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Abstract

Fault localization for SDN becomes one of the most critical but difficult tasks. Existing tools typically only address a
specific part of the problem (e.g., control plane verification, flow checker). In this paper, we propose a new approach
to tackle SDN fault localization by automatically Modeling via Policy Inference (called MPI) the causality between SDN
faults and their symptoms to a belief network. In the MP/ system, a service oriented high level policy language is used
to specify network services provisioned between end nodes. MPI parses each service provisioning policy to a logical
policy view, which consists of a pair of logical end nodes, a traffic pattern specification, and a list of required network
functions (or a service function chain). An SDN controller takes the policies from multiple parties and provisions the

and agile SDN network.
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requested services on its orchestrated SDN network. MP/ queries the controller about the network topology and
retrieves flow rules from all SDN switches. MPI maps the policy view to the corresponding implementation view, in
which all the logical components in the policy view are mapped to the actual system components along with the
actual network topology. Referring to the component causality graph templates derived from SDN reference model,
the implementation view of the current running network services can be modeled as a belief network. A heuristic
fault reasoning algorithm is adopted to search for the most likely root causes. MPI has been evaluated in both a
simulation environment and a real network system for its accuracy and efficiency. The evaluation shows that MP/is a
highly scalable, effective and flexible modeling approach to tackle fault localization challenges in a highly dynamic

1 Introduction

Software-defined infrastructure is revolutionizing the way
that large-scale data centers and service provider net-
works are built and operated [1]. This revolution is
driven by the fast-paced improvements of virtualization
technologies and programmability interfaces addressing
both network and computing resources. High reliability
in Software-Defined Networks (SDN) becomes a fun-
damental requirement as being deployed for high crit-
ical network infrastructures, such as data centers and
WAN:S [2, 3].

SDN provides new abstractions and open interfaces to
enable network programmability to multiple SDN lay-
ers, including the high-level policy layer as well as the
logical and physical control layers. On the other hand,
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Network virtualization technologies shift traditional net-
work functions to virtual ones called Virtual Network
Functions (VNF), and embed them into commoditized
hardware. Comparing to the common operations in tra-
ditional network environment, SDN paradigm empow-
ers network operators (1) deploy, configure and update
network functions in a much faster and easier way; (2)
maximize resource utilization when using commodity
hardware and software-based functions; and (3) dynam-
ically scale resources based on service requirements and
traffic patterns.

The emergence of SDN provides both an opportu-
nity and a challenge for all aspects of network manage-
ment, especially for fault localization. In a traditional
network, it is practically impossible to unambiguously
discern the intent of a network operator (or tenant),
which is implicitly expressed as the combination of
all protocol configurations over all distributed network
devices. To infer the intent or the expected network
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behavior, one must gather this state from every network
device, understand multiple vendor-specific and protocol-
specific configuration formats, and implement logic to
infer intended network behavior from configuration. In
order to conduct effective network fault localization, a
properly designed network monitoring system needs to
be deployed to collect the status of a set of specific pre-
defined monitored objects and correlate observed net-
work abnormal to its root causes. SDN makes network
flexible and agile. However, these attracting SDN features
also make troubleshooting SDN highly challenging, and
many successfully adopted fault localization techniques
in traditional networks (e.g., Belief Network) become
inapplicable.

One of the attractive promises of cloud service is
cloud automation, which is the capability of service
provisioning to quickly allocate data center resources
in order to accomplish a job or request from cus-
tomers that calls for heavy-duty batch processing.
Many tools available that can automate setting up,
scaling up and down, storing the corresponding
results, and tearing down jobs or requested resources
(e.g., shutting down the pay-as-you-go process) in
cloud.

The main advantage of Software Defined Networks
(SDN) is the separation between control and data for-
warding planes to allow for a flexible management of
the network resources and the network itself. An SDN
network is orchestrated by a logically centralized con-
troller. Moving control logic out of vendor proprietary
hardware and into software enables concise policy speci-
fications and unambiguous understanding on their intent.
Software-Defined Networks (SDN), Network Function
Virtualization (NFV) and cloud automation allow multi-
ple parties (network operators, application admins, cloud
tenants) jointly control network behavior via high-level
network policies. Highly flexible SDNs and various virtu-
alization techniques greatly improve network scalability
and agility.

The new network paradigm also brings unprecedent
challenges on managing a highly dynamic and large scale
SDN network. Among various SDN management tasks,
fault localization is one of the most critical but difficult
tasks [4]. In the context of SDN, faults are any root causes
that trigger the mismatch between underlying network
behavior and high-level network policies. Many tools
[5-10] have been developed to facilitate SDN fault local-
ization. However, these tools typically only address a spe-
cific part of the problem (e.g., control plane verification,
flow checker).

In this paper, we propose a new approach called MPI
to tackle SDN fault localization by automatically Modeling
via Policy Inference the causality between the faults in SDN
and their symptoms to a belief network, a probabilistic
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graphical model that represents a set of observable symp-
toms and their root causes via a directed acyclic graph
(DAG). In the MPI system, a service oriented high level
policy language is used to specify network services pro-
visioned between end nodes. MPI converts each service
provisioning policy to its Policy View, which consists of
a pair of logical end nodes, a traffic pattern specification,
and a list of required network functions (or a service func-
tion chain). An SDN controller takes the policies from
multiple parties and provisions the requested services on
the controlled SDN network. MPI then queries the con-
troller about the network topology and retrieves flow rules
from all SDN switches. Based on the flow rules and the
configuration of end nodes and network function nodes
(also called network functions for simplicity), MPI maps
the Policy Views to their corresponding Implementation
Views, in which all the logical components in the Pol-
icy Views are mapped to the actual system components
(including physical hardware and logical software compo-
nents) along with the actual network topology. Referring
to the component causality graph templates derived from
SDN reference model, each Implementation View of a
provisioned network service can be modeled to a Ser-
vice Belief Network. According to the physical and logical
relationships among the involved components of each ser-
vice, the Service Belief Networks can be integrated to be
a Comprehensive Belief Network. Finally, a heuristic fault
reasoning algorithm is adopted to search for the most
likely root causes that are the best explanation of the
observed symptoms.
In this paper, we make the following contributions:

e We develop a new service oriented policy language
that can concisely and unambiguously express user
intent in a requested network service, and can be
easily mapped to its actual implementation on an
SDN network.

e We design a practical and feasible approach to
automatically model symptom-fault causality and
develop an algorithm to dynamically construct a
Service Belief Network for each policy (and thus its
defined network service).

® We implement the system and evaluate it for its
accuracy and efficiency in both a simulation
environment and a real network system.

This rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 overviews the MPI
system and briefly introduces its functional modules.
Section 4 describes the policy language used in MPI. Sev-
eral main ideas and their related technical details are pre-
sented in Section 5. We show MPI implementation and its
performance evaluation in Sections 6 and 7, respectively,
Section 8 concludes the paper.
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2 Related work

Fault localization in a traditional network relies on cer-
tain diagnosis model. A dependency graph is commonly
used to represent the relationships among physical and
logical components, as a bridge to correlate root causes
(i.e., faults) with observable symptoms. A dependency
graph can be generated in a relatively static network either
manually or using some automation tools. However, in a
dynamic and elastic network (e.g., network topologies and
services can keep changing in an order of magnitude of
minutes) provisioned via SDN and NFV, the traditional
approach cannot meet the requirement for achieving effi-
cient and accurate network fault localization.

In the following, we first briefly review several conven-
tional fault localizations techniques built upon bipartite
causality graphs. Then we discuss the efforts developed
for SDN troubleshooting. Finally, we highlight the differ-
ence of our proposed MPI approach.

2.1 Bipartite causality graphs

In the past, numerous paradigms were proposed upon
which fault localization techniques were based. These
paradigms derive from different areas of computer sci-
ence, including techniques derived from the field of artifi-
cial intelligence (rule-, model-, and case-based reasoning
tools as well as decision trees, and neural networks),
model-traversing techniques, graph-theoretic techniques,
and the codebook approach.

Among those techniques, a bipartite causality graph is
a special form of a fault propagation model that encodes
direct causal relationships among faults and symptoms.
Many fault localization techniques proposed in the litera-
ture [11-13] use bipartite causality graphs.

One of the techniques tailored toward a bipartite causal-
ity graph based fault propagation model is Active Inte-
grated fault Reasoning (AIR) [14], which is designed to
minimize the intrusiveness of investigation actions (e.g.,
probings) via incrementally enhancing the fault hypoth-
esis and optimizing the investigation action selection
process. AIR is incremental, which allows a network
administrator to initiate recovery actions sooner, and
allows additional testing procedures to be performed.
The fact that multiple alternative hypotheses are avail-
able makes it easier to replace a solution when the most
probable one proves to be incorrect.

2.2 SDN troubleshooting

SDN as a relatively new network paradigm has changed
the way how a network service could be defined and
deployed. We all hope SDN can make our network more
predictable, controllable and manageable. There are sev-
eral tools developed to evaluate the forwarding behavior
of data plane, whereby it ensures that the data plane’s for-
warding behavior is as specified by the network policy.
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Please note that fault localization is important even in a
self-healing SDN system [15] to maintain the self healing
capability in the future.

2.2.1 SDN data plane testing

ATPG [8], an automatic test packet generation tool, reads
router configurations to create a network model. This
model is traversed in order to generate a minimum
amount of testing packets such that each link in the net-
work is minimally tested once and maximally every rule
is traversed once. The main goal of ATPG is to detect
network failures in a stable state and not during policy
changes.

NetSight [6] offers a platform which records packet his-
tories and enables applications to retrieve packet histories
of interest. The authors implemented several applications
on top of NetSight that automatically retrieve the packet
histories leading to specified events, e.g., reachability
errors or loops

Lebrun et al. [16] present an expressive requirement
formalization language called Data Path Requirement
Language (DPRL) that extends the Flow-based Manage-
ment Language (FML) [17]. DPRL supports arbitrary
constraints on data paths. The authors implement a
requirement checker that automatically generates and
injects test packets in order to verify the specified path
behavior. However, the developed tool is used to conduct
pre-deployment tests in an emulated network.

OFRewind [10] enables recording and replaying pack-
ets collected in an SDN network. This allows to reproduce
network errors and localize problems. OFRewind pro-
vides an interface for controlling the topology, timeline
and specifying traffic for collecting and replaying in a
debug run.

2.2.2 Verification of network policy in SDN

In network invariant checking, network requirements
(e.g., reachability) are specified. The debugging tools then
verify that the network policy does not circumvent those
requirements. However, the actual network behavior is
never tested. This is in contrast to the presented MPI tool
that compares the policy state with the actual network
forwarding behavior. We assume that the network policy
is semantically correct. The network invariant checking
tools on the other hand assume that the data plane is
working correctly. By only using network invariant check-
ing the network failures would never have been discov-
ered.

Header space analysis [5] is a general and protocol-
agnostic framework. It allows to statically check network
specifications and configurations to identify network
requirements such as reachability failures or forwarding
loops. The authors model the network topology as well
as the forwarding behavior of each network box as a



Tang et al. Journal of Internet Services and Applications (2016) 7:1

function. This function allows them to track headers as
they are transformed by the successive network boxes
along the path.

Anteater [9] collects the network topology and the for-
warding information from the network devices. The oper-
ator may then specify an invariant which is verified by
Anteater by using a boolean satisfiability problem (SAT)
solver.

Various formal methods based verification tools are
developed to check the status after modeling network
behaviors using a binary logic. ConfigChecker [18] con-
vert network rules (configuration and forwarding rules
respectively) into boolean expressions in order to check
network invariants. They use Binary Decision Diagram
(BDD) to model the network state, and run queries using
Computation Tree Logic (CTL). VeriFlow [19] uses graph
search techniques to verify network-wide invariants, and
handles dynamic changes in real time. Moreover, unlike
previous solutions, VeriFlow can prevent problems from
hitting the forwarding plane. It is designed as a layer
between the controller and the network devices. VeriFlow
intersects each rule installation message issued by the
controller. It then checks the network topology for a speci-
fied network invariant. Only if the invariant is guaranteed,
the new rule is installed.

NetPlumber [7] is closely related to VeriFlow. It also
checks network updates in real-time. Contrary to Veri-
Flow that only allows for the verification of forwarding
actions, NetPlumber additionally verifies arbitrary header
modifications.

Beckett et al. [20] implemented an assertion language
for SDN applications on top of VeriFlow. The assertion
language allows verifying and debugging of SDN applica-
tions with dynamically changing verification conditions.
Thus, they enable the operator to describe the desired
behavior of the evolution of the network rather than a
fixed network behavior
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2.3 Symptom-fault modeling via policy inference
SDN brings both new challenges and opportunities to
the task of fault localization. This work we proposed in
MPI advances the state of the art by describing a self-
modeling based fault localization to discover at runtime
the dependency model of SDN/NFV infrastructures via
policy inference. MPI uses component dependency graph
templates to automatically model end-to-end services into
a symptom-fault bipartite belief network. MPI assumes a
continuous changing network topology and service provi-
sioning, and update the belief network by newly obtained
beliefs (i.e., verified faults and their related symptoms).
Due to the flexibility and agility in SDN, pre-creating
fault diagnosis model becomes infeasible for SDN. Com-
paring to the related work above, The main contribution
of MPI is the dynamic and automatic creation of the belief
network based fault diagnosis model directly derived from
high-level policies.

3 System overview

Figure 1 provides an overview of the MPI, including
its system function modules and their interactions with
external components. In this paper, a policy from a stake-
holder may consist of one or multiple policy rules, and
each policy rule defines an end-to-end network service.
In the following paper, we may use policy and policy rule
interchangeably if no ambiguity in the context.

In an SDN network, the network behavior is controlled
by a set of high-level policy rules. In MPI, each policy
rule describes an end-to-end network service. All poli-
cies are submitted to an SDN controller, which translates
them into the corresponding flow rules to specific SDN
switches in order to provision the requested services. At
the meanwhile, the same policies are fed to Policy Parser,
a functional module in MPI.

Policy Parser interprets each policy defined network
service to its Policy View (Fig. 3b), which consists of a
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pair of logical end nodes, traffic pattern specification, and
a list of required network functions (or a service function
chain). Network Functions are required mainly for meet-
ing with various requirements in network connectivity,
security and performance.

A Policy View is further passed to the System Map-
ping module in MPI. Thanks to the central view from
the controller, the System Mapping module could query
the controller and map the Policy View of a network ser-
vice to its Implementation View (Fig. 3c), in which all the
logical components described in a policy are mapped to
the actual system components (including physical hard-
ware and logical software components) with the actual
underlying network topology.

Using component causality graph templates derived
from the SDN reference model, the Belief Construction
module models each service provisioning policy to the
corresponding Service Belief Network (Fig. 3d). Accord-
ing to the physical and logical relationships among the
involved components of each service, multiple Service
Belief Networks can be integrated to a Comprehensive
Belief Network, where the observations related to each
individual service can be accumulated to amplify their
causal relationship to the root causes. Previous fault local-
ization experience (i.e., the verified faults and their related
symptoms) is fed back to the Belief Construction module
to update the existing belief network.

The purpose of the entire SDN paradigm is to translate
high-level human intent to low-level network behavior via
multiple logical and physical layers, and each layer per-
forms part of this translation process [21]. The layering
used in SDN is to present different levels of abstraction
for the purpose of virtualization and central control. In
MPI, we adopt the commonly used 5-layer SDN reference
model as shown in Fig. 4, which is essentially the same as
the one proposed in [21]. The task of translation between
layers is conducted by various software components
[5-10].

The basic assumption in SDN fault localization is: as
long as a high-level policy is defined correctly, trans-
lated correctly across layers, and executed correctly by
hardware, then the network should behave normally and
the related service should be provisioned correctly. In
other words, any mistranslation between layers by either
faulty software components or faulty hardware compo-
nents could result to network misbehavior or a failure of
service provisioning. The translation and execution result
by each layer is presented by a corresponding network
state (e.g., flow rules in a flow table). In MPI, two types of
symptoms are used to identify and reason about network
faults: mismatched states (i.e., high-level specification or
low-level configuration of network behavior) between lay-
ers, and system logs of different hardware components
(e.g., virtual or physical interfaces, links, disks).
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The verifiable symptoms related to network state mis-
matching are sent as checkpoints to the external Consis-
tency Checker, in which several off-the-shelf tools (e.g.,
VeriFlow [19], Anteater [9]) are used to verify the related
symptoms. Actively (i.e., from Consistency Checker) and
passively (i.e., from system logs) observed symptoms are
provided to the Fault Reasoning & Verification module
to identify the most likely root causes, which are further
verified later through some testing tools (e.g., ATPG [8]).

4 Service-oriented policy language

For a network service in an SDN network, in additional
to providing basic network connectivity between end
nodes, it often needs to meet specific user requirements,
which are primarily related to network security and per-
formance. Various Network Functions (NFs) are designed
for satisfying user requirements. Commonly used network
functions include NAT (network address translation), FW
(firewall), BC (byte counter), LB (load balancing), DPI
(deep packet inspection), and many others provided as
value-added services (VAS) in a network infrastructure
(e.g., in cloud data centers). Recently, the concept of Ser-
vice Function Chaining (SFC) [22] is proposed as a traffic
steering technology in directing the traffic flows of net-
work functions.

In the following, we discuss a policy language used in
MPI to facilitate service provisioning and fault localiza-
tion. As discussion above, we believe that a high-level
network service policy language should have the following
features to meet the requirements of defining and manag-
ing network policies in a large-scale enterprise network:

e End-to-end service oriented: The language should
focus the user’s intent on the network requirements of
network services rather than low-level configurations.

e Modular and reusable: The language objects are self
contained and can be reused and extended to scale to
large networks.

e Conlflict free: The compiled policies should not have
conflicts for a single user (intra-policy) or across
multiple users (inter-policy).

Figure 2 shows the grammar of MPI policy language in
EBNF syntax. The recent research [23] shows that high-
level policies for SDN networks could be categorized into
three types of elements: end nodes (ENs), network func-
tions (NFs), and traffic specifications or patterns (TPs)
between these elements.

Our policy language is conflict free with the help of the
concept of logical user collision domain, which can clearly
restrict the scope of policy effect. However, the design of
conflict free language is not the focus of this work, and
thus not presented here. It is worth noting that poten-
tial semantic conflicts from different stakeholders’ policies
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<endnode_def> ::= "endnode" <endnode_name> "=['<endnode> { " <endnode> }'|"
<endnode> ::= <ip_address> | <ip_range>| <endnode_name> { <operator> <endnode> }

<traffic> ::= <protocol> " ['<predicates>"]"

<nf>::= <nf_name> "= match{"<field_name> <cmp_op> <value>{","<field_name> <cmp_op> <value>}"}"
"action{"<field_name><act_op> <value>{" "<field_name> <act_op> <value>}"}

<protocol> ::="tcp” | "udp” | "icmp" | "ip"

<Cmp_op> 1= "= | "7 [ "=t | " [ Te=" | e
<act_op> ::="modify" | "inc" | "dec"
<predicates> ::= <predicate> { ("," | "OR") <predicate>

<predicate> ::= <field_name> <operator> <value>

<service> ::= <service_name> "="<endnode>"." <traffic>"."<sfc>"."<endnode>

<sfc> = {<nf>}

Fig. 2 The syntax of MP/ policy language

can also be reconciled [23]. In this paper, we assume there
is no conflict among different policies.

There are several important elements in the policy lan-
guage: endnode, network function, traffic, and service. A
service is composed of two logical endnodes and a traf-
fic pattern between them with optionally a set of netowrk
functions. Next, we elaborate each language element with
examples.

Endnode An endnode is a logical unit which contains
the network addresses of entities (workstations, servers
and network devices) that share the same pattern (e.g., in
the same subnet or providing same type of server). The
entities in one endhost can come from different physi-
cal subnets. An endhost can be defined by a set of IP
ranges, IP addresses with wildcard or host names. Also,
one endhost can be constructed by combining other end-
host. An endhost can be viewed as a special set contains
only network address, so we can apply the set operations
on endhost: intersection (*), union (+), subtraction (-).
The syntax of endhost definitions shown in Fig. 2 is in
EBNF. As usual square braces indicate optional items and
curly braces indicate potentially empty repetition. The
following example defines a endhost labmachines:

labmachines =[172.16.1.1 — 172.16.1.100]
webserver =[10.0.0.1 — 10.0.0.2]

Traffic A traffic is defined as the combination of a pro-
tocol name and a set of properties associated with that
protocol. Each property of a protocol is a predicate which
is defined by the field name in that protocol header,
the operator and value of that field. The field names in
common protocol headers have been predefined in MPI
language and the supporting protocols can be extended
if needed in the future. Predicates can be linked together
using the logical operator AND and OR, where the comma
represents AND. The syntax of service definition is shown
in Fig. 2.

The policy language defines high-level users’ intent,
which can be interpreted by a network application and

instantiated by an SDN controller. The SDN controller
will populate Flow Tables of selected SDN switches to
connect all required network functions to implement
the demanded network services. According to the corre-
sponding network service graph, which is a list of service
functions that must be traversed along with a list of
required intermediate switches.

For example, tcp.[ port = 80] means http traffic. One
service can represent multiple traffic flows in the network
as long as those traffic flows can satisfy the conditions
defined in the properties set. For example, tcp.[ port >
2045, port < 3078] represents all tcp traffics with destina-
tion port between 2045 and 3078. We can define the yahoo
instant messaging (yahoo msg) and Bit Torrent (torrent)
service as follow:

trafficyahoo,,sg = tcp.[ port = 5050],
torrent = tcp.[ port >= 6881, port <= 6999];
http = tcp.[ port = 80);

NF A nf (network function) is defined as the combination
of a “match” operation and an “action” operation. For
example, we can define a commercial L7-aware network
function load balancer (LB) as “match(dstip = Web.virtIP)
modify(dstip = Web.RIPs)’, where Web.RIPs is a set of real
IP addresses of destination web server EPs and Web.virtIP
is the exposed virtual address of the web service. We can
define the network function Load Balancer as follow:

nf LB = match(dstip = 192.168.1.1)
action(dstip modify 10.0.0.1, 10.0.0.2)

Service A service is a network service provisioning
between two end nodes with a specified traffic pattern
and a service function chain consisting of a set of various
network functions. For example, a web service between
“labmachines” and “webserver” through a “LB” via TCP
port 80 is simply presented as:

webservice = labmachines.http.LB.webserver
A policy rule from a stakeholder is essentially a service

specifications, and structured and expressed as a con-
ceptual network diagram. One one hand, such design
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in the policy language facilitates the mapping from the
high-level service policy to the real provisioning net-
work system. On the other hand, such a policy language
has been proven to be an applicable policy language for
network service provisioning in a data center or WAN
network [23]. In the following, we focus on showing a
feasible approach to automating the process of fault local-
ization in a highly flexible, dynamic and large scale SDN
network.

5 System design

MPI aims to explore a practically feasible solution to help
network admins to automate network troubleshooting by
automatically modeling the causality relationship between
network faults in SDN and their related symptoms. The
challenge we are tackling is to localize network faults in
a large-scale SDN network with: (1) a high-level policy
driven and centrally controlled network architecture; and
(2) the need for dynamic and agile service provisioning.
MPI uses Belief Network [24] to model the correlation
between the symptoms (e.g., state mismatching) and the
corresponding hardware and software faults in an SDN
network. In the following, we elaborate the major steps
used in MPI.

5.1 Mapping the state views across layers

Since the Policy View abstraction (e.g., service, endnodes,
traffic and nf) have been incorporated into the MPI pol-
icy language (Fig. 3a), it is straightforward for the Policy
Parser module to parse a policy specified network service
to its corresponding Policy View as shown in Fig. 3b.
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The System Mapping module in MPI is to map a given
Policy View to its actual implementation in a network.
The System Mapping module treats a controller as a black
box, and thus its function doesn’t rely on a specific con-
troller implementation. The System Mapping module first
queries the controller about the network topology and the
forwarding rules of each switch (via the flow table on each
switch). The controller responds this request by providing
the network topology in a specific topology data struc-
ture depending on the actual controller implementation.
For example, OpenDaylight [25] and a Floodlight [26] con-
troller provide two different data structures, differing in
the number and type of fields and the field names.

We adopt the same algorithm as [7] to create the plumb-
ing graph. A plumbing graph captures all possible paths of
flows forwarded by SDN switches through an entire net-
work. Nodes in the graph correspond to the forwarding
rules in the network and directed edges represent the next
hop dependency of these rules.

The configuration (e.g., IP addresses, locations) related
to the endnodes and Network Functions are provided
to the System Mapping module. In the case when the
endnodes and Network Function (NF) nodes are config-
ured (e.g., using DHCP) or provisioned (e.g., by the con-
troller) dynamically, the System Mapping module would
query the related service nodes (e.g., DHCP server, con-
troller) about the related configuration information.

In order to map a Policy View to its Implementation
View, the System Mapping module attaches the source
(e.g., labmachines) and sink (e.g., webserver) end nodes
from each provisioned service as well as all NF nodes

(a) Policy Language Elements  endnode

(b) Policy View

(c) Implementation View
PC1 ?

LabMachines

(d) Belief Network (Partial)

Fig. 3 From policy to belief network

TCP/80
[ LobMachines & 5

Device IDs: Controller&->0; PC1<>1; PC2€>2; SW1<2>3; SW26 24, LBE 5, Web16>6; Web2&->7

endnode

traffic nf/sfc

) S Web1
/%Q ‘
. :\“«’Webz
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(e.g., LB) onto the plumbing graph, and then identify
the necessary pipe(s) (i.e., the network topology for this
service) connecting all these endnodes and NF nodes.
The Implementation View renders the service topology
with all related nodes (e.g., endnodes, NF nodes) and the
intermediate forwarding switches as an example shown
in Fig. 3c.

5.2 SDN symptom-fault reference model

SDN paradigm presents a new logical layering structure,
and has changed the original dependency relationships
among network components defined in OSI network
model. In the new SDN model, several original OSI layers
are merged (e.g., data forwarding could be jointly based on
information from data link, network, and transport lay-
ers), and additional new layers are added (e.g., network
hypervisor layer). Moreover, the original fully distributed
network paradigm has shifted to a central (at least log-
ically) control mechanism. Thus, network behavior in
SDN could be related only to specific network nodes, or
orchestrated by the central controller.

In MPI, we develop an SDN Symptom-Fault Reference
Model based on a commonly referred SDN architectural
reference [21, 27] as shown in Fig. 4. This model depicts an
SDN network into five architectural State Layers (SL), and
in parallel, five Root Cause (i.e., Fault) Layers (FL). The
five architectural State Layers from the top down direction
are: Policy State Layer (SL); Logical State Layer (SL);
Physical State Layer (SL}); Device State Layer (SL}); and
Hardware State Layer (SLY). Here, ¢ is the SDN controller,
and # represents any SDN switch or virtual network func-
tion box in a SDN system. The five Fault Layers from the
top down direction are: Application Fault (Ff); NetHyper-
visor Fault (F); NetOS Fault (FY); Firmware Fault (F});
and Hardware Fault (F}).

It has been observed [4] that most errors in an SDN
network are mistranslations between architectural state
layers. In the context of this work, we define a fault in SDN
as a violation at certain layer of the user intent defined by
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a high-level policy, which could be caused by both hard-
ware issues (e.g., malfunctioning interface) and/or policy
misinterpretation by certain software component(s).

The symptoms can be observed accordingly by checking
the inconsistency between the behavior at a lower layer
and the user intent carried from a higher layer. There are
several tools [5, 7-9] developed to check the intent and
state inconsistency between layers. We classify the faults
in SDN on five different state layers on a device n. We
use F = {fl”} (1 < i < 5) to denote the fault set, and
f{" is a faulty component at layer i on device n. We use

S = [SZ} (i < j,1 < i,j < 5) to denote the symptom
set. A symptom s}(i < j) indicates the mismatched states
between a lower fayer i and a higher layer j on device n.
The state (e.g., flow forwarding rules at the Device View
layer) of a layer represents its own interpretation on the
user intent defined in one or more policies passed from its
upper layer.

A symptom can be caused by one or multiple faults in

F. Causality matrix Prys = { p(sg’ i”)} is used to define

causal relationships between a fault f* and a symptom sg‘,

here m, n stand for devices m and n. p (sl’]” i") stands for
the probability that the symptom sg‘ could be observed
when the fault f is localized. If m = 5, it means the
symptom and the fault are related to the same device. If
n = ¢, the device is the controller c. In our current MPI
implementation, both SDN northbound application and
network hypervisor are running on the same server as the
controller.

In MPI, we use several out-the-shelf tools [5-10] to
check the symptoms. The common approach used in
these tools is to model the different network states and
behaviors using a verifiable or computable representation,
such as Binary Decision Diagram (BDD). In the proto-
typed MPI system with the current availability of state
verification tools, we check symptoms 513, 23, $34, S15, and
s25. In this work, we assume the policy defined by a net-
work operator or network tenants is semantically correct.

State Layer (SL) Root Cause (Fault) Layer (FL)

SL";: state at layer i on device n F": fault at layer i on device n

Fs: SONApp

F<: NetHypervisor

SDN Reference Model

Fig. 4 SDN reference model and component causality graph template

Switch Template Causality Graph

Symptom S;: Mismatched(SL;, SL;)

NF Template Causality Graph
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Otherwise, the policy needs to be redeveloped. However,
checking the semantics of a given policy is out of the scope
of this work.

5.3 Causality graph template

In the following, we introduce the concept of causality
graph template, which is essentially a belief network for a
specific type of individual network entity.

A causality graph template is the building block of a
belief network constructed for fault reasoning in a given
SDN network. As defined in a Policy View, we have two
types of network entities: Endnode, Network Function
node (i.e., a machine providing certain network function)
or simply NF. Once a Policy View mapped to its Imple-
mentation View, there are other two types of entities
introduced, namely Switch and Controller. In this paper,
we concentrate on these four network entities only. A nice
feature in MPI is its extensibility. If a new network entity
introduced later to SDN paradigm, it can be modeled and
added to the system as a new causality graph template.

A causality graph template represents the causal corre-
lation between symptoms and faults for a specific network
entity. As an example, we describe how to construct a
causality graph template for NF as shown in Fig. 4. Please
note that a causality graph template for a SDN switch is
constructed differently due to the additional involved log-
ical layers. For instance, symptom s;5 could be caused by
mismatched state translations between any two layers in
the context of SDN switches.

In the current MPI implementation, we choose to
observe two types of symptoms s13 and s15 for a NF entity.
Therefore, we add two symptom vertices s;2 and s15 to the
template. Since when s;9 observed, the root causes could
be either f; or f3, or both. Accordingly, we add two fault
vertices to the template with one edge between s, and f;
and another edge between s12 and f to indicate their cor-
relation. Similarly, if s;5 observed, the root causes could
be any combinations among fi, f, and f3. Correspond-
ingly, three edges between s15 and fi, f2, f3 are added to the
template, respectively.

It is worth noting that the granularity of the faults and
their observable symptoms only depends on the SDN
symptom-fault reference model, and the availability of
various state mismatching (i.e., symptom) checking tools.
The model can be extended and continuously updated to
improve its accuracy and achieve finer diagnosing granu-

larity.

5.4 Constructing belief network

From the Implementation View of a service, we firstly
find all relevant network components. Then referring to
the causality graph template of each type of components,
we create the corresponding belief network instance for
each network component. A causality graph template
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represents a local perspective of symptom-fault causality
related a specific network entity. A global or compre-
hensive belief network can be constructed by connecting
all related belief network instances of all components
based on the architectural and topological relationships
among software and hardware components from a single
or multiple network entities.

From physical perspective, there are essentially three
types direct connectivity between network entities: an end
node and a switch; one switch to another switch; and one
switch to one NF. From architectural standpoint, all symp-
toms s;3, s;4 and s;5 (i < 3) from different entities indicate
their common correlation to some central logical compo-
nents (e.g., a controller, a policy server) that may be on the
same physical hardware.

The following shows the algorithm to construct a ser-
vice belief network for a specific service i specified by a
given policy rule P.

In Algorithm 1, for each network component or entity
(including endnodes, network functions, and interme-
diate switches) shown in the implementation view, we
construct a component belief network based the corre-
sponding causality graph template (line 1-5); and then
based on the logical and topological relationships among
the entities, construct a Service Belief Network (line 6-10).
Further based on the logical and topological relationships
among the services, multiple Service Belief Networks can
be integrated to be a Comprehensive Belief Network.

There are many heuristic algorithms developed to
search for the most likely root causes in a given bipartite
belief network. In MPI, we adopt our previously developed
solution [14] to model the process of root cause selection
as a weighted set-cover problem.

6 Prototype

The MPI prototype system is implemented in Python 2.7
and Erlang 16.2.1 [28]. As an extension to Pyretic [29], we
use open source Python packages for mapping different
views across layers. For concurrently parsing multiple

Algorithm 1 Service belief network construction

Require: The implementation view IV}, of service i specified
by a policy rule P
1: for all entity ¢; € IV, do
2 tj = getType(e;)
3 bnj = instanceOfCausality Template(t;)
4: end for
5: find all adjacent entity pairs EP = {p, ), =< e, ep >}
6: for all entity pair p,; € EP do
7 ctyp = getConnectionType(pg,p)
8 bn = joinCausalityTemplate(ct,p, bng, bny)
9: end for
10: merge all common control entities in bn
11: return Service Belief Network bn; for service i
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policies from different stakeholders, Open source func-
tional programming language Erlang is used as a backend
engine for belief network construction.

In this section, we describe two key implementation
challenges of our design. We start with a description of
the symptom monitoring module. Then we provide some
details on the population of prior and conditional prob-
abilities in a Service Belief Network, and the incremental
belief updating over a deployed SDN infrastructure.

As MPI starts the fault localization process based on
the observation of symptoms over the related network
entities (e.g., switches, end hosts, NF nodes) according to
the Implementation View of the service provisioning poli-
cies, it is crucial to tradeoff the overhead and performance
of such a fault localization process triggered by observ-
ing symptoms. MPI starts with less intrusive actions on
coarse-grained symptoms by comparing the view of the
network state offered by a logical centralized controller
to the descriptive high level policy. MPI uses a config-
urable and adaptable timer to control the frequency of
verification actions to tradeoff the intrusiveness and fault
detection efficiency.

It is non-trivial to obtain network statistics and populate
the belief network with the prior probabilities of identifi-
able components (both hardware and software) and their
conditional probabilities of observable symptoms given
related faulty components. The bipartite belief network
can be constructed according to the implementation view
of a given policy. The prior failure probability of a type
of hardware (e.g., port, link) or software (e.g., POX, SDN
apps) is computed by dividing the number of compo-
nents of a given type that observe failures by the total
component population of the given type. This gives the
probability of failure in a selected measurement period
(e.g., one month, six months, or one year). The conditional
probability p(s|f) between a fault f and an observable
symptom s is not easy to obtain. It is possible some-
times to evaluate conditional probabilities from empirical
data obtained from the past behavior of a network ser-
vice provider. In our prototype, we compute p(s|f) based
on Bayesian formula: p(s|f) = p(fls) x p(s)/p(f). p(fls)
is the posterior probability that shows how likely a fault
f occurred if a symptom s observed. p(s) is the likeli-
hood a symptom s may be observed. At the initial phase,
MPI assigns identical initial probabilities to all unknown
objects based on Principle of Indifference [30]. The infor-
mation of verified faults and observed symptoms from the
current fault localization process is used to update the
belief probabilities to increase the accuracy of the model.

7 System evaluation

In this section, we present performance results of our MPI
implementation. For our evaluations, MPI is deployed on
a Dell Optiplex 9020 machine with an Intel Core i7-4790
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Processor Quad Core at 3.6 GHz and 32 GB of RAM
running Linux kernel 3.13.0.

We emulate switches and hosts with mininet 2.1.0 and
openvswitch 2.0.2 on the machine in order to create a
topology and specify policies between end hosts. Since the
focus here is not to optimally design an SDN network,
the results described use two simple but representative
network topologies: linear and fat tree topologies [2]. For
a test deployment, we randomly generate service provi-
sionings and security policies among end hosts. A POX
controller running on the same machine for MPI to parse
the applied policies.

In our evaluation, we focus on two important aspects of
MPI performance: system overhead and viability. We ver-
ify the system overhead by showing the model construc-
tion time under different scale of networks and policies,
and its fault localization time. We demonstrate MPI is a
viable fault localization approach in SDN via its accuracy
evaluation.

7.1 Belief network construction time

We study the construction time of the modeling algorithm
as a function of (1) the number of network entities (N,),
and (2) the number of policies (N},).

Our primary results show that due to concurrent belief
network construction using Erlang, the runtime overhead
of MPI is linearly increasing even for a network orches-
trated by a very large policy pool. MPI is practical and
scalable, being able to parse and construct belief networks
for up to a thousand of policies in under 100 s that produce
nearly half million correlation edges.

We launched the modeling algorithm (Algorithm 1 for
both linear and fat-tree topologies [2], ranging from 10
up to 5000 network entities. We averaged the construc-
tion time 10 times per topology to obtain more reliable
results. Figure 5 shows a slow linear increase trend in
the growth of constructing time with the number of
network entities for both type of topologies. When the
network size increased 500 times bigger, the construc-
tion time is only increased roughly 10 times longer. Lin-
ear topologies scale better than tree topologies, but in
both cases the modeling time remains less than 100s
seconds.

In addition to the scale of network topologies and poli-
cies, the construction time in MPI is also affected by the
complexity of the network and the policy as shown in
Fig. 5. In general, a network with more complicated inter-
connection and interactions among nodes (e.g., fat-tree
vs. linear topology, with NF nodes vs. without NF nodes),
MPI takes more time to parse a network topology and
map the views. Here, we use different policy update fre-
quencies to represent different levels of network agility,
and validate the impact of network agility on the perfor-
mance of MPI. When given the same set (100 policies as
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shown Fig. 5a and 1000 policies Fig. 5b) of policies, the
construction time is increased 10-30 % on average.

We evaluate the impact of the policy size on the incre-
mental updating agility and the consumed system mem-
ory via another experiment. In this experiment, we use
a typical university campus network topology with 57
routers to create an SDN testbed. Then we dynamically
changing the number of policies from 10 up to 10,000
to check (1) the required system memory for storing
and constructing the belief network based on the policy
input; and (2) the agility of MPI on its required updating
time upon its previous belief network when receiving new
policies.

The evaluation results show that the MPI system con-
sumes more memory when new correlation relationships
introduced by the newly added policies to the constructed
belief network. However, when the increased policies start
reuse the previously formed correlations among system
components, there are less and less memory required and
the reused components increase its exposure to the sys-
tem observation. From our evaluation result as shown
in Fig. 6a, the consumed memory is increased quickly
until the number of policies reach to 400; after that turn-
ing point, the consumed memory still increases but in

much slower pace. In our experiment, MPI only requires
less than 1.3 GB memory when handling 10,000 policies,
which is clearly practically feasible and actually efficient
considering the typical configuration of a modern server.

Another important factor to check is the agility of MPI
in responding to the possible rapid change on the service
provisioning policies. In the same experiment, we intro-
duce 100 new policies each test until reach the maximum
limit 10,000, and measure the time required for updat-
ing the previous constructed belief network. As shown
in Fig. 6b, the updating time is pretty stable around 20s
when paring the addition of new policies. This is because
the random policy generation makes the newly introduced
causality among components close to a constant rate. At
the same time, the concurrency capability introduced by
Erlang also increases the system scalability.

7.2 System viability
We evaluate the viability of MPI using a real SDN system.
In this system, we deploy a controller, four hardware SDN
switches, four software switches, a load balancer, and eight
end hosts and two servers in a linear topology.

In our experiments, we use a known buggy POX load
balancer implementation, and manually inject synthetic
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trigger events and hardware failures to check the viability
of MPI in terms of its detection accuracy and detection
time.

It has been reported that POX applications do not
always check error messages sent by switches rejecting
invalid packet forwarding commands [31], which has been
used to trigger a bug in POX’s load balancer application
when it starts randomly load balancing each subsequent
packet for a given flow over the servers. In our current
prototype, the problem was observed by the symptom s;5,
and pinpointed to the controller quickly in less than 5s
after the problem triggered.

For the injected hardware failure, MPI can detect it
in also less than 5s with 100 % accuracy even when the
system works at its initial phase when the identical ini-
tial probabilities assigned to a constructed Service Belief
Network.

8 Conclusion

Our goal in this work is to explore a feasible approach
called MPI to automate a fault localization process
by automatically modeling symptom-fault causality in
a highly dynamic and large-scale SDN network. Our
approach is suitable to any SDN network topology and
independent from the controller implementation (e.g.
POX or OpenDaylight). The concept of service-oriented
policy and component causality template makes MPI
highly scalable and extensible. Our simulations and real
network experiments show that MPI is a viable and effec-
tive fault localization approach.

In our future work, we will increase the diagnosis gran-
ularity by incorporating more finer-grained network state
checking tools. We also plan to extend the expressive-
ness of the current service language to better represent
high-level user intents.
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