
Knowl Inf Syst (2016) 47:697–732
DOI 10.1007/s10115-015-0871-2

REGULAR PAPER

Partial materialization for online analytical processing
over multi-tagged document collections

Grzegorz Drzadzewski1 · Frank Wm. Tompa1

Received: 12 November 2014 / Revised: 28 April 2015 / Accepted: 6 July 2015 /
Published online: 7 September 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The New York Times Annotated Corpus, the ACM Digital Library, and PubMed
are three prototypical examples of document collections in which each document is tagged
with keywords or phrases. Such collections can be viewed as high-dimensional document
cubes against which browsers and search systems can be applied in a manner similar to
online analytical processing against data cubes. After examining the tagging patterns in
these collections, a partial materialization strategy is developed to provide efficient storage
and access to centroids for document subsets that are defined through queries over tags.
By adopting this strategy, summary measures dependent on centroids (including measures
involving medoids, sets of representative documents, or sets of representative terms) can
be efficiently computed. The proposed design is evaluated on the three collections and on
several synthetically generated collections to validate that it outperforms alternative storage
strategies.

Keywords Document warehouse · Document tags · Text analytics · Selective materializa-
tion · OLAP · Faceted browsing

1 Introduction

Large document collections such as the New York Times Annotated Corpus and the ACM
Digital Library cover many diverse topics. It can be a daunting task to decide what to read
on a new topic or to find which combinations of topics deserve more attention. As an aid to
readers, various tags (usually key words and phrases) are assigned to each document in these

B Grzegorz Drzadzewski
gdrzadze@uwaterloo.ca

Frank Wm. Tompa
fwtompa@uwaterloo.ca

1 David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1,
Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-015-0871-2&domain=pdf
http://orcid.org/0000-0002-2628-8693

698 G. Drzadzewski, F. Wm. Tompa

collections, reflecting the topics covered by that document. In a large collection, each tag can
be assigned to hundreds or thousands of documents.

Following standard practice in information retrieval, we model a document as a bag of
terms represented by a document term vector (DTV), which is a vector of values where each
entry corresponds to a term together with the term’s (normalized) frequency in that document.
A set of DTVs can be aggregated together to obtain a set centroid for the corresponding
documents, which can be used to summarize the document set. Given the centroid, a system
can produce other summary measures, such as a representative set of “bursty” terms [19,37],
the medoid [9,18], or a diverse set of representative documents [12].

In addition to the DTV, each document in our collections is assigned a set of tags that are
external to the document. Each metadata tag is a value chosen from a facet (such as location,
time, organization, person, cost, or event) that corresponds to a conceptual dimension used to
describe the data [49]. For simplicity, we assume that the facets are unstructured (i.e., that the
value space within a facet is not hierarchically organized) and that each document is assigned
zero or more values from each of the facets. Following standard practice, we assume that the
assigned tags have been selected with care: They are typically of high quality and identify
topics or important concepts found in the document.

A facet-based browsing environment supplements a traditional search engine by adding
facilities that allow users to benefit from the metadata tags. With the help of faceted search
a user may start to explore the ACM tagged document collection by issuing a traditional
search request, say “databases cloud.” As in other systems, the user is presented with the
top k matching documents, but in addition the user is also informed by the system of the
tags associated with those documents. In response to “databases cloud,” the user might
learn that all the corresponding documents are tagged “database,” 90 % are tagged “cloud
computing,” 55 % of the top responses are also tagged “service-oriented architecture,” 35 %
are tagged “security and privacy,” and 10 % are tagged “genome informatics.” (Instead of
precise percentages, similar information might instead be provided in the form of tag clouds.)
The user could then select tags of interest to formulate a refined query by issuing a Boolean
query over tags (i.e., “slicing and dicing” the collection).

Faceted search helps to narrow a large result set down to a more manageable size for
browsing, and a study at the University of North Carolina library showed that it was preferred
by users over traditional search interfaces based on text content alone [40]. In a variety of
other settings, user studies have found that systems supporting faceted search and browsing
are superior to traditional search engines and to systems based on clustering by document
content [17]. For example, Yee et al. [49] found that “Despite the fact that the interface was
often an order of magnitude slower than a standard baseline, it was strongly preferred by most
study participants. These results indicate that a category-based approach is a successful way
to provide access to image collections.” Kipp and Campbell [29] found that “Users would
find direct access to the thesaurus or list of subject headings showing articles indexed with
these terms to be a distinct asset in search.” Hearst [23] concluded that “Usability results
show that users do not like disorderly groupings like [those produced by clustering systems],
preferring understandable hierarchies in which categories are presented at uniform levels of
granularity.” Pratt et al. [38] found that “a tool that dynamically categorizes search results into
a hierarchical organization by using knowledge of important kinds of queries and a model of
the domain terminology . . . helps users find answers to those important types of questions
more quickly and easily than when they use a relevance-ranking system or a clustering
system.” Zhang and Marchionini [52] found that “[A faceted search and browsing] interface
will bring users added values beyond simple searching and browsing by in fact combining
these search strategies seamlessly.” Faceted search has thus emerged as a valuable technique

123

Partial materialization for OLAP over documents 699

for information access in many e-commerce sites, including Wal-Mart, Home Depot, eBay,
and Amazon [45].

We envision an enhanced interface that, in addition to a traditional faceted search interface,
provides summary information about the resulting document set. For example, a summary
may consist of the k most representative articles in the sub-collection that satisfies the query,
the most common terms used within articles in that sub-collection, and the distribution of tags
that are assigned to articles in the sub-collection. If the summary matches the user’s informa-
tion need, individual articles in that set can be retrieved; otherwise the user can reformulate
the query (often “drilling down” by specifying additional tags or “rolling up” by removing
some tags from the query) to arrive at a more appropriate set of articles. We have recently
described a prototype of the enhanced interface in further detail [14]. For an analyst (or even
a casual reader) armed with the New York Times, this approach might uncover sets of articles
that provide a comprehensive summary of news reports on a specific subtopic of interest.
For a computer scientist investigating an unfamiliar research area through the ACM Digi-
tal Library, providing summaries based on tag-based queries can identify the most relevant
articles to read in the area and how those articles relate to topics identified by other tags.

We rely on the previous studies to validate the utility of faceted search and browsing: It
is prevalent, effective, and satisfies users’ needs. In this paper, we concentrate on making
such systems more efficient. If a document collection is already provided with meaningful
metadata tags so that faceted search and browsing is feasible, the main problem that needs
to be solved is to find a fast way of calculating centroids, which are required to provide
summaries of document sets that match users’ tag-based queries. Because some sets can
be very large, aggregating large amounts of data in order to calculate summary measures
may be too time-consuming to be performed online. For conventional data warehouses, On-
Line Analytical Processing (OLAP) systems have been developed in order to speed up the
aggregation of multidimensional data through full or partial materialization of summaries.
Similarly, we show that partial materialization is required in order to provide summaries at
each step of a faceted search when space is limited.

Unfortunately, current OLAP systems are designed for data collections that have tens of
dimensions and will not work for document collections that have hundreds of facets with
millions of tags. To handle such a large number of dimensions, we propose to materialize
centroids for sub-collections that correspond to all documents sharing small subsets of tags.
Thus, centroids are stored for predetermined subsets of the data, and calculating centroids
for arbitrary subsets corresponding to users’ queries requires aggregating data from sev-
eral overlapping subsets (because documents with multiple tags will contribute to multiple
materialized centroids). The techniques used in current OLAP systems, however, do not
accommodate such overlap.

This paper includes the following contributions:

– detailed analyses of tagging patterns in two representative multi-tagged document col-
lections: the New York Times Annotated Corpus and the ACM Digital Library;

– a storage design that performs well for calculating centroids of document sets that result
from both short and long conjunctive queries over tags and enables aggregation of cells
with overlapping data;

– the development and evaluation of several partial materialization strategies for high-
dimensional, sparse data.

The paper is organized as follows. Related work is described in Sect. 2, and require-
ments for a browsing system are proposed in Sect. 3. Next, the properties of prototypical
multi-tagged document collections are introduced in Sect. 4. A new storage architecture

123

700 G. Drzadzewski, F. Wm. Tompa

for multi-tagged document collections that supports efficient computation of topic centroids
is described in Sect. 5, and the partial materialization techniques that take advantage of it
are described in Sect. 6. Then, in Sect. 7, the performance of the storage architecture and
the materialization strategies are evaluated on three real and several synthetic collections.
Conclusions and further work are summarized in Sect. 8.

2 Background and related work

2.1 Folksonomies and tag recommendation systems

The New York Times and the ACM Digital Library rely on tags being chosen by users
with care so as to maximize the reuse of tags where applicable and to distinguish between
concepts through the use of disjoint tag sets where possible. To achieve these ends, they
employ controlled vocabulary for some facets and allow only limited use of uncontrolled
vocabulary.

In contrast, many social Web sites, such as Delicious and Flickr, allow users to attach
arbitrary tags to documents to organize content on the Web. Tags can be chosen by users
at will, and different users may assign different tags to the same object. This results in so-
called folksonomies [24] that include many tags per document, large tag vocabularies, and
significant noise. Faceted browsing has been implemented over folksonomies in systems such
as dogear [34], and the complex tagging patterns involved can benefit from more efficient
exploration, which is the aim of our work.

User studies that examine users’ perceptions of the role and value of tags [28] showed
that one common view of tags is as keywords (tags describe key aspects of the document)
and another common view is for categorization. This is supported by another study [1], a
taxonomy of tagging motivations in ZoneTag/Flickr, which concluded that one of the purposes
of tags is to show context and provide content description.

To help reduce noise, there is much research on tag recommender systems, which are
designed to help users assign tags to documents. Content-based tag recommender systems
assume that tags for a specific resource can be extracted by processing the textual information
about the resource to be annotated. These approaches adopt techniques from information
retrieval [2] in order to extract relevant terms to label a resource. More specifically, term
frequency and inverse document frequency have been shown to yield good keyword identifi-
cation results [6,16,48], and their use has been adopted by tag recommendation systems [5].
Content authors and editors do not explicitly compute inverse document frequency when
tagging an article, but their intuition regarding which words are informative replaces the use
of this measure by human judgment.

In related work, a tag recommender system that relies on topic modeling was developed
to provide an annotator with a set of diverse tags that represent the various topics covered in
the document [3]. The generative model in the system simulated the users’ tagging process
in a social tagging system. It assumed that for any resource there are a multitude of topics,
and that when users tag a resource they first identify topics of interest from the resource,
after which they express the chosen topics via a set of words (tags). Each topic accordingly
corresponds to a probability distribution over tags, which gives the probability of picking out
a tag with respect to a certain topic. The user studies performed as part of the evaluation of
the system suggested that users preferred the tags suggested by this new system.

From these previous studies, we conclude that a carefully annotated document has tags
representing all the topics that have sufficiently high presence in that document.

123

Partial materialization for OLAP over documents 701

2.2 Browsing document collections

In place of faceted search, which has been described in the introductory section, browsing sys-
tems might rely on document clustering. For example, traditional search engines are designed
to provide a user with a ranked list of documents that satisfy a query, and clustering may be
performed on top of the result set in order to organize similar documents into groups [50].
Because clustering can be fully automated, it can be applied to text collections that have not
been assigned metadata tags. However, if clustering is applied online and if it were to be
applied to result sets consisting of thousands of documents, it would impose unacceptably
long delays. To avoid this bottleneck, systems such as Clusty.com perform clustering on the
top k results only. On the other hand, if clustering is applied offline, cluster labels can be
interpreted to be metadata tags and the techniques proposed here can be similarly applied.

Scatter/Gather is a well-known document search interface based on clustering [9]. Users
explore a document collection by dynamically clustering a set of documents (scattering),
selecting clusters of interest based on their summaries, and then treating all documents in the
selected clusters as one set (gathering). These steps are then repeated to further investigate
the contents of the sub-collection. The summaries used to characterize clusters take the form
of a set of representative terms, chosen on the basis of frequency alone, together with the
headlines of the documents closest to the centroids.

Like Scatter/Gather, our proposal allows users to repeatedly select subsets of the document
collection, examining summaries for each grouping of documents to determine whether or
not to include specific groupings in the refinements. However, unlike Scatter/Gather, the
system we envision is based on a multi-valued, faceted labeling for each document rather
than on hard clusterings; thus even if cluster labels at each step were to be treated as if they
were metadata tags for externally-specified classes, Scatter/Gather would correspond to a
single-valued labeling of documents. Furthermore, in Scatter/Gather it is difficult for users
to predict what clusters will be generated since the grouping criterion is hidden, unlike when
aggregation is specified through tags visible to user. Finally, we envision a search system in
which a user is free to broaden the search at any step, rather than being expected to restrain
themselves to drilling down alone.

To make Scatter/Gather usable in an interactive manner, offline hierarchical clustering
can be performed on the document collection [10]. In this approach, meta-documents cor-
responding to a union of documents are created offline, and during the scatter phase the
meta-documents are clustered instead of the actual documents, thus reducing the number of
items to be clustered and thereby reducing execution time. Document clustering is therefore
only approximated. In addition, inter-document distances are computed based on selected
features instead of the full text of the meta-documents, thus again reducing execution time.
Interestingly, the third variant of our proposal stores centroids for meta-classes, somewhat
akin to Scatter/Gather’s meta-documents, but those centroids are corrected to exact centroids
for the associated classes before they are used in browsing.

An even faster implementation of Scatter/Gather (LAIR2) was developed by Ke et al. [27],
based on precomputing a complete (binary) hierarchical clustering of the documents. Thus,
for a collection with N documents, LAIR2 materializes N − 1 clusters. Then, instead of
clustering documents during the browsing stage, it retrieves prematerialized nodes from the
cluster hierarchy. Like the previous approach, however, the authors are only concerned with
improving the execution time and do not consider the storage cost required to store every
sub-cluster of a full hierarchical clustering. In contrast, the amount of storage required by a
browsing system, as well as execution time, is central to our work.

123

702 G. Drzadzewski, F. Wm. Tompa

2.2.1 Tag exploration

One difficulty in browsing via tags is to determine which tags are present in the collection
and how tags are related to each other. A query and browsing interface can display the
distribution of tags that are assigned to articles in each result set, thereby suggesting tags that
can be used for further refinement. For broadening a search, the system could display tags
that are associated with carefully chosen supersets of the result set. Alternatively, the system
could provide a mechanism to browse the tags themselves (as opposed to the documents
associated with those tags) through an interface to a thesaurus or ontology [8,36,43]. We
make no assumptions about the structure of the tag space for our work, and the incorporation
of tag-browsing facilities is orthogonal to our work.

2.2.2 Multi-document summarization

The set of documents that result after each browsing or search step must be presented to the
user in some form. Search engines, for example, display the top-k matches after ranking, and
browsing systems can similarly present the k most representative documents of a result set,
as is done in Scatter/Gather. As a special case, the medoid document, i.e., the one closest
to the centroid, can be displayed. Another form of summarization is to display the most
representative terms that appear in the result set, for which Scatter/Gather chooses the most
frequently occurring terms, but representativeness might be defined using inverse document
frequency as well or using other statistical measures, such as information gain.

Alternatively, a more informative summary of a result set may be a précis generated
from the documents. There are many different approaches to perform such multi-document
summarization, based on abstraction and information fusion, topic-driven summarization,
clustering, graphs, and ranking [11,21]. Of particular relevance here are multi-document
summarization methods that rely on using the centroids of document sets [39], which is the
measure for which we are designing an efficient infrastructure.

2.3 OLAP for data warehouses

Data cubes serve as the model for describing OLAP operations [20]. A cubes’ dimensions
reflect the attributes that characterize the facts stored in the cube’s cells; for example, a set of
sales records might have dimensions for date of sale, location of sale, type of product sold,
customer demographics, etc. Because multidimensional analysis often requires aggregated
measures over some of the dimensions (e.g., average sale prices for each product per day,
regardless of location and customer), OLAP systems provide the materialization of selected
cuboidsdefined over a subset of dimensions, storing precomputed aggregates in each resulting
cell. The dimensionality of a cuboid is equal to the number of unaggregated dimensions, and
the space is proportional to the number of cells (the product of the number of possible values
in each unaggregated dimension). Thus a d-dimensional cuboid stores aggregated values in
cells indexed by the possible values for each of the d unaggregated dimensions, and if each
dimension is binary requires O(2d) space.

2.3.1 Full materialization

OLAP systems that materialize all possible cuboids offer the best response time to user
queries. However, full materialization requires O(2n) space for cubes with n dimensions.
Compression can be applied to achieve full materialization while reducing the storage cost;

123

Partial materialization for OLAP over documents 703

this can save space in situations where there is significant repetition in cell measures, as is the
case with sparse cubes. Compression techniques for data cubes include condensed cubes [46],
dwarf cubes [44], and quotient cubes [30]. However, these techniques do not scale to a high
number of dimensions [32].

2.3.2 Partial materialization

Partial materialization techniques are used to materialize a subset of cuboids (also referred
to as views) from the lattice of cuboids [22]. When answering a query, instead of fetching
the data from the base cuboid and performing aggregation on it, the cuboid corresponding
to the query can be calculated from the closest materialized superset cuboid. Therefore, the
subset of cuboids to materialize is picked so as to minimize the time needed for the expected
query workload, while requiring no more than a given amount of storage.

Thin cube shell materialization is a partial materialization where only the base cuboid and
certain low-dimensional (most highly aggregated) cuboids are stored [32]. More specifically,
in addition to the base cuboid, the strategy stores all cuboids having exactly d dimensions,
where d � n, n is the total number of dimensions, and there are

(n
d

)
d-dimensional cuboids.

Alternatively, we could materialize all cuboids having d or fewer dimensions, which would
further reduce the execution time of short queries at the expense of additional storage space.
However, d-dimensional cuboids can be used to answer queries that involve at most d dimen-
sions only; this involves choosing a materialized cuboid and aggregating the data for the
dimensions omitted in the query. On the other hand, queries involving more than d dimen-
sions are answered by aggregating over the base cuboid. Picking a larger d for materialization
results in increased storage cost and increases the time required to calculate queries with few
dimensions, but picking a small d results in much longer computation time for queries with
more than d dimensions. If the expected workload has a wide range of queries, there may
not be a fixed d that is appropriate.

As an improvement over a thin cube shell, Li et al. [32] proposed a shell fragment approach
for dealing with high-dimensional cubes. The technique relies on the assumption that high-
dimensional data have limited interactions among dimensions (tags). It assumes that on
average any one tag interacts with at most K other tags, where K is at most five and these tag
interactions can usually be well clustered. Under such circumstances when a collection has
T unique tags, it can be partitioned into T/K nonoverlapping fragments. Depending on the
properties of the data and the query workload, it may be necessary to choose fragments of
various sizes. However, larger fragments require more storage space. If the tag interactions
cannot be clustered well, it may be necessary to store overlapping fragments to provide
satisfactory query response time, in which case more fragments need to be stored. This, in turn,
leads to greater storage requirements. For each of these fragments a full cube materialization
is stored; thus, all the cuboids of dimensions ranging from 1 to K are materialized. This
results in 2K − 1 cuboids materialized per fragment, where a cuboid with d dimensions has
2d − 1 cells, which therefore implies

∑K
i=1

(K
i

)
(2i − 1) cells for a fragment. For a fragment

of size K = 3, 19 cells per fragment are needed. For scenarios in which the prematerialized
fragments do not enclose the user’s query, again the view needs to be calculated from the
base cuboid, which can be time-consuming.

2.4 Document warehouses

A document warehouse is like a data warehouse, except that instead of performing analyses
over tabular data, it supports analyses over documents. OLAP in document warehouses

123

704 G. Drzadzewski, F. Wm. Tompa

has been used to provide users with summaries of related documents through the use of
centroids and medoids of the clusters found in cells of a cube [26,51]. Efficient storage
strategies for OLAP over nonoverlapping sets of documents have been proposed [51], and
a fully materialized approach that deals with overlapping sets has also been proposed [26],
but efficient storage strategies that can handle overlapping document sets—the focus of this
paper—have not been explored. In tagged document collections, tags are treated as dimension
values. Two different forms of schema can be used for determining how tags are assigned to
dimensions: multidimensional schemas and single-dimensional schemas.

2.4.1 Multidimensional schema

A multidimensional schema (MDS) stores each tag in a separate binary dimension, where
0 signifies that the corresponding tag is not assigned and 1 signifies that it is. For example,
if a document d1 has tags (Finances, Stocks) and d2 is tagged with (Stocks) only, then d1 is
stored in cell (1, 1) and d2 is stored in cell (0, 1) of the 2D cuboid with those two dimensions.
This cuboid can answer the query Finances ∨ Stocks by aggregating cells (1, 1), (0, 1), and
(1, 0) together, where, for this small example, the cell (1, 0) is empty. By having a separate
dimension for each tag, we can ensure that aggregations performed on a cuboid do not double
count any documents. Storing a data cube for MDS is a challenge when there are many tags.

2.4.2 Single-dimensional schema

A single-dimensional schema (SDS) stores all tags in one dimension. The dimension can take
on a value ranging from 1 to T , where T is the number of unique tags in the collection. This
approach works well in situations where each document is assigned only a single tag. Zhang
et al. [51] used this approach for organizing a collection of documents into nonoverlapping
cells and developed a partial materialization scheme on top of it.

In contrast, Jin et al. [26] used SDS for storing documents with multiple tags. Unfor-
tunately, this can result in the same document being assigned to multiple cells, which is
problematic when the cells in a cuboid are aggregated. Continuing with the example above,
because there is only one “tags” dimension, cell(Finances) stores d1 and cell(Stocks) stores
both d1 and d2. In this situation, simply adding the counts for cell(Finances) and cell(Stocks)
to count the number of results for the query Finances∨ Stocks will result in double counting
d1. We adopt the solution to this problem developed by Jin et al., namely storing docu-
ment membership information for each cell, so that when multiple cells are aggregated, cell
overlaps can be detected and compensations applied. Jin et al. use a full materialization
on a small data set and focus on the union operation only; optimizing conjunctive queries
involving overlapping cells has not been considered.

3 System requirements

In this section we describe requirements and associated challenges for a system that will
support online analytical processing for a large document collection. The requirements are
derived in part by examining characteristics of the PubMed interface to biomedical litera-
ture [15].

123

Partial materialization for OLAP over documents 705

PubMed includes more than 24 million abstracts and corresponding citations to articles,
which are annotated with a variety of tags1 chosen from Medical Subject Headings (MeSH),
the National Library of Medicine controlled vocabulary thesaurus used for indexing articles
for PubMed; the EC/RN Number, assigned by the Food and Drug Administration (FDA)
Substance Registration System for Unique Ingredient Identifiers; and Supplementary Concept
tags, which include chemical, protocol or disease terms. The PubMed interface supports
searching for documents using a standard text search, matching query terms against the
abstract, the citation, and all assigned metadata tags, as well as by specifying that some of
the query terms should be restricted to matching MeSH terms (or some other facet) only.

A corpus of MeSH terms assigned to PubMed documents2 includes 244,553,378 tags
assigned to 20,997,401 documents, or 11.65 tags per document on average. The corpus
identifies 71,690,729 assigned tags as “major,” that is, the topics play a major part in the
associated paper, yielding on average 3.28 major tags per document.

PubMed users looking for relevant articles can benefit immensely from searching with
the aid of metadata tags [35]. Since PubMed is a very large collection and the sizes of sets
of search results are often large, it can certainly benefit from more efficient calculation of
aggregate measures that summarize the contents of query results.

3.1 Supported measures

As explained in Sect. 1, a document is considered to be a bag of terms, represented by its
document term vector (DTV). All but the top m terms, based on mutual information, can
be ignored so as to avoid storing stop words and other uninformative terms, and for every
document, the frequency of each remaining term is stored as a normalized DTV.

In order to provide meaningful summaries about a document set (e.g., its medoid, any set
of representative documents, or a set of representative terms), we need to compute the set
centroid C , which can be represented by a vector of term frequencies equal to the mean of
all the DTVs for documents that belong to that set. However, instead of storing the means
directly, for a set of documents S, we store its centroid CS as a dictionary that maps terms to
(sum, count) pairs, which is then easily updated when documents are added to or removed
from the set:

CS[term].sum =
∑

d∈S
d[term] (1)

CS[term].count = |{d ∈ S | d[term] > 0}| (2)

where d is a normalized DTV of length m. Thus, a set centroid vector has length m regardless
of how many documents are in the set.

3.2 Supported queries

Associated with each document is a set of “metadata” tags, each of which is assumed to
represent some aspects of the document’s content. We allow the user to pose queries as
Boolean formulas over tags, such as Election ∧ President ∧ (Stocks ∨ Stock_Market).
Conjunctions of terms narrow down the scope of documents to those that involve all the
concepts represented by the conjuncts. The use of negation is allowed, but only in the form

1 For consistency within this paper, we continue to use “tag” to refer to a metadata term assigned to an article
from a controlled vocabulary, even though PubMed’s use of “tag” refers to the attachment of a facet label to
a query term.
2 Available at http://mbr.nlm.nih.gov/Download/2014/Data/Full_MH_SH_items.gz.

123

http://mbr.nlm.nih.gov/Download/2014/Data/Full_MH_SH_items.gz

706 G. Drzadzewski, F. Wm. Tompa

1 2 3 4 5 6 7 8 >8

Distribution of Queries

Unique Tags in Query

P
ro

po
rt

io
n

0.
0

0.
1

0.
2

0.
3

0.
4

Fig. 1 Analysis of unique tags per query

1 2 3 4 5 6 7 8 9 10 >50

Query Log Analysis for Tag−Pair Co−occurrence Counts

Number of Co−occuring Tags

In
st

an
ce

 C
ou

nt
0

10
00

25
00

Fig. 2 Number of distinct tags co-occurring with tags in a query

“and not” to allow a conjunction with the complement of the documents having a given
term, as in the example President ∧ ¬Election. Disjunction provides a means of query
expansion, allowing synonyms and related tags to be included in a query [33].

3.3 Expected workload

Users explore a multi-tagged document collection through a browser front end that enables
them to invoke Boolean queries. As part of their exploration, they may pose queries and
read summaries (in the form of data derived from set centroids, such as representative docu-
ments or representative terms). After users examine summaries of document sets, they may
choose to drill down to smaller subsets of documents by issuing more specific queries. The
browsing system we are developing3 is required to provide quick responses to the generated
queries.

We rely on data from a PubMed query log4 [35] to help characterize a feasible query
workload. Among 2,996,301 queries collected over a single day, 16,928 queries include
only terms chosen from facets that have a controlled vocabulary (specifically, MeSH terms
[MH], MeSH major topics [MAJR], MeSH subheadings [SH], filters [FILTER], EC/RN
Numbers [RN], and supplementary concepts [NM]), with the possible addition of one or
more pure text terms. Treating each text conjunct or disjunct as if it were a single tag,
these queries involve anywhere from 1 to 46 tags, with the majority of the queries using
between 1 and 3 tags (Fig. 1). Figure 2 shows the number of distinct tags that co-occur
in queries having a given query tag, from which we observe that tags are used repeatedly
in queries in a variety of contexts specified by other tags. The usage patterns of the three

3 http://dsg.uwaterloo.ca/TagBrowser2015/.
4 Available at ftp://ftp.ncbi.nlm.nih.gov/pub/wilbur/DAYSLOG.

123

http://dsg.uwaterloo.ca/TagBrowser2015/
ftp://ftp.ncbi.nlm.nih.gov/pub/wilbur/DAYSLOG

Partial materialization for OLAP over documents 707

AND

Number of Operators

P
ro

po
rt

io
n

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

0.
0

0.
4

0.
8

OR NOT

0 1 2 3 4

Number of Operators
0 1 2 3 4

Number of Operators

0 1 2 3 4

(a) (b) (c)

Fig. 3 Distribution of operator counts in PubMed query log: a AND, b OR, c NOT

Boolean operators are summarized in Fig. 3, which shows that the “NOT” operator occurs
in 1 % of queries, the “OR” operator occurs in 18 % of the queries, and the “AND” operator
occurs in 62 % of the queries; 31 % of queries are of length 1 and so use no operators.
These observations suggest that a realistic query workload will likely include primarily short
queries that are predominantly conjunctive, as has been observed for other Web search systems
[25].

In summary, our expectation is that (after some preliminary traditional searches of the text)
users explore a collection by starting with a small set of tags of interest and then iteratively
refining their queries to be more focused by including additional tags. For some queries, query
expansion will be applied to incorporate some alternative tags. Thus, most queries will be
conjunctions of tags (i.e., no negations and only occasionally disjunctions to accommodate
alternative tags), most queries will be short, and most queries will match sets that include a
large number of documents.

3.4 Design objective

We wish to provide a fast response to user queries by having an upper bound on the number
of documents or centroids of materialized sets that need to be retrieved from secondary
storage. At the same time we wish to minimize the number of set centroids that need to
be precomputed and materialized to accomplish this. We focus on providing upper bound
guarantees on execution costs for (positive) conjunctive queries, since they are expected to
be most frequent: For each such query, no more than k DTVs or set centroids need to be
accessed, for some fixed k. Queries that involve disjunction and negation will be answered
using multiple conjunctive subqueries, and they may therefore require more than k DTVs or
set centroids in total.

A document cube provides an excellent mechanism for structuring the collections of
documents so as to answer Boolean queries on tags. Each cell in the cube represents the set
of documents that have a specific tag assignment, and each cuboid represents document sets
that are aggregated (“rolled up”) by grouping on specific tags and ignoring others. As a result,
conjunctive tag queries can be answered by selecting specific cells from appropriate cuboids,
and centroids of document sets that correspond to other Boolean queries can be computed
by combining the centroids from selected cuboid cells. The problem to be addressed is to
determine which cells or cuboids to materialize to balance space and time.

4 Document collections

To motivate the design of our proposed index, we evaluate document collections from two
different domains: the New York Times Annotated Corpus (NYT) [41] and the ACM Digital
Library (ACM) [47].

123

708 G. Drzadzewski, F. Wm. Tompa

Table 1 An article from (a) NYT with corresponding general online descriptors assigned to it, and (b) ACM
with corresponding category and keyword tags assigned to it

(a) NYT

Article headline

Stocks drop in Tokyo

General online descriptors

Stock prices and trading volume

Stocks and bonds

Finances

Prices (fares, fees and rates)

(b) ACM

Title of article

The complex dynamics of collaborative tagging

Categories and subject descriptors

H.5.3 [Group organizational interfaces]: collaborative computing

I.2.4 [Artificial intelligence]: knowledge representation

Keywords

Tagging Del.icio.us Power laws

Complex systems Emergent semantics Collaborative filtering

4.1 New York Times Annotated Corpus

The NYT collection includes 1.8 million articles spanning 20 years. The collection has 1 mil-
lion tags that cover many different facets, such as people, places, companies, and descriptors,
and multiple tags can be assigned to each article. Out of the various types of tags contained
in the collection, we consider only the tags found in the general online descriptors, which are
the ones that correspond to the text found in the articles. Table 1a shows a tag assignment for
a single document found in the NYT collection. In our analysis we consider only tags that
have been assigned to at least 200 documents, yielding 1015 such tags that are applied to 1.5
million documents.

The tagging patterns exhibited by a document collection affects system design choices
and determines whether any of the previously developed OLAP materialization strategies
can be applied. We analyzed the tagging pattern for NYT using measures adopted from
analyzing tagging patterns in folksonomies such as Delicious [7]. These measures capture
the frequency of tags appearing in the collection, the distribution of tag counts per document,
and the amount of co-occurrence between the 10 most frequent tags and other tags.

The plot of tag frequencies is shown in Fig. 4a. The frequencies are normalized by the
count of the most popular tag, which happens to be Finances, with a count of 142 thousand
documents. At the other end of the spectrum, the least frequent tag (with our cutoff) has
201 documents. When the tag frequencies are sorted in descending order, the distribution
resembles Zipf’s law.

The number of tags assigned per document is shown in Fig. 5a. This ranges from 34 % of
the documents being assigned just one tag to a few documents having 43 tags, with 2.7 tags
per document on average. Figure 6a shows the amount of document overlap between each
of the 10 most popular tags and all the other tags, with the other tags shown in descending

123

Partial materialization for OLAP over documents 709

(a) (b)

Fig. 4 Tag assignment frequency in a NYT and b ACM

(a) (b)

Fig. 5 Distribution of the number of tags per document for a NYT and b ACM

(a) (b)

Fig. 6 Tag co-occurrence frequencies for the 10 most frequent tags in a NYT and b ACM

order by their frequency of co-occurrence. The presence of multiple tags per document and
the high co-occurrence among the tags produce many nonempty document sets that match
the conjunction of multiple tags.

4.2 ACM digital library

The much smaller ACM collection contains 66 thousand articles organized with categories,
general terms, and keywords. In our analysis we consider the categories and keywords tags
only, since there are only 16 general terms available. Table 1b shows an instance of a tag
assignment for a single article found in the ACM collection. Since this collection is so much

123

710 G. Drzadzewski, F. Wm. Tompa

Table 2 Number of conjunctions of n tags that contribute to high multi-way co-occurrence for NYT and
ACM, with threshold limits of 50 for NYT and 5 for ACM

n 1 2 3 4 5 6 7 8 9 10 11 12 Total

NYT 1015 16,448 20,905 12,217 5289 2401 1152 493 151 27 2 60,100

ACM 9098 14,262 5280 3860 3700 3199 2390 1520 776 297 79 13 44,474

smaller than NYT, we include all the tags with at least five occurrences in our analysis,
resulting in 9098 tags that satisfy this criterion.

The plot of tag frequencies is shown in Fig. 4b. Again, the tags are normalized by the count
of the most popular tag, which has been used to tag 2144 documents, and the least frequent
tag with our cutoff has been assigned to five documents. Just as for NYT, the distribution of
tag frequencies resembles Zipf’s law.

The number of tags assigned per document ranges between 1 and 41, as shown in Fig. 5b.
The mean number of tags per document is 4.1 (when both keywords and categories are
combined). As was true for the NYT collection, the distribution has a very wide range, with
the majority of documents having fewer than 10 tags. Since there is a higher mean number
of tags per document in the ACM, we expect a larger number of tag conjunctions to produce
nonempty document sets.

Figure 6b shows the proportion of documents that have one of the 10 most popular tags
and some other tags. The shape of the ACM graph is somewhat similar to that for NYT, but
its magnitude is significantly higher, showing that the ACM tags are more inter-correlated.

4.3 Deeper analysis of tagging patterns

For additional insight into the tagging patterns exhibited by the NYT and ACM collections,
two more properties are analyzed. The first property refers to the order of tag co-occurrences,
while the second property refers to the similarity between sets in the collections.

4.3.1 Higher order tag co-occurrence

We define a collection to have a high n-way co-occurrence among its tags if the number
of documents having n tags in common is greater than k for many different combinations
of tags. Such document sets are of interest because their document count may be too high
to have the set centroid calculated online, and this measure indicates the dimensionality of
cuboids that need to be materialized in order to answer queries on tags efficiently.

The tag co-occurrence measures we have described for the NYT and ACM collections
show that there is significant correlation among various pairs of tags, but it does not tell us
if there is also high n-way co-occurrence for n > 2. The threshold used for determining
whether an n-way co-occurrence is high should be set to be the size of a document set for
which it would be efficient to calculate a summary online. For our experiments, we have
chosen k = 50, which is quite appropriate for NYT. However, ACM is significantly smaller,
and we wish to test how well our approaches scale up; therefore, we have chosen to use k = 5
for ACM in order to expose its tagging structure in more detail.

Table 2 shows that there are many surprisingly large tag sets where the corresponding
document count is above the threshold. If tags were assigned to each document independently
of other tags, then the chance that the intersection of more than four tags would result in a

123

Partial materialization for OLAP over documents 711

Table 3 Percent overlap of cells for given query lengths

NYT

1 2 3 4 5 6 7 8 9 10 11

1 3 1 0 0 0 0 0 0 0 0

2 55 38 34 40 53 63 72 82 100

3 94 90 90 95 99 100 100 100

4 100 100 100 100 100 100 100

ACM

1 2 3 4 5 6 7 8 9 10 11 12

1 5 9 15 16 14 11 9 6 3 1 0

2 71 87 96 98 100 100 100 100 100 100

3 98 100 100 100 100 100 100 100 100

4 100 100 100 100 100 100 100 100

document set of size greater than the threshold would be low. The multi-way correlation that
exists between tags has a big impact on the number of cells that need to be materialized.

4.3.2 Overlap between document sets

The similarity between two sets of documents Sa and Sb can be quantified by evaluating the
size of their symmetric difference |Sa�Sb|. We consider two sets as similar if |Sa�Sb| is less
than or equal to the predefined threshold k, which is again set to 50 for NYT and 5 for ACM.

Let D be a document collection and let A ⊆ 2D and B ⊆ 2D be sets of document sets.
We define the k-overlap Ok(A,B) between A and B as follows:

Ok(A,B) = |{Sa ∈ A | ∃Sb ∈ B ∧ |Sa�Sb| < k}|
|A| (3)

By applying Ok(A,B) to pairs of sets reflected in Table 2, we can compute the percentage
of overlap between document sets corresponding to the conjunction of i tags and document
sets corresponding to the conjunction of j tags. This is summarized in Table 3, where the i th

column shows the percentage of overlap with sets of size j (j < i) and all entries are 100
for i > j ≥ 4. Thus, many documents share many tags, but whenever significantly many
documents share tags G = {t1, t2, . . . , ti } for i > 4, not many additional documents share
any subset G ′ ⊂ G of those tags if |G ′| ≥ 4.

4.4 Significance of tagging patterns

The analyses of tagging patterns found in NYT and ACM reveal important challenges associ-
ated with such document collections. First, since there are many popular tags, some of which
are assigned to as many as 140,000 documents, it is infeasible to compute set centroids for
corresponding document sets online. Instead, it is necessary to precompute the data in order
to guarantee satisfactory response times. Second, since many documents are assigned mul-
tiple tags and there is high correlation among the tags, it is reasonable to expect users to
issue queries using tag conjunction. The more tag combinations that can be meaningfully
conjoined, the more possible sets of documents exist about which a user can enquire. Third,

123

712 G. Drzadzewski, F. Wm. Tompa

surprisingly many tags can appear in a conjunctive query that yields a large document set.
This leads to the existence of many sets for which centroids need to be computed; far more
than one would expect if tags were assigned randomly. Materializing centroids for all these
combinations is infeasible.

Fortunately, there is a lot of overlap between sets of documents of different query lengths.
Because of this overlap, we can achieve considerable savings in storage cost by developing
a suitable partial materialization strategy that can scale to large document collections with
large numbers of tags. We explore this further in Sect. 6.

5 Storage architecture

5.1 Basic infrastructure

We assume that documents are stored as files and that the collection is indexed by a mapping
from document IDs to the corresponding files. In order to support queries over tags, we
further assume the existence of an inverted index that stores a postings list of document IDs
for each of the tags. Finally, we assume that normalized document term vectors have been
precomputed and that an index from document IDs to DTVs (as might be produced by a
standard search engine) is also available.

With this minimalistic storage structure, tag queries may be answered using the following
steps:

1. Use the inverted index over tags to return set S of document IDs that satisfy the query.
2. Initialize the document set centroid CS to be empty.
3. For each s ∈ S:

(a) Retrieve DTV for s.
(b) Add DTV to document set centroid CS using Eqs. 1 and 2.

This algorithm requires |S| DTVs to be read from secondary storage, which will be
quite slow for large sets. Even for systems with sufficient main memory to store the whole
collection, it will be beneficial to avoid online aggregation of |S| documents, especially
when supporting many concurrent users. Therefore, it is desirable to bound the number of
documents that must be retrieved for each query.

One way to reduce the cost of answering a query is to store precomputed centroids for
well-chosen sets of documents P and to use these at query time to reduce the number of
documents that must be retrieved. Given a document set S, we find a highly overlapping set
P ∈ P and retrieve the precomputed set centroid CP as well as the DTVs for all documents
in S�P = (S − P) ∪ (P − S), the symmetric difference between sets S and P . To calculate
CS , the DTVs of the retrieved documents are added to or subtracted from the centroid of P
(Eqs. 1 and 2) in order to compensate for the difference between S and P . As a result, instead
of retrieving |S| DTVs, we need to retrieve |S ∪ P| − |S ∩ P| DTVs as well as CP . As a
special case, S ∈ P, in which case we merely need to retrieve CS and avoid accessing any
DTVs.

When choosing P, the sets for which we precompute and store centroids, its size is con-
strained by the amount of available storage space. To benefit from P, we wish to select sets
that closely match the expected query load. To this end, we adopt the practice of using partial
materialization of document cubes [22].

123

Partial materialization for OLAP over documents 713

5.2 Storing document member sets

To support intersection and union operations on cells with overlapping sets of documents,
the IDs of member documents need to be accessible for any given cell. Rather than storing
document membership information for cells, even for those that are materialized, we store
the list of defining tags with each materialized cell and rely on the postings list of documents
for each tag to find the corresponding set of document IDs (Sect. 5.1). By storing each tags’s
postings list as a compressed bitmap with Word-Aligned Hybrid (WAH) encoding [31], we
require 17.8MB for the NYT collection, which has 1.5 million articles, and 1.7MB for ACM
collection that has 66 thousand articles. With such a low memory footprint, it is feasible to
have the tag postings lists stored in memory. Thus, this approach conserves storage space
and efficiently supports finding the set of documents associated with a cell.

5.3 Granularity of materialization

Materialization decisions can be made at two levels of granularity: whole cuboids or individ-
ual cells. We show here that it is preferable to decide whether or not to materialize individual
cells.

5.3.1 Full cuboid materialization

A d-D cuboid, which can answer all queries that involve the subset of dimensions found
in it, has

∏d
i=1 ni cells, where ni is the number of unique values in dimension i . Since in a

multidimensional schema each tag dimension has only two values (0 and 1), a d-D cuboid has
2d cells. However, the cell that has all dimensions set to zero (i.e., none of the tags present) is
not required when evaluating queries with at least one positive term (Sect. 3.2), and so only
2d − 1 cells need be stored.

An example of a 3D cuboid is shown in the first two columns of Table 4a. The cuboid
consists of seven cells, one for each assignment of three tags (except for the cell that has
all dimensions set to zero). Although a d-D cuboid can answer all queries involving any
or all of the d tags defining the cuboid, it is optimized to answer queries that include all d
dimensions; if fewer are specified, several cell measures must be aggregated. For example,
Ct1 (the centroid for all documents having tag t1, regardless of whether or not they also have
tags t2 and t3) can be computed as Ct1∧t2∧t3 +Ct1∧t2∧¬t3 +Ct1∧¬t2∧t3 +Ct1∧¬t2∧¬t3 , which
requires accessing four of the 3D cuboid’s cells. In general, to answer a conjunctive query
involving t tags by using a d-D cuboid defined over d tags with d ≥ t , the set of tags defining
the cuboid must include the set of tags used in the query and 2d−t cells must be aggregated.

5.3.2 Individual cell materialization

Given a tag set T = {t1, . . . , td}, instead of materializing a whole d-D cuboid, this strategy
materializes I (T), the set of cells corresponding to all conjunctive queries without negation,
which can be defined as follows:

I (T) = {Xt .alltags | t ∈ (2T − ∅)} (4)

where Xt is a cuboid for tag set t and alltags refers to the cell corresponding to all tags
present. Table 4b shows the set of cells that will be materialized for T = {t1, t2, t3}. The
source column of the table identifies the cuboid from which the cell is taken.

123

714 G. Drzadzewski, F. Wm. Tompa

Table 4 (a) 3D cuboid for tag
set {t1, t2, t3}, (b) I (T) for tag set
{t1, t2, t3}

Dim Cell Computation

t1 t2 t3 Centroid From I (T) cells

1 0 0 Ct1∧¬t2∧¬t3 Ct1 − Ct1∧t2 − Ct1∧t3 + Ct1∧t2∧t3
0 1 0 Ct2∧¬t1∧¬t3 Ct2 − Ct1∧t2 − Ct2∧t3 + Ct1∧t2∧t3
0 0 1 Ct3∧¬t1∧¬t2 Ct3 − Ct2∧t3 − Ct1∧t3 + Ct1∧t2∧t3
1 1 0 Ct1∧t2∧¬t3 Ct1∧t2 − Ct1∧t2∧t3
1 0 1 Ct1∧t3∧¬t2 Ct1∧t3 − Ct1∧t2∧t3
0 1 1 Ct2∧t3∧¬t1 Ct2∧t3 − Ct1∧t2∧t3
1 1 1 Ct1∧t2∧t3 Ct1∧t2∧t3
Dim Cell

t1 t2 t3 Centroid Source

1 * * Ct1 1D cuboid

* 1 * Ct2 1D cuboid

* * 1 Ct3 1D cuboid

1 1 * Ct1∧t2 2D cuboid

1 * 1 Ct1∧t3 2D cuboid

* 1 1 Ct2∧t3 2D cuboid

1 1 1 Ct1∧t2∧t3 3D cuboid

For |T | = d , this approach materializes 2d −1 cells, which is equal to the number of cells
in the d-D cuboid. As shown in the last column of Table 4a, the set centroids for any cell in
the 3D cuboid for tag set {t1, t2, t3} can be derived using the set of cells in I ({t1, t2, t3}). In
general, similar conversions can be derived by taking advantage of the inclusion–exclusion
principle.

5.4 Query performance evaluation

For tag set T , full cuboid materialization and I (T) both require the same number of cells to
be stored, and both can answer all Boolean queries over T . However, the cost to answer a
query depends on which set of materialized cells the query engine stores. Table 5 shows the
number of cells that need to be aggregated to compute the answers to all queries involving one
or two of t tags using a t-D cuboid vs. using individual cells included in the corresponding
I (T). In this table, the column labeled “count” shows how many distinct queries have the
format shown in the column labeled “pattern”; for example, given four possible tags, there
are 12 distinct queries that involve the conjunction of one (positive) tag and one negated tag;
to answer any one of these queries, we need to access four cells in the cuboid (for every
combination of tag presence and absence for the remaining tags), but only the two cells from
I (T) that correspond to the sets of documents having each tag.

Table 6 compares the cost of computing set centroids for all possible 3-tag queries when
relying on a materialized 3D cuboid against the cost when relying on cells materialized using
I (T). For three tags, there are seven nonoverlapping sets of documents (corresponding to the
seven cells in the 3D cuboid) and thus 27 − 1 equivalence classes of queries. For each class,
we found the minimum-length query (one with fewest literals) and, using these, tabulated
the number of queries of each possible length against the cost (number of cells) needed to

123

Partial materialization for OLAP over documents 715

Table 5 Cost of answering
simple queries using a
materialized t-D cuboid versus
the individual cell materialization
strategy

Query Cost

Length Pattern Count t-D cuboid I (T)

1 t1 t 2t−1 1

2 t1 ∧ t2
(t
2
)

2t−2 1

2 t1 ∧ ¬t2 t (t − 1) 2t−2 2

2 t1 ∨ t2
(t
2
)

3 × 2t−2 3

answer them under each materialization strategy. For very short queries, the query cost is
lower when using I (T) than when using the cuboid, and, importantly, the difference—as well
as the length of query for which I (T) outperforms the cuboid—becomes more pronounced
as the number of dimensions in the materialized cuboids increases.

To compare query runtime when adopting the full cuboid materialization model against
using the I (T) model, we design a neutral query workload that has no bias toward any type of
queries: each query includes at most three tags (with repetitions allowed), and the frequency
of occurrence for each query depends on its length only and is independent of how many times
it requires negation, union, intersection, or a combination of these operations. Using Table 6,
Table 7 shows the average cost when using the I (T) and complete cuboid (C) architectures
to answer queries when the query length probability distribution is uniform, zero truncated
Poisson, and geometric. For all but the uniform distribution (where performance differs by
only 10 %), the I (T) architecture outperforms the full cuboid materialization approach, even
when all queries involve fewer than four distinct tags.

Additionally we evaluated the performance of the two storage architectures with a query
workload model derived from the analysis of the PubMed query log. Since it was observed
that the ‘NOT’ operator occurred in only 1 % of queries, the derived model will not generate
queries that have that operator. This leaves us with 18 queries that it can generate, which are
characterized by the number of ‘AND’ and ‘OR’ operators that they use. The probability of
seeing queries with a ‘AND’ operators and o ‘OR’ operators is calculated from the probability
distribution observed in Fig. 3 under the assumption of independence of the two distributions.
Table 7 shows that the I (T) architecture outperforms the complete cuboid (C) architecture
on the resulting generated workload.

Since we expect short queries to be more frequent than long ones, it is advantageous to
use the individual cell materialization strategy.

5.5 Storage performance evaluation

The choice of materialization strategy affects the storage efficiency of the system, which
can be evaluated by looking either at the amount of storage space necessary to support a
fixed set of queries or at the number of queries that can be answered when a fixed amount of
storage space is used. In this section, the storage efficiency of the I (T) storage architecture
is compared to two partial materialization strategies that rely on full cuboid materialization:
thin cube shells and shell fragments.

5.5.1 Thin cube shell

The thin cube shell approach, described in Sect. 2.3.2, relies on materializing all cells in all
cuboids of a prescribed depth. As a result, the number of cuboids, and in turn the number

123

716 G. Drzadzewski, F. Wm. Tompa

Ta
bl
e
6

N
um

be
r

of
m

in
im

al
qu

er
ie

s
ha

vi
ng

gi
ve

n
co

st
s

an
d

qu
er

y
le

ng
th

s
w

he
n

us
in

g
a

3D
cu

bo
id

(c
ub

)
or

I(
T

)
st

ra
te

gy

Q
ue

ry
le

ng
th

1
2

3
4

5
6

7
8

9
10

C
os

t
C

ub
I(
T

)
C

ub
I(
T

)
C

ub
I(
T

)
C

ub
I(
T

)
C

ub
I(
T

)
C

ub
I(
T

)
C

ub
I(
T

)
C

ub
I(
T

)
C

ub
I(
T

)
C

ub
I(
T

)

1
3

3
7

1

2
9

6
6

9
3

3
3

15
12

9
15

3
3

5

4
3

3
15

6
4

16
12

3
1

1

5
9

6
9

9
6

3

6
3

3
3

6
1

1
3

7
1

1
6

3
4

1

123

Partial materialization for OLAP over documents 717

Table 7 Average cost of
answering query

Tag count Average cost

Prob distribution C I(T)

Uniform 3.7 4.1

Zero truncated Poisson m = 1 3.6 1.6

Zero truncated Poisson m = 2 3.5 2.3

Zero truncated Poisson m = 3 3.4 2.9

Geometric 3.6 1.9

Based on PubMed Query Log 3.0 1.3

of cells, that would need to be materialized grows rapidly as the number of dimensions
increases. For a collection with T tags, thin cube shell materialization with d-dimensional
cuboids requires

(|T |
d

)
(2d − 1) cells to be materialized. In contrast, the I (T) approach that

supports all queries up to d tags requires
∑d

i=1

(|T |
d

)
cells to be materialized.

For example, since NYT uses 1015 tags, there are
(1015

3

)
three-dimensional cuboids, which

corresponds to 1.2×109 cells that would need to be materialized by the thin cube shell strategy.
On the other hand, the I (T) approach requires 1.7 × 108 cells to be materialized, which is 7
times less. However, for most of those tag combinations there are at most 50 corresponding
documents, and often there are none at all. Therefore, there is no need to materialize all
cells with the I (T) approach or all cuboids with the thin cube shell approach. With the I (T)

architecture unnecessary cells can be easily pruned, and only 38,368 cells are required to
answer all queries that involve up to three distinct tags and contain more than 50 documents
(which corresponds to the sum of the first three columns in Table 2) or 60,100 cells are
required to ensure all the conjunctive queries that produce a result set above the threshold
size can be answered efficiently. On the other hand, the thin cube shell approach requires
25,010 3D cuboids to be stored, which corresponds to 175,070 cells (at 7 cells per cuboid).
That is, the thin cube shell approach requires almost three times as many cells as the I (T)

approach if the cuboid size is chosen to be 3, and the multiplier gets larger as the prescribed
cuboid size increases.

5.5.2 Shell fragments

The shell fragment approach, proposed by Li et al. [32] and described in Sect. 2.3.2, relies
on materializing all cuboids for each fragment, where the fragments form a partitioning of
the tags. For NYT’s 1015 tags, we would need to store 338 fragments corresponding to tag
triples and one fragment corresponding to the remaining tag, which would result in 6423
cells being stored (at 19 cells per fragment for the triples). This is 11 % of the size needed by
the I (T) storage approach that stores all 60,100 cells (and can answer all conjunction queries
that produce result sets of size greater than 50), but that design is efficient only for queries
including tags that are all found in the same fragment—at most 338 out of 20,905 tag triples
that correspond to document sets larger than our threshold. When the tags specified in a query
are not all found in the same fragment, the set of fragments that contain all the involved tags
need to be intersected to identify which documents need to be aggregated online, and the
response time might be unacceptable if the number of documents that need to be aggregated
is above the threshold. If we choose to partition by six tags per fragment instead, we will

123

718 G. Drzadzewski, F. Wm. Tompa

Table 8 Analysis of the number of conjunctive queries producing result sets above the threshold size that can
be answered when 6D or 3D shell fragment materialization is used on (a) NYT (b) ACM

Query Unique 6D shell fragment 3D shell fragment

Length Conjunctions Count % Count %

NYT

1 1015 1015 100.00 1015 100.00

2 16,448 1002 6.09 564 3.43

3 20,905 585 2.80 119 0.57

4 12,217 280 2.29 0 0.00

5 5289 90 1.70 0 0.00

6 2401 13 0.54 0 0.00

7 1152 0 0.00 0 0.00

8 493 0 0.00 0 0.00

9 151 0 0.00 0 0.00

10 27 0 0.00 0 0.00

11 2 0 0.00 0 0.00

Total 60,100 2985 4.97 1698 2.83

ACM

1 9098 9098 100.00 9098 100.00

2 14,262 2006 14.07 1199 8.41

3 5280 797 15.09 186 3.52

4 3860 350 9.07 0 0.00

5 3700 114 3.08 0 0.00

6 3199 17 0.53 0 0.00

7 2390 0 0.00 0 0.00

8 1520 0 0.00 0 0.00

9 776 0 0.00 0 0.00

10 297 0 0.00 0 0.00

11 79 0 0.00 0 0.00

12 13 0 0.00 0 0.00

Total 44,474 12,382 27.84 10,483 23.57

require 111,496 cells (86 % more than what is needed by I (T)), and still at most 170 out of
2401 important sextets of tags will appear within a single fragment.

The effectiveness of answering conjunctive queries of various length on NYT and ACM
collections, when relying on shell fragment materialization, with fragment sizes of 6 and 3
are analyzed in Table 8. The fragments used are nonoverlapping and chosen using a greedy
heuristic that builds fragments that can answer the longest conjunctions. In both the NYT
and ACM collections only a very small percentage of conjunctions can be answered using
the nonoverlapping shell fragments. Thus, the partial materialization generated by shell
fragments cannot guarantee acceptable performance when tags co-occur with many other
tags and there is a high order of tag co-occurrences, as is true in both the NYT and ACM
collections.

123

Partial materialization for OLAP over documents 719

6 Partial materialization strategies

Because each centroid term vector includes a (sum,count) pair for each of the m most signifi-
cant terms found in the document collection (Sect. 3.1), and for our collections m = 500, the
space for storing a single centroid can be as much as 4KB (if uncompressed). Even if cen-
troids were compressed, they will still require considerable space. Therefore, it is worthwhile
to avoid materializing cells as much as feasible.

To this end, three partial materialization strategies are proposed: threshold materializa-
tion (TM), threshold materialization with ancestors (TMA), and materialization of cluster
centroids (MCC). For each materialization strategy, we give algorithms for choosing the
centroids to materialize and for answering queries using those centroids with appropriate
compensations when a requested cell centroid is not materialized.

6.1 Threshold materialization

Assuming that we can afford to access and aggregate at most k documents when comput-
ing a centroid (Sect. 5.1), we start by precomputing and materializing the centroids for all
conjunctive queries for which the result contains at least k documents. We therefore need to
identify which combinations of tags produce “cells of significant size” after intersection, as
enumerated for Table 2. Algorithm 1 returns a list M of intersection cells that have more than
k member documents.

The algorithm is based on the simple observation that including additional tags in a
conjunctive query cannot increase the number of documents in the resulting intersection. It
starts with all possible single tags, which correspond to 1D cells, and the set of documents
associated with each tag. Using the method augmentSet(), it then repeatedly includes one
more tag in the conjunction. (The method returns a list of sets, each augmenting the base set
with one tag not already included in that base. To avoid repeated consideration, only tags
that have a higher index than the maximum tag index in set u are included in the list of sets
returned by u.augmentSet(T).) The tag sets (together with their corresponding document
sets) that have more than k documents and therefore require further exploration are kept in a
queue L . Each time the number of documents in a cell exceeds the threshold k, it is included
in the result set, the intersections with each remaining tag is computed, and the resulting
augmented tags sets are enqueued on L for further consideration. The algorithm continues
to examine cells with more and more intersecting tags until no further candidates have more
than k documents.

Algorithm 1 TM: Find cells exceeding threshold filter
Input: Threshold k; Tags T = {(ti , ti → S{ti })}
Returns: Set of (candidate) cells with their centroids
M ← ∅, u ← ∅
L ← u.augmentSet(T) � start with a list of tag sets of size 1
while |L| > 0 do

u ← L .dequeue()
if |Su | > k then � include augmented tag sets that represent more than k documents

M ← M ∪ {(u,Cu)}
L .enqueue(u.augmentSet(T)) � ... and continue to check supersets of u

end if
end while
return M

123

720 G. Drzadzewski, F. Wm. Tompa

Given this partial materialization, the following steps are performed to evaluate a query:

1. Transform the query into an equivalent representation R using the inclusion–exclusion
principle.

2. For each resulting conjunction, check if the corresponding cell has been materialized
and, if so, retrieve the centroid measure.

3. For each of the nonmaterialized conjunctions:

(a) determine the set of documents in the intersection (merge the tags’ postings lists);
(b) retrieve and aggregate the document term vectors to generate the corresponding

centroid measure.

4. Combine the centroid measures in accordance with R.

6.2 Threshold materialization with ancestors

Table 3 shows that the set of documents found by intersecting a set of tags G is often equal to
or very similar to the set found by intersecting tags in G ′ ⊂ G. With this insight, we extend
Algorithm 1 to include the additional materialization constraint that the size of the symmetric
difference between each cell and its closest materialized ancestor must be greater than k.
This materialization approach, described by Algorithm 2, is designed to take advantage of
the similarity between cells that involve similar tags. (The method M.getClosestAncestor(u)

retrieves the closest materialized ancestor foru as measured by symmetric difference.) Notice,
however, that even if a cell is not materialized because it is similar to a materialized ancestor,
some of its descendant cells might still require materialization; in this respect, the approach
uses a greedy algorithm rather than finding the optimal set of cells to materialize. Nevertheless,
for collections with a large amount of co-occurrence between tags, this approach will provide
significant storage saving, and for collections with very little similarity, it will perform like
the TM algorithm.

An additional lookup table is stored for this strategy, where for each nonmaterialized cell
c having more than k documents, we store a pointer to the closest materialized ancestor a.
Although this requires a small amount of space, it is far less than what is required to store a
centroid.

Algorithm 2 TMA: Find cells exceeding threshold filter given materialized ancestors
Input: Threshold k; Tags T = {(ti , ti → S{ti })}
Returns: Set of cells with their centroids
M ← ∅, u ← ∅
L ← u.augmentSet(T)

while |L| > 0 do
u ← L .dequeue()
if |Su | > k then � centroid might need to be materialized

a ← M.getClosestAncestor(u)

if |Sa�Su | > k then � ... but not if the document set is sufficiently close to an ancestor
M ← M ∪ {(u,Cu)}

else
M ← M ∪ {(u, ∗a)} � ... (in which case, just point at that ancestor)

end if
L .enqueue(u.augmentSet(T))

end if
end while
return M

123

Partial materialization for OLAP over documents 721

The following steps are now required to evaluate a query:

1. Transform the query into an equivalent representation R using the inclusion–exclusion
principle.

2. For each resulting conjunction, check if it has been materialized and, if so, retrieve the
centroid measure.

3. For each of the nonmaterialized conjunctions:

(a) determine Sc, the set of documents in the intersection (merge postings lists for the
given tags);

(b) if |Sc| ≤ k, retrieve and aggregate the document term vectors to generate the corre-
sponding centroid measure.

(c) if |Sc| > k:
i. retrieve document member set S∗a ;

ii. retrieve and aggregate the document term vectors in set S∗a − Sc and call the
result δC ;

iii. compute the centroid measure to be the value C∗a − δC .

4. Combine the centroid measures in accordance with R.

6.3 Materialization of cluster centroids

A third approach is to compute centroids for carefully selected document sets that do not
necessarily correspond to cells in the data cube. Instead of depending on the closest materi-
alized ancestor to provide an approximate centroid, it stores centroid measures of sets that
do not correspond to any specific query but from which a result to a query can be derived.
For document collections with little similarity among cells, this algorithm will materialize at
most as many cells as Algorithm 1.

Algorithm 3 starts by calling the candidateCells() function (returning the sets of documents
for the cells chosen to be materialized by Algorithm 1) to obtain the set M of document sets
representing cells whose centroids cannot be computed by merely combining at most k
document term vectors. Next, the method closePairs() initializes a priority queue Q that
will contain (ci , c j , δ) triples, ordered by ascending δ, where ci , c j ∈ M ∧ ci �= c j and
δ = |Sci �Sc j |. In this method, all child and sibling relationships among pairs of cells are
examined to identify those pairs (ci , c j) that have a low δ. This corresponds to initializing
Q with the following candidate pairs: ci ⊂ c j ∧ |c j | − |ci | = 1 (parent–child relationship)
or |ci | = |c j | ∧ |ci�c j | = 2 (sibling relationship).

The algorithm then applies complete-link clustering [33] to find collections of highly
overlapping document sets. Unlike traditional hierarchical clustering, however, we do not
care about the order in which clusters are merged, as long as all the members of each cluster
satisfy the complete linkage requirement that they are within a symmetric distance of 2k from
the furthest member in the cluster (which ensures that all the sets’ centroids can be computed
from the cluster centroid by considering at most k documents). This relaxation in preserving
the cluster hierarchy allows an efficient implementation for large numbers of cells by using a
standard union-find algorithm [42]. To accomplish its clustering, the algorithm first invokes
the method initializeClusters() to generate a disjoint set data structureG, whereG[Mi] = Mi ,
that is used to track which cells (document sets) are assigned to which clusters (partitions).
The method getCluster() retrieves the partition to which a specified cell belongs, setCluster()
assigns a specified cell to a partition, and p.maxDistance () returns maxci ,c j∈C (|Sci �Sc j |).

Algorithm 3 returns a set of partitions p1, . . . , pn , where each partition pi represents a
cluster of cells S(i,1), . . . , S(i,in) and each S(i, j) corresponds to a conjunction of tags. For

123

722 G. Drzadzewski, F. Wm. Tompa

Algorithm 3 MCC: Find clusters for materialization
Input: Threshold k; Tags T = {(ti , ti → S{ti })}
Returns: Set of clusters with their centroids
M ← candidateCells(k, T) � use Algorithm 1 to identify all sets requiring materialization
Q ← M.closePairs() � collect pairs of sets with small symmetric distance
G.initializeClusters(M) � every candidate cell is initially in its own cluster
while |Q| > 0 do

q ← Q.dequeue() � greedily merge clusters using union-find
p1 ← G.getCluster(q.c1)

p2 ← G.getCluster(q.c2)

if p1 �= p2 then
pu ← p1 ∪ p2
if pu .maxDistance() ≤ 2k then � if all pairs are within 2k, merge clusters

G[q.c1].setCluster(pu)

G[q.c2].setCluster(pu)

M ← M − {p1} − {p2}
M ← M ∪ {pu}

end if
end if

end while
return M

each partition pi , we determine a set of documents Spi , that is, within distance k of each
S(i, j) (which must exist since no two documents in the partition are further than 2k apart).
The term centroid Cpi for this “artificial cell” is then calculated by aggregating together all
the document term vectors found in Spi .

This strategy requires all theCpi measures to be materialized and the required cell centroids
to be computed based on the closest materialized artificial cell. To accomplish this, we store
a table with four attributes: cell, cluster, docsToAdd, docsToRemove; where cell corresponds
to a cell representing a conjunction of tags, cluster is the centroid for the partition to which
that cell is assigned, docsToAdd is the set of document IDs in the cell but missing when
computing the partition centroid, anddocsToRemove is the set of document IDs included when
computing the partition’s centroid but missing from the cell. The documents in docsToAdd
and docsToRemove need to be retrieved and aggregated to the partition’s centroid measure
to determine the centroid for the cell. By construction, |docsToAdd| + |docsToRemove| ≤ k.

Thus, at query time the following steps are performed to evaluate a query:

1. Transform the query into the equivalent representation R using the inclusion–exclusion
principle.

2. For each resulting conjunction j , find the cluster centroid measure Cpj from the cluster
reference table.

3. If there is no match, retrieve and aggregate the document term vectors to generate the
corresponding centroid measure.

4. Otherwise, retrieve the documents included in the docsToAdd and docsToRemove
attributes and aggregate them with Cpj .

5. Combine the centroid measures in accordance with R.

6.4 Comparative example of materialization strategies

In this section we demonstrate how the use of different materialization strategies affects which
sets of documents have their centroids materialized, and how these materialized centroids are
used to answer queries over tags. For simplicity we assume a document collection that consists

123

Partial materialization for OLAP over documents 723

Table 9 Tag assignment to
documents

d1 d2 d3 d4 d5 d6

t1 � � � � � �
t2 � � � � �
t3 � � � �

Table 10 Materialized cells for TM, TMA, and MCC materialization strategies

TM TMA MCC

S1 = {t1} {d1, d2, d3, d4, d5, d6} {d1, d2, d3, d4, d5, d6}
S2 = {t2} {d1, d2, d3, d4, d5} {d1, d2, d3, d4, d5}
S3 = {t3} {d1, d2, d3, d6} {d1, d2, d3, d6}
S4 = {t1, t2} {d1, d2, d3, d4, d5}
S5 = {t1, t3} {d1, d2, d3, d6}
S6 = {t2, t3} {d1, d2, d3}
S7 = {t1, t2, t3} {d1, d2, d3}
Sa {d1, d2, d3, d4}

of six documents: d1, . . . , d6; a set of 3 tags: t1, t2, t3, whose assignment to documents is
specified in Table 9; and materialization threshold k = 2.

Table 10 shows the document sets for which centroids are stored for each of the three
materialization strategies. The TM approach materializes centroids for all documents sets of
size greater than 2 after considering every conjunction of tags, which results in materializing
centroids for seven documents sets. With TMA, only three document set centroids are mate-
rialized (corresponding to document sets for single tag queries: t1, t2, and t3), since the other
conjunctions are descendants of them and the size of the symmetric difference between them
and the materialized sets is no more than the threshold 2. With MCC only a single centroid
is materialized (for a set of documents corresponding to no tag conjunction), from which the
centroids of all the conjunctive queries can be derived with no more than 2 DTVs involved.

Table 11 demonstrates how the materialized centroids produced by each of the three
materialization strategies are used to derive a centroid for various conjunctive queries over
tags. Since with the TM strategy the materialized centroids match the document sets requested
by the queries, no further work needs to be performed to produce the required results. When
relying on the TMA and MCC strategies, the centroid for a query answer is derived by
aggregating the centroid of the closest materialized document set with DTVs from individual
documents.

7 Performance of partial materialization

Our approach to partial materialization was designed to perform well for the tagging patterns
we observed in NYT and ACM. In this section, we show that it indeed does well for those
collections, as well as for PubMed, where PubMed’s average tag count per document is
between the NYT and ACM; the number of documents and total number of tags are larger
than NYT, even when considering only the major tags; and the depth of tag co-occurrence is
shallower than for either of the other two collections (compare Table 12 to Table 2).

123

724 G. Drzadzewski, F. Wm. Tompa

Table 11 Answering
conjunctive queries with TM,
TMA, and MCC materialization
strategies

Query TM TMA MCC

t1 C1 C1 Ca + d5 + d6

t2 C2 C2 Ca + d5

t3 C3 C3 Ca − d4 + d6

t1 ∧ t2 C4 C2 Ca + d5

t1 ∧ t3 C5 C3 Ca − d4 + d6

t2 ∧ t3 C6 C3 − d6 Ca − d4

t1 ∧ t2 ∧ t3 C7 C3 − d6 Ca − d4

Table 12 Number of conjunctions of n tags that contribute to high multi-way co-occurrence for PubMed,
with threshold limit of 50

n 1 2 3 4 5 6 7 8 9 10 11 12 Total

PubMed 114,946 218,596 38,392 7410 1305 221 43 5 380,918

In order to demonstrate the approach’s wider applicability, we also developed a generative
model for tagged collections [13], which we have used to synthesize a variety of realistic
collections. In particular, we adapted earlier work on topic modeling [4] to generate tags
instead of document content and then fit the model to NYT and ACM, resulting in NYT model
and ACM model, respectively. By substituting other values for some of the parameters of
the model (including the topic distribution vector, topic correlations, tag distribution for each
topic, distribution of tag counts for each topic, and minimum topic presence per document to
warrant a tag), we generated six additional synthetic collections (see Table 13). For example,
reducing the minimum number of mentions of a topic to warrant using a tag induces more
tags per document; modifying the entries in the topic covariance matrix affects the number
of times certain topics co-occur in documents; increasing the mean of the tag counts in the
topic distribution induces more tags per topic and thus more tags per document; and lowering
the γ parameter that defines the Dirichlet distribution from which tag distribution for topics
is drawn increases the dominance of the most popular tags. We display the resulting effects
on tag distributions at the bottom of Table 13.

In the remainder of this section, the performance of the three partial materialization strate-
gies (TM, TMA, and MCC, which are based on the proposed I (T) storage architecture defined
in Sect. 5.3.2) are compared against six other materialization strategies. Specifically we com-
pare them against the shell fragment materialization (SF) with both 3D and 6D cuboids,5 thin
cube shell materialization (CS) with both 3D and 6D cuboids, materialization of hierarchical
clusters used by Scatter/Gather (SG), and a standard IR approach, which is equivalent to the
strategy with no materialization (NM).

Shell fragments are nonoverlapping, and for the evaluation they are chosen using a greedy
heuristic that builds fragments that can answer the longest conjunctions. Similarly, thin
cube shells were generated by a greedy algorithm tuned to minimize the number of stored
cuboids while ensuring that all conjunctions of less than or equal to a fixed length can be
answered from materialized cuboids. For both the shell fragment and thin cube approaches,

5 For the ACM model collection the longest conjunctive queries are of length 5 and so instead of materializing
shell fragments and shell cuboids of size 6, we materialize cuboids of size 5 so that they are not penalized by
storing unnecessary data.

123

Partial materialization for OLAP over documents 725

Table 13 Input parameters and resulting tagging patterns for synthetic collections

NYT ACM S1 S2 S3 S4 S5 S6
Model Model

Topic 25 70 25 70
count (K)
Unique 1015 6109 1015 6109
tag count
Document 145,701 66,041 145,701 66,041
count
Topics’ Inferred Inferred Dirichlet Dirichlet Dirichlet
tag from from (0.005) (0.001) (0.0005)
distrib. NYT ACM
Topic Inferred Inferred Dirichlet Dirichlet
means from from (20) (20)
distrib. NYT ACM
Topic Inferred Inferred No No Triple No
covariance from from correlation correlation tag correlation
matrix NYT ACM correl.
Tag count Inferred Inferred zero trunc. zero trunc. zero trunc. zero trunc.
per ropic from from Poisson, Poisson, Poisson, Poisson,

NYT ACM [0.08,2.07] [0.06,2.86] [1.06,3.86] [0.06,2.86]
Min. pre- 11 % 9 % 11 % 9 % 7 % 9 %
sence req’d
for tag

Materialization threshold k=5
Query
length

NYT ACM S1 S2 S3 S4 S5 S6
Model Model

1 812 4890 560 1532 1583 1758 1669 1040
2 15,875 15,675 22,022 14,259 21,776 54,204 28,692 16,258
3 18,633 2836 26,775 6266 10,759 103,073 49,951 9606
4 8118 213 5516 1455 2962 95,189 38,030 2849
5 1872 7 448 133 348 51,913 14,127 605
6 234 16 6 12 15,784 2201 76
7 18 1 2895 95 7
8 449
9 70
10 5

Total 45,562 23,621 55,338 23,651 37,440 325,340 134,765 30,441

each d-dimensional cuboid records its d dimensions and a centroid measure. In addition, both
approaches also require a mechanism to map tags to the corresponding dimension column
of the cuboid. If there is no cuboid that contains all the tags found in a query, that query
is answered by accessing the postings list of documents with each tag (as is true when no
appropriate centroid is materialized in using any of the strategies).

The LAIR2 [27] implementation of Scatter/Gather was designed to support a browsing
interface in which exploration of the collection starts from a root set of document clusters and
then follows various paths offered by the stored cluster hierarchy. To support this interface,
it is necessary to store the hierarchy, as well as the centroid, representative documents,
and most frequent terms for each cluster that corresponds to a node in the hierarchy. This
infrastructure, however, does not provide support for efficient computation of a centroid for a
set of documents that results from a conjunctive tag query, since it is extremely unlikely that
the query result set matches any of the stored document sets exactly. As a result, Scatter/Gather
must revert to online aggregation from the base documents like standard IR approaches.

123

726 G. Drzadzewski, F. Wm. Tompa

The performance of each of the nine strategies is evaluated in terms of the amount of
storage space it consumes and the execution cost of answering queries. Precision is not a
consideration, since all matches are exact, as required by our problem definition.

7.1 Storage cost

Table 14 shows the storage space consumed by each of the materialization strategies. Every
strategy, including NM (no materialization), requires postings lists to map from tags to sets
of documents associated with those tags, in order to answer queries that must rely on the
base data (or to compensate for document sets that do not match the stored centroids exactly
when using the I (T) strategies). Thus the first column reflects the space for the postings lists
alone. The remaining columns show the additional space used by each algorithm to store the
materialized cells and other required supporting data when a centroid is represented by 500
terms. Figure 7 depicts the storage requirement as a multiplier with respect to the space used
by TM.

Recall that, in addition to the cluster centroids, MCC must store a cluster reference table
with as many as k document IDs for every cell that would be materialized by TM. In practice,
many fewer IDs need to be stored: The mean number of documents in the difference between
an unmaterialized cell and the corresponding cluster centroid for NYT is 8.1, it is 0.75 for
ACM, and 4.6 for PubMed; for NYT model it is 0.9, and it is 0.9 for ACM model; it is
similarly low for the other six synthetic collections. As a result, even with the additional cost
of storing the cluster reference table, MCC requires less space than either TM or TMA.

The shell fragment strategy using 3D cuboids consumes less space than other partial
materialization strategies for all collections other than ACM, ACM model, and PubMed, but
it exhibits very poor query time performance, as shown in the next section.

In order to save clustering time, Scatter/Gather requires space that is proportional to the
collection size but independent of the tag patterns, so it performs relatively well on small
collections with rich tag structures, such as S4. To provide a fair comparison to our approaches,
we applied a similar partial materialization strategy for storing the clusters in the hierarchy:
Only nodes exceeding the predefined size threshold k for each collection are materialized.
As a result, the number of nodes that need to be materialized for Scatter/Gather depends on

Table 14 Storage cost comparison for materialization strategies (megabytes)

NM TM TMA MCC CS3 CS6 SF3 SF6 SG (range)

NYT 18 248 129 104 686 2252 42 447 [130, 5603]

ACM 2 172 97 81 401 2017 222 3849 [52, 255]

PubMed 462 1918 1812 1734 6143 20,644 3,246 49,106 [2051, 79,888]

NYT model 2 176 140 119 687 2055 21 344 [114, 560]

ACM model 2 92 90 77 422 ∗860 120 ∗790 [53, 255]

S1 2 213 198 173 982 2501 16 238 [114, 561]

S2 1 91 80 68 400 1047 38 649 [52, 255]

S3 2 145 123 101 631 1611 40 672 [52, 255]

S4 2 1245 775 525 3206 18,475 45 746 [53, 256]

S5 2 517 390 301 1655 8813 42 708 [53, 255]

S6 1 117 90 71 464 1115 26 440 [52, 254]

∗5D cuboids used for ACM model for both CS6 and SF6

123

Partial materialization for OLAP over documents 727

Fig. 7 Space multiplier relative to TM

the form of the dendogram representing the cluster hierarchy: If k individual documents are
always clustered before any two clusters are merged, N

k clusters would need to be stored, but
in the worst case, the dendogram is essentially linear and N − k clusters might need to be
materialized. The corresponding ranges of space that bracket the actual space that would be
required by Scatter/Gather are shown in the final column of Table 14. Scatter/Gather does
not scale well to very large collections such as the NYT and PubMed, where for NYT (at
least 25 %) more space is required and for PubMed (at least 18 %) more space is required
than when using MCC . For the ACM collection the partially materialized cluster hierarchy
for LAIR2 might be competitive in space with MCC, but when we performed hierarchical
clustering on the documents in the ACM collection using single linkage and cosine similarity,
we found that 208MB would be required; this is closer to the upper bound of the range than
to the lower bound and 2.6 times as much space as required by MCC. We hypothesize that
for the other collections the actual storage space used for LAIR2 would be similarly much
higher than the theoretical lower bound.

In summary, the TM, TMA, and MCC approaches, which are based on the individual cell
materialization architecture I (T), typically require fewer cells to be stored, and thus less
storage space, than alternative approaches, and among these three, the MCC approach is the
most storage efficient.

7.2 Query execution cost

Table 15 and Fig. 8 show the number of cell accesses required to answer all possible conjunc-
tive queries having a result that contains more than k documents. The TM and Scatter/Gather
strategies are not included in the table. TM precalculates and materializes all answers to such
queries, and hence its cost is universally 1 (with standard deviation 0). The Scatter/Gather
approach, on the other hand, has similar query time performance for retrieving centroids of
nodes stored in its cluster hierarchy, as would be expected from a fully materialized solution;
however, it was not designed to calculate centroids for document sets that do not map to any of
the nodes found in the hierarchy. Therefore, for almost all conjunctive queries Scatter/Gather
does not have the necessary infrastructure to compute centroids from its materialized data,
and therefore, it must resort to the approach with no materialization. As a result the mean
number of cells accessed per query across all queries for SG is just marginally less than the
figures shown in the NM column of the table.

123

728 G. Drzadzewski, F. Wm. Tompa

Table 15 Mean number of cells aggregated per query (with standard deviations σ)

Collection # Queries TMA MCC CS3 CS6 SF3 SF6 NM

NYT 60,100 4.9 σ=9 9.1 σ=14 38 σ=88 11 σ=11 162 σ=533 152 σ=432 238 σ=1461

ACM 44,474 1.4 σ=1 1.8 σ=1 3.6 σ=2 14 σ=11 5.9 σ=6 5.5 σ=6 12 σ=37

PubMed 380,918 2.3 σ=6 5.6 σ=12 4.5 σ=17 20 σ=9 73 σ=123 67 σ=114 265 σ=964

NYT model 45,562 1.4 σ=1 1.9 σ=1 3.5 σ=9 10 σ=6 18 σ=51 16 σ=49 28 σ=233

ACM model 23,621 1.1 σ=0 1.9 σ=2 2.3 σ=1 *9.1 σ=4 7.4 σ=8 *6.9 σ=7 19 σ=49

S1 55,338 1.2 σ=1 1.8 σ=1 2.3 σ=4 11 σ=5 18 σ=41 16 σ=30 28 σ=181

S2 23,651 1.3 σ=1 2.0 σ=2 2.3 σ=2 14 σ=6 11 σ=16 8.7 σ=12 23 σ=75

S3 37,440 1.3 σ=1 2.1 σ=2 2.4 σ=3 13 σ=6 11 σ=17 9.2 σ=13 20 σ=69

S4 325,340 1.8 σ=1 2.5 σ=1 5.5 σ=7 7.0 σ=5 13 σ=23 12 σ=19 14 σ=44

S5 134,765 1.5 σ=1 2.3 σ=2 4.3 σ=5 8.1 σ=5 13 σ=21 12 σ=19 16 σ=51

S6 30,441 1.4 σ=1 2.1 σ=1 2.7 σ=4 13 σ=6 12 σ=19 8.7 σ=12 22 σ=83

∗5D cuboids used for ACM model for CS6 and SF9

Fig. 8 Mean number of cells accessed per query

Since the query time is proportional to the average number of cells that need to be aggre-
gated, these results represent comparative run times when each centroid is equally likely to
be requested. By design, all three materialization strategies based on individual cell materi-
alization (TM, TMA, MCC) have a computation cost that is less than the collection-specific
computation threshold k and less than when using thin cube shells or shell fragments. On
the other hand, when no cells are materialized (NM)—when IR is used alone—or when
using Scatter/Gather with or without prematerialization, the computational costs far exceed
acceptable response times.

Thus, summarizing space and time, all three I (T) approaches have excellent query time
performance (low mean and small standard deviation) while consuming generally the least
amount of storage compared to the other materialization techniques. Furthermore, the three
options provide a good space–time tradeoff, with TM being the largest and fastest and MCC
being the smallest but slowest for all 11 data collections (see Fig. 9, where TM resides at the

123

Partial materialization for OLAP over documents 729

Fig. 9 Space–time tradeoff for I (T) strategies, where all points are relative to TM (for each collection, the
upper left point represents MCC and the lower right point represents TMA)

lower right-hand corner of the graph—at (1.00, 1)—for each collection). Scatter/Gather can
be fast, but only if it consumes an unacceptable amount of space for large collections and
only if the query workload is severely restricted to correspond to the sets of documents that
happen to be chosen by the clustering algorithm. Shell fragments with 3D cuboids can be
space-efficient, but only at the expense of unacceptably slow execution.

8 Conclusions and future work

The tagging patterns found in two multi-tagged document collections were analyzed and
found to have properties that are not common in data for which standard OLAP systems have
been designed. In particular, multi-tagged document collections include many distinct tags
and significant co-occurrence among tags. Based on the observed properties of the collections,
we propose a storage architecture based on materializing individual cells from aggregated
data cubes and taking into account cell similarities. The proposed partial materialization
strategies were evaluated on three real collections and eight synthetic collections, comparing
them against previously proposed partial materialization strategies. We showed that the new
strategies can provide significant savings in storage space and query time over the existing
strategies and that some space–time tradeoff remains to choose between TM, TMA, and
MCC.

In this paper we focused on efficient storage and calculation of the set centroid measure,
which is an essential input for deriving a medoid, a larger set of representative documents,
or a set of representative terms. We will continue to explore how to use this infrastructure
to build a prototype browser that supports exploration of multi-tagged document collections
through efficient navigation based on tags [14].

Acknowledgments Financial assistance from NSERC’s PGS program, NSERC’s Business Intelligence Net-
work, Mitacs, and the University of Waterloo is greatly appreciated. We thank Lukasz Golab, Evangelos Milios,
Wayne Oldford, and the anonymous reviewers for their suggestions, encouragement, guidance, and feedback.

123

730 G. Drzadzewski, F. Wm. Tompa

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ames M, Naaman M (2007) Why we tag: motivations for annotation in mobile and online media. In:
Proceedings of ACM SIGCHI conference on human factors in computing systems, ACM, CHI ’07, pp
971–980

2. Baeza-Yates RA, Ribeiro-Neto B (1999) Modern information retrieval. Addison-Wesley, Reading
3. Bi B, Cho J (2013) Automatically generating descriptions for resources by tag modeling. In: Proceedings

of 22nd ACM international conference on information and knowledge management, ACM, CIKM ’13,
pp 2387–2392

4. Blei DM, Lafferty JD (2007) A correlated topic model of science. Ann Appl Stat 1:17–35
5. Brooks CH, Montanez N (2006) Improved annotation of the blogosphere via autotagging and hierarchical

clustering. In: Proceedings of 15th international conference on World Wide Web, ACM, WWW ’06, pp
625–632

6. Budzik J, Hammond K (1999) Watson: anticipating and contextualizing information needs. In: 62nd
annual meeting of the American Society for Information Science, pp 727–740

7. Cattuto C, Barrat A, Baldassarri A, Schehr G, Loreto V (2009) Collective dynamics of social annotation.
Proc Natl Acad Sci USA 106(26):10,511–10,515

8. Côté R, Reisinger F, Martens L, Barsnes H, Vizcaino JA, Hermjakob H (2010) The ontology lookup
service: bigger and better. Nucleic Acids Res 38:W155–W160

9. Cutting DR, Pedersen JO, Karger DR, Tukey JW (1992) Scatter/Gather: a cluster-based approach to
browsing large document collections. In: Proceedings of 15th annual international ACM SIGIR conference
on research and development in information retrieval, pp 318–329

10. Cutting DR, Karger DR, Pedersen JO (1993) Constant interaction-time Scatter/Gather browsing of very
large document collections. In: Proceedings of 16th annual international ACM SIGIR conference on
research and development in information retrieval, pp 126–134

11. Das D, Martins AFT (2007) A survey on automatic text summarization. Technical report, literature survey
for the language and statistics II course at Carnegie Mellon University

12. Deolalikar V (2014) Distance or coverage? Retrieving knowledge-rich documents from enterprise text
collections. In: Proceedings of 23rd ACM international conference information and knowledge manage-
ment, pp 1771–1774

13. Drzadzewski G (2015) Online analytical systems for multi-tagged document collections. PhD thesis,
Cheriton Sch. Comp. Sci., Univ. Waterloo (in preparation)

14. Drzadzewski G, Tompa FW (2015) Enhancing exploration with a faceted browser through summariza-
tion. In: Proceedings of 15th ACM SIGWEB international symposium on document engineering, ACM,
DocEng ’15

15. Ebbert JO, Dupras DM, Erwin PJ (2003) Searching the medical literature using PubMed: a tutorial. Mayo
Clin Proc 78(1):87–91

16. Efthimiadis EN (1995) User choices: a new yardstick for the evaluation of ranking algorithms for inter-
active query expansion. Inf Process Manag 31(4):605–620

17. Fagan JC (2013) Usability studies of faceted browsing: a literature review. Inf Technol Libr 29(2):58–66
18. Gelbukh AF, Alexandrov M, Bourek A, Makagonov P (2003) Selection of representative documents

for clusters in a document collection. In: Proceedings of 8th international conference on applied natural
language information systems, pp 120–126

19. Goorha S, Ungar L (2010) Discovery of significant emerging trends. In: Proceedings of 16th ACM
SIGKDD international conference on knowledge discovery and data mining, ACM, KDD ’10, pp 57–64

20. Gray J, Chaudhuri S, Bosworth A, Layman A, Reichart D, Venkatrao M, Pellow F, Pirahesh H (1997)
Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min
Knowl Discov 1(1):29–53

21. Gupta V, Lehal GS (2010) A survey of text summarization extractive techniques. J Emerg Technol Web
Intell 2(3):258–268

22. Harinarayan V, Rajaraman A, Ullman JD (1996) Implementing data cubes efficiently. In: Proceedings of
1996 ACM SIGMOD international conference management data, ACM, SIGMOD ’96, pp 205–216

123

http://creativecommons.org/licenses/by/4.0/

Partial materialization for OLAP over documents 731

23. Hearst MA (2006) Clustering versus faceted categories for information exploration. Commun ACM
49(4):59–61

24. Hearst MA (2009) Search user interfaces, 1st edn. Cambridge University Press, Cambridge
25. Jansen BJ, Spink A, Saracevic T (2000) Real life, real users, and real needs: a study and analysis of user

queries on the web. Inf Process Manag 36(2):207–227
26. Jin X, Han J, Cao L, Luo J, Ding B, Lin CX (2010) Visual cube and on-line analytical processing of images.

In: Proceedings of 19th ACM international conference on information and knowledge management, ACM,
CIKM ’10, pp 849–858

27. Ke W, Sugimoto CR, Mostafa J (2009) Dynamicity vs. effectiveness: studying online clustering for
Scatter/Gather. In: Proceedings of 32nd annual international ACM SIGIR conference on research and
development in information retrieval , pp 19–26

28. Kim YM, Rieh SY (2011) User perceptions of the role and value of tags. In: Proceedings of ACM SIGCHI
conference on human factors in computing systems, ACM, CHI ’11, pp 671–674

29. Kipp ME, Campbell DG (2010) Searching with tags: do tags help users find things? Knowl Organ
37(4):239–255

30. Lakshmanan LVS, Pei J, Han J (2002) Quotient cube: how to summarize the semantics of a data cube. In:
Proceedings of 28th international conference on very large data bases, VLDB endowment, VLDB ’02,
pp 778–789

31. Lemire D, Kaser O, Aouiche K (2010) Sorting improves word-aligned bitmap indexes. Data Knowl Eng
69(1):3–28

32. Li X, Han J, Gonzalez H (2004) High-dimensional OLAP: a minimal cubing approach. In: Proceedings
of 30th international conference on very large data bases, VLDB endowment, VLDB ’04, pp 528–539

33. Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University
Press, Cambridge

34. Millen DR, Feinberg J, Kerr B (2006) Dogear: social bookmarking in the enterprise. In: Proceedings of
ACM SIGCHI conference on human factors in computing systems, ACM, CHI ’06, pp 111–120

35. Mosa ASM, Yoo I (2013) A study on PubMed search tag usage pattern: association rule mining of a
full-day PubMed query log. BMC Med Inf Decis Mak 13(1):8

36. Mu X, Lu K, Ryu H (2014) Explicitly integrating MeSH thesaurus help into health information retrieval
systems: an empirical user study. Inf Process Manag 50(1):24–40

37. Popescul A, Ungar LH (2000) Automatic labeling of document clusters. Available at: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.33.141

38. Pratt W, Hearst MA, Fagan LM (1999) A knowledge-based approach to organizing retrieved documents.
In: Proceedings of 16th national conference on artificial intelligence and 11th conference on innovation
and application of artificial intelligence, pp 80–85

39. Radev DR, Jing H, Styś M, Tam D (2004) Centroid-based summarization of multiple documents. Inf
Process Manag 40(6):919–938

40. Ramdeen S, Hemminger BM (2012) A tale of two interfaces: How facets affect the library catalog search.
J Am Soc Inf Sci Technol 63(4):702–715

41. Sandhaus E (2008) The New York Times Annotated Corpus. http://www.ldc.upenn.edu/Catalog/
catalogEntry.jsp?catalogId=LDC2008T19

42. Sedgewick R, Wayne K (2011) Algorithms, 4th edn. Addison-Wesley, Reading
43. Shiri A, Ruecker S, Doll L, Bouchard M, Fiorentino C (2011) An evaluation of thesaurus-enhanced

visual interfaces for multilingual digital libraries. In: Gradmann S, Borri F, Meghini C, Schuldt H (eds)
Proceedings of international conference on theory and practice ofdigital libraries, TPDL 2011, Berlin,
Germany, September 26–28.Lecture notes on computer science,vol 6966. Springer, pp 236–243

44. Sismanis Y, Deligiannakis A, Roussopoulos N, Kotidis Y (2002) Dwarf: shrinking the petacube. In:
Proceedings of 2002 ACM SIGMOD international conference on managing data, ACM, SIGMOD ’02,
pp 464–475

45. Tunkelang D (2009) Faceted search. Synthesis lectures on information concepts, retrieval, and services.
Morgan & Claypool, San Rafael

46. Wang W, Feng J, Lu H, Yu J (2002) Condensed cube: an effective approach to reducing data cube size.
In: Proceedings of 18th international conference on data engineering, ICDE ’02, pp 155–165

47. White J (2001) ACM opens portal to computing literature. Commun ACM 44(7):14–16, 28
48. Witten IH, Paynter GW, Frank E, Gutwin C, Nevill-Manning CG (1999) Kea: practical automatic

keyphrase extraction. In: Proceedings of 4th ACM conference on digital library, ACM, DL ’99, pp
254–255

49. Yee K, Swearingen K, Li K, Hearst MA (2003) Faceted metadata for image search and browsing. In:
Proceedings of ACM SIGCHI conference: human factors in computing systems, pp 401–408

123

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.141
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.141
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2008T19
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2008T19

732 G. Drzadzewski, F. Wm. Tompa

50. Zamir O, Etzioni O (1999) Grouper: A dynamic clustering interface to web search results. In: Proceedings
of 8th international conference on World Wide Web, Elsevier, WWW ’99, pp 1361–1374

51. Zhang D, Zhai C, Han J (2011) Mitexcube: microtextcluster cube for online analysis of text cells. In:
Proceedings of 2011 conference on intelligent data understanding, CIDU’11, pp 204–218

52. Zhang J, Marchionini G (2005) Evaluation and evolution of a browse and search interface: relation
browser. In: Proceedings of 2005 national conference on digital governance and research, pp 179–188

Grzegorz Drzadzewski is a Ph.D. candidate in the David R. Cheri-
ton School of Computer Science at the University of Waterloo and a
member of Waterloo’s Data Systems Group. His research is focused on
topics that include partial materialization, OLAP on text, text mining,
text summarization, and faceted browsing. He received his M.Sc. in
Computer Science from the University of Guelph and B.A.Sc in Com-
puter Engineering from the University of Toronto.

FrankWm. Tompa is a Distinguished Professor Emeritus in the David
R. Cheriton School of Computer Science at the University of Water-
loo and a member of Waterloo’s Data Systems Group. His research
interests include the design of flexible and efficient text management
systems that are effective for maintaining large reference texts and
large, heterogeneous text collections. He is a co-founder of Open Text
Corporation, a Fellow of the ACM, and a recipient of Canada’s Queen
Elizabeth II Diamond Jubilee Medal, and he holds an honorary degree
from Dalhousie University.

123

	Partial materialization for online analytical processing over multi-tagged document collections
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Folksonomies and tag recommendation systems
	2.2 Browsing document collections
	2.2.1 Tag exploration
	2.2.2 Multi-document summarization

	2.3 OLAP for data warehouses
	2.3.1 Full materialization
	2.3.2 Partial materialization

	2.4 Document warehouses
	2.4.1 Multidimensional schema
	2.4.2 Single-dimensional schema

	3 System requirements
	3.1 Supported measures
	3.2 Supported queries
	3.3 Expected workload
	3.4 Design objective

	4 Document collections
	4.1 New York Times Annotated Corpus
	4.2 ACM digital library
	4.3 Deeper analysis of tagging patterns
	4.3.1 Higher order tag co-occurrence
	4.3.2 Overlap between document sets

	4.4 Significance of tagging patterns

	5 Storage architecture
	5.1 Basic infrastructure
	5.2 Storing document member sets
	5.3 Granularity of materialization
	5.3.1 Full cuboid materialization
	5.3.2 Individual cell materialization

	5.4 Query performance evaluation
	5.5 Storage performance evaluation
	5.5.1 Thin cube shell
	5.5.2 Shell fragments

	6 Partial materialization strategies
	6.1 Threshold materialization
	6.2 Threshold materialization with ancestors
	6.3 Materialization of cluster centroids
	6.4 Comparative example of materialization strategies

	7 Performance of partial materialization
	7.1 Storage cost
	7.2 Query execution cost

	8 Conclusions and future work
	Acknowledgments
	References

