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Abstract A sequential data assimilation approach (SAM)

that incorporates elements of particle filtering with resam-

pling (SIR, Sequential Importance Resampling) is intro-

duced. SAM is applied to the COSMO-DE-EPS, which is an

ensemble prediction system for weather forecasting on

convection-permitting scales. At the convective scale and

beyond, the atmosphere increasingly exhibits non-linear

state space evolutions. For an ensemble-based data assimi-

lation system, this requires both an adequate metric that

quantifies the distance between the observed atmospheric

state and the states simulated by the ensemble members, and

a methodology to counteract filter degeneracy, i.e. the col-

lapse of the simulated state space. We, therefore, propose a

combination of resampling, which accounts for simulated

state space clustering, and nudging. SAM differs from the

classical SIR approach mainly in the weighting applied to the

ensemble members. By keeping cluster representatives

during resampling, the method maintains the potential for

non-linear system state development. With three convective

case studies, we demonstrate that SAM improves forecast

quality compared with the control EPS (EPS without data

assimilation) for the first 5–6 h of forecast.

1 Introduction

In addition to a high-quality model, an accurate image of

the initial state of the weather system based on the obser-

vations and on a weather forecast model (analysis), is a

widely accepted prerequisite for meaningful weather fore-

casts (Talagrand 1997). As shown in Lorenz (1963a, b),

forecast performance additionally depends on flow insta-

bilities, which cause chaotic behaviour and a finite limit of

predictability. Predicted states are then extremely sensitive

both to model formulations and initial state, and differ-

ences among predicted and initial state can amplify during

model integration; this behaviour depends on the weather

situation and can be exponential (Yoden 2007). Moreover,

errors on smaller scales may introduce errors on larger

scales, a behaviour, which is known as the inverse error

cascade (Leith 1971). Thus the on-going spatial resolution

enhancements of weather forecast models, especially for

short-range weather forecasting, may also lead to increas-

ing forecast errors because of the additionally simulated

small-scale processes; an example is the necessity of new

radiation parameterisation schemes in case of high reso-

lution (Müller and Scherer 2005). At the synoptic scale,

prediction errors are usually assumed to be Gaussian-dis-

tributed. At higher resolutions many processes are simu-

lated directly—instead of being parameterised—and

exhibit increasingly non-linear behaviour, e.g. convective

events, which often seem to happen in a quasi-random
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fashion. The connection between spatial scale and predic-

tion skill is evident in many theoretical and experimental

studies (Lorenz 1969; Zepeda-Arce et al. 2000; de Elia

et al. 2002; Casati et al. 2004).

The Kalman Filter (KF) provides a variance-minimising

solution, but only for quasi-linear system evolutions (Jaz-

winski 1970). Due to non-linearities, an initially Gaussian

probability density function (PDF) will evolve into a non-

Gaussian PDF. To handle this behaviour various extensions

of the Kalman filter have been formulated; they are,

however, not optimal (Kalman 1960; Dee 2005).

The so-called Extended Kalman Filter (EKF) can handle

weakly non-linear model behaviour. The error is assumed

to evolve according to the tangent linear model, which is

derived from the perfect model (van Leeuwen 2003). The

assumption of a perfect model also applies to 4-dimen-

sional variational data assimilation (4DVar). Originally,

4DVar schemes assume a Gaussian distribution of obser-

vational errors, but recent approaches extend the method to

combinations of Gaussian, lognormal observational errors,

and to mixed background errors (Fletcher 2010). Thus,

both methods—EKF and 4DVar—might fail on the con-

vective scale, where more general PDFs might apply.

Particle Filter (PF) methods (van Leeuwen 2009) take

full account of non-linear state developments. The PF, also

termed Sequential Monte-Carlo filter (SMC, Doucet et al.

2001), represents the model PDF by a number of randomly

selected ensemble members, or particles. The posterior

PDF is approximated by fm(w |d), where w is the model

state, and d are the available observations. SMC (PF)

methods appeared in the 1950s (Hammersley and Morton

1954), but were not applied in weather forecasting, prob-

ably due to the lack of computing capacity at that time

(Doucet et al. 2001). Bird (1978) identified adequate

computer technology as a requirement for the use of Monte

Carlo methods.

In this work, we introduce a sequential data assimilation

approach (SAM), applied to the COSMO-DE-EPS (COSMO,

COnsortium for Small scale MOdelling), which is an

ensemble prediction system for weather forecasting on con-

vection-permitting scales developed by the German Weather

Service (Deutscher Wetterdienst, DWD). SAM combines

elements of PF with resampling (SIR, Sequential Importance

Resampling), originally termed ‘bootstrap filter’.

Following the work of Gordon et al. (1993), and further

development by van Leeuwen and Evensen (1996), van

Leeuwen (2001, 2003), PF with resampling weights

ensembles members according to the probability of avail-

able observation, given the state of the ensemble members.

Ensemble members with low weights are abandoned, and

the original number of members is then restored by adding

multiple copies of ensemble members with high weights to

construct the posterior PDF (van Leeuwen 2009).

SAM diverges from PF primarily by the weight defini-

tion. While PF defines weights by the observation proba-

bility given the model state, SAM introduces a metric that

approximates the distance between observations and

ensemble member state. SAM assumes that the ‘‘close-

ness’’ of ensemble members states to observations is a

strictly monotonic function of the relative importance of

ensemble members in the probability density of the

observation given the model state; this property assures the

correct ranking of the ensemble members.

A well-known problem for PF methods, when applied to

high-dimensional systems, is filter degeneracy, i.e. a situa-

tion when most of the ensemble members have weights close

to zero meaning that none or only a small number of the

ensemble members have a considerable probability given the

observations (Bengtsson et al. 2008; Snyder et al. 2008).

In our approach, we attempt to reduce filter degeneracy

via two remedies: first, by clustering prior to filtering and

resampling and second, by creating different model evo-

lutions of the multiple copies using a nudging method

based on the ratio of observed and modelled precipitation

rates.

Ensemble members are clustered according to their

mutual similarity; which is expressed by their closeness to

observations and quantified by a metric. Moreover, we

require that at least one cluster member (even if distances to

observations are large) survives filtering. Thus, the ensemble

members belonging to the less probable clusters will be

discouraged, but the cluster survives at least as a single

member. Members with initially low probability given the

observations may thus still evolve into a state with higher

probability in a subsequent filter time, which might mimic

non-linear system state developments (e.g. sudden convec-

tion initiation). This approach might also reduce timing

errors for convection due to model errors and/or imperfect

initial conditions. Only the ensemble members with the

highest weights are duplicated (one additional member is

created), taking the cluster into account. While the original

ensemble member evolves further according to the forward

model, its twin is nudged to radar and satellite observation

using PIB (Physical Initialisation Bonn, Sect. 3.3).

In Sect. 2, we discuss the PF in more detail. Section 3

describes the applied numerical weather prediction model

and the observations used. In Sect. 4 the sequential data

assimilation method SAM is explained in more detail. We

illustrate, in Sect. 5, the synoptic situations for which we

applied the method, and we evaluate its impact in Sect. 6

based on skill scores, reliability curves and other statistical

methods. We also compare SAM performance with the

EPS without filtering, with the EPS where nudging via PIB

is applied to all members, and with a more SIR-like method

without resampling (FILTER). Conclusions are drawn in

Sect. 7.
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2 Particle filter

A PF estimates the posterior PDF of a model state given the

observations. An ensemble is considered as a representation

of the state PDF by the discrete set of model states repre-

sented by the ensemble members. The PF assigns weights to

the ensemble members according to their closeness to

observations. Generally, weights quantify the probability of

a model state (w) given the observation (d), fm(w | d).

For non-linear dynamics, a variance-minimising filter

can be derived using Bayes’ theorem (van Leeuwen 2003).

In Bayesian statistics the unknown model state evolution is

represented by the value of a random (multi-dimensional)

variable w. Using Bayes’ theorem, the model state proba-

bility density fm(w), is used to find fm(w |d), the posterior

probability density of w given the observations d (van

Leeuwen and Evensen 1996):

fmðwjdÞ ¼
fdðdjwÞfmðwÞ

fdðdÞ
ð1Þ

The definition of the probability of the observation

fd(d) is usually assumed to be the marginal probability

density of the joint probability density of model states and

observations:

fdðdÞ ¼
Z

fdðd;wÞ dw ¼
Z

fdðdjwÞfmðwÞ dw ð2Þ

The variance of an estimate characterises the accuracy of

the estimation and the spread of the probability density. The

variance-minimising model evolution is equal to the weighted

state mean, based on the posterior probability density:

�w ¼
Z

wfmðwjdÞ dw ð3Þ

Using discrete probability frequencies, and assuming

that all ensemble members have equal a priori probability,

we obtain:

�w ¼
PN

i¼1 wifdðdjwiÞPN
i¼1 fdðdjwiÞ

; ð4Þ

where N is the ensemble size. Thus each ensemble member

is weighted by the observation probability given the model

state as true (van Leeuwen 2009). This leads to weights

given by:

wi ¼
fdðdjwiÞPN
i¼1 fdðdjwiÞ

: ð5Þ

The classical PF with resampling (Rubin 1988; Gordon

et al. (1993) defines a weight density distribution, and

randomly samples from this distribution a sequence of

weights, including the ensemble member carrying the

weight. Thus the ensemble of drawn ensemble members

constitutes the posterior probability density fm(w| d). The

probability of a weight to be drawn is dependent on its

value; larger weights have higher probability to be drawn

than lower weights. Due to the discrete ensemble, a

particular weight can be drawn several times, and the

number of times a weight (and therefore the associated

ensemble members) is drawn is equal to the number of

identical copies that are made of that ensemble member.

In the new ensemble, all ensemble members have again

equal weights. Usually, the resampling restores the total

number of particles N. The particle state w is then inte-

grated forward in time, by the model f until the next

observation time (from observation time n - 1 to n):

wn ¼ f ðwn�1Þ þ b; ð6Þ

where b is the stochastic model error, which ensures dif-

ferent evolutions of initially identical copies. Ways of

resampling have been developed to avoid filter degeneracy,

such as the weight resampling filter from Kim et al. (2003)

and the sequential importance resampling and filtering

(SIRF) from van Leeuwen (2003), which will be discussed

below. Pham (2001) applied jitter to ensemble members

with multiple identical copies, which increases ensemble

spread and combats filter degeneracy. Jittering adds noises

to the ensemble members but does not change the ensemble

member weights (van Leeuwen 2009). Still other approa-

ches apply weighting and resampling at different times, e.g.

the auxiliary PF (Pitt and Shephard 1999) and the guided

SIR (van Leeuwen 2002).

SIR leads to insufficient spread (van Leeuwen 2003),

either when system noise provides insufficient state spread

or when the ensemble badly approximates the true prior

distribution (i.e. when the distance between the best

member and the true state is too large). In a high-dimen-

sional state space, the observational state including its PDF

covers only a small region of the state space; leading to

possibly large distances between ensemble members and

the observational state. In order to account for this mis-

match during resampling van Leeuwen (2009) uses weights

influenced by a so-called proposal density (q):

wi ¼
1

A
fdðdjwiÞ

fmðwiÞ
qðwijdÞ

; ð7Þ

where A is a normalization factor. q is related to a proposed

model, and the observation can be included in this density

(see Eq. 7). For example, using the PDF from an Ensemble

Kalman Filter (EnKF) as proposal density, the particles can

be ‘‘pushed’’ to positions in state space where the proba-

bility of the particle given the observations is large (van

Leeuwen 2010). This solution can be insufficient when the

dimension of the state space is too large to be sufficiently

covered by the ensemble members.

A sequential ensemble prediction system 19
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In our sequential data assimilation method (SAM, see

Sect. 4.4), we address nowcasting and short-term weather

prediction on convection-permitting scales. Accordingly,

forward integration of ensemble member copies, which

were created during resampling, must lead to different state

space evolutions in time periods much shorter than an hour.

EOFs-based (empirical orthogonal functions) or breeding

methods (Toth and Kalnay 1993, 1997) could be used but

are not advisable for these scales. Breeding perturbations

usually result in a negligible spread at short time intervals.

Singular vectors, using a tangent linear model, are better

approximations of the fastest growing modes, but there is

no guarantee that the actual errors will be projected to a

significant portion on those modes. The limits of both

methods are discussed in Bowler (2006). Approaches fol-

lowing the classical SIR will discourage too many

ensemble members by creating multiple copies of only the

few best performing ensemble members and lead to low

representativeness. SAM inserts only one additional copy

of ensemble members with higher weights, and a nudging

method (PIB) is applied in order to both add spread and to

move the ensemble PDF towards the observations.

3 Data and model

3.1 The COSMO-DE ensemble prediction system

(EPS)

We base our study on a pre-operational version of the

COSMO-DE Ensemble Prediction System (COSMO-DE

EPS, Gebhardt et al. 2011) with 20 members. For our

purposes the quality of the original ensemble is important

but not a priority; our goal is not to test the quality of a

particular given EPS. Rather, our goal is to develop and test

a data assimilation method for a high-dimensional system

for short-range forecast on convection-permitting scales.

COSMO-DE, which COSMO-DE EPS is based on, is a

non-hydrostatic limited area atmospheric weather predic-

tion model, developed by the COnsortium for Small-scale

MOdeling (COSMO) led by the German Meteorological

Service (Deutscher Wetterdienst, DWD). The ensemble

runs in this paper are based on model version 4.11 (see

Schulz and Schättler 2005; Baldauf et al. 2011). The model

has a spatial resolution of approximately 2.8 9 2.8 km

over an area covering 421 grid cells in the longitudinal

direction and 461 grid cells in the latitudinal direction. The

atmosphere is vertically resolved into 50 terrain following

layers. A Runge–Kutta scheme with a time step of 25 s is

used for the numerical integration in time. The scheme is of

third order, except for the horizontal advection of water

components in the microphysics where a fifth order is used.

We switch off the deep convection parameterisation

scheme and thus assume that large-scale convection lead-

ing to precipitation is sufficiently resolved, while the pa-

rameterisation for shallow convection is retained.

COSMO-DE has been operational at DWD since April

2007.

The 20 members of the COSMO-DE EPS version

applied here have the same initial conditions, but differ by

the boundary conditions and the sets of parameterisation

during integration. Boundary conditions are taken from a

short Range Ensemble Prediction System (SREPS), the so-

called AEMet-SREPS (Garcia-Moya et al. 2007) devel-

oped by the Spanish weather service (AEMet). AEMet-

SREPS is created by driving different regional models,

including the COSMO model, each with a spatial resolu-

tion of 25 km laterally by the output of four global models:

the Integrated Forecast System (IFS, Jakob et al. 1999)

from the European Centre for Medium-range Weather

Forecast (ECMWF), the Global Model (GME, Majewski

et al. 2002) from DWD, the Global Forecast System (GFS,

Sela 1980) from the National Centre for Environmental

Predictions (NCEP), and the Unified Model (UM, Cullen

1993) from the United Kingdom Meteorological Office

(UKMO).

ARPA-SIM in Bologna (Marsigli et al. 2008) nests the

COSMO model with a spatial resolution of 10 km into the

output of the four COSMO runs of AEMet-SREPS. The

16-member COSMO-SREPS is generated by taking com-

binations of four AEMet-SREPS runs as initial and

boundary conditions with four different settings of the

physical parameterisations. The 20 members of COSMO-

DE EPS are generated as follows: four members of

COSMO-SREPS are selected each with boundary condi-

tions of a different global model. These four members are

then integrated using the five different physical parame-

terisation schemes of COSMO-DE, kept constant over the

entire forecast time. See Paulat et al. (2009) for a complete

description of COSMO-DE EPS.

3.2 Radar and satellite data

Radar and satellite data are used in the resampling part of

SAM. The duplicated ensemble members are nudged via

PIB (see Sect. 3.3 and Milan et al. 2008 for more details).

PIB requires estimates of surface rainfall and cloud top

heights, which are extracted from a quality-controlled rain

rate product of DWD (so-called RY) and from products of

the Satellite Application Facility on support to NoWCast-

ing and very short-range forecasting (SAFNWC),

respectively.

RY is based on the lowest elevation scans of the 16

German operational C-Band Doppler radars (example in

Fig. 1). The product is derived from scans with elevation

angles between 0:5� and 1:8�; which are combined to

20 M. Milan et al.
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minimise blocking by orography. The maximum range for

each radar is 128 km. For more information, see the

description of the DWD weather radar network on http://

www.dwd.de. Typical problems with radar data, such as

anomalous propagation and attenuation, are filtered out by

DWD. Compositing is achieved by selecting the radar

observations closest to the ground. The original product has

a temporal resolution of 5 min and a spatial resolution of

1 km.

Cloud top heights are derived from the SAFNWC products

(http://nwcsaf.inm.es/) for cloud top temperature and height

(CTTH) and from the cloud type product (CT). SAFNWC

products are obtained from DWD with temporal resolution of

15 min. For further information see SAFNWC (2004).

3.3 PIB

PIB was originally derived by Haase et al. (2000) and

developed into its current form by Milan et al. (2008) and

Milan (2010). PIB nudges vertical wind profiles (w in m/s),

specific water vapour (qv in kg/kg), cloud water content (qc

in kg/kg) and cloud ice content (qi in kg/kg) to the obser-

vations. Only a short description is given here; for a

comprehensive explanation, see the cited articles.

First a radar-based surface precipitation field is esti-

mated for every model time step. Nudging is initiated

when model precipitation and radar-observed precipitation

differ by more than 20 % at a grid point, which approx-

imates the uncertainty of radar-based precipitation esti-

mates. For every grid point with estimated precipitation

rate above 0.1 mm/h for which the upper condition

applies, a simple single-column cloud and precipitation

model is used to adjust the simulated cloud base and top

height, and the profiles of vertical wind and humidity. At

grid points with estimated precipitation rates below

0.1 mm/h, PIB reduces the water vapour content, the

cloud water content and the cloud ice content based on

satellite information.

> 60 mm

0.1 mm

> 60 mm

0.1 mm

> 60 mm

0.1 mm

Fig. 1 RADAR precipitation

sum (mm) during the analysed

period (00–16 UTC). 1 CASE 1

8 August 2007, 2 CASE 2 9

August 2007, 3 CASE 3 12

August 2007

A sequential ensemble prediction system 21
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Based on an identical twin experiment, Milan et al.

(2008) showed PIB’s ability to maintain the main features

of model storm evolutions both during the assimilation

window and during the free forecast. Aside from precipi-

tation evolution, the tests also investigated CAPE, cloud

top, cloud bottom and mass flux convergence near the

cloud base. Real data experiments (Milan 2010) covered

1-month simulations with initialisation every 8 h (at 00, 08,

16 UTC). PIB forecasts were compared with LHN fore-

casts (Latent Heat Nudging, Stephan et al. 2008) and with

a forecast without radar data assimilation (CONTROL).

While CONTROL had the tendency to underestimate pre-

cipitation, especially for stronger rain rates, PIB and LHN

succeeded in reducing this error for convective situations

and showed similar skills.

4 Resampling and filtering

4.1 Metric

In our approach, we borrow from PF the idea of weighting

particles according to their closeness to the observations. In

contrast to PF, where the weights are drawn from the pos-

terior PDF, the metric used in SAM is based on two Objective

Skill Scores (OSS, for a description of various skill scores see

Jolliffe and Stephenson 2004), which quantify the difference

between model-generated precipitation w and radar-esti-

mated precipitation d interpolated to the model space

(H-1(d)). The inverse of the radar and/or satellite observa-

tion operators H are, however, never actually calculated. The

applied OSS are variants of the Frequency Bias (FBI) and the

Equitable Threat Score (ETS). The modified frequency bias

(FBImod) introduced by Weusthoff et al. (2011),

FBImod ¼ 1� 1
FBI

: FBI [ 1

1� FBI : else

�
ð8Þ

ranges between 0 and 1, where 0 is the perfect score. The

ETS has a range between -1/3 and 1 (with perfect score 1),

but we choose a modified ETS (ETSmod) to have a score

with the same range as FBImod:

ETSmod ¼ ð1� ETSÞ � 3
4

ð9Þ

Our metric M combines both scores via

Mðw;H�1ðdÞÞ ¼ ðETS2
mod þ FBI2

modÞ
1
2 ð10Þ

For a perfect model forecast M is 0.

4.2 Clustering

Prior to filtering, we group the ensemble members using

hierarchical clustering analysis (Wilks 2006) based on the

metric M. Given N ensemble members, the method starts

with N clusters each containing one ensemble member. The

two closest clusters (given the metric) merge into one new

cluster and reduce the number of clusters from N to N - 1.

The procedure is iterated until all ensemble members are in

a cluster, creating a series of cluster sets with increasing

levels of aggregation.

The distance between two arbitrary clusters, C1 and C2,

is determined following Sneath and Sokal (1973), as the

average distance computed from all possible ensemble

members pairs (dc)

dc ¼
1

n1 � n2

X
wi2C1

X
wj2C2

dðwi;wjÞ; ð11Þ

where n1 and n2 are the number of ensemble members

within the individual clusters. d(wi, wj) is the length of the

vector between wi and wj, in the two-dimensional space

defined from ETSmod and FBImod. Since clustering is based

on scores computed over the whole model domain, quite

different ensemble members in terms of precipitation dis-

tribution can reside in the same cluster, this is a conse-

quence in the definition of the ‘‘closeness’’ of the member

to the observation.

The distances between the clusters increase with suc-

cessive merging, and a suitable level of aggregation must

be defined for the final cluster selection. One must either

fix the number of desired clusters, or equivalently fix a

threshold for the minimum distance above the clusters are

separated. We have opted for the second choice in order to

give the clustering the freedom to change the number of

clusters. To this goal we examine the mean cluster distance

as a function of the level of aggregation and select the

strongest increase per level of aggregation (also named

knee) of this strictly monotonic function as the appropriate

level of aggregation (see, e.g. Fig. 2 where the knee is

analysed at aggregation level 15).

Salvador and Chan (2004) introduced the objective

L-method to determine the knee: the graph of N points is

approximated by a pair of straight lines. Given one point on

di
st

an
ce

 

Level of aggregation

0.02

0.01

0.015

0.005

0.
5 10 151

Fig. 2 Example of average distances between clusters as a function

of the level of aggregation, with the ‘‘knee’’ at level 15

22 M. Milan et al.
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the graph representing aggregation level a, with

2 B a B N - 1, the left line is the linear interpolation of

all points on the left of a, including a, while the right line

is the linear interpolation of all points on the right of

a, including a. For each of the resulting N - 2 pairs of

lines, one computes the quality of fit the line pairs to the

points via the RMSD and select the a with the minimum

RMSD as the optimal level of aggregation. If the minimum

RMSD is, however, larger than the one computed for the

line of the linear interpolation taken all points, the highest

level of aggregation (one cluster) is selected.

4.3 Choice of members to resample and filter

SAM determines the members to remove and to double,

based on the average metric �Mi for each cluster i and on the

number of ensemble members mi contained in a cluster

(N the size of the EPS). We assume that a cluster with more

ensemble members is more probable than a cluster with

fewer members. This is accomplished by selecting equal

weights for ensemble members within a cluster via

WnðiÞ ¼
mi

N
ð12Þ

and a cluster weight, which is related to the metric via

W 0MðiÞ ¼
minð �MÞ

�Mi

ð13Þ

With the normalization

WMðiÞ ¼
W 0MðiÞP
i W 0MðiÞ

ð14Þ

both weights are now combined into one weight by

WrðiÞ ¼ WnðiÞ þ 5WMðiÞP
iðWnðiÞ þ 5WMðiÞÞ

ð15Þ

The constant 5 is heuristically set to give more

importance to the metric M. Other metrics can be chosen,

but we do not expect considerable sensitivity to its choice.

These sensitivity studies are beyond the scope of the

current work.

For filtering we take the normalized inverse:

Wf ðiÞ ¼ W 0f ðiÞP
iðW 0f ðiÞÞ

; ð16Þ

where

W 0f ðiÞ ¼ 1

WrðiÞ ð17Þ

With each filter step, we remove five members and

create five identical copies of other five members. The

number of members to filter and to resample is fixed to

maintain the ensemble characteristics and to avoid too

few remaining members (i.e. loss of representativeness

of the EPS). From the ith cluster we remove nf

members:

nfðiÞ ¼ INTð5 �Wf ðiÞÞ ð18Þ

Following this rule, the total number of ensemble

members removed (filtered, Nf) can be larger or lower than

five. In the case Nf is larger/lower than five, we remove

less/more ensemble members of the best/worst cluster. In

each case, the worst cluster must survive with at least one

ensemble member. In the same way, but using Wr, we

choose the five members to be resampled.

4.4 SAM

SAM filters and resamples a given ensemble based on

precipitation field differences between ensemble members

and observations. The structure is sketched in Fig. 3; the

list below refers to the figure.

(i) The ensemble is started at 00 UTC and integrated until

02 UTC.

(ii) The distances between the members and the obser-

vations are computed based on our metric and

clustered as described in Sect. 4.2.

(iii) Five ensemble members are discarded (filtered) and

five duplication of other better performing members

are created (for details see Sect. 4.3).

(iv) While the remaining ensemble members are inte-

grated in time for one hour, the additional members

created by duplication are integrated in time while

subject to nudging via PIB during the first 15 min.

(v) Steps (ii) until (iv) are repeated twice.

(vi) The data assimilation interval is followed by 11 h of

free run (until 16 UTC, in fact the final non-PIB

ensemble members have 12 h of free run while the

final PIB-particles have 11 h and 45 min).
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Fig. 3 Schematics of the SAM chain including the step levels from

Sect. 4.4
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This setup is chosen because of the PIB’S ability to

nudge the model state in the direction of the observed state

using very short assimilation windows (Milan et al. 2008;

Milan 2010). We compare SAM to the original EPS

(ORIGINAL), with a pure filtered EPS without resampling

(FILTER) and to PIB-EPS (an ensemble where the timing

is identical to the one in SAM, but all ensemble members

are subject to PIB).

5 Case studies

We tested SAM for three convective cases in August 2007;

Fig. 1 shows for each case the radar-derived fields of the

precipitation sum fields integrated from 00 to 16 UTC.

The first case (8th August) is characterized by three

small low-pressure systems over western Poland, between

Greece and Ukraine, and over France, respectively,

embedded in an anticyclonic zone over central Europe.

According to the radar observations, a stratiform precipi-

tation field moves across south-western Germany, while an

area with convective activity resides in north-eastern Ger-

many. The rain gauge network of DWD indicates a max-

imum hourly rain rate in Baden-Württemberg of 10 mm

during the first 12 h of the day.

In the second case (9th August), central Europe is

governed by a single low-pressure system. A frontal zone

separates eastern Europe with subtropical warm air from

western Europe with colder humid air. Strong rain affects

western and southern Germany as well as Switzerland

during the day. The accumulated daily precipitation locally

exceeds 40 mm. During the afternoon, a convective line

approaches the Berlin area.

The third case (12th August) is dominated by subtropi-

cal wet/maritime air transported to the midlatitudes due to

a high-pressure region over central Europe and a through

over western Germany. Under these conditions, which are

favourable for convection initiation, multicells with strong

precipitation rates develop in a very limited region in

north-eastern Germany during the morning.

6 Results

In the following, we compare the quality of the predicted

precipitation fields for the three cases by comparison with

the radar observations.

The performance of four ensembles is discussed: ORI-

GINAL, PIB, SAM, and FILTER. ORIGINAL denotes the

COSMO-DE EPS as described in Sect. 3.1, with no fil-

tering, resampling or nudging applied (16-h free forecast

starting at 0 UTC). In PIB, all members of COSMO-DE

EPS were subject to data assimilation using the PIB

approach described in Sect. 3.3. SAM is described in

Sect. 4. FILTER only applies the filter part of SAM

without the duplication part: accordingly, each filter event

reduces the ensemble size by removing the least probable

ensemble members, taking clustering into account. In this

way—similar to the standard PF—the importance of the

remaining members in the ensemble increases.

We quantify the quality of the ensemble forecasts

(except FILTER) by comparing resolution, reliability and

sharpness (Jolliffe and Stephenson 2004). Such a detailed

analysis cannot be applied to FILTER due to its low final

ensemble size.

Resolution is the forecast system’s ability to distinguish

between different observed frequency distributions. Reli-

ability quantifies the capacity of the EPS to forecast

unbiased estimates of the observed frequencies associated

with different forecast probability values, or the average

agreement between forecasted and observed states. If we

choose a specific event from the observations, e.g. pre-

cipitation sums above 1 mm, the variable x0 attains the

value 1 if the event happens, and 0 otherwise. The PDF of

the forecast (q(x)) is estimated from the ensemble, i.e. the

probability distribution of the event happening; q(x) and x0

are then compared in every grid point. An EPS achieves

perfect reliability, when the probability that the event

occurs in the observations (x0 = 1) given the PDF of the

forecast, is equal to the PDF of the forecast:

f ðqÞ ¼ pðx0 ¼ 1jqðxÞÞ ¼ qðxÞ: ð19Þ

Sharpness is the forecast’s tendency to divert from the

climatology; thus it is a measure of the forecast’s

variability. Sharpness is not a verification measure

because of its independence from observations. Large

frequencies of both zeros and ones indicate a high degree

of sharpness. The low ensemble size of FILTER does not

allow for the estimation of reliability.

6.1 ETS, FBI and relative entropy

The hourly Equitable Threat Score (ETS) and the frequency

bias (FBI) are computed for the forecast period using a

threshold of 0.1 mm/h to distinguish between yes/no pre-

cipitation (Wilks 2006) to quantify forecast quality. In the

result figures (Figs. 4, 5, 6), the different global models at the

lateral boundaries conditions for the ensemble members are

indicated by different colours. Both scores must be judged in

conjunction, since a larger FBI also tends to have a higher

ETS (Mesinger 2008). Thus, a higher ETS represents a

‘‘better score’’ only if the frequency bias is the same. More-

over, the ETS is influenced by the spatial structure of the

characteristics within the regions, this is a general problem in

COSMO (observed in CLM, the climate version of COSMO,
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by Bachner et al. 2008; Wang et al. 2013). Note also that the

first one or two forecast hours (depending on the synoptic

situation) should be interpreted with care, because a dynamic

model needs spin-up time to produce realistic precipitation.

The forecasted probability of the occurrence of the event

pj, which can be estimated from the ensemble, is compared

with the observation xj, and given the value 1 or 0 depending

on whether the event (in our case precipitation above

0.1 mm) occurred or not. Then the Brier score (B) can be

computed,

B ¼ 1

n

Xn

j¼1

ðpj � xjÞ2; ð20Þ

where n is the number of compared grid points. A perfect

EPS has a Brier score equal to 0 since pj = xj for all j. In

order to compare a given forecast with a reference forecast,

the Brier Skill Score (BSS) is appropriate,

BSS ¼ 1� B

Bref

; ð21Þ

where Bref being the Brier score of the reference forecast.

BSS is equal to 1 for a perfect deterministic forecast system

and is 0 or negative for a forecast system that performs

similarly or poorer than the reference forecast. The integral

of the Brier scores computed for all possible thresholds

x constitutes the Continuous Ranked Probability Score (CRPS):

CRPS ¼ E

Z1

�1

½FðxÞ � Hðx� x0Þ�2 dx

0
@

1
A ð22Þ

Hðx� x0Þ ¼
1 : x� x0

0 : x\x0

�
; ð23Þ

where F(x) = p(X B x) is the cumulative density function

(CDF) of the EPS system and where H is the Heaviside

function. The PDF of the EPS is computed using ensemble

kernel dressing (Bröcker and Smith 2008) based on gamma

functions. In practice, the CRPS is computed discretely.

For a comprehensive description see Hersbach (2000).

The PDF of accumulated precipitation over the 11 h of

free forecast (from 05 UTC until 16 UTC, Figs. 4, 5, 6 right

panels) from all EPS systems is used to test the ability to

forecast the precipitation distribution based on the relative

entropy of the model probability compared with the radar

probability as distance measure. The relative entropy [Kull-

back–Leibler divergence (Kullback 1968)], is defined as

rel:entropy ¼
Xn

i

ZRAD log
ZRAD

ZMOD

� �
; ð24Þ

where n is the number of bins into which precipitations

sums are classified, ZRAD the frequency of values in a given

bin from radar observed precipitation and ZMOD the fre-

quency of values in a given bin from model precipitation.

A perfect simulation will have a relative entropy equal to 0.

The relative entropy is computed for all ensemble mem-

bers. Its mean is taken as the minimum variance state and

the standard deviation as uncertainty.

CASE 1 ORIGINAL shows good ETS (at 08 UTC values

around 30 %, Fig. 4 left panel, a1) and good FBI scores

(values close to one over the forecast period after 2 h of

spin up, Fig. 4 middle panel, a1). During most of the free

forecast, all ensemble members show similar quality; only

towards the end of the free forecast ensemble members

driven by the GME global model lose quality (green lines).

SAM clearly enhances the ETS over the forecast time

without a substantial negative influence on FBI. Due to the

initially good quality of the ensemble members driven by

GME, SAM resamples some of these members, which

reduces the ensemble ETS and increases FBI towards the

end of the free forecast. Due to our clustering-based

scheme, also ensemble members driven by other global

models are resampled and/or maintained, which amelio-

rates the ensemble quality. The filter part of SAM manages

to choose some of the members with better scores even at

the end of the forecast (see ETS and FBI scores in Fig. 4

left and middle panels, c1) and achieves good persistence.

PIB results in even higher ETS, but this improvement is

accompanied by a notable negative effect on the FBI. The

influence of the driving global models is less pronounced

(at least for the ETS), as all ensemble members are nudged

to the observations, leading to similar quality among all

members.

BSS and CRPS are based on hourly precipitation,

computed over the free forecast, and then averaged. The

CRPS for all ensembles (excluding FILTER) are very

similar, while the BSS for precipitation above 0.1 mm/h is

positive and the highest for SAM (Table 1).

The PDFs of precipitation accumulation (Fig. 4 right

panel, a1, c1 and d1) obtained from ORIGINAL, SAM and

PIB are similar, while the relative entropies are the highest

for SAM and PIB. The distribution of the precipitation sum

during the free run does not depend on the filter; thus the

relative entropy does not vary significantly between the

ensemble systems (Fig. 4 right panel, b1). Since the vari-

ance of the relative entropy also relates to the ‘‘dispersion’’

of the ensemble members compared with the observations,

some of the original dispersion is lost by PIB as expected.

CASE 2 The control run (ORIGINAL) initially shows

good quality in terms of ETS, after 02 UTC (Fig. 5 left

panel, a2); but ETS decreases from around 40 to 10 % in

the ensuing 14 h. The ensemble members driven by UM

have—most of the time—the best ETS. The FBI (Fig. 5

middle panel, a2) is close to 1 between 02 and 06 UTC

followed by a slight underestimation of the precipitation

area; in this time period there are no significant differences

between the members belonging to different driving
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models. SAM and, even more so, PIB exhibit a higher ETS

(up to 10 %) compared with ORIGINAL for 5–6 h of the

forecast time. SAM leads to a somewhat better FBI during

the period, i.e. the members are better distributed around 1.

The better performing ensemble members driven by UM

are kept and other members still profit from nudging

towards the observations. The filter part of SAM (see

results for FILTER) manages to choose those members,

which have good scores until 12 UTC. Notably, many of

the GFS-driven members are removed. GME drives some

of the surviving members, but they have low ETS scores at

the end of the forecast. Thus, for the last four forecast

hours, ETS scores for SAM fall below the ones for PIB. All

members driven by UM have similar performance during

the filtering, but clustering and duplication using PIB

prevents narrowing of the ensemble to UM-driven mem-

bers. SAM duplicates only one GFS-driven member and no

UM-driven members. PIB leads to a clear overestimation

of the precipitation probability between 02 UTC and 07

UTC. The influence of the driving models is again less

pronounced for PIB than for ORIGINAL and SAM. SAM

slightly improves both BSS and CRPS compared with

CONTROL, while PIB has a slightly worse CRPS

(Table 1). The ETS and FBI scores for PIB are very sim-

ilar, while SAM maintains some of the original spread.

Fig. 4 CASE 1 ETS (left panel), FBI (middle panel) for the hourly

precipitation, threshold 0.1 mm/h; Distribution of precipitation sum

(mm, right panel) during the free forecast run (from 05 to 16 UTC).

The values of the relative entropy including uncertainty are added to

the plots. a ORIGINAL, b FILTER, c SAM, d PIB

Table 1 Brier Skill Score (BSS) with 0.1 mm and Continuous

Ranked Probability Score (CRPS) for all case studies

BSS SAM BSS PIB CRPS CRPS CRPS

0.1 mm 0.1 mm ORIG. SAM PIB

CASE 1 0.09 0.03 1.016 1.020 1.016

CASE 2 0.12 0.16 0.997 0.988 1.065

CASE 3 0.13 0.001 0.639 0.639 0.639
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The PDFs of precipitation accumulation (Fig. 5 right

panel) are again similar, but SAM and even more PIB

clearly lead to better relative entropies. In addition, the

ensemble PDFs are better distributed around the radar PDF

also for higher thresholds. Only GFS-driven ensemble

members manage to approximate the distribution of pre-

cipitation accumulation above 40 mm well. This behaviour

is maintained in SAM and PIB. FILTER removes all

members driven by GFS, as a consequence of the metric.

The metric is based only on yes/no precipitation and

ignores precipitation amounts. In this case, the variance of

PIB is lower than that in ORIGINAL and SAM.

CASE 3 Precipitation forecasts are difficult for this case,

because of the relatively small region where the convective

precipitation occurs. Small errors in positioning and/or

timing lead to high false alarms and missed events, which

dominate ETS and FBI (Wilks 2006; Hamill 1999).

The ETS for ORIGINAL (Fig. 6 left panel, a3) is

around 0 %, and thus comparable in quality with a

random forecast. The forecast overestimates precipitation

between 02 and 10 UTC (FBI [ 1 in Fig. 6 middle

panel, a3), followed by underestimation after 10 UTC.

Between 04 UTC and 10 UTC the FBI for the UM-

driven members is the highest. SAM and PIB again

result in higher ETS over the entire free run, with the

best score for PIB (Fig. 6 left panel, c3–d3), but the FBI

suggests a considerable overestimation particularly for

the PIB variant (Fig. 6 middle panel, c3–d3). SAM keeps

no UM-driven ensemble members, and no GME-driven

members are resampled. We presume that the general

poor quality of all ensemble members between 02 UTC

and 04 UTC leads to an unsuitable cluster attribution,

followed by suboptimal filtering and resampling of the

members. In other words, we believe that the closeness

Fig. 5 CASE 2 ETS (left panel), FBI (middle panel) for the hourly

precipitation, threshold 0.1 mm/h; Distribution of precipitation sum

(mm, right panel) during the free forecast run (from 05 to 16 UTC).

The values of the relative entropy including uncertainty are added to

the plots. a ORIGINAL, b FILTER, c SAM, d PIB

A sequential ensemble prediction system 27

123



of all members to each other in the beginning led to a

random filter and resampling behaviour.

The BSS clearly favours SAM (Table 1), but not

PIB, while the CRPS is almost identical for all

ensemble systems. Given the poor quality of the origi-

nal EPS for all members, FILTER does not improve the

ensemble.

The PDFs of precipitation accumulation (Fig. 6 right

panel) for ORIGINAL and SAM are quite similar, and the

respective relative entropies are within their uncertainty

limits. All ensemble members overestimate precipitation

frequencies below 5 mm over 12 h, while precipitation

amounts between 5 and 35 mm are underestimated. In the

PIB variant, some members better approximate the radar

PDF, but the relative entropy is not improved above its

uncertainty limits.

6.2 Reliability and sharpness

The value of f(q) (Eq. 19) quantifies the reliability of an

EPS system. f(q) is estimated by counting the relative

frequency of the observed event for cases for which the

event (in this case an hourly rain rate above 0.1 mm) was

forecasted to occur with the probability q. An instructive

way to visualize reliability quality is to plot f(q) as a

function of the probability that the event occurs in the EPS

(q(x)) (reliability diagram, Wilks 2006). In such a diagram,

a perfect reliable system lies in principle on the diagonal

(from Eq. 19), but sampling effects might cause deviations.

The amount of sampling-induced variability can be visu-

alized by plotting reliability diagrams for the same forecast

system using a randomly chosen ensemble member in

place of the observations (Wilks 2006).

Fig. 6 CASE 3 ETS (left panel), FBI (middle panel) for the hourly

precipitation, threshold 0.1 mm/h; Distribution of precipitation sum

(mm, right panel) during the free forecast run (from 05 to 16 UTC).

The values of the relative entropy including uncertainty are added to

the plots. a ORIGINAL, b FILTER, c SAM, d PIB
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For CASE 1, the reliability diagrams (Fig. 7, first row)

show forecasted probabilities close to observed frequencies

for all EPS (except FILTER). From the diagrams, we can

suppose that ORIGINAL underforecasts events that are

associated with smaller forecast probabilities and over-

forecasts events associated with larger forecast probabili-

ties. Overall, SAM performs somewhat better, especially

for the lower probability values, while PIB is very similar

to ORIGINAL. All EPS systems have high sharpness (see

the upper left corners in subfigures of Fig. 7).

The reliability diagrams for CASE 2 (Fig. 7, second

row), also indicate forecasted probabilities close to

observed frequencies. Similarly to CASE 1, ORIGINAL

underforecasts events associated with smaller forecast

probabilities, while events associated with larger forecast

probabilities are overforecasted. In this case, both SAM

and PIB lead to no improvements. All systems have high

sharpness.

For CASE 3 (Fig. 7, third row), the very low forecast

skill (Sect. 6.1) leads to reliability curves close to the

horizontal (Atger 2004). Thus all EPS have a very low

reliability, i.e. they overpredict almost all observation fre-

quencies. Both SAM and PIB perform better than

ORIGINAL, especially for the lower probability values,

where PIB behaves best. All systems again have a high

sharpness.

7 Conclusions

We have developed and applied SAM, a new ensemble-

based data assimilation approach, that employs elements

of the particle filter, to an ensemble prediction system at

the convection-permitting scale for nowcasting and short-

term forecasts. Using the classical particle filter, the

weights in high-dimensional systems tend to collapse, and

very large ensembles are required to avoid collapse

(Snyder et al. 2008). SAM is designed for a relatively

small ensemble of 20 members, based on the COSMO-DE

EPS. We have attempted to reduce filter degeneracy and

to keep the distribution of the ensemble close to the

observations using an approach based on clustering

combined with a nudging method (PIB) that uses radar

and satellite observations.

In order to evaluate the effect of the assimilation method

excluding any clustering and filtering, we have compared
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0.8
1.0
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Fig. 7 Reliability plot for

precipitation during the free

forecast run (from 05 to 16

UTC) and the three cases (1 to

3). Full line reliability diagram

for the ensemble forecast.

Dashed line: reliability diagram

for a perfect ensemble forecast

where ‘‘observation’’ is defined

as one of the ensemble

members. Upper left box

sharpness graph. a ORIGINAL,

c SAM, d PIB. The rows depict

the three cases. E.g. a1 output

for ORIGINAL in CASE 1

A sequential ensemble prediction system 29

123



SAM performance with that of the original EPS and with the

original EPS with all members nudged towards observations

using PIB. We have also quantified the pure effect of cluster-

based filtering (without resampling) to check the persistence

of the quality for the chosen members. Different skill scores

and performance indices have been computed for objective

comparisons.

Filtering/resampling based on clustering maintains rep-

resentativeness of the EPS. Ensemble members differ from

each other by their driving global models (lateral boundary

conditions) and physical parameterisations. In order to

better accommodate chances for non-linear developments

in model evolutions, SAM does not remove all ensemble

members with initially low performance (given the metric).

Members driven by the same global model tend to behave

similarly, but clustering reduces the probability that all

members with the same boundary conditions are removed,

which leads to a better representativeness of the EPS.

Generally, the SAM and PIB variants of the EPS enhance

the quality skill scores. ETS is the highest for both variants

over the complete forecast time for all three case studies with

PIB outperforming SAM. However, PIB often overestimates

rain events leading to a higher FBI; in this regard, SAM

outperforms PIB. This behaviour must be pointed out when

ETS skills are compared, because overestimating precipita-

tion can already lead to a higher ETS (Mesinger 2008). The

EPS variants FILTER, SAM and PIB change the distribution

of the precipitation sum only marginally during the free run.

For all three cases, the relative entropy is only slightly

changed. In two of the three cases the precipitation PDF of

PIB ensemble members are very similar and reduce ensem-

ble spread.

Regarding resampling/duplication, the selection of the

ensemble members is decisive for SAM and FILTER.

Our choice of clustering and metrics also might influence

the results, but a sensitivity study using other clustering

methods, metrics or combination of metrics (e.g.

Weusthoff et al. 2011) exceeds the scope of this paper

and is suggested as a follow-up study. The clustering

approach is promising due to its potential to catch up

possible non-linear evolutions of the dynamic system and

since it does not reside on Gaussian approximations.

From our results, PIB alone would nudge all ensemble

members to radar observations, which is accompanied by a

loss of ensemble spread and thus a reduced ability to

account for uncertainties in chaotic dynamical systems. In

SAM, the radar data assimilation, together with filtering/

resampling improves the forecast quality without side

effects on the ensemble spread of the preexisting EPS.

Further studies are needed to test the sensitivity of SAM

to filter degeneracy. This could be done by repeating steps

(ii) until (iv) (Sect. 4.4 and Fig. 3) in a continuous assim-

ilation cycle over a longer period, e.g. more than 1 day.
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