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Abstract Although the introduction of commercial RGB-D
sensors has enabled significant progress in the visual navi-
gation methods for mobile robots, the structured-light-based
sensors, like Microsoft Kinect and Asus Xtion Pro Live, have
some important limitations with respect to their range, field
of view, and depth measurements accuracy. The recent intro-
duction of the second- generation Kinect, which is based
on the time-of-flight measurement principle, brought to the
robotics and computer vision researchers a sensor that over-
comes some of these limitations. However, as the new Kinect
is, just like the older one, intended for computer games and
human motion capture rather than for navigation, it is unclear
how much the navigation methods, such as visual odometry
and SLAM, can benefit from the improved parameters. While
there are many publicly available RGB-D data sets, only few
of them provide ground truth information necessary for eval-
uating navigation methods, and to the best of our knowledge,
none of them contains sequences registered with thenew ver-
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sion of Kinect. Therefore, this paper describes a new RGB-D
data set, which is a first attempt to systematically evaluate
the indoor navigation algorithms on data from two different
sensors in the same environment and along the same trajec-
tories. This data set contains synchronized RGB-D frames
from both sensors and the appropriate ground truth from an
external motion capture system based on distributed cameras.
We describe in details the data registration procedure and
then evaluate our RGB-D visual odometry algorithm on the
obtained sequences, investigating how the specific properties
and limitations of both sensors influence the performance of
this navigation method.

Keywords Data set - Evaluation - Visual navigation -
RGB-D sensor

1 Introduction

Publicly available data for algorithm evaluation are instru-
mental to achieving scientific progress in many disciplines.
Providing a common ground for objective and reliable bench
marking improves research transparency and reproducibility
[21]. The fields of computer vision and robotics are no excep-
tion. One relevant problem in robotics—the vision-based
mobile robot navigation—is situated on the crossroads of
these fields. Moreover, recent launch of compact, inexpensive
RGB-D sensors based on structured-light [18] or time-of-
flight cameras [19] provided the robotics community with
an attractive sensing solution, enabling the integration of the
depth and vision data within the robot navigation processing
pipeline for increased accuracy.

The goal of vision-based navigation is the recovery of
camera trajectory as a series of sensor poses based on the
sensor data (i.e., visual odometry (VO) problem [13,28]).
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Another approach to visual trajectory reconstruction is simul-
taneous localization and mapping (SLAM) [7,8]. The VO
approach is usually key frame based. In most cases, the
transformation function for coordinates of sparse sets of
points matched across a number of frames is known [17,35].
This enables the use of various frameworks for inter-frame
transformation error minimization for establishing a series
of consecutive sensor displacements and poses [34]. The
canonical SLAM approach on the other hand is based on
filtering and aims at accumulating knowledge from past mea-
surements to update the structure and motion information
in the form of a possibly accurate probability distribution.
The two concepts are combined within the recently popular
graph-based SLAM. In this approach, the nodes of the graph
correspond to poses of the robot and the edges in the graph
express the spatial constraints between the nodes. The con-
straints are introduced based on successive measurements.
The spatial configuration of the nodes that are maximally
consistent with the measurements is found by solving an error
minimization problem [15].

In this paper, a new RGB-D data set containing the
measurements performed using both the first- and the second-
generation Kinect (hereinafter Kinect vl and Kinect v2,
respectively) is described. From here on out, we will refer
to the data set as PUTK?>—PUT Kinect 1 and Kinect 2 data
set. The data set consists of eight sequences, registered in
an office-like environment. The sequences are composed of
color images and depth data frames acquired by both the
sensors and are supplemented with accurate ground truth,
enabling full reconstruction of relative displacement and
pose changes across all sensor positions. The ground truth
was established using an overhead system of mutually cal-
ibrated cameras. Moreover, great care was taken to ensure
proper synchronization of the acquisition by both sensors
and the overhead camera system, which further contributes
to the overall accuracy of the trajectory reconstruction. The
availability of precise ground truth data facilitates reliable
navigation algorithm benchmarking using both color and
depth images. The successful use of typical CCD cam-
eras, instead of a commercial IR-based tracking system, like
Vicon [36] or OptiTrack [23], to generate ground truth for
a navigation-related data set demonstrates that with some
extra effort on the programming and calibration side such a
data set can be obtained at a fraction of the costs that are
necessary to experiment with any of the commercial motion
capture systems. Furthermore, the use of both versions of the
Kinect sensors enables accurate side by side comparisons of
characteristics of both devices.

To demonstrate the usefulness of the acquired data, results
of the evaluation of a VO algorithm using the obtained
sequences are presented and discussed. The evaluation
includes the investigation of the influence of properties of
both Kinect sensors on visual navigation performance. VO
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was chosen over SLAM for demonstration purposes, as for
VO only the local consistency of the trajectory and the local
map (sensor displacement model) is used to obtain the local
trajectory estimate, whereas SLAM aims at assuring the con-
sistency of the global map [37]. By its very nature, VO is
therefore burdened by the unbounded local drift, but depends
more directly on the quality of the input data. The complete
benchmark data are available for download at: http://Irm.put.
poznan.pl/putkk/ Aside from the images and trajectories, the
Web site contains an additional, detailed description of the
data formats and sample videos of the registered sequences.

This paper is organized as follows. Section 2 describes
related work—other available vision-based navigation bench-
mark data and work on the comparison of Kinect sensors.
Section 3 gives a brief description on the multi-camera acqui-
sition setup for trajectory reconstruction, its configuration
and calibration. The registered trajectories and their prop-
erties are presented in Sect. 4. Section 5 presents the VO
algorithm using the registered data for accuracy benchmark,
and the detailed results of the tests are presented in Sect. 6.
Finally, Sect. 7 contains conclusions and summarizes the

paper.

2 Related work

The need for common ground for reliable and objective
robot navigation algorithm evaluation is long acknowledged
in the research community. As algorithms improved and
more sensors applied to this task, databases for laser scanner
and vision-based navigation emerged [5,31]. Unfortunately,
these early benchmarks do not include the depth data used by
many of the state-of-the-art navigation algorithms. Moreover,
as shown in [29], the data sets may contain improperly labeled
data, and the acquisition process is usually not synchronized,
which often limits their usefulness. Introduction of inexpen-
sive RGB-D sensors spurred interest in their applications in
computer vision and robotics. This led to the emergence of a
range of data sets containing RGB-D data. While most of the
publicly available benchmark data are meant for applications
such as object segmentation and recognition [25,30,38], data
sets for navigation evaluation have also been published.
The benchmark first presented in [33] and expanded in
[32] contains 39 corresponding RGB and D image sequences
gathered using the Asus Xtion (based on Kinect 1) sensor
with ground truth registered using a motion capture system.
Regrettably, for lengthy parts of the sequences taken by the
sensor mounted on the robot, no physical objects are visible
within the depth sensor’s working range. Under such condi-
tions, the inter-frame displacement and pose change cannot
be established without resorting to a vision-only approach
based on RGB images. Moreover, the data from the motion
capture system and the data from the Kinect sensor are not
perfectly synchronized because of the different sampling fre-
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quencies and potentially missing data, so that, an additional
data association and interpolation step is required. A very
large scale data set, containing data acquired along a 42km
indoor trajectory using stereo camera, laser scanners, IMU
and the Kinect v1 sensor, is described in [11]. The ground
truth for the data set was collected by aligning the laser
scan results with the highly accurate construction plans of
the building. The authors do not, however, describe how
the sensor data are synchronized with the acquired ground
truth trajectory. As stated in the article, the accuracy of the
system is believed to be about 2-3 cm, but no detailed analy-
sis or evaluation of this claim is given. While the system is
undoubtedly very useful for evaluation of long-term auton-
omy, the solution presented in this paper is a better choice
for navigation accuracy testing due to more precise ground
truth and near-perfect synchronization. Another interesting
approach to RGB-D-based navigation bench-marking is pre-
sented in [16]. The data set consists of images obtained from
camera trajectories in ray-traced 3D models. As the data set
is fully synthetic, perfect ground truth for trajectories and
structure is directly available. However, such benchmarks,
although useful, cannot fully replace the evaluation in real-
life conditions. As shown in [12] and [18], the Kinect sensors
exhibit distinctive characteristics, which influence the acqui-
sition process significantly. To the knowledge of the authors,
none of the currently available navigation benchmark con-
tain the data registered using both types of Kinect sensors.
The articles containing comparison of the accuracy of both
types of Kinect sensor focus mostly on applications outside of
robotics [1,39]. The rare exceptions deal with the properties
of the sensors themselves, evaluated in the static, laboratory
environment [20] or scenarios other than navigation such as
recent work [ 14], which considers the tasks of 3D reconstruc-
tion and object recognition when comparing Kinect v2 with
the RGB-D sensors based on structured light. The quantita-
tive comparison with respect to ground truth obtained with
a metrological laser scanner presented in [14] revealed that
Kinect v2 provides less error in the mapping between the
RGB and depth frames, and the obtained depth values are
more constant with distance variations.

3 Vision-based motion registration
3.1 Structure of the multi-camera vision system

The multi-camera vision system used for the registration of
the PUTK? data set consists of five high-resolution Basler
acA1600 cameras equipped with low-distortion, aspherical
3.5-mm lenses. The cameras are installed in an X-like pat-
tern under the ceiling of the laboratory. Due to this particular
arrangement, the field of view (FOV) of each of the peripheral
cameras partially overlaps with FOVs of the two neighbor-

Fig. 2 Overlapping FOVs of the multi-camera system

ing peripheral cameras and the central one. The cameras’
arrangement is shown in Fig. 1, whereas Fig. 2 presents the
idea of the overlapping FOVs. As a result, the central part of
the room, in which most of the movement occurs, is observed
by at least two cameras (usually three). This increases the
accuracy of the reconstructed ground truth trajectory and
facilitates the calibration of the multi-camera system.
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Table 1 The intrinsic parameters of the multi-camera system

Cam. Error fx fy Cy Cy kl k2 k3 k4 k5 k() P1 P2

C 0.275 824.51 823.26  798.01 592.85 0.031 —0.020 —0.001 0.001 0.132  0.073 —0.111 0.175
Py 0.244 82894 82794  804.31 625.73 0.056  —0.049 0.000  0.001 0.160  0.098  —0.140  0.203
Py 0.300 82691 825.86  798.34 59455 —0.008 0.062 0.001  0.001 —0.020 0.039 —-0.041 0.031
P3 0.228 82526  824.01 803.99  617.77 1.016 0.070 0.001  0.000 0.025  1.081 —0.055  0.078
Py 0.301 828.58  827.40  789.80  609.33 0.001 0.058 0.001  0.000 0.011 0046  —0.037  0.058

Fig. 3 Calibration marker observed simultaneously by three cameras

Each of the cameras was calibrated according to the
rational lens model proposed by Claus and Fitzgibbon [6],

assuming that the projection of a 3D point p = [x vz ]T

. . T.
onto image coordinates g = [u v] is calculated as:

X
X == (D
Z
Y = Yy (2)
Z
r?2=x7?+y? 3
_1+k1r2+kzr4+k3”6 (4)
1 kar? 4 ksr® + ker®
x"=x'R+ 2p1x/y/ + pz(r2 + 2x/2) (@)
Y =Y R+2p1G* +2y%) + pox'y’ (6)
u= fix" +cx (7N
v=fyy +cy (8)

where fy, fy,cx and ¢y are the focal lengths and the principal
point, while k; an p; stand for the ith radial and tangential
distortion coefficients, respectively. The obtained intrinsic
parameters and the corresponding average reprojection errors
are given in Table 1.

The precise reconstruction of the robot’s trajectories
requires knowing the exact poses of the cameras. The
global multi-camera system calibration method proposed by
Schmidt et al. [29] was used. Observations of a calibration
marker placed in different poses, in which it is visible from
at least two cameras (Fig. 3) are used to simultaneously min-
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Table 2 The rotation (ry, ry, ;) and translation (t,, ty, t,) vectors of
the peripheral cameras with respect to the Marker’s coordinate system

Cam. Iy ry T ty[m] ty[m] tz[m]
Py —0.16 0.63 —3.05 —2.31 1.79 0.17
P —0.26 —0.24 —0.15 1.33 —1.63 0.13
Ps —0.43 —0.11 —0.11 —2.29 —1.65 0.09
Py 0.03 —0.58 3.06 1.30 1.76 0.13

imize the reprojection error on all the images registered by
all the cameras using the Levenberg—Marquardt algorithm.

The model parameters vector Byics consists of the poses
of the peripheral cameras and the poses of the calibration
marker during consequent observations:

Bumcs = [rp tpy o TRy tpy iy Ty Py Ty | 9)

where rp, and 1 p, stand for the orientation described using the
Rodrigues’ rotation formula and translation vectors of the ith
peripheral camera w.r.t. central camera’s coordinate system.
Similarly, ry; and ty, represent the ith pose of the calibra-
tion. The results of the calibration procedure are presented
in Table 2 and in Fig. 4.

3.2 Experimental setup with the Kinect sensors

The mobile robot used in the experiments was equipped with
two sensors: Kinect vl and Kinect v2 facing forward, and
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P4

wm 24 x{m]

Fig. 4 Estimated poses of the peripheral cameras (P1—green, P2—
red, P3—cyan and P4—magenta) and poses of the calibration marker
(black) with regard to the central camera coordinate system (blue) (color
figure online)

Fig. 5 Calibration of the Kinect sensors w.r.t. the Marker’s coordinate
system

a firmly attached chessboard marker facing up. The marker
was used to calculate the ground truth trajectory of the robot.

As the visual navigation algorithms track the pose of the
moving camera, it was necessary to estimate the transforma-
tions between the robot’s sensors and the chessboard marker.
The algorithm described in [29] was used for that purpose.
The method uses images of an external calibration marker
observed by the robot’s sensors and images registered by an
external camera observing both the external and the robot’s
marker (Fig. 5).

Before the procedure, both the Kinect sensors (K1 and K»)
and the external camera (E) were calibrated using the ratio-
nal model. Afterward, the poses of the Kinect sensors w.r.t.
the Robot Marker were determined by simultaneous mini-
mization of the reprojection error of the chessboard patterns’
(both the external and the robot’s) corners on all the images
registered by the Kinect sensors and the external camera.

15 x [m]

y [m]

Fig. 6 Estimated poses of the two Kinect sensors (blue), the external
camera (red) and the external marker (green) w.r.t. Robot Marker’s
coordinates (black) (color figure online)

Table 3 Rotation (ry, ry, ;) and translation (zy, ty, ;) vectors of the
Kinect sensors

Sensor Iy ry r; ty (m) ty (m) t; (m)
K —1.15 —1.18 1.23 —0.11 —0.18 —0.07
K> —1.03 —1.03 1.29 —-0.10 —0.11 —-0.21

Figure 6 shows the visualization of the estimated sensor’s
positions, while Table 3 contains the numerical data.

The registration system schematic is presented in Fig. 7.
It consisted of five overhead cameras, two Kinect sensors,
three computers and some additional network equipment.
Such distributed solution was necessary as the stream of data
from sensors was to intensive to handle for a single device.
Thus, one of the computers was responsible for capturing
video streams from the overhead cameras. Dedicated net-
work adapters were used to facilitate this task, providing
separate connection for each camera. The same machine was
also used as a server that synchronized the data acquisition
procedure. Two low-profile notebooks were mounted on the
robot for grabbing frames from both Kinect sensors. To pro-
vide the throughput necessary to save all the acquired data,
each computer was equipped with a fast SSD disk.

Registration system elements were connected by Ether-
net cable, and the TCP/IP-based communication was used.
This solution was preferred over wireless, using either WiFi
or proprietary modules, as it offered the lowest and more
importantly the most stable delay. The delay was monitored
during the whole experiment and was below 1 ms.

The server awaits for all the elements of the system to
be in ready state, and when that happens, the trigger signal
is sent. That way all the acquired images are synchronized,
noting that the maximum frequency of operation was only
about 11 frames per second, as the system works as fast as
the slowest component.

@ Springer
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Server

Overhead cameras
AAE@A

Mobile robot

Kinect 2

Kinect 1

Enviroment
Fig. 7 Functional schematics of the registration system

E

Ceiling cameras

Kinect 1

Kinect 2 |
Mobile robot

Fig. 8 Coordinate systems of Kinect vl (K ), Kinect v2 (K>), ceiling
cameras/global (G) and the pattern on a mobile robot (P)

4 Gathering the RGB-D data

The robotic setup used for our experiments with Kinect v1
and Kinect v2 sensors and vision-based ground truth system
is presented in Fig. 8.

In this setup, the ceiling-mounted cameras provide infor-
mation about the motion of the image calibration pattern
attached to the robot (coordinate system P) in the coordi-
nate system of the ceiling cameras, considered as the global
coordinate system (G), which can be written as ©P. Trans-
formations between the coordinate systems of Kinects (K
and K») and the coordinate system of the pattern mounted
on the robot P were found prior to operation with additional
external calibration (Sect. 3.2) and are denoted as "K; and
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PK, for Kinect v1 and Kinect v2, respectively. To ease the
use of the data, we provide the ground truth trajectory of the
Kinect v1 and the Kinect v2 with respect to the global coor-
dinate system G, which was computed with the following
equation:

OPPK; = °K,, (10)

where “K; is the current Kinect ground truth pose estimate
in the global coordinate system G and i stands for 1 or 2
for the Kinect vl or the Kinect v2, respectively. Finally,
ground truth sensor trajectories for each of the Kinects and for
each experiment in the data set are made publicly available,
accompanying the respective sequence of RGB and depth
images.

Eight robot trajectories were registered during the experi-
ments. The first four of them simulated the indoor exploration
scenario with its characteristic features:

long, approximately straight sections,
— sudden turns,

multiple loops,

moving backwards.

The main purpose of those trajectories is to provide bench-
marking material for the comparison of the visual navigation
algorithms using either the Kinect v1 or the Kinect v2 sensors
in a typical conditions. Figure 9 contains the reconstructions
of those trajectories.

During the remaining four trajectories, the robot moved
approximately along a path with speeds varying between the
trials. The purpose of this part of the data set is to provide data
suitable for evaluation of both sensors’ robustness to different
motion speeds. The overlaid reconstructed trajectories are
presented in Fig. 10.

The trajectories were reconstructed offline. The con-
secutive poses of the robot were calculated independently
according to the observations from the motion registration
system. Due to the overlapping FOVs of the cameras (cf.
Fig. 2), the robot was usually observed by more than one
camera. The Levenberg—Marquardt algorithm was used to
find the robot pose in the coordinate system of the central
camera by minimizing the average reprojection error of the
chessboard marker corners on all the images captured for
this pose. Table 4 contains the number of frames, the length
and the average robot’s velocity for the registered trajecto-
ries. All the RGB and depth images are stored in a loss-less
PNG format to ensure that image compression will not influ-
ence the results of any evaluation using the images as source
data. The depth data are stored in a 16-bit grayscale image,
in which a single bit corresponds to a depth of 1 mm. The
supplementary ground truth position data (position and ori-
entation in quaternion format) have the same structure and
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traj,
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traja

X[m]
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-1 x[m]
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Fig. 9 The first four trajectories of the robot w.r.t. coordinate system
of the central camera

format as the ones provided by the data set described in [32].
Camera calibration data are also included, along with sample
code snippets for Kinect image distortion correction.

5 RGB-D visual odometry as the test application
5.1 The PUT RGB-D visual odometry system

The VO algorithm enables to determine the motion of the
sensor using only a sequence of images, without creating
a map of the environment [28]. A VO algorithm can also
serve as a base for a solution to the SLAM problem formu-
lated as the pose-based SLAM using graph optimization [4].
The use of RGB-D frames that contain direct depth measure-

A1 -3 ——— lrgj
y[m] ki

Fig. 10 The last four trajectories of the robot

Table 4 The parameters of the registered trajectories

Traj. No. of frames Length (m) mean vel. (m/s)
traj; 1539 18.7064 0.1215
traj, 2563 31.6145 0.1233
trajs 2754 39.2709 0.1426
traj, 2854 33.3703 0.1169
trajs 410 6.5381 0.1595
trajg 169 6.3842 0.3778
traj; 86 6.4865 0.7542
trajg 59 6.1143 1.0363

ments enables the use of 3D-to-3D feature correspondences
for frame-to-frame motion estimation, instead of the 2D-to-
2D correspondences in monocular VO [13].

The goal is to estimate the motion between the first frame
I k) and the last frame Iy 44,) in a sequence of n RGB-D
frames. This can be accomplished by matching the salient
visual features from the first and the last frame, followed by
the estimation of the geometric transformation between two
sets of 3D points. However, the matching-based approach
commonly used in RGB-D VO and SLAM is computation-
ally demanding and often requires hardware acceleration [9].
Therefore, we have proposed an alternative approach, based
on sparse optical flow tracking of the visual features [22].
With this approach, we detect the point features in the 7, )
frame and then track these points through the n images. The
tracked features define the correspondences between Iy )
and Iy(yn). Then, the depth data are associated with the
visual key points resulting in two sets of matched 3D points.
The structure of the used VO pipeline is presented in Fig. 11.

The data processing starts with the detection of a set of
point features (key points) that should be localized precisely
in the image and be repeatable in a sequence of images
showing the same scene. In our previous work [4], we have
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frame k+n

Lucas-Kanade
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visual features|

stop
tracking
?
S

YE!
depth data
association

YES

ORB
keypoints
detection

management
of visual
features

depth data
association

n:=n+1

x(k+n)

Kinect v1
v
RANSAC stop

3Dt03D | gy
Kinect v2 model motion
inect v i m RAN_)SAC estimation

Fig. 11 Block scheme of the PUT RGB-D VO system

concatenate
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x(k)

investigated three point feature detectors: FAST [26], ORB
[27] and SUREF [3], and we have found the ORB features to
be the most suitable, due to their multi-scale corner-like
detector, which yields highly repeatable features at a rea-
sonable computation effort.

To make the whole feature extraction process more robust,
we detect the features in sub-images and employ clustering
of the resulting key points. The detection of features in sep-
arate, slightly overlapping sub-images helps to distribute the
key points evenly on the image. The RGB image is divided
into 16 equal, square sub-images, and the ORB detection is
performed individually in each window with the adaptation
of detector parameters to ensure a similar number of features
in each square. After feature detection, the DBScan [10]—
a fast, unsupervised clustering algorithm—is used to detect
groups of key points and, then, one strongest key point from
each group is selected. This way nearby features that were
detected on a small area of the image are represented by one
key point, which helps to avoid the aliasing of key points
resulting in false feature correspondences.

The core part of the VO pipeline is motion estimation
based on two sets of corresponding 3D point features, whose
correspondences are determined by sparse optical flow track-
ing. The VO tracks features over a sequence of RGB images
between the two key frames that are processed with depth
images. Key points are detected at the key frame, and then
the positions of these points in the new image in a sequence
are determined by searching locally. To accomplish this, the
pyramid implementation of the Lucas—Kanade algorithm [2]
is applied. This algorithm is initialized with key points from
the ORB detector. If the number of successfully tracked
features falls below a given threshold, new key points are
detected in the current image and inserted into the pool of
tracked features. When the maximum number n of the RGB
frames in a sequence is reached (the default value is n = 4),
the rigid transformation between the key frames is computed.
The transformation estimation procedure is embedded in the
RANSAC scheme to make it robust to outliers resulting from
imperfect tracking. In every iteration, the RANSAC ran-
domly selects three pairs of points from the set of tracked key
points and estimates the candidate transformation using the
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Umeyama algorithm [35]. A modern variant of the RANSAC
algorithm is used, like in [24], that estimates the number of
necessary iterations and allows an iterative correction of the
final transformation by rejecting the inlier pairs that are the
least probable within the estimated model.

5.2 Evaluating the PUT RGB-D VO on the PUTK?
data set

The PUT RGB-D VO system was already extensively tested
on publicly available data sets, and the results were published
in [4]. The data sets that were used so far were the TUM
RGB-D benchmark [32] and the ICL-NUIM data set [16].
The evaluation revealed that the tracking-based VO is fast
and accurate, but only if it is fed by good quality images at a
high frame rate [4]. Therefore, we consider the PUT RGB-D
VO system a good candidate to evaluate our new Kinect v1
and Kinect v2 data set, as the varying performance of the
VO should demonstrate the importance of such factors like
image resolution, sensor field of view, the presence of motion
blur and depth artifacts.

The operation of the PUT RGB-D VO system on the RGB
and depth images from Kinect vl and Kinect v2 is mainly
the same, but some minor modifications were necessary to
accommodate the Kinect v2 data. The main reason for these
changes is the different resolution of the images provided
by both sensors. The Kinect v1 yields RGB images of size
640 x 480 and depth images of size 320 x 240 that are
rescaled to match the RGB images. However, the new Kinect
v2 produces RGB images of size 1920 x 1080 and depth
images of size 512 x 424 that again are rescaled to match
the color images. Due to the significant difference in image
sizes, all parameters or thresholds that are defined in pixel
values needed to be properly adjusted. An exemplary para-
meter is the maximum distance between points belonging
to the same cluster in the DBScan algorithm. However, we
have decided to still divide RGB frames into the same num-
ber of sub-images in both cases. During the tests, the images
from both sensors were processed in the VO pipeline, but
not memorized, as due to the size of Kinect v2 images they
would quickly fill whole RAM of a typical PC.

We demonstrate the trajectory reconstruction accuracy
achieved on the Kinect vl and Kinect v2 sequences. The
quantitative results are obtained with respect to the ground
truth trajectories, applying the relative pose error (RPE) and
absolute trajectory error (ATE) metrics introduced in [32].
The RPE is well suited for measuring the drift of a VO sys-
tem, like the one we apply in our evaluation of the Kinect
v1 and Kinect v2 data. The ATE metric is appropriate rather
for full SLAM systems that are able to correct the drift of
the estimated trajectory [4]. Although for a VO system the
absolute trajectory errors grow with time due to the unavoid-
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able drift, we use this metric to demonstrate visually how far
is the estimated trajectory from the ground truth one.

The RPE error corresponds to the local drift of the
estimated trajectory. To compute RPE, the relative transfor-
mation between the neighboring points of the ground truth
trajectory TOT = T?T, cee T,(fT and the estimated trajectory
TE = Tlf:, el TE is computed, and the relative error at the
time stamp i is given by:

E = (@) (b, (I

where n matches the length of the sequence of RGB-D frames
tracked by the VO system (cf. Sect. 5.1). Taking the transla-
tional or rotational part of E;, we obtain the translational or
rotational RPE, respectively.

The ATE error is based on the Euclidean distances between
the estimated trajectory TF and the ground truth trajectory
TOT. At first, we map the estimated trajectory onto the ground
truth trajectory by computing the transformation T that
is the least-square solution to the alignment problem [32].
Then, the error is computed as:

F; = (TST)~1T5TE, (12)

for each ith trajectory node (time stamp). We extract the
translational component of F; and compute the root-mean-
square error (RMSE), along with the standard deviation over
all time indices. We use the evaluation tools provided with
the TUM RGB-D benchmark [32] to compute the RPE and
ATE metrics in our experiments.

6 Evaluation results

All experiments with the VO system were performed on a
desktop PC with Intel Core 17-2600 3.4 GHz CPU and 16 GB
RAM. The VO uses only a single core of the processor. On
the tested sequences, our VO pipeline was running at about
50 frames per second (fps) for the Kinect v1 and at about 10
fps for the Kinect v2 data. As the data sets were recorded at 11
fps, the VO performance can be considered real time for both
sensors. Details as to the processing times in the VO pipeline
are as follows. The feature detection and management time in
a single RGB frame averaged over the tested sequences was
4.25ms for Kinect 1 and 10.77ms for Kinect 2. However,
considering that detection of the point features is performed
only when the number of successfully tracked features falls
below a threshold, the average detection time per frame was
1.63ms for the Kinect vl and 1.31ms for the Kinect v2.
The average tracking time between two consecutive RGB-D
key frames in a sequence was 3.21 ms for the Kinect v1 and
18.11ms for the Kinect v2. The transformation estimation

(RANSACQC) took less than 1ms for both of Kinects—this
was possible because only few iterations of RANSAC were
necessary to find an acceptable transformation model, which
is attributed to the good feature associations maintained by
the Lucas—Kanade tracker. In all tests, the maximum number
of RGB images for Lucas—Kanade tracking was setton = 4,
and the maximum number of tracked features was 500.

The impact of the used RGB-D data on the quality of
the estimated trajectories has been investigated using the VO
system, to avoid a situation when the results are altered by
trajectory optimization in a SLAM back end. The RPE com-
puted every n frames using (11) reveals relative errors in
translation between the successive RGB-D key frames of the
VO system. Figure 12 shows the relative translational errors
for the VO system tested on the four sequences that resemble
indoor exploration trajectories of a mobile robot. The quali-
tative difference between the results obtained using the data
from Kinect vl and Kinect v2 is clearly visible on all these
plots. The trajectories recovered from the Kinect v2 data tend
to have smaller translational RPE values through the whole
sequence. For the data from both sensors, the RPE peaks
occasionally to values a magnitude larger than the average.
These peaks coincide in time with the more sharp turns of the
ground truth trajectories. Apparently, when the robot makes
a turn, the amount of point features that can be tracked over
several frames decreases, contributing to a larger error in
the computed transformation between the key frames. How-
ever, the RPE peaks for the Kinect vl and Kinect v2 data
rarely appear in exactly the same moments along the trajec-
tories, which suggests that the point features found by the
VO system in the images from both sensors are considerably
different.

The ATE results, plotted in Fig. 13 for two example
sequences, confirm our observations as to the better accu-
racy of the trajectories recovered from Kinect v2 data. The
drift is apparent in all the tested sequences, but it is much
more pronounced in the trajectories obtained using Kinect
vl data (Fig. 13a, c).

The differences in the accuracy of the recovered trajecto-
ries are clearly demonstrated by the statistical data in Fig. 14.
For all four sequences, the trajectories estimated using Kinect
v2 data have smaller RPE RMSE, both translational and rota-
tional, as well as smaller ATE RMSE values. In particular,
differences in the rotational relative errors are significant
(Fig. 13b). This suggests that the wider horizontal field of
view in the Kinect v2 sensor enables to obtain more features
that are common between the neighboring frames when the
robot is turning, whereas in the Kinect v1 data the amount
of common point features between the frames considered in
the VO is often very small during sharp turns.

Whereas in the navigation task we lack such a precise
ground truth, as used for example in [14], to obtain statis-
tics for depth data on controlled scenes, careful inspection
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Fig. 12 Comparison of the trajectory drift for the Kinect v1 and Kinect
v2 data with the positional RPE metric on four different sequences: no.
1 (a), no. 2 (b), no. 3 (¢) and no. 4 (d)

of the recorded frames reveals that there are important dif-
ferences in the quality of the depth data from both sensors.
Examples are shown in Fig. 15. The Kinect v1 depth frame
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Fig. 13 Estimated and ground truth trajectories with the absolute tra-
jectory errors (ATE) for the sequences no. 1 (a, b) and no. 2 (c, d), using
the Kinect vl (a, ¢) and Kinect v2 (b, d) data
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Fig. 14 Comparison of the trajectory estimation accuracy for the first
four sequences simulating the indoor exploration scenario: translational
RPE (a), rotational RPE (b), and ATE (¢)

(Fig. 15b) contains many areas of missing range informa-
tion (shown in black), which results from the nature of the
pattern of “speckles”—points projected by the IR emitter of
the sensor on the scene, and the vulnerability to excessive
ambient light [18]. The Kinect v2 depth frame of the same
scene (Fig. 15d) has much fewer areas of missing data; par-
ticularly, there are no missing data neighboring to edges of
objects, which is the case for Kinect v1. The missing depth
data in Kinect v2 are rather isolated (Fig. 15h), whereas in
Kinect vl the missing range measurements form relatively
large areas (Fig. 15f), preventing the VO from finding valid
3D features in a bigger part of the frame. These differences
are allegedly related to the fact that Kinect v1 uses correlation
to compare the observed pattern to some reference pattern,
which creates dependencies in-between pixels on the depth
image, while in Kinect v2 the depth is measured indepen-
dently for each pixel [14]. The quality of the RGB frames
is similar for both sensors, but the Kinect v2 has higher res-
olution of the RGB camera and a larger horizontal field of
view, and thus, an image taken from the same position as for
Kinect v1 captures a slightly larger part of the scene.
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Fig. 15 Example RGB and depth frames from the trajectory no. 1
illustrating differences between the Kinect v1 (a, b, e, f) and Kinect v2
(c,d, g, h)
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Fig. 16 Positional RPE showing the difference in drift on the slowest
motion sequence no. 5 (a, b), and the fastest motion sequence no. 8 (c,
d) for the Kinect v1 (a, ¢) and Kinect v2 (b, d) data
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data sequence ATE ATE std trans. rot.
description [m] dev. [m] RPE [m] RPE [°]
Kinect v1, traj, 0.706 0.224 0.011 0.26
Kinect v2, traj, 0.424 0.227 0.008 0.19
Kinect v1, traj, 0.759 0.294 0.013 0.38
Kinect v2, traj, 0.544 0.247 0.011 0.31
Kinect v1, trajs 1.087 0.520 0.012 0.29
Kinect v2, traj 0.632 0.327 0.011 0.26
Kinect v1, traj, 1.101 0.448 0.017 1.10
Kinect v2, traj, 0.401 0.155 0.011 0.30
Kinect v1, trajs 1.087 0.520 0.012 0.29
Kinect v2, trajs 0.632 0.327 0.011 0.20
Kinect v1, trajg 0.173 0.084 0.026 0.35
Kinect v2, trajg 0.072 0.032 0.020 0.57
Kinect v1, traj; 0.107 0.047 0.042 0.89
Kinect v2, traj; 0.048 0.020 0.033 0.61
Kinect v1, trajg 0.066 0.035 0.045 1.12
Kinect v2, trajg 0.041 0.016 0.043 0.86

x [m] x [m]

Fig. 17 ATE plots computed on the sequences no. 5 (a, b) and no. 8
(¢, d), for the Kinect v1 (a, ¢) and Kinect v2 (b, d) data

The trajectories recovered by our VO system from the
remaining four trajectories, when the robot moved with
different speeds along approximately the same path demon-
strated that both sensors are robust w.r.t. the increased motion
speed, showing no significant motion blur in the RGB and
depth data. Example translational RPE results are shown in
Fig. 16. The translational relative errors have similar values
for both sensors and different speeds. For the Kinect v2 data,
the peak errors are slightly larger. This is attributed to the
increased possibility of motion blur in the higher-resolution
RGB images from the Kinect v2 sensor. However, the aver-
aged translational and rotational RPE is still slightly higher
for the Kinect v1 data for all the motion speeds, as shown
in Table 5, which summarizes results for all eight sequences.
The ATE results depicted in Fig. 17 show that the absolute tra-
jectory errors are smaller for the sequence with larger speed.
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Since the localization error in VO is cumulative, integration
of individual frame-to-frame transformation errors across a
larger number of frames results in a larger overall error. The
trajectories 5—8 have similar length, so the trajectories with
lower velocity are composed of more frames and the accu-
mulated error is therefore larger.

The Kinect v2 has higher resolution of the images, and
the depth data yielded by this sensor usually contain fewer
areas of missing depth than the data obtained from Kinect
v1. This results in a higher number of useful point features
that are found in the RGB data and have associated valid
depth values. Therefore, the number of correct matches (i.e.,
RANSAC inliers) between the sets of features in the neigh-
boring key frames is usually higher for the Kinect v2 frames.
The importance of the increased number of point features is
particularly visible when the speed of the sensor increases
(trajectories 5—8). When the sensor moves faster, distances
between the key frames are larger, and thus, it is more difficult
to track the key points using the Lucas—Kanade algorithm.
More features detected at each key frame helps to ensure
that the number of key points that survive tracking till the
next key frame will be large enough to compute a correct
transformation between the key frames.

7 Conclusions

The article introduces the PUTK? RGB-D data set for
the evaluation of robot navigation algorithms. The RGB-D
data were registered by the Kinect vl and Kinect v2 sen-
sors moving along eight different trajectories in an indoor
environment. The sensor data consist of high-quality, uncom-
pressed RGB and depth images and are supplemented with
high-quality ground truth. The ground truth data were gener-
ated using a multi-camera system for sensor pose registration,
with additional emphasis on careful synchronization dur-
ing the acquisition process. As a result, the data consist
of millimeter-accurate position data and facilitate full pose
recovery. To the best knowledge of the authors, the presented
data set is the first one to include the data registered by
both Kinect sensor types in a side by side setup with such a
reliable ground truth. The registration environment was spe-
cially arranged to ensure that physical objects are always
visible in the working range of the Kinect sensors. Possible
applications of the data set include vision- and depth-based
navigation evaluation, 3D reconstruction and sensor charac-
teristics comparison. Its usefulness is demonstrated in the
paper with an example VO algorithm evaluation.

The evaluation of our RGB-D VO algorithm on the new
data set allowed us to compare both versions of the Kinect
sensor in the context of indoor navigation. As the tested
VO system is feature based, the most important differences
between the Kinect v1 and Kinect v2 concern the number of
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features that can be extracted from a frame and tracked reli-
ably over several frames. The number of features is higher
in the Kinect v2 due to the higher resolution of the RGB
and depth images, and the smaller number of missing data
areas in the depth frames of Kinect v2. Therefore, the Kinect
v2 outperformed its predecessor on all the tested sequences
with respect to both the relative pose errors and the drift of
the whole trajectory. Moreover, the wider horizontal field of
view of the Kinect v2 contributes to smaller relative pose
errors when the sensor makes turns. The much higher res-
olution of RGB images makes the processing of Kinect v2
RGB-D data more computation demanding. However, the
similar average features detection time per frame achieved
by our VO on both the Kinect vl and Kinect v2 data sug-
gests that the point features are tracked more reliably, over a
higher number of RGB images in the Kinect v2 data, as the
Lucas—Kanade tracker benefits from the higher resolution of
images.

The presented PUTK? data set is publicly available and
can be freely downloaded and distributed, providing common
ground for research and evaluation of both contemporary and
future visual navigation algorithms.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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Commons license, and indicate if changes were made.
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