function independent of both f

and A, such that limN→∞ Φ(C, α, N) = 0.

Theorem 8.9. (Approximation of diffracted projections of a sheared object) Let D, ω0 ∈ R+. Let

f ∈ C
0(R2) ∩ LipC(α, R2), such that f(x, y) = 0 whenever |x| + |y| ≥ D. Then, T s

N [fD
N ](x′, D)

converges to T s[f ](x′, D) uniformly in x′ ∈ [−D, D] and s ∈ [−1, 1].

Proof. It is sufficient to prove the theorem for D = π since we can always scale the variables x and

y. This affects the constant C in LipC(α, R2) but it does not affect α. In diffraction tomography

context, f(x, y) describes a physical object, therefore, scaling of x and y corresponds to a change in

the metric units. From the definition, T s[f ](x′, π) = T [fs](x
′, π). By the note from Definition 8.3, for

any function g : R
2 → R, we have gD

N = gN when D = π. Therefore,

∣∣T s[f ](x′, π) − T s
N [fD

N ](x′, π)
∣∣ =

∣∣T [fs](x
′, π) − T s

N [fN ](x′, π)
∣∣ =

∣∣T [fs](x
′, π) − TN [fsN

](x′, π) + TN [fsN
](x′, π) − T s

N [fN ](x′, π)
∣∣ . (8.1)

In Eq. (8.1) we added and subtracted TN [fsN
], where fsN

is a 2D trigonometric interpolation of fs. By

the fact that TN [fsN
] = TN [fs] (see the note to Definition 8.7) and by the application of the triangle

inequality, we get

∣∣T s[f ](x′, π) − T s
N [fN ](x′, π)

∣∣ ≤
∣∣T [fs](x

′, π) − TN [fsN
](x′, π)

∣∣+
∣∣TN [fs](x

′, π) − T s
N [fN ](x′, π)

∣∣ .
(8.2)

Since f ∈ LipC(α, R2), then, the function fs ∈ Lip(
√

3)αC(α, R2) for s ∈ [−1, 1]. Using Theorem 5.9,

we conclude that the difference
∣∣T [fs](x

′, π) − TN [fsN
](x′, π)

∣∣ tends to zero uniformly in x′ ∈ [−π, π].

f is continuous on the bounded set |x| + |y| ≤ π and equals zero outside this set. Hence, f is

bounded. Denote A = sup(x,y)∈R2 |f(x, y)|. We have sup(x,y)∈R2 |fs(x, y)| = A for any s ∈ [−1, 1].
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From Corollary 5.10, it follows that the convergence of the first term in Eq. (8.2) to zero is uniform

not only in x′ ∈ [−π, π] but also in s ∈ [−1, 1]. We denote the second term of Eq. (8.2) by

RN (x′)
△
=
∣∣TN [fs](x

′, π) − T s
N [fN ](x′, π)

∣∣ . (8.3)

Expanding the right-hand side of Eq. 8.3 using Definitions 5.7 and 8.7, we get

RN (x′) =

∣∣∣∣∣

(
2π

M

)2 N∑

u=−N

N∑

v=−N

(
f

(
2π

M
u + s

2π

M
v,

2π

M
v

)
− fN

(
2π

M
u + s

2π

M
v,

2π

M
v

))

·eıω0v 2π
M KN

(
2π

M
u,

2π

M
v, x′, π

) ∣∣∣∣∣.

By applying the triangle inequality to the definition of KN (x, y, x′, y′), given by Eq. 5.6, we get

|KN (x, y, x′, y′)| ≤ 2ω0
M

∑N
k=−N

(
ω2

0 −
(

2ω0k
M

)2
)− 1

2

. The expression on the right-hand side is bounded.

Therefore, there exists a constant C0 such that for any N we have
∣∣∣eıω0v 2π

M KN (x, y, x′, y′)
∣∣∣ < C0.

Therefore, for any N ∈ N and x′ ∈ [−π, π],

RN (x′) < C0

(
2π

M

)2 N∑

u=−N

N∑

v=−N

∣∣∣f
(

2π

M
u + s

2π

M
v,

2π

M
v

)
− fN

(
2π

M
u + s

2π

M
v,

2π

M
v

) ∣∣∣. (8.4)

Denote gv(x)
∆
= f

(
x, 2π

M v
)

for a fixed v ∈ [−N : N ]. This function belongs to LipC(α, R). From

Lemma 8.4, we have gvN
(x) = fN

(
x, 2π

M v
)
. Since f(x, y) = 0 whenever |x|+|y| ≥ π, then, gv(x) = 0 for

|x| ≥ π− 2π
M v. From Lemma 8.8, there exists a function Φ(C, α, N) that tends to zero as N grows such

that for any x ∈ [−π, π] and any v ∈ [−N : N ] we have
∣∣gv

(
x + s2π

M v
)
− gvN

(
x + s2π

M v
)∣∣ ≤ Φ(C, α, N).

It is important to note that Φ(C, α, N) is the same for all v ∈ [−N : N ]. By using the definition of gv(x),

we see that for any v ∈ [−N, N ] and x ∈ [−π, π]
∣∣∣f
(
x + s2π

M v, 2π
M v
)
−fN

(
x + s2π

M v, 2π
M v
) ∣∣∣ ≤ Φ(C, α, N)

holds. For any ε > 0, there exists N0 such that for any N > N0 we have |Φ(C, α, N)| < ε
4C0π2 . By using

Eq. (8.4), we conclude that when N > N0, |RN (x′)| ≤ ε holds for any x′ ∈ [−π, π] and s ∈ [−1, 1].

The condition “f(x, y) = 0 whenever |x| + |y| ≥ D” is imposed on f in the statement of Theorem

8.9 in order to avoid the “wraparound” effect resulting from the use of trigonometric interpolation.
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Figure 8.1: Left: Sampled object. Middle: After interpolation. Right: Some points of the left replica

fall within the [−D : D] × [−D : D] square after shear
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Figure 8.1 illustrates a typical wraparound effect. Figure 8.1 (right) represents the horizontal shear

of the interpolated object that corresponds to slope s = −1. We see that some points of the replica of

the object are now within the square [−D, D] × [−D, D]. Therefore, the discretization T s
N [fD

N ] of the

vertical diffracted projection of a sheared object is affected by these points, which are not present in

the original object.

8.2 DDP as an approximation of a diffracted projection

Theorem 8.10. Let f(x, y) be an object function. Consider the discrete object that is obtained from

sampling f(x, y) on a Cartesian grid:

o[u, v] = f

(
2D

M
u,

2D

M
v

)
, u, v ∈ [−N : N ]. (8.5)

Let p1,0
[o] (Definition 6.1) and p1,s

[o] (Eq. 6.1) be the discrete diffracted projections of o[u, v] defined in

section 6.2. Assume that the wavenumber is ω0 = πM
2D . Then, for any u′ ∈ [−N : N ] and s ∈ [−1, 1]

we have

TN [f ]

(
2D

M
u′, D

)
=

D2

π2
p1,0
[o] (u

′), (8.6)

T s
N [fD

N ]

(
2D

M
u′, D

)
=

D2

π2
p1,s
[o] (u

′). (8.7)

Proof. To see that Eq.(8.6) is correct, we compare Eq. (5.13) and the definition of p1,0
[o] (u

′). The only

difference between these two expressions is the constant factor D2

π2 .

In order to prove Eq.(8.7), we substitute ω0 = πM
2D into the definition of T s

N [f ](x′, y′).

T s
N [fD

N ](x′, y′) =

(
2D

M

)2 N∑

u=−N

N∑

v=−N

fD
N

(
2D

M
u + s

2D

M
v,

2D

M
v

)
eıπv KN

(
2π

M
u,

2π

M
v, x′, y′

)
.

Then, we expand KN

(
2D
M u, 2D

M v, x′, y′
)

by using its definition (Eq. (5.11)) with ω0 = πM
2D and substi-

tute x′ = 2D
M u′ and y′ = D:

T s
N [fD

N ]

(
2D

M
u′, D

)
=

(
2D

M

)2 N∑

u=−N

N∑

v=−N

fD
N

(
2D

M
u + s

2D

M
v,

2D

M
v

)

eıπv
N∑

k=−N

e
ı 2π

M

�
k(u′−u)+

q
(M

2 )
2−k2|M

2
−v|
�

√(
M
2

)2 − k2

. (8.8)

From the definition of p1,s
[o] we have

p1,s
[o] (u

′) =

(
2π

M

)2 N∑

u=−N

N∑

v=−N

oh
s [u, v]eıπv

N∑

k=−N

e
i 2π

M

h
k(u′−u)+

√
(M/2)2−k2|M

2
−v|
i

√(
M
2

)2 − k2

.
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Thus, to prove Eq. (8.7), it remains to show that fD
N

(
2D
M u + s2D

M v, 2D
M v
)

= oh
s [u, v]. Indeed, from the

definition of fD
N (x, y) (Definition 8.3) we get

fD
N

(
2D
M u + s2D

M v, 2D
M v
)

=
∑N

n=−N

∑N
k=−N f

(
2D
M n, 2D

M k
)
DM

(
2π
M (n − u − sv), 2π

M (k − v)
)

=
∑N

n=−N DM

(
2π
M (n − u − sv)

)∑N
k=−N f

(
2D
M n, 2D

M k
)
DM

(
2π
M (k − v)

)

=
∑N

n=−N f
(

2D
M n, 2D

M v
)
DM

(
2π
M (n − u − sv)

)
(8.9)

since DM

(
2π
M n
)

equals one for n = Mk, k ∈ Z, and zero otherwise. On the other hand, from the

definition of oh
s , we have

oh
s [u, v] =

N∑

n=−N

o[n, v]D̃M (n − u − sv) =
N∑

n=−N

o[n, v]DM

(
2π

M
(n − u − sv)

)
. (8.10)

By comparing Eqs.(8.9) and (8.10) and using Eq.(8.5), we see that the left-hand sides of both equations

are equal, which completes the proof.

8.3 Optimality of the wavenumber choice

Theorem 8.10 states that for a fixed N and a fixed wavenumber ω0 = πM
2D , we can approximate the

basically vertical diffracted projection sampled at M equidistant points 2D
M u, u ∈ [−N : N ] on the

receiver line y = D by using the basically vertical DDP. ω0 = πM
2D binds the wavenumber with size N

of the grid. This means, for example, that for a fixed ω0, we cannot take N to infinity, therefore, we

cannot reach an arbitrary degree of precision when approximating the vertical diffracted projection

by means of the vertical DDP. Nevertheless, it turns out that this constraint agrees very well with

the existing practical constraints. The following discussion is based on the study of the experimental

limitations of the diffracted tomography given in [4].

Let T denote the sampling interval (the distance between detectors on the receiver line). From

the Nyquist theorem, the effect of a nonzero sampling interval can be modeled by a lowpass filtering,

where the highest measured frequency ωmeas is given by ωmeas = π
T . If we discard the evanescent

waves (which are of no significance beyond about 10 wavelengths from the source), then, the highest

received wavenumber is ωmax = ω0. By equating the highest measured frequency to the highest

received wavenumber, we get that the highest wavenumber that can be used for a given sampling

interval is ω0 = π
T .

Consider the sampling interval T = 2D
M . The highest wavenumber, which can be used for this

sampling interval, is ω0 = π
T = πM

2D . Note that this is exactly the wavenumber for which we can compute

the approximation of the diffracted projection by using the DDP. We see that this wavenumber is

optimal in the following sense: if the wavenumber is bigger than πM
2D , then, due to aliasing, the

measured data may not be a good estimate for the received waveform. If the wavenumber is smaller,

the sampling interval can be increased without loss of information.

Note that in the above discussion, we did not consider the effect of having a finite number of

receivers or the fact that the receiver line is of finite length.
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8.4 Reconstruction of a sheared object by using the DDT

Theorems 5.9 and 8.9 were stated for basically vertical up-going projections. Similar results can be

proved by minor modifications of the proofs found in previous sections for the other three types of

projections (basically vertical down-going, basically horizontal left-to-right and basically horizontal

right-to-left).

The discrete diffraction transform (DDT) was defined in section 7 as a set of discrete diffracted

projections along lines with slopes from the set { l
N | l ∈ [−N : N ]}. Therefore, the DDT can be

thought as an approximation of a set of continuous diffracted projections of a sheared object, namely,

vertical projections of f(x + l
N y, y) and horizontal projections of f(x, y + l

N x), l ∈ [−N : N ].

Conversely, the inverse DDT reconstructs the object from the set of continuous projections de-

scribed above. Basically vertical up-going projections are measured on the receiver line y = D at

points whose x-coordinates are 2D
M n, n ∈ [−N : N ]. The rest of the projections are sampled in a

similar way, then, the inverse DDT is applied, which results in a discrete object that approximates

the samples of the original object on the set
{
(2D

M u, 2D
M v) |u, v ∈ [−N : N ]

}
. In this paper, we do not

analyze the quality of the reconstruction or its dependence on N .

8.5 The difference between the DRT and the DDT for image reconstruction

Results similar to Theorems 5.9 and 8.9 hold for the 2D Radon transform. We showed in [1, 6]

that a basically vertical DRT approximates the vertical continuous Radon transform of a sheared

object. Therefore, the DRT approximates the reconstruction of an object from the set of continuous

projections of a sheared object, namely, vertical projections of f(x+ l
N y, y) and horizontal projections

of f(x, y + l
N x), l ∈ [−N : N ]. The phrase “continuous projections” in the context of the DRT refers

to the continuous Radon transform.

In this section, we show that there is an important difference between the Radon transform and

diffracted projections: in the case of the Radon transform, any rotated projection of the object can

be obtained from a single vertical projection of a horizontally sheared object (or a single horizontal

projection of a vertically sheared object) by means of multiplication by a constant. This is not the

case in diffracted tomography.

Consider the continuous Radon transform of the object f(x, y) along a basically vertical line

x = sy, s ∈ R and |s| ≤ 1. This projection is formed by a set of line integrals along the parallel lines

{x = sy + t | t ∈ R} as illustrated on the left side of Fig. 8.2.
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Figure 8.2: The Rotated projection (left) and the vertical projection of a sheared object (right)

The integral of f(x, y) along the line x = sy + t is given by

∫ ∞

−∞
f(sy + t, y)

√(
∂(sy + t))

∂y

)2

+

(
∂y

∂y

)2

dy =
√

1 + s2

∫ ∞

−∞
f(sy + t, y)dy. (8.11)

The vertical continuous Radon transform of a sheared object f(x + sy, y) is formed by the set of

line integrals along the parallel lines {x = t | t ∈ R}, as illustrated in the right side of Fig. 8.2. The

integral of f(x + sy, y) along the line x = t is given by
∫ ∞

−∞
f(t + sy, y)dy. (8.12)

By comparing Eqs.(8.11) and (8.12), we see that the rotated projection of f(x, y) along an arbi-

trary basically vertical line can be obtained by taking a vertical projection of a sheared object and

multiplying it by a constant factor. Conversely, any vertical projection of a horizontally sheared object

o(x + sy, y) can be obtained by taking a single rotated projection of the original object o(x, y) and

multiplying it by a constant factor. Similar relationships exist between the set of rotated projections

along basically horizontal lines and the set of horizontal projections of a vertically sheared object.

This property of the continuous Radon transform makes the inverse DRT appropriate for the

reconstruction of an object from a specific set of rotated projections. Indeed, given a set of rotated

projections, we can compute a set of sheared projections by a multiplication of each projection by

an appropriate constant. Now we can apply the inverse DRT to the set of projections of the sheared

object, getting as a result some discrete object that approximates the continuous object f(x, y).

Figure 8.3: A vertical diffracted projection of an horizontally sheared object
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Let see whether a similar result holds for the DDT. From the continuous Fourier diffraction theorem

(Theorem 4.1), the set of points in the Fourier domain, which corresponds to an up-going projection

along the positive y-axis, forms a half-circle of radius ω0 (the wavenumber of the plane wave used for

the illumination), that is centered at the point (0,−ω0). In section 2.2, we showed that the continuous

2D Fourier of a horizontally sheared object is a vertical shear of the object’s 2D Fourier transform.

Consequently, the set of points in the Fourier domain, which corresponds to the vertical diffracted

projection of a horizontally sheared object, forms a sheared half-circle (see Fig.8.3). However, by

the rotational property of the 2D Fourier transform, the set of points in the Fourier domain, which

corresponds to the vertical diffracted projection of a rotated object, forms a rotated half-circle.

In general, it is impossible to cover a fixed sheared half-circle with a single rotated half-circle,

which means that no single projection of the rotated object provides us with the set of values in the

Fourier domain that corresponds to a vertical projection of the sheared object. Consequently, there is

no one-to-one correspondence between the set of rotated projections of a object and the set of vertical

projections of a sheared object. This is the reason why the DDT cannot approximate a set of rotated

projections of the object and the inverse DDT cannot reconstruct the object from a set of rotated

projections.

9 Implementation and numerical results

We use the operator notation to describe the implementation. Let N be a positive integer, M =

2N + 1, and o[u, v] be a discrete object of size M × M . We denote by D : R
M×M −→ R

4×M×M

the DDT from definition 7.1. We denote by FD : R
M×M −→ R

4×M×M the operator that maps a

discrete object o[u, v] to the set of samples of ô(ω1, ω2) on the set SD from Eq. (7.1). We denote by

DF : R
4×M×M −→ R

4×M×M the operator that satisfies D = DF ◦FD. The existence of this operator

is a direct corollary of the discrete Fourier diffraction theorem. Both FD and DF can be applied in

O(N2 log N) operations as we can see from the proof of Theorem 7.5.

9.1 The forward transform

Operators FD and DF were implemented in Matlab. The fast forward transform is computed by

successive application of these two operators. To verify the correctness of this implementation, we

compare the results to the reference implementation of the DDT, which is based on Definition 7.1.

For the input matrix o[u, v], u, v ∈ [−N : N ], we denote by D[o](i, l, k) the output of the reference

algorithm and by D′
[o](i, l, k) the output of the fast algorithm, i ∈ {1, 2, 3, 4}, l, k ∈ [−N : N ]. For

a fixed i and l, the vector D[o](i, l, k), k ∈ [−N : N ], is a projection of a sheared object. For

each projection, we compute the relative l2 error between the outputs of the fast and the reference

implementation and then we take the maximum over i and l. Both algorithms were executed on

(2N + 1) × (2N + 1) random matrices for different values of N with entries uniformly distributed
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between 0 and 1. We compare the errors for moderate-sized matrices, since direct implementation of

the DDT is extremely slow. Comparison results are given in table 1.

N 2 4 8 16 24

Error 6.95e-16 1.73e-15 1.39e-15 3.14e-15 5.85e-15

Table 1: The error between the outputs of the direct and fast implementations of the DDT. Input

image size is (2N + 1) × (2N + 1).

Next, we estimate the number of floating point operations (flops) required for the application of

the operators FD and DF . We assume that 5N log2 N flops are needed for N -point FFT. Evaluation

of an N -point fractional Fourier transform requires 20N log2 N + 44N flops [3].

From the definition, FD evaluates ô(ω1, ω2) on the set SD from Eq. (7.1). SD is the union of four

sets, wheere each is of the form G1 or G2 that were specified in Eq. (7.2) for α = 1. In Lemma 7.4,

we showed that ô(ω1, ω2) can be evaluated on the set G1 or G2 in O(N2 log(N)) operations. We now

derive a more exact estimate. Using the notation in Lemma 7.4, we notice that the evaluation of G1

for α = 1 requires M evaluations of M -point FFT to compute {A(u, k)|u, k ∈ [−N : N ]}, then, M2

multiplications by precomputed exponential factors are needed to compute {B(u, k)|u, k ∈ [−N : N ]}
and then M evaluations of an M -point fractional Fourier transform. The total is M(5M log2 M) +

M2+M(20M log2 M +44M) = 25M2 log2 M +45M2 flops. Since SD is a union of four sets, evaluation

of FD requires 100M2 log2 M + 180M2 flops.

To estimate the number of flops, it is required to apply the operator DF (see the proof of Theorem

7.5). Using the notation from this proof, we notice that, given samples of ô(ω1, ω2) on the set SD, the set

in Eq. 7.5 can be computed using M2 multiplications by the precomputed factors ω(k), k ∈ [−N : N ].

Then, the set

{
p
1, l

N

[o] (k)
∣∣ l, k ∈ [−N : N ]

}
is computed by M applications of the inverse M -point

FFT. Application of DF requires the computation of

{
p

i, l
N

[o] (k)
∣∣ l, k ∈ [−N : N ]

}
, i ∈ {1, 2, 3, 4}. The

number of flops, which are required for the application of DF , is 4(5M2 log2 M +M2) = 20M2 log2 M +

4M2.

Since D = DF ◦FD, then, the computation of the DDT on an M × M input matrix requires

120M2 log2 M + 184M2 flops. For comparison, the 2D-FFT computation of the M × M matrix

requires about 10M2 log2 M operations.

For completeness, we present in Table 2 the execution times of the non-optimized Matlab im-

plementation of the DDT. The code was executed on Pentium 4 3.0GHz machine running Windows

XP.
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N 16 32 64 128 256 512 1024

Tfwd 0.10 0.28 0.84 2.90 10.20 39.21 270.98

Table 2: The CPU time (in seconds) required for the computation of the DDT on a (2N +1)×(2N +1)

input matrix.

9.2 The inverse transform

The inverse DDT algorithm is a modification of the iterative inverse DRT algorithm from [5]. Consider

the DDT operator D = DF ◦FD. The inverse transform amounts to the solution of (DF ◦FD)x = y for

x. DF can be inverted in O(N2 log(N)) operations, so remains to solve FD x = z where z = DF
−1y.

If, for example, y is not necessarily in the range of the DDT due to noise or measurement errors,

we want to solve minx‖FD x − z‖2. Solving this minimization problem is equivalent to solving the

normal equations

F*
D FD x = F*

D z, (9.1)

where F*
D is the adjoint of FD. This operator, like FD, can be applied in O(N2 log(N)) operations.

Since F*
D is symmetric and positive definite, we can use the conjugate-gradient method [11] to solve

Eq. 9.1. We use the same preconditioner as in [5], to improve the convergence rate of the conjugate

gradient algorithm.

Table 3 shows the performance of the iterative inversion algorithm for random images of size

(2N + 1) × (2N + 1) for different values of N . The entries in each image are uniformly distributed

between 0 and 1. Given the image, its forward DDT was computed, then, the iterative inversion

algorithm was applied to recover the image. The error tolerance of the conjugate gradient method

was set to ε = 10−6. Notice that the error tolerance of the conjugate gradient algorithm is specified

in terms of the A-norm [11](p. 294). This is not the reconstruction error.

We evaluate the quality of the reconstruction by computing the relative error in the Frobenius

norm:

E2 =

√∑
u

∑
v |o[u, v] − õ[u, v]|2

√∑
u

∑
v |o[u, v]|2

. (9.2)

As we see from Table 3, very few iterations are required to invert the DDT with high accuracy. The

total complexity of the inversion algorithm is O(ρ(ε)N2 log N), where ρ(ε) is the number of iterations

of the conjugate gradient that are required to achieve accuracy ε. As we can see from the table 3, the

value of ρ(ε) depends very weakly on the size of the reconstructed image.

The execution time of the conjugate gradient algorithm is dominated by the application of operators

FD and F*
D. Application of FD dominates the execution time of the forward DDT. Application of F*

D
takes about the same time as the FD. Therefore, the execution time Tinv(N) of the inverse DDT can

be approximately estimated to be 2 · Tfwd(N) · ρ(ε). The experimental results, which are given in the

column Tinv/Tfwd in Table 3, confirm this estimate.
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N r iterations E2 Tinv/Tfwd

16 4.380218e-007 8 7.286196e-005 14.00

32 9.812216e-008 10 2.139350e-005 20.05

64 3.635840e-007 10 2.081473e-005 20.98

128 1.749592e-007 11 6.922044e-006 22.10

256 4.632606e-007 11 5.561925e-006 24.01

512 1.176530e-007 12 1.338199e-006 26.85

1024 2.764835e-007 12 1.039228e-006 24.65

Table 3: Inverse DDT: (2N + 1) × (2N + 1) is the input image size, r is the residual error of the

conjugate gradient algorithm upon termination, iterations is a number of iterations required for the

convergence of the conjugate gradient algorithm, E2 is the images reconstruction error, Tinv/Tfwd is

the ratio of the execution times between the inverse and the forward DDT.

10 Convergence of the discretization of the inner integral (Theorem

5.5)

K(x, y, x′, y′) is an improper integral of fα(x, y, x′, y′) that is seen as a function of α on the interval

[−ω0, ω0]. KN (x, y, x′, y′) is a Riemann sum of the same function. Therefore, Theorem 5.5 states that

a sequence of certain Riemann sums of fα(x, y, x′, y′) converges uniformly in (x, y, x′, y′) ∈ Ω to the

improper integral of this function on [−ω0, ω0].

In section 10.1, we prove the convergence of certain Riemann sums to the corresponding improper

integrals. This result is valid for any set of functions that belong to class B[0,1] (to be defined later).

The convergence is uniform within such a set. In section 10.2, we prove that the set of functions

{fα(x, y, x′, y′) | (x, y, x′, y′) ∈ Ω} is in class B[−1,1], which allows the application of the results from

section 10.1 to the proof of Theorem 5.5.

10.1 Convergence lemma

Lemma 10.1. Let f : [0, 1] → R be a function that is differentiable on [0, 1) such that |f(α)| ≤ 1 for

α ∈ [0, 1]. Then,

S(f)
∆
=

∫ 1

0

f(α)√
1 − α2

dα (10.1)

converges.

Proof.
1√

1−α2
is integrable on any interval [0, 1 − ε], 0 < ε < 1, and

∫ 1−ε
0

dα√
1−α2

= arcsin(1 − ε).

limε→0 arcsin(1 − ε) = arcsin(1) = π
2 . Consequently,

∫ 1
0

dα√
1−α2

= π
2 . Since |f(α)| ≤ 1, for any

α ∈ [0, 1], we have
∣∣∣ f(α)√

1−α2

∣∣∣ ≤ 1√
1−α2

, α ∈ [0, 1]. Since f is differentiable on [0, 1), it is continuous on

[0, 1−ε] for any ε ∈ (0, 1). Consequently,
∣∣∣ f(α)√

1−α2

∣∣∣ is integrable on any interval [0, 1−ε], ε ∈ (0, 1). From
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this fact and the above equations we conclude that for any ε ∈ (0, 1)
∫ 1−ε
0

∣∣∣ f(α)√
1−α2

∣∣∣ dα ≤
∫ 1−ε
0

dα√
1−α2

≤
∫ 1
0

dα√
1−α2

= π
2 . Then,

∫ 1
0

∣∣∣ f(α)√
1−α2

∣∣∣ dα = limε→0

∫ 1−ε
0

∣∣∣ f(α)√
1−α2

∣∣∣ dα ≤
∫ 1
0

dα√
1−α2

= π
2 , which means that

S(f) converges absolutely and therefore converges.

Lemma 10.2.

Let f : [0, 1] → R. Then,

SN (f)
∆
=

2

2N + 1

N∑

n=0

f
(

2n
2N+1

)

√
1 −

(
2n

2N+1

)2
− f(0)

2N + 1
. (10.2)

is a Riemann sum of f(α)√
1−α2

on the interval [0, 1].

Proof.

We consider a partition of [0, 1] with the subdivision points

α0 = 0, αn =
2n − 1

2N + 1
, n ∈ [1, . . . , N + 1], (10.3)

and sampling points

ξn =
2n

2N + 1
, n ∈ [0, . . . , N ]. (10.4)

Then,

SN (f) = 2
2N+1

∑N
n=0

f( 2n
2N+1

)q
1−( 2n

2N+1)
2
− f(0) · 1

2N+1 = f(0) · 1
2N+1 + 2

2N+1

∑N
n=1

f( 2n
2N+1

)q
1−( 2n

2N+1)
2

= f(ξ0) · (α1 − α0) +
∑N

n=1

f( 2n
2N+1

)q
1−( 2n

2N+1)
2
(αn+1 − αn) =

∑N
n=0

f(ξn)√
1−ξn

2
· (αn+1 − αn).

Thus, SN (f) is a Riemann sum of f(α)√
1−α2

.

Definition 10.3. (Function class B[0,1])

Let F = {f | f : [0, 1] → R}. We say that B ⊆ F is of class B[0,1] if the following claims hold: any

f ∈ B is differentiable on [0, 1), for any f ∈ B and α ∈ [0, 1], |f(α)| ≤ 1 holds, and for any ε ∈ (0, 1)

the set {f ′ |f ∈ B} is uniformly bounded on [0, 1 − ε].

The rest of this section is devoted to the proof of following claim: given B of class B[0,1], then, the

sequence of Riemann sums SN (f) of the function f(α)√
1−α2

converges to the integral S(f) on the interval

[0, 1] and the convergence is uniform for f ∈ B.

The following notation will be used in subsequent lemmas. For a fixed ε ∈ (0, 1), we denote

Rε(f)
∆
=

∫ 1−ε

0

f(α)√
1 − α2

dα (10.5)
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and

T ε(f)
∆
=

∫ 1

1−ε

f(α)√
1 − α2

dα . (10.6)

From Eqs.(10.1), (10.5) and (10.6) we get

S(f) = Rε(f) + T ε(f) . (10.7)

Equations (10.5)–(10.7) define a split of S(f) around the point 1 − ε. In order to define a split of

SN (f) around the point 1 − ε, we use the following definition.

For a fixed N ∈ N
+ and ε ∈ (0, 1), we define Nε to be an integer from [1, . . . , N + 1] such that

αNε−1 < 1 − ε ≤ αNε , where αn are the subdivision points defined by Eq. (10.3). Note that Nε

depends on both N and ε.

For a fixed N ∈ N
+ and ε ∈ (0, 1), we define

Rε
N (f)

∆
=

2

2N + 1

Nε−1∑

n=0

f( 2n
2N+1)

√
1 −

(
2n

2N+1

)2
− f(0)

2N + 1
. (10.8)

This is the part of SN (f) that corresponds to the interval [0, αNε ]. For a fixed N ∈ N
+ and ε ∈ (0, 1),

we define

T ε
N (f)

∆
=

2

2N + 1

N∑

n=Nε

f( 2n
2N+1)

√
1 −

(
2n

2N+1

)2
. (10.9)

This is the part of SN (f) that corresponds to the interval [αNε , 1]. From Eqs.(10.1) (SN (f)), (10.8)

and (10.9) we have

SN (f) = Rε
N (f) + T ε

N (f). (10.10)

See Fig.10.1 for an illustration of Rε
N (f) and T ε

N (f), .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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N

(x,y)

α
N

ε

α
N

ε
 −1

1−ε 

Tε
N

(x,y) 

Figure 10.1: Illustration of Rε
N (f) (colored gray) and T ε

N (f) (colored white)

In order to prove that when B is of class B[0,1], the convergence of SN (f) to S(f) is uniform for

f ∈ B, we show that for any ∆ > 0 the following claims hold (independently of f ∈ B): there exists ε
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such that |T ε(f)| < ∆/4, there exists N1 such that |T ε
N (f)| < ∆/2 for any N > N1, and there exists

N2 such that |Rε
N (f) − Rε(f)| < ∆/4 for any N > N2. Lemmas 10.4 though 10.8 contain the proofs.

Lemma 10.4.

Let B of class B[0,1]. For any ε ∈ (0, 1) and any f ∈ B, we have |T ε(f)| ≤
∫ 1
1−ε

1√
1−α2

dα.

Proof.

By Definition 10.3, for any f ∈ B and any α ∈ [0, 1], we have f |(α)| ≤ 1. Using this fact together

with Eq. (10.6) we get

|T ε(f)| =

∣∣∣∣
∫ 1

1−ε

f(α)√
1 − α2

dα

∣∣∣∣ ≤
∫ 1

1−ε

∣∣∣∣
f(α)√
1 − α2

∣∣∣∣ dα ≤
∫ 1

1−ε

1√
1 − α2

dα.

Lemma 10.5. For any ∆ > 0 there exists ε ∈ (0, 1) such that
∫ 1
1−ε

1√
1−α2

dα ≤ ∆.

Proof.

We fix ∆ > 0. For any ε ∈ (0, 1), we get from the proof of Lemma 10.1 that
∫ 1
1−ε

1√
1−α2

dα =

π
2 − arcsin(1 − ε). For any ε ∈ (0, 1), we have 0 ≤ π

2 − arcsin(1 − ε) ≤ 2
√

ε. We choose ε =
(

∆
2

)2
.

Then, for any f ∈ B[0,1],
∫ 1
1−ε

1√
1−α2

dα ≤ 2
√

ε = ∆.

Lemma 10.6.

Let B of class B[0,1]. Let ε ∈ (0, 1). Then, for any δ > 0 there exists N0 ∈ N such that for any

N > N0 and any f ∈ B we have
∣∣∣T ε

N (f)
∣∣∣ ≤

∫ 1
1−ε

dα√
1−α2

+ δ.

Proof.

Let f ∈ B. By Definition 10.3, we have |f(α)| ≤ 1 for any α ∈ [0, 1]. From Eq. (10.9) and the

triangle inequality we have that for any N ∈ N

|T ε
N (f)| ≤ 2

2N + 1

N∑

n=Nε

∣∣∣∣∣∣∣∣

f( 2n
2N+1)

√
1 −

(
2n

2N+1

)2

∣∣∣∣∣∣∣∣
≤ 2

2N + 1

N∑

n=Nε

1√
1 −

(
2n

2N+1

)2
. (10.11)

There exists N1 ∈ N such that for any N > N1 we have 2
2N+1 < ε. Then, Nε < N + 1, which

means that ξNε is defined. From Eqs.(10.3) and (10.4) we have αNε < ξNε . Consider a partition of the

interval [ξNε , 1], where the subdivision points are
{
ξn

∣∣ n ∈ {Nε, . . . , N}
}⋃ {1} and the intermediate

points are
{
ξn

∣∣ n ∈ {Nε, . . . , N}
}
.
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Figure 10.2: The area under the “steps” equals DN

The Riemann sum of 1√
1−α2

, which corresponds to this partition, is

DN =
2

2N + 1

N∑

n=Nε

1√
1 −

(
2n

2N+1

)2
− 1√

1 −
(

2N
2N+1

)2
· 1

2N + 1
(10.12)

(see Fig. 10.2 for illustration). From Eqs.(10.11) and (10.12) we get

|T ε
N (f)| ≤ DN +

1√
1 −

(
2N

2N+1

)2
· 1

2N + 1
. (10.13)

Since 1√
1−α2

monotonically increases on [0, 1], DN is a lower Darboux sum of 1√
1−α2

on [ξNε , 1]. From

the definition of Nε, we have 1 − ε ≤ αNε < ξNε . Consequently,

DN ≤
∫ 1

ξNε

dα√
1 − α2

≤
∫ 1

1−ε

dα√
1 − α2

. (10.14)

From Eqs.(10.13) and (10.14), it follows that |T ε
N (f)| ≤

∫ 1
1−ε

dα√
1−α2

+ 1q
1−( 2N

2N+1)
2
· 1

2N+1 . By

simplifying the last term we have

∣∣∣T ε
N (f)

∣∣∣ ≤
∫ 1

1−ε

dα√
1 − α2

+
1√

4N + 1
. (10.15)

Since the last term in Eq. (10.15) tends to 0 as N grows to infinity, there exists N0 > N1 such that

for any N > N0 we have 1√
4N+1

< δ. Thus, we found N0 ∈ N such that for any f ∈ B we have

|T ε
N (f)| ≤

∫ 1
1−ε

dα√
1−α2

+ δ.

Lemma 10.7.

Let B of class B[0,1]. For any ε ∈ (0, 1) there exists Cε ∈ R
+ such that for any f ∈ B and any

α ∈ [0, 1 − ε]

∣∣∣∣
(

f(β)√
1−β2

)′
(α)

∣∣∣∣ ≤ Cε.
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Proof.

We fix ε > 0. Let f ∈ B. This function is differentiable on [0, 1− ε]. For any α ∈ [0, 1− ε] we have

(
f(β)√
1 − β2

)′

(α) =
f ′(α)√
1 − α2

+
αf(α)

(1 − α2)3/2
. (10.16)

By Definition 10.3, |f(α)| ≤ 1 for any α ∈ [0, 1]. From the application of the triangle inequality to

Eq. (10.16), we get ∣∣∣∣∣

(
f(β)√
1 − β2

)′

(α)

∣∣∣∣∣ ≤
|f ′(α)|√
1 − α2

+
1

(1 − α2)3/2
. (10.17)

Since B is of class B[0,1], the set of functions {f ′ | f ∈ B} is uniformly bounded on [0, 1 − ε].

Therefore, there exists Kε such that for any f ∈ B and any α ∈ [0, 1− ε] we have |f ′(α)| ≤ Kε. Then,

for any f ∈ B and any α ∈ [0, 1 − ε] we get from Eq. (10.17)

∣∣∣∣
(

f(β)√
1−β2

)′
(α)

∣∣∣∣ ≤ Kε
1√

1−α2
+ 1

(1−α2)3/2 .

We define Cε
∆
= Kε

1√
1−(1−ε)2

+ 1
(1−(1−ε)2)3/2 . Then, for any f ∈ B and any α ∈ [0, 1 − ε] we have

∣∣∣∣
(

f(β)√
1−β2

)′
(α)

∣∣∣∣ ≤ Cε.

Lemma 10.8. (Convergence of Rε
N (f) from Eq. (10.8))

Let B of class B[0,1]. Let ε ∈ (0, 1). Then, for any ∆ > 0 there exists N0 ∈ N such that for any

N > N0 and any f ∈ B we have
∣∣∣Rε

N (f) − Rε(f)
∣∣∣ < ∆.

Proof.

We fix ε > 0. From Lemma 10.7, there exists C ε
2

such that for any α ∈ [0, 1− ε
2 ] and any f ∈ B we

have

∣∣∣∣
(

f(β)√
1−β2

)′
(α)

∣∣∣∣ ≤ C ε
2
. By the mean value theorem, this means that for any γ1, γ2 ∈ [0, 1− ε

2 ] we

have

∣∣∣∣
f(γ1)√
1−γ1

2
− f(γ2)√

1−γ2
2

∣∣∣∣ ≤ C ε
2
|γ1 − γ2|. There exists N1 ∈ N such that for any N > N1 the inequality

2
2N+1 < ε

2 holds. Then, for any N > N1 we have αNε < 1− ε
2 . Consider an arbitrary N > N1. We know

that if in general f : [a, b] → R is a continuous function, such that for any x1, x2 ∈ [a, b] the inequality

|f(x1)−f(x2)| ≤ C|x1−x2| holds, and if ξ ∈ [a, b], then,
∣∣∣f(ξ)(b − a) −

∫ b
a f(x)dx

∣∣∣ ≤ C(b−a)2. Then,

if we apply it to f(α)√
1−α2

we have, for any n ∈ {1, . . . , Nε − 1}
∣∣∣∣∣

f(ξn)√
1 − ξn

2
|αn+1 − αn| −

∫ αn+1

αn

f(α)√
1 − α2

dα

∣∣∣∣∣ ≤ C ε
2
|αn+1 − αn|2.

Since |αn+1 − αn| = 2
2N+1 for any n ∈ {1, . . . , Nε − 1} we get

∣∣∣∣∣
f(ξn)√
1 − ξn

2

2

2N + 1
−
∫ αn+1

αn

f(α)√
1 − α2

dα

∣∣∣∣∣ ≤ C ε
2

(
2

2N + 1

)2

. (10.18)

Similarly, for n = 0 we get
∣∣∣∣∣

f(ξ0)√
1 − ξ0

2

1

2N + 1
−
∫ α1

α0

f(α)√
1 − α2

dα

∣∣∣∣∣ ≤ C ε
2

(
1

2N + 1

)2

≤ C ε
2

(
2

2N + 1

)2

. (10.19)
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From Eqs.(10.8) and (10.4), we have Rε
N (f) = 2

2N+1

∑Nε−1
n=0

f(ξn)√
1−ξn

2
− f(0)

2N+1 . From Eq. (10.5)

Rε(f) =

∫ αNε

α0

f(α)√
1 − α2

dα −
∫ αNε

1−ε

f(α)√
1 − α2

dα.

Thus,

|Rε
N (f) − Rε(f)| =

∣∣∣∣∣
2

2N + 1

Nε−1∑

n=0

f(ξn)√
1 − ξn

2
−
∫ αNε

α0

f(α)√
1 − α2

dα − f(0)

2N + 1
+

∫ αNε

1−ε

f(α)√
1 − α2

dα

∣∣∣∣∣ .

By the application of the triangle inequality, we get

|Rε
N (f) − Rε(f)| ≤

Nε−1∑

n=0

∣∣∣∣∣
2

2N + 1
· f(ξn)√

1 − ξn
2
−
∫ αn+1

αn

f(α)√
1 − α2

dα

∣∣∣∣∣+
∣∣∣∣

f(0)

2N + 1

∣∣∣∣+
∣∣∣∣
∫ αNε

1−ε

f(α)√
1 − α2

dα

∣∣∣∣ .

By the application of Eqs.(10.18) and (10.19) we get

|Rε
N (f) − Rε(f)| ≤ N · C ε

2
·
(

2

2N + 1

)2

+

∣∣∣∣
f(0)

2N + 1

∣∣∣∣+
∣∣∣∣
∫ αNε

1−ε

f(α)√
1 − α2

dα

∣∣∣∣ . (10.20)

The first two terms on the right-hand side of Eq. (10.20) tend to zero as N grows. From the definition

of Nε we have |1 − ε − αNε | ≤ 2
2N+1 , therefore, the third term on the right-hand side of Eq. (10.20)

tends to zero as well. Consequently, there exists N0 > N1 such that for any N > N0 we have

|Rε
N (f) − Rε(f)| < ∆

Now we prove that when B of class B[0,1], the convergence of SN (f) to S(f) is uniform for f ∈ B.

Lemma 10.9.

Let B of class B[0,1]. For any ∆ > 0 there exists N0 ∈ N such that for any N > N0 and any f ∈ B

we have |SN (f) − S(f)| < ∆.

Proof. Consider an arbitrary ∆ > 0. From Eqs.(10.7) and (10.10) we know that for any N ∈ N, any

f ∈ B and any ε ∈ (0, 1)

|SN (f) − S(f)| = |Rε
N (f) + T ε

N (f) − Rε(f) − T ε(f)| ≤ |Rε
N (f) − Rε(f)| + |T ε

N (f)| + |T ε(f)| .

By Lemma 10.4, for any ε ∈ (0, 1) and f ∈ B, we have |T ε(f)| ≤
∫ 1
1−ε

1√
1−α2

dα and from Lemma 10.5

there exists ε0 ∈ (0, 1) such that
∫ 1
1−ε0

1√
1−α2

dα ≤ ∆
4 . From these two equations we conclude that

|T ε0 (f)| ≤ ∆
4 . Then, for any N ∈ N and any f ∈ B

|SN (f) − S(f)| ≤
∣∣Rε0

N (f) − Rε0 (f)
∣∣+
∣∣T ε0

N (f)
∣∣+ ∆

4
. (10.21)

By Lemma 10.6 there exists N1 ∈ N such that for any N > N1 and any f ∈ B we have
∣∣T ε0

N (f)
∣∣ ≤

∫ 1
1−ε0

1√
1−α2

dα + ∆
4 . From

∫ 1
1−ε0

1√
1−α2

dα ≤ ∆
4 we get that for any N > N1 and any f ∈ B

∣∣T ε0
N (f)

∣∣ ≤
∆
2 . Thus, for any N > N1 and any f ∈ B we have |SN (f) − S(f)| ≤

∣∣Rε0
N (f) − Rε0 (f)

∣∣+ ∆
2 + ∆

4 and by

Lemma 10.8 there exists N2 ∈ N such that for any N > N2 and any f ∈ B we have
∣∣Rε0

N (f) − Rε0 (f)
∣∣ <

∆
4 . We define N0 = max(N1, N2). Then, from these two equations we conclude that for any N > N0

and any f ∈ B |SN (f) − S(f)| < ∆.
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Definition 10.10. (Function class B[−1,1])

Let F = {f | f : [−1, 1] → R}. We say that B ⊆ F is of class B[−1,1] if the following claims hold:

any f ∈ B is differentiable on (−1, 1), for any f ∈ B and α ∈ [−1, 1], |f(α)| ≤ 1 holds, and for any

ε ∈ (−1, 1) the set {f ′ |f ∈ B} is uniformly bounded on [−1 + ε, 1 − ε].

Lemma 10.11. Consider B of class B[−1,1]. Then {f |
[0,1]

| f ∈ B} is of class B[0,1].

Lemma 10.12. Consider B of class B[−1,1]. Then {f(−x) | f ∈ B} is of class B[−1,1].

Lemma 10.13. (Convergence lemma)

Let B of class B[−1,1]. For any ∆ > 0, there exists N0 ∈ N such that for any N > N0 and any

f ∈ B, we have

∣∣∣∣∣∣∣∣

2

2N + 1

N∑

n=−N

f
(

2n
2N+1

)

√
1 −

(
2n

2N+1

)2
−
∫ 1

−1

f(α)√
1 − α2

dα

∣∣∣∣∣∣∣∣
< ∆. (10.22)

Proof. Denote Ai,j
∆
= 2

2N+1

∑j
n=i

f( 2n
2N+1)q

1−( 2n
2N+1)

2
and Bc,d

∆
=
∫ d
c

f(α)√
1−α2

dα.

From Lemmas 10.11 and 10.9 there exists N1 ∈ N such that for any N > N1 and any f ∈ B∣∣∣A0,N − f(0)
2N+1 − B0,1

∣∣∣ < ∆
2 . Consider the set of functions {f(−x) | f(x) ∈ B}. By Lemmas 10.12, 10.11

and 10.9 there exists N2 ∈ N such that for any N > N2 and any f ∈ B
′ we have

∣∣∣A0,N − f(0)
2N+1 − B0,1

∣∣∣ <

∆
2 . Therefore, for any N > N2 and any f ∈ B we have

∣∣∣∣∣
2

2N+1

∑N
n=0

f(− 2n
2N+1)q

1−( 2n
2N+1)

2
− f(0)

2N+1 −
∫ 1
0

f(−α)√
1−α2

dα

∣∣∣∣∣ <

∆
2 . Since

∫ 1
0

f(−α)√
1−α2

dα =
∫ 0
−1

f(α)√
1−α2

dα we can rewrite this equation as
∣∣∣A−N,0 − f(0)

2N+1 − B−1,0

∣∣∣ <
∆
2 . By the application of the triangle inequality to the left-hand side of Eq. (10.22), we get

|A−N,N − B−1,1| ≤
∣∣∣A0,N − f(0)

2N+1 − B0,1

∣∣∣ +
∣∣∣A−N,0 − f(0)

2N+1 − B−1,0

∣∣∣. We choose N0 = max(N1, N2).

Then, from the above equations we get that for any N > N0 and any f ∈ B, |A−N,N − B−1,1| < ∆.

10.2 Convergence of KN(x, y, x′, y′) (Theorem 5.5)

In this section, we prove Theorem 5.5. It is sufficient to prove this theorem for ω0 = 1. The proof for

an arbitrary ω0 can be then obtained by scaling x, y, x′ and y′ by ω0.

The function fα(x, y, x′, y′) (Eq. (5.3)) is complex valued. To prove Theorem 5.5 it is thus sufficient

to show that for any ε > 0 there exists N0 such that for any N > N0 and any x, y, x′ and y′ in Ω

∣∣∣∣∣
2

M

N∑

n=−N

ℜe

[
f

(
2n

M
; x, y, x′, y′

)]
−
∫ 1

−1
ℜe
[
fα(x, y, x′, y′)

]
dα

∣∣∣∣∣ < ε/
√

2 (10.23)

and that similar inequality holds for the imaginary part of fα(x, y, x′, y′).
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Lemma 10.14.

Let Ω ⊂ R
2 be a bounded set. Then, for a fixed ε ∈ (0, 1) there are constants C1 and C2 such that

∣∣∣∣∣

(
∂ cos(xβ + |y|

√
1 − β2)

∂β

)
(α)

∣∣∣∣∣ < C1 and

∣∣∣∣∣

(
∂ sin(xβ + |y|

√
1 − β2)

∂β

)
(α)

∣∣∣∣∣ < C2 (10.24)

for arbitrary (x, y) ∈ Ω and α ∈ [−1 + ε, 1 − ε].

Proof.

Denote fx,y(α)
∆
= cos(xα+|y|

√
1 − α2). Its derivative is

(
∂ fx,y(β)

∂β

)
(α) = sin(xα+|y|

√
1−α2)·(|y|α−x

√
1−α2)√

1−α2
.

Since | sin(x)| ≤ 1 for any x, we have
∣∣∣
(

∂ fx,y(β)
∂β

)
(α)
∣∣∣ ≤

∣∣∣ |y|α−x
√

1−α2
√

1−α2

∣∣∣. Applying the triangle inequality

and using the fact that |α| ≤ 1 we have
∣∣∣
(

∂ fx,y(β)
∂β

)
(α)
∣∣∣ ≤ |y|+|x|√

1−α2
. Since Ω is a bounded set there exists

A > 0 such that Ω ⊆ [−A, A] × [−A, A], and since |α| ≤ 1 − ε we have
∣∣∣
(

∂ fx,y(β)
∂β

)
(α)
∣∣∣ ≤ 2A√

1−(1−ε)2
.

The constant C1 = 2A√
1−(1−ε)2

satisfies the left equation in Eq. (10.24) for arbitrary (x, y) ∈ Ω and

α ∈ [−1 + ε, 1 − ε]. The proof of the second inequality in Eq. (10.24) is similar.

Lemma 10.15.

Let Ω ⊆ R
4 be a bounded set. Consider the two sets of functions

B1 = {cos(α(x′ − x) +
√

1 − α2|y′ − y|) | (x, y, x′, y′) ∈ Ω} (10.25)

B2 = {sin(α(x′ − x) +
√

1 − α2|y′ − y|) | (x, y, x′, y′) ∈ Ω}. (10.26)

Then, both B1 and B2 are of class B[−1,1].

Proof.

For any (x, y, x′, y′) ∈ Ω, cos(α(x′ − x) +
√

1 − α2|y′ − y|) is differentiable on (−1, 1) as a function

of α. For any (x, y, x′, y′) ∈ Ω, α ∈ [−1, 1], the absolute value of the function is bounded by 1. Since

Ω is bounded, the set {(x′ − x, y′ − y) | x, y, x′, y′ ∈ Ω} is bounded. Therefore, by Lemma 10.14 for

any ε ∈ (0, 1) the set of functions

{
∂ cos(α(x′−x)+

√
1−α2|y′−y|)

∂α

∣∣∣∣ (x, y, x′, y′) ∈ Ω

}
is uniformly bounded

on [−1 + ε, 1 − ε]. Therefore, B1 satisfies the requirements of Lemma 10.13. The proof for B2 is

similar.

By applying Lemma 10.13 to the set B1 from Eq. (10.25), we obtain Eq. (10.23). By applying

Lemma 10.13 to B2 we obtain a similar inequality for the imaginary part of fα(x, y, x′, y′). This

completes the proof of Theorem 5.5.
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