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A basis-set based Fortran program to solve theGross-Pitaevskii Equation for dilute Bose gasesin harmoni
 and anharmoni
 trapsRakesh Prabhat Tiwari1,2, Alok Shukla3Physi
s Department, Indian Institute of Te
hnology, Powai, Mumbai 400076,INDIAAbstra
tInhomogeneous boson systems, su
h as the dilute gases of integral spin atoms in low-temperature magneti
 traps, are believed to be well des
ribed by the Gross-Pitaevskiiequation (GPE). GPE is a nonlinear S
hrödinger equation whi
h des
ribes the orderparameter of su
h systems at the mean �eld level. In the present work, we des
ribe aFortran 90 
omputer program developed by us, whi
h solves the GPE using a basisset expansion te
hnique. In this te
hnique, the 
ondensate wave fun
tion (orderparameter) is expanded in terms of the solutions of the simple-harmoni
 os
illator(SHO) 
hara
terizing the atomi
 trap. Additionally, the same approa
h is also usedto solve the problems in whi
h the trap is weakly anharmoni
, and the anharmoni
potential 
an be expressed in a polynomial in the position operators x, y, and z. Theresulting eigenvalue problem is solved iteratively using either the self-
onsistent-�eld(SCF) approa
h, or the imaginary time steepest-des
ent (SD) approa
h. Iterations
an be initiated using either the simple-harmoni
-os
illator ground state solution,or the Thomas-Fermi (TF) solution. It is found that for 
ondensates 
ontainingup to a few hundred atoms, both approa
hes lead to rapid 
onvergen
e. However,in the strong intera
tion limit of 
ondensates 
ontaining thousands of atoms, itis the SD approa
h 
oupled with the TF starting orbitals, whi
h leads to qui
k
onvergen
e. Our results for harmoni
 traps are also 
ompared with those publishedby other authors using di�erent numeri
al approa
hes, and ex
ellent agreement isobtained. GPE is also solved for a few anharmoni
 potentials, and the in�uen
e ofanharmoni
ity on the 
ondensate is dis
ussed. Additionally, the notion of Shannonentropy for the 
ondensate wave fun
tion is de�ned and studied as a fun
tion ofthe number of parti
les in the trap. It is demonstrated numeri
ally that the entropyin
reases with the parti
le number in a monotoni
 way.Key words: Bose-Einstein 
ondensation, Gross-Pitaevskii EquationAnharmoni
 potential, Numeri
al SolutionsPACS: 02.70.-
, 02.70.Hm, 03.75.Hh, 03.75.NtPreprint submitted to Elsevier S
ien
e 6th February 2008
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Program SummaryTitle of program: bose.xCatalogue Identi�er:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast,N. IrelandDistribution format: tar.gzComputers : PC's/Linux, Sun Ultra 10/Solaris, HP Alpha/Tru64, IBM/AIXProgramming language used: mostly Fortran 90Number of bytes in distributed program, in
luding test data, et
.: size of thetar �le 153600 bytesNumber of lines in distributed program, in
luding test data, et
.: lines in thetar �le 4221Card pun
hing 
ode: ASCIINature of physi
al problem: It is widely believed that the stati
 properties ofdilute Bose 
ondensates, as obtained in atomi
 traps, 
an be des
ribed to afairly good a

ura
y by the time-independent Gross-Pitaevskii equation. Thisprogram presents an e�
ient approa
h of solving this equation.Method of Solution: The solutions of the Gross-Pitaevskii equation 
orrespond-ing to the 
ondensates in atomi
 traps are expanded as linear 
ombinationsof simple-harmoni
 os
illator eigenfun
tions. Thus, the Gross-Pitaevskii equa-tion whi
h is a se
ond-order nonlinear di�erential equation, is transformedinto a matrix eigenvalue problem. Thereby, its solutions are obtained in a self-
onsistent manner, using methods of 
omputational linear algebra.Unusual features of the program: None1 Introdu
tionEver sin
e the dis
overy of Bose-Einstein 
ondensation (BEC) in dilute atomi
gases[1,2,3℄, theoreti
al studies of this and related phenomenon in su
h sys-tems have grown exponentially[4℄. For most of the theoreti
al studies of BECin dilute gases, the starting point is the so-
alled Gross-Pitaevskii equation(GPE)[5,6℄, whi
h is nothing but a mean-�eld S
hrödinger equation for asystem of Bosons intera
ting through a two-body intera
tion des
ribed by
δ-fun
tion. In all but the simplest of the 
ases, one needs to solve the GPEusing numeri
al methods. For problems involving the stati
 properties of the
1 Done in partial ful�llment of the requirements for the degree of Ba
helor of Te
h-nology at the Indian Institute of Te
hnology, Bombay.
2 Present address: Department of Physi
s, The Ohio State University, Columbus,OH 43210, USA. email:tiwari.12�osu.edu
3 Author to whom all the 
orresponden
e should be addressed.email:shukla�phy.iitb.a
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ondensate, the numeri
al solutions of the time-independent GPE are of in-terest. And, indeed, over last several years, a signi�
ant amount of work hasbeen performed towards developing novel approa
hes and algorithmsmeant forsolving both time-dependent and independent GPE. Next we survey some ofthe re
ent literature in the �eld, restri
ting ourselves to the methods aimed atsolving the time-independent GPE, whi
h is the subje
t of the present paper.Edwards and Burnett developed a Runge-Kutta method based �nite di�eren
eapproa
h for solving the time-independent GPE for spheri
al 
ondensates[7℄.In another paper Edwards et al. used the basis set approa
h similar to the onepresented here, to solve the GPE for anisotropi
 traps[8℄. Dalfovo and Stringarideveloped a �nite-di�eren
e based method for solving the time-independentGPE both for the ground state, and the vortex states, in anisotropi
 traps[9℄.Esry used a �nite-element approa
h to solve for the both the time-independentGPE, as well as, the Hartree-Fo
k equations for bosons 
on�ned in anisotropi
traps[10℄. S
hneider and Feder used a dis
rete variable representation (DVR),
oupled with a Gaussian quadrature integration s
heme, to obtain the groundand the ex
ited states of GPE in three dimensions[11℄. Adhikari used a �nite-di�eren
e based approa
h to solve the two-dimensional time-independent GPE[12,13℄.Tosi and 
oworkers developed �nite-di�eren
e, and imaginary-time, approa
hfor solving the time-independent GPE[14℄. Re
ently, Bao and Tang developeda novel s
heme for obtaining the ground state of the GPE, by dire
tly minimiz-ing the 
orresponding energy fun
tional[15℄. Additionally, utilizing harmoni
os
illator basis set, and Gauss-Hermite quadrature integration s
heme, Dionand Can
ès have proposed a s
heme for solving both the time-dependent and-independent GPE[16℄. Earlier, we had also proposed an alternative s
heme fordealing with 
ondensates with a large number of parti
les, and high numberdensities[17℄.In this paper, we des
ribe a Fortran program developed by us whi
h solvestime-independent GPE 
orresponding to bosons trapped in Harmoni
 traps.Instead of using the more 
ommon �nite-di�eren
e approa
h, we have 
hosenthe basis-set based approa
h popular in quantum 
hemistry[18℄. The basis set
hosen for this 
ase is the Cartesian simple-harmoni
-os
illator (SHO) basisset. The 
hoi
e of a Cartesian basis set allows us to treat the 
ases rangingfrom spheri
al 
ondensates to 
ompletely anisotropi
 
ondensates on an equalfooting. Additionally, using the same approa
h our program allows to solvethe time-independent GPE for anharmoni
 traps as well provided the anhar-moni
 term 
an be expressed as a polynomial in various powers of 
oordinates
x, y, and z. As far as the SCF solution of the GPE is 
on
erned, our programallows both the matrix-diagonalization based s
heme, as well as the use of theimaginary-time steepest-des
ent method. Our program also allows the user toinitiate the SCF pro
ess using either the SHO ground state orbital, or theThomas-Fermi solution. We present the results of the 
al
ulations performedwith our 
ode for several interesting 
ases, and very good agreement is ob-tained with the existing results in the literature. Additionally, in the present3



paper we have de�ned the notion of Shannon entropy in the 
ontext of GPE,and presented various quantitative 
al
ulations of the quantity.Remainder of the paper is organized as follows. In the next se
tion we dis
ussthe basi
 theoreti
al aspe
ts of our approa
h. Next, in se
tion 3, we brie�y de-s
ribe the most important subroutines that 
omprise our program. In se
tion4 we provide detailed explanation about installing and 
ompiling our pro-gram. Additionally, in the same se
tion we explain how to prepare an input�le, and des
ribe the 
ontents of a typi
al output �le. In se
tion 5 we dis
ussthe 
onvergen
e properties of the program with respe
t to the: (a) size of thebasis set, and (b) the method of solution. In se
tion 6, we dis
uss results ofseveral example runs of our program, and 
ompare them to those publishedearlier. Additionally, in the same se
tion, we present our results on the Shan-non entropy of the 
ondensate, and on the solutions obtained in the presen
eof various anharmoni
 potentials. Finally, in se
tion 7, we present our 
on-
lusions. In the Appendix we present the derivation of an analyti
al formulawhi
h we have used in our program to 
ompute the two-parti
le intera
tionintegrals.2 TheoryFor the present 
ase, the time-independent Gross-Pitaevskii equation is
(− ~

2

2m
∇2 + Vext(r) +

4π~
2aN

m
|ψ(r)|2)ψ(r) = µψ(r), (1)where ψ(r) is 
ondensate wave fun
tion one is solving for, Vext(r) = 1

2
m(ω2

xx
2+

ω2
yy

2 +ω2
zz

2)+V anh(x, y, z) is the 
on�ning potential for a general anisotropi
trap (ωi's are the trap frequen
ies) with the anharmoni
 term V anh(x, y, z), ais the s-wave s
attering length 
hara
terizing the two-body intera
tions amongthe atoms, N is the total number of bosons in the 
ondensate, and µ is the
hemi
al potential. We are assuming that the 
ondensate wave fun
tion is nor-malized to unity. Before attempting numeri
al solutions of Eq. (1), we 
ast itin a dimensionless form by making the transformations[15℄
r̃ =

r

ax

(2a)
ψ̃(r̃) = a3/2

x ψ(r) (2b)
4



where ax =
√

~

mωx
is the �harmoni
 os
illator length� in the x dire
tion. This�nally leads to the dimensionless form of the GPE

(−1

2
∇̃2 + Vext(r̃) + κ|ψ̃(r̃)|2)ψ̃(r̃) = µ̃ψ̃(r̃), (3)where µ̃ is the 
hemi
al potential in the units of ~ωx, κ = 4πNa

ax
is a dimen-sionless 
onstant determining the strength of the two-body intera
tions inthe gas, and for the harmoni
 os
illator potential Vext(r̃) = 1

2
(x̃2 + γ2

y ỹ
2 +

γ2
z z̃

2) + V anh(x̃, ỹ, z̃), with γy = ωy

ωx
and γz = ωz

ωx
being the two aspe
t ratios.We will now dis
uss the basis-set expansion te
hnique, used for solving theGPE[8,11,16℄. In this approa
h, one expands ψ̃(r̃) as a linear 
ombination ofbasis fun
tions of three-dimensional anisotropi
 simple harmoni
 os
illator

ψ̃(r̃) =
Nbasis
∑

i=1

CiΦi(x̃, ỹ, z̃) =
Nbasis
∑

i=1

Ciφnxi
(x̃)φnyi

(ỹ)φnzi
(z̃), (4)where φnxi

(x̃), φnyi
(ỹ), and φnzi

(z̃), are the harmoni
 os
illator basis fun
tions
orresponding to x, y, and z dire
tions, respe
tively, Ci is the expansion 
oef-�
ient, and Nbasis is the total number of basis fun
tions used. In dimensionlessunits, e.g., φnzi
(z̃) 
an be written as

φnzi
(z̃) =

(

γz

π

)1/4 1√
2nzinzi!

Hnzi
(z̃
√
γz) exp(−γz z̃

2

2
), (5)where Hnzi

(z̃
√
γz) is a Hermite polynomial of order nzi in the variable z̃√γz.The form of the basis fun
tions φnxi

(x̃) and φnyi
(ỹ) 
an be easily dedu
ed fromEq. (5). Upon substituting Eq. (4) in Eq. (3), then multiplying both sides withanother basis fun
tion Φj(x̃, ỹ, z̃) and integrating with respe
t to x̃, ỹ, and z̃the time-independent GPE is 
onverted into an eigenvalue problem[18℄

F̂ Ĉ = µ̃Ĉ, (6)where Ĉ represents the 
olumn ve
tor 
ontaining expansion 
oe�
ients Ci'sas its 
omponents, and the elements of the matrix F̂ are given by
F̂i,j = Eiδi,j + V anh

i,j + g
Nbasis
∑

k,l=1

J̃i,j,k,lCkCl. (7)Above
Ei = (nxi +

1

2
) + (nyi +

1

2
)γy + (nzi +

1

2
)γz, (8)

V anh
i,j are the matrix elements of the anharmoni
 term in the 
on�ning poten-tial, and J̃i,j,k,l is the boson-boson repulsion matrix. For anharmoni
 potentialswhi
h 
an be written as polynomials in x, y, and z, V anh

i,j 
an be 
omputed5



quite easily, while J̃i,j,k,l 
an be written as a produ
t of three submatri
es
orresponding to the three Cartesian dire
tions[8℄
J̃i,j,k,l = Jnxinxjnxknxl

Jnyinyjnyknyl
Jnzinzjnzknzl. (9)It 
an be shown that the elements of submatri
es J 
an be written in the form

Jninjnknl
=

∫ ∞

−∞
dξφnl

(ξ)φnk
(ξ)φnj

(ξ)φni
(ξ) (10)where φni

(ξ)'s are the harmoni
 os
illator basis fun
tions of Eq. (5). Inte-grals involved in Eq. (10) 
an be 
omputed numeri
ally using the methods ofGaussian quadrature[11,16℄, or analyti
ally[8℄ using the formulas derived byBusbridge[19℄. In the present work, we have used this analyti
al expression�derived in the appendix for the sake of 
ompleteness�to 
ompute the valuesof J integrals.The eigenvalue problem of Eq.(6) has to be solved self
onsistently. In our pro-gram, for �xed values of N , this equation 
an be solved for µ̃ and Ĉ usingeither the iterative diagonalization 
ommon in quantum 
hemistry[18℄, or thesteepest-des
ent approa
h as used by Dalfovo and Stringari[9℄. In both theapproa
hes, the onset of self-
onsisten
y is signalled on
e the energy per par-ti
le of the 
ondensate 
onverges to within a user-spe
i�ed threshold. Thisapproa
h is di�erent from that of Edwards et al.[8℄ where they solved Eq. (6)for N , using �xed values of µ̃.For the 
ase of relatively small parti
le number, i.e., for a weakly intera
tingsystem, it does not matter what is the nature of starting guess for the 
on-densate orbital for initiating the SCF 
y
les. However, for the 
ase of systemswith large parti
le number, the 
onvergen
e obtained is very slow (if at all), in
ase the starting 
ondensate is taken to be the ground state of the harmoni
trap. In su
h 
ases, the 
onvergen
e is easily obtained if the starting guess forthe 
ondensate is taken to be of the Thomas-Fermi form, obtained by settingthe kineti
 energy term in Eq. 3 to zero
|ψ̃TF (r̃)|2 =

µ̃TF − 1
2
(x̃2 + γ2

y ỹ
2 + γ2

z z̃
2)

g
, (11)where the Thomas-Fermi 
hemi
al potential µ̃TF is given by

µ̃TF =
~ωx

2

(

15Naγyγz

ax

)2/5

. (12)In our program, we 
an also 
ompute the Shannon entropy asso
iated with the
ondensate. The Shannon mixing entropy, for a general ensemble, is de�nedas[20℄
S = −

∑

i

Pi log Pi , (13)6



where Pi is the probability for a system to be in the i-th state. Of 
ourse, inthe present 
ase, we do not have a thermodynami
 system in whi
h the mixingof various states will take pla
e due to thermal �u
tuations driven by its �nitetemperature. Thus, the question is as to how to de�ne Shannon entropy for thepresent system, whi
h is essentially being treated as a zero-temperature quan-tum me
hani
al system. For the purpose we adopt an information theoreti
point-of-view, and de�ne the probability Pi as
Pi = |Ci|2. (14)where Ci are the expansion 
oe�
ients of various SHO eigenstates in the ex-pression for the 
ondensate wave fun
tion of Eq. (4). In this pi
ture, groundstate of the 
ondensate is seen as a statisti
al mixture of the various eigen-states of SHO, with the mixing probability Pi. It is important to realize thatthe reason behind this mixing of states is the inter-parti
le intera
tion in the
ondensate, be
ause, in its absen
e, the 
ondensate will be in the ground stateof the SHO (Ci = δ1,i) leading to S = 0. Thus, in a sense, entropy de�nedas per Eqs. (13) and (14) is a measure of inter-parti
le intera
tions in thesystem. Be
ause, stronger the inter-parti
le intera
tions, the 
ondensate willbe a mixture of larger number of states, leading to a larger entropy. From aninformation-theoreti
 point-of-view larger entropy implies loss of informationabout the system, be
ause, in su
h a 
ase, the system is a mixture of a largernumber of states. The point to be remembered, however, is that this informa-tion loss is being driven by the inter-parti
le intera
tions in the system whilethe 
orresponding information loss in a thermodynami
 system is driven byits �nite temperature, and the thermal �u
tuations 
aused by it. In various
ontexts, other authors have also 
omputed and dis
ussed the informationentropy asso
iated with intera
ting quantum systems[21,22,23℄.3 Des
ription of the programIn this se
tion we brie�y des
ribe the main program and various subroutineswhi
h 
onstitute the entire module. All the subroutines, ex
ept for the di-agonalization subroutine taken from EISPACK[24℄, have been written in theFortran 90 language.3.1 Main Program OSCLThe main program is 
alled OSCL, and its task is to read all the input infor-mation, and, among other things, �x the dimensions of various arrays. All thearrays needed in the program are dynami
ally allo
ated either in the main pro-gram, or in some of the subroutines. By utilizing the dynami
 array allo
ation7



fa
ility of the Fortran 90 language, we have made the program independent ofthe size of the 
al
ulations undertaken. Be
ause of this, the program needs tobe 
ompiled only on
e, and will run until the point the memory available onthe 
omputer is exhausted. Besides reading all the ne
essary input, programOSCL 
alls various subroutines in whi
h di�erent tasks asso
iated with the
al
ulation are performed.3.2 XMAT_0XMAT_0 is a small subroutine whose job is to 
ompute the matrix elementsof the position operator in harmoni
 os
illator units, with respe
t to the basisset of a one-dimensional SHO. This routine is 
alled from the main programOSCL, and results are stored in a two-dimensional array 
alled xmatrx.3.3 Basis Set GenerationThe 
al
ulations are performed using a basis set of a three-dimensional SHO
onsistent with the symmetry of the system. The basis set to be used isgenerated by 
alling one of the following three routines: (a) for a spheri
al
ondensate (
omplete isotropy) routine BASGEN3D_ISO is used, (b) for a
ylindri
al 
ondensate routine BASGEN3D_CYL is 
alled, and (
) the ba-sis set for a 
ompletely anisotropi
 
ondensate is generated using the routineBASGEN3D_ANISO. In all the 
ases the basis fun
tions are arranged in theas
ending order of their harmoni
 os
illator energies and, if needed, a heapsort routine 
alled HPSORT is used to a
hieve that. All these subroutines havethe option of imposing parity symmetry on the basis set if the potential hasthat symmetry. This leads to a substantial redu
tion in the size of the basisset in most 
ases.3.4 HAM0_3D:This subroutine is 
alled from the main program OSCL and its purpose is togenerate the matrix elements of the nonintera
ting (one-parti
le) part of the
ondensate Hamiltonian. If the 
ondensate is 
on�ned in a perfe
tly harmoni
trap, one-parti
le part of the Hamiltonian is trivial. However, for the 
asewhere the trap potential is anharmoni
, the potential matrix elements aregenerated from the position operator matrix elements xmatrx(i, j) mentionedabove. 8



3.5 BEC_DRVSubroutine BEC_DRV is 
alled from the main program OSCL, and as itsname suggests, it is the driver routine for performing 
al
ulations of the 
on-densate using the time-independent GPE. Apart from allo
ating a few arrays,the main task of this routine is to 
all either: (a) routine BOSE_SCF meant forsolving for the 
ondensate wave fun
tion using the iterative-diagonalization-based SCF approa
h, or (b) routine BOSE_STEEP used for solving for the
ondensate wave fun
tion using the steepest-des
ent approa
h of Dalfovo andStringari[9℄.3.6 BOSE_SCFThis subroutine solves the time-independent GPE in a self-
onsistent mannerusing an iterative diagonalization approa
h. Its main tasks are as follows:(1) Allo
ate various arrays needed for the SCF 
al
ulations(2) Setup the starting orbitals. For this the options are: (i) diagonalize theone-parti
le part of the Hamiltonian, (ii) use the Thomas-Fermi orbitals,or (iii) use the orbitals obtained in a previous run.(3) Perform the SCF 
al
ulations. For the purpose, the two-parti
le inte-grals J̃i,j,k,l (
f. Eq. (9) are 
al
ulated on the �y during ea
h iterationusing the formulas derived in the appendix. In other words the storage ofthese matrix elements is 
ompletely avoided, thereby saving substantialamount of memory and disk spa
e. This approa
h is akin to the �dire
tSCF� approa
h utilized in quantum 
hemistry. Permutation symmetriesof indi
es i, j, k, and l are utilized to redu
e the number of integralsevaluated. Moreover, the evaluation of an integral is undertaken only ifit is found to be nonzero as per the symmetry sele
tion rules. The in-tegrals in question are evaluated in a subroutine 
alled JMNPQ_CAL.The F̂ matrix 
onstru
ted in ea
h iteration is diagonalized through aHouseholder diagonalization routine 
alled HOUSEH, whi
h is from theEISPACK pa
kage of routines[24℄, and is written in Fortran 77.(4) The 
hemi
al potential and the 
ondensate wave fun
tion obtained afterevery iteration are written in various data �les so that the progress of the
al
ulation 
an be monitored.3.7 BOSE_STEEPAlternatively, the 
ondensate wave fun
tion and the 
hemi
al potential 
an beobtained using the subroutine BOSE_STEEP whi
h, instead of the iterative9



diagonalization approa
h, utilizes the steepest-des
ent approa
h to a
hieve
onvergen
e, starting from a given starting orbital. In this approa
h, as out-lined by Dalfovo and Stringari[9℄, the starting orbitals are evolved towardsthe true orbitals in small imaginary time steps by repeated appli
ation of theHamiltonian, i.e., the F̂ operator. Here, the main 
omputational step is themultipli
ation of a 
olumn ve
tor by a matrix, whi
h in the present version ofthe program is a
hieved by a 
all to the Fortran 90 intrinsi
 fun
tion MAT-MUL. However, one 
ould 
ertainly try to improve upon this by developing asubroutine whi
h 
an utilize the symmetri
 nature of the Fo
k matrix. Apartfrom this, rest of the a
tions performed in this subroutine are identi
al tothose of BOSE_SCF.3.8 THOMAS_FERMIThis subroutine is invoked either from the subroutine BOSE_SCF or fromBOSE_STEEP in 
ase the SCF 
al
ulations are to be initiated by assumingThomas-Fermi form of the starting orbitals. Upon invo
ation, this subrou-tine dire
tly 
onstru
ts the operator F̂ 
orresponding to the Thomas-Fermiorbitals. In this 
ase, the r-spa
e integration is performed using a trapezoidal-rule-based s
heme on a three-dimensional Cartesian grid.3.9 ENTROPYThis subroutine is 
alled if the entropy of the 
ondensate needs to be 
omputedwith respe
t to the Harmoni
 os
illator basis fun
tions, as per Eqs. 13 and 14.It is a very small subroutine with a straightforward implementation.3.10 COND_PLOTThis subroutine 
omputes the numeri
al values of the 
ondensate wave fun
-tion for a user-spe
i�ed set of points in spa
e. The numeri
al values of theHermite polynomials needed for the purpose are 
omputed using the subrou-tine HERMITE, des
ribed below.3.11 HERMITEThis subroutine 
omputes the values of the Hermite polynomial Hn(x) for aset of user spe
i�ed values of x, and order n. Fast 
omputation of polynomials10



is a
hieved by using initializations H0(x) = 1, H1(x) = 2x, and the re
ursionrelation Hn+1(x) = 2xHn(x) − 2nHn−1(x).4 InstallationAll the �les needed to install and run the program are kept in the gzipped,tarred ar
hive bose.tar.gz. It 
onsists of: (a) All the Fortran �les 
ontainingthe main program (�le os
l.f90), and various subroutines, 
alled by the mainprogram, (b) four versions of Make�les whi
h 
an be used for 
ompiling the
ode on various Linux/Unix systems, and (
) several sample input and output�les in a subdire
tory 
alled Examples. The program was developed on Pen-tium 4 based ma
hine running Redhat Fedora 
ore 1 operating system usingnon
ommer
ial version of the Intel Fortran 
ompiler version 8.1. However, ithas also been veri�ed that it runs on Sun Solaris Spar
 based systems, Compaqalpha (now HP alpha) based systems running True Unix, and IBM Power PCsystems running AIX. For these systems, the Fortran 90 
ompilers suppliedwith those operating systems were used. In order to install and 
ompile theprogram, following steps need to be followed:(1) Un
ompress the program �les in a dire
tory of user's 
hoi
e using the
ommand gunzip bose.tar.gz followed by tar -xvf bose.tar.(2) Verify that the four make�les Makefile_linux, Makefile_solaris, Makefile_alpha,and Makefile_aix are present. Copy the suitable version of the make �leto the �le Makefile. For example, if the system is a Sun Solaris Spar
system, issue the 
ommand 
p Makefile_solaris Makefile.(3) Now issue the 
ommand make whi
h will initiate the 
ompilation. If ev-erything is su

essful, upon 
ompletion bin dire
tory of your a

ount willhave the program exe
ution �le bose.x. If your a

ount does not havea dire
tory named bin, you will have to either 
reate this dire
tory, ormodify the Makefile to ensure that the �le bose.x is 
reated in thedire
tory of your 
hoi
e.(4) If the bin dire
tory is in your path, try running the program using one ofthe sample input �les lo
ated in the subdire
tory Examples. For exam-ple, by issuing the 
ommand bose.x < be
_iso.dat > x.out one 
anrun the program for an isotropi
 trap and the output will be writtenin a �le 
alled x.out. This should be 
ompared with the supplied �lebe
_iso.out to make sure that results obtained agree with those of theexample run.Additionally, a �le 
alled README is also provided whi
h lists and brie�y ex-plains all the �les in
luded in the pa
kage. Although we have not investigatedthe installation of the program on operating systems other than Linux/Unix,we do not anti
ipate any problems with su
h operating systems.11



4.1 Input FilesIn order to keep the input pro
ess as free of errors as possible, we have adoptedthe philosophy that before ea
h important input 
ards, there will be a 
om-pulsory 
omment line. It is irrelevant as to what is written in the 
ommentlines, but, by writing something meaningful, one 
an keep the input pro
esstransparent. The input quantities following the 
omment line have to be in freeformat, with the restri
tion that the ASCII input 
ards should be in upper
aseletters. Be
ause of the use of 
omment lines, the input �les are more or lessself explanatory. In the sample input �les, we have started all the 
ommentlines with the 
hara
ter #. A sample input �le 
orresponding to a 
ylindri
altrap potential is listed below#Type of os
illatorCYLINDRICAL# NXMAX, NYMAX, NZMAX10, 8# NO. OF TERMS IN THE ANHARMONIC POTENTIAL0# OMEGAX, OMEGAY, OMEGAZ, JILA parameters1.0, 2.8284271# Type of SCF equationGP# No. of parti
les1000# S
attering Length, JILA Rb874.33d-3# SCF 
onvergen
e threshold, Maximum # of allowed iterations.1.d-8, 1000# Whether Parity is a good quantum number or not12



PARITY# Method for 
al
ulationsSCF# Starting orbitalsSHO# Whether orbital Mixing will be doneFOCKMIX0.4# Whether orbital plots neededPLOT-5.0,5.0,0.0511,0,0# Entropy Cal
ulationENTROPY1,1Next we des
ribe the input 
ards one by one.(1) First 
ard is an ASCII 
ard des
ribing the type of trap potential. Optionsare: ISOTROPIC, CYLINDRICAL, or ANISOTROPIC.(2) Se
ond 
ard spe
i�es the maximum quantum numbers of the basis fun
-tions to be in
luded for various dire
tions. For an isotropi
 trap one entryis needed (nx = ny = nz), for 
ylindri
al trap, two entries are needed(nx = ny and nz), while for an anisotropi
 os
illator three entries areneeded (nx, ny, nz). These numbers eventually determine the total num-ber of basis fun
tions Nbasis used to expand the 
ondensate as per Eq.4.(3) Third 
ard deals with the anharmoni
 terms in the trap potential. Anypotential of the form ∑Nanh

i=1 Cix
mx

i ymy
i zmz

i 
an be added to the Harmoni
trap potential. The �rst entry here is Nanh after whi
h Nanh entries 
on-sisting of {Ci, m
x
i , m

y
i , m

z
i } are given. In the example input, no anhar-13



moni
ity was 
onsidered, thus Nanh has been set to zero.(4) Fourth 
ard deals with the trap frequen
ies with the 
onvention that
ωx = 1, and rest of the frequen
ies measured in the units of ωx. Theexample input 
orresponds to the trap frequen
ies of the JILA experimentwith ωx = ωy = 1, ωz = 2.284271.(5) Fifth 
ard spe
i�es whi
h mean-�eld equation is to be solved. Optionsare GP for the Gross-Pitaevskii equation, and HF for the Hartree-Fo
kequation.(6) Sixth 
ard reads the total number of bosons in the trap.(7) Seventh 
ard is the value of the s-wave s
attering length in the Harmoni
os
illator units.(8) Eighth 
ard inputs the 
onvergen
e threshold, followed by the maximumnumber of iterations allowed to a
hieve 
onvergen
e.(9) Ninth 
ard spe
i�es whether parity should be treated as a good quantumnumber or not. Options are PARITY and NOPARITY. If the trap poten-tial is invariant under the parity operation, use of this 
ard leads to atremendous redu
tion in the size of the basis set needed to solve for the
ondensate wave fun
tion.(10) Tenth 
ard spe
i�es as to whi
h method is to be used for solving themean-�eld equations. Options are SCF 
orresponding to the iterative di-agonalization method, and STEEPEST-DESCENT 
orresponding to the usesteepest-des
ent method of Dalfovo and Stringari[9℄. In 
ase one opts forthe steepest-des
ent approa
h, the size of the time step to be used in the
al
ulations also needs to be spe
i�ed.(11) Eleventh 
ard spe
i�es as to what sort of starting guess for the 
on-densate should be used to start the solution pro
ess. Valid options areSHO 
orresponding to the simple-harmoni
 os
illator ground state andTHOMAS-FERMI 
orresponding to the Thomas-Fermi form of the 
onden-sate.(12) It has been found that in several di�
ult 
ases, 
onvergen
e 
an bea
hieved if one utilizes the te
hniques of Fo
k matrix mixing or 
onden-sate orbital mixing[9,10℄. Valid options are (a) FOCKMIX for Fo
k matrixmixing (b) ORBMIX for 
ondensate mixing, (
) Any other ASCII entrysu
h as NOMIX for neither of these options. In 
ase options (a) or (b) are
hosen, one needs to spe
ify the parameter xmix quantifying the mixinga

ording to the formula

R(i) = xmix R(i) + (1 − xmix) R(i−1),where R(i) is the quantity under 
onsideration in the i-th iteration. Thus,if Fo
k matrix mixing has been opted, xmix spe
i�es the fra
tion of thenew Fo
k matrix in the total Fo
k matrix in the i-th iteration.(13) This is the penultimate 
ard whi
h de
ides whether the user wants thenumeri
al values of 
ondensate wave fun
tion along user spe
i�ed set ofdata points, su
h that the 
ondensate 
ould be plotted as a fun
tion of14



spatial 
oordinates. Keyword PLOT means that the answer is in a�rma-tive while any other option su
h as NOPLOT will disable the numeri
al
omputation of the 
ondensate. If the keyword PLOT has been suppliedas in the example input, further data rmin, rmax, dr is spe
i�ed nextwhi
h determines the starting position, ending position, and the step sizefor generating the points on whi
h the 
ondensate is to be 
omputed.After these values, we need to spe
ify variable ndir whi
h is the numberof dire
tions along whi
h the 
ondensate needs to be 
omputed. Finally,
ndir Cartesian dire
tions have to be spe
i�ed. The example input �leinstru
ts the program to 
ompute the value of the 
ondensate along the
x axis, for −5.0 ≤ x ≤ 5.0, in the steps of 0.05.(14) Final 
ard spe
i�es whether one wants to 
ompute the mixing entropy.Valid options are ENTROPY and any other entry su
h as NOENTROPY. Ifone opts for entropy 
al
ulation, one 
an do so for a whole range ofeigenfun
tions spe
i�ed by their lower bound and the upper bound. Entry1,1 spe
i�es that entropy of only the ground state needs to be 
omputed.4.2 Output �leApart from the usual information related to various system parameters, themost important information that an output �le 
ontains is the approa
h (orla
k thereof) to 
onvergen
e of the 
al
ulations as far as the 
hemi
al potentialis 
on
erned. Besides that, any other 
omputed quantity su
h as the entropyis also listed in the output �le. The important portions of the output �le, 
or-responding to the input �le dis
ussed in the previous se
tion, are reprodu
edbelow. The 
omplete sample output �le is 
alled be
_
yl_jila.out, and isin
luded in the tar ar
hive.SCF iterations beginStarting 
hemi
al potential= 2.4142135Iteration # Chem. Pot. Energy/parti
le Energy-Converg.1 3.876643 5.3193762 5.31937622 4.271632 4.0689872 -1.25038903 4.517259 3.8580062 -0.21098104 4.619476 3.8439807 -0.01402555 4.689213 3.8418453 -0.002135415



6 4.720534 3.8413295 -0.00051597 4.743576 3.8411720 -0.00015758 4.753914 3.8411212 -0.00005089 4.761791 3.8411040 -0.000017210 4.765292 3.8410982 -0.000005911 4.768022 3.8410961 -0.000002012 4.769223 3.8410954 -0.000000713 4.770177 3.8410951 -0.000000314 4.770592 3.8410950 -0.000000115 4.770927 3.8410950 0.000000016 4.771071 3.8410950 0.000000017 4.771189 3.8410950 0.0000000Convergen
e a
hieved on the BEC ground stateEigenstate # Information Entropy1 0.7477159The 
ontents of the output �le listed above are self-explanatory. It basi
allyshows that after seventeen iterations, the total energy per parti
le of the 
on-densate 
onverges to the value 3.841095, leading to the 
hemi
al potentialvalue of 4.771. Additionally, the entropy of the 
ondensate is 
omputed to be0.744771.In addition to the above mentioned main output �le, there is another output�le 
reated in the ASCII format whi
h 
ontains the 
ondensate orbital ob-tained at the end of ea
h iteration. This �le is written in the logi
al unit 9,and is named orbitals.dat. When a new run is started, the program alwayslooks for this �le and tries to use the 
ondensate solution present there to startthe iterations. In other words, 
ondensate solution present in orbitals.datis used to restart an old aborted run. If some in
ompatibility is found betweenthe 
ondensate solution, and the present run, the solution in the orbitals.datis ignored and a new run is initiated. Thus, if one wants to start a 
ompletelynew run, any old orbitals.dat �le must �rst be deleted.16



5 Convergen
e IssuesIn this se
tion we 
ompare the 
onvergen
e of our results with respe
t tothe size of the basis set used. We also 
ompare the 
onvergen
e properties ofdi�erent iterative approa
hes aimed at obtaining the 
ondensate solutions.5.1 Convergen
e with respe
t to the basis setBefore treating the results obtained as the true results, one must be sure as to
onvergen
e properties with respe
t to the size of the basis set. This aspe
t ofthe 
al
ulations is explored in the present se
tion by means of two examples
orresponding to 
ondensates in spheri
al and 
ylindri
al traps, respe
tively,with �fteen hundred (N = 1500) bosons ea
h.First we dis
uss the 
ase of the 
ondensate in an isotropi
 trap, results forwhi
h are presented in table 1. The value of the s
attering length used in the
al
ulations is listed in the 
aption of the table. For this 
ase, only one valuespe
ifying the largest quantum number nmax for the basis fun
tions, needs tobe spe
i�ed. It is obvious from the table that the results whi
h have 
onvergedto three de
imal pla
es both in the 
hemi
al potential and the entropy require
nmax = 8, leading to the total number of basis fun
tions Nbasis = 35. Thismeans that the size of the Fo
k matrix diagonalized during the iterative di-agonalization is 35× 35, whi
h is 
omputationally very inexpensive. It is alsoobvious from the table that in order to get four de
imal pla
e 
onvergen
e, weonly need to use nmax = 10 
orresponding to a 56 × 56 Fo
k matrix, whosediagonalization 
an also be 
arried out quite fast.Similar results for the 
ondensate in a 
ylindri
al trap 
orresponding to theJILA parameters[25℄ are presented in table 2. Be
ause of the anisotropy ofthe trap, the 
onvergen
e is to be judged with respe
t to two parameters
nxmax de
iding the highest quantum number of the basis fun
tions for x−and y−dire
tions, and nzmax the 
orresponding number for the z-dire
tion.We will �rst try to understand the 
onvergen
e properties using a few heuristi
arguments. In the JILA experiment[25℄ the trap frequen
y in the z-dire
tion
ωz was more than twi
e the value of the trap frequen
ies in the x- and y-dire
tions, ωx and ωy. Therefore, due to inter-parti
le repulsion, the 
ondensatewill be mu
h more delo
alized along the x/y-dire
tions, as 
ompared to the z-dire
tion. This means that, in order to a
hieve 
onvergen
e, one would expe
tto use higher-energy basis fun
tions in the x/y-dire
tions, as 
ompared to the
z-dire
tion. In other words, at 
onvergen
e nxmax > nzmax. And when weexamine table 2, we �nd that this is indeed the 
ase. We noti
e that the three-de
imal pla
e 
onvergen
e in both the 
hemi
al potential, and the entropy,17



is obtained for nxmax = 8 and nzmax = 6, although the data presented inthe table 
overs a mu
h larger range of parameters. Thus, we 
on
lude thatreasonably a

urate values of various physi
al quantities 
an be obtained withbasis sets of modest sizes, both for the isotropi
 as well as for the 
ylindri
al
ondensates.5.2 Comparison of di�erent numeri
al approa
hesAs mentioned earlier, our program 
an solve the GP equation using two numer-i
al approa
hes: (a) iterative diagonalization (ID) of the Fo
k matrix, and (b)steepest-des
ent (SD) method of Dalfovo et al.[9℄. In the previous se
tions, allthe presented results were obtained by the ID method. In the present se
tion,we would like to present results based upon the steepest-des
ent approa
h, and
ompare them to those obtained using the iterative diagonalization method.We present our results for the 
ylindri
al trap 
orresponding to the JILAparameters[25℄, with an in
reasing number of parti
les in table 3. Obviously,the numeri
al solution of the GP equation be
omes in
reasingly di�
ult as thenumber of parti
les in the 
ondensate grows, be
ause of the in
reased 
ontri-bution of the inter-parti
le repulsion. Therefore, it is very important to knowas to how various numeri
al approa
hes perform as N is gradually in
reased.As the results presented in the table suggest that for smaller values of N ,neither of the two approa
hes have any problems a
hieving 
onvergen
e, andthe results obtained were found to be in agreement with ea
h other to threede
imal pla
es for the basis set used. We found that in most of the 
ases,the ID approa
h worked only when Fo
k-matrix mixing used. Although, wemanaged to a
hieve 
onvergen
e for the 
ases depi
ted in table 3 with the IDmethod; however, as the number of bosons in the 
ondensate grows further,the 
onvergen
e be
omes slow and di�
ult to a
hieve by this method, a fa
talso emphasized by S
hneider and Feder[11℄. On the other hand, the SD ap-proa
h did not have any 
onvergen
e problems for the 
ases we investigated.As depi
ted in table 3, the SD approa
h led to 
onvergen
e both with theSHO starting orbital, as well as the Thomas-Fermi starting orbital. However,for larger values of N , the use of Thomas-Fermi solution as the starting guessfor the 
ondensate, will lead to mu
h faster 
onvergen
e with this approa
h.Thus, we 
on
lude that: (a) For smaller values of N , both the ID as well as theSD methods will lead to 
onvergen
e, and (b) for really large values of N , the
onvergen
e is guaranteed only with the SD method. In the SD method themain 
omputational operation is the multipli
ation of a ve
tor by a matrix,whi
h will be signi�
antly faster as 
ompared to the matrix diagonalizationpro
edure needed by the ID method for 
al
ulations involving large basis sets.Thus, for 
al
ulations involving large basis sets, SD method will be faster as
ompared to the ID method. Therefore, all things 
onsidered, we believe that18



the SD method is the more robust of the two possible approa
hes.6 Example RunsIn this se
tion we report the results of our 
al
ulations for a variety of trapparameters, and 
ompare our results with those published by other authors.We also study the behavior of the Shannon entropy of the 
ondensate withrespe
t to the number of parti
les it 
ontains. Additionally, we also presentour results for the 
ases of anharmoni
 traps.6.1 Comparison with other worksIn this se
tion we present the results of several 
al
ulations performed on bothisotropi
 and the 
ylindri
al traps, and 
ompare them to the results obtainedby other authors. Several authors have performed su
h 
al
ulations, however,for the sake of brevity, we restri
t our 
omparisons mainly to the works of Baoand Tang[15℄ for the spheri
al 
ondensate, and to the results of Dalfovo andStringari[9℄ for the 
ylindri
al 
ondensate.Re
ently, using �nite-element based approa
h, Bao and Tang[15℄ performed
al
ulations for 
ondensates on a variety of harmoni
 traps, and presented re-sults as a fun
tion of the intera
tion parameter κ = 4πaN
ax

. In table 4 our resultsfor the 
hemi
al potentials of 
ondensates in isotropi
 traps 
orresponding toin
reasing values of κ are 
ompared with those reported by Bao and Tang[15℄.The agreement between the results obtained by two approa
hes is exa
t to thede
imal pla
es reported by Bao and Tang[15℄. Note that the aforesaid agree-ment was obtained for rather modest basis set sizes, and 
al
ulations were
ompleted on a personal 
omputer in a matter of minutes.Next we dis
uss the results obtained for a 
ylindri
al trap 
orresponding toJILA parameters[25℄ for an in
reasing number of bosons. Our results are pre-sented in table 5, where they are also 
ompared to the results of Dalfovo andStringari obtained using a �nite-di�eren
e based approa
h[9℄. The agreementbetween our results and those of Dalfovo and Stringari is virtually exa
t forall their reported 
al
ulations[9℄. Again, the noteworthy point is that this levelof agreement was obtained with the use of modest sized basis sets, and the
omputer time running into a few minutes.Thus, the ex
ellent agreement between our results, and those obtained byother authors using di�erent approa
hes, gives us 
on�den
e about the essen-tial 
orre
tness of our methodology. Now the question arises, will this numer-19



i
al method work for values of the intera
tion parameter κ whi
h are mu
hlarger than the ones 
onsidered here. The en
ouraging aspe
t of the approa
his that for none of the larger values of κ whi
h we 
onsidered did we experi-en
e a numeri
al breakdown of the approa
h. It is just that for larger valuesof κ, the total number of basis fun
tions needed to a
hieve 
onvergen
e on the
hemi
al potential will be larger as 
ompared to the smaller κ 
ases. This, of
ourse, will also lead to an in
rease in the CPU time needed to perform 
on-verged 
al
ulations. For example, for the 
ase of the spheri
al trap 
onsideredin table 4, when we doubled κ to the value 6274, we needed to use basis fun
-tions 
orresponding to nmax = 20 with Nbasis = 286 to a
hieve two-de
imalpla
es 
onvergen
e in the 
hemi
al potential. For κ = 9411, to a
hieve similar
onvergen
e, these numbers in
reased to nmax = 24 and Nbasis = 455. Finally,when κ was in
reased to 15685, the 
orresponding numbers were nmax = 28and Nbasis = 680, with the CPU time running into several hours. For the
ylindri
al trap (
f. table 5), for N = 20000 bosons (κ = 1088.2) the 
onver-gen
e was a
hieved in a matter of minutes with nxmax = 14, nzmax = 8and Nbasis = 180. When the number of bosons in the trap was doubled su
hthat κ = 2176.4, similar level of 
onvergen
e on the 
hemi
al potential wasobtained with nxmax = 18, nzmax = 8 and Nbasis = 275. Even with mu
hlarger values of κ (> 30000) both for the spheri
al, and the 
ylindri
al traps,we did not en
ounter any 
onvergen
e di�
ulties when the 
al
ulations wereperformed with the modest sized basis sets mentioned earlier. But it was quiteobvious that, to obtain highly a

urate values of 
hemi
al potentials for su
h
ases, one will have to use basis sets running into thousands whi
h will makethe 
al
ulations quite time 
onsuming.At this point, we would also like to 
ompare our approa
h to that of S
hneiderand Feder[11℄, who used a DVR based te
hnique to obtain a

urate solutionsof the time-independent GPE. In the DVR approa
h the basis fun
tions arethe so-
alled �
oordinate eigenfun
tions�, whi
h, in turn, are assumed to belinear-
ombinations of other fun
tions su
h as the SHO eigenstates, or theLagrange interpolating fun
tions[11℄. Thus in the DVR approa
h of S
hnei-der and Feder[11℄, the SHO eigenstates are used as intermediate basis fun
-tions, and not as primary basis fun
tions as is done in our approa
h. Us-ing this approa
h, 
oupled with the �dire
t-inversion in the iterative spa
e�(DIIS) method, Feder and S
hneider managed to obtain a

urate solutionsfor anisotropi
 
ondensates for quite large values of the intera
tion parameter
κ[11℄. However, the pri
e to be paid for this a

ura
y was the use of a verylarge basis set 
onsisting of several thousands of basis fun
tions[11℄ even forrather small values of κ.Finally, we present the plots of the 
ondensates in a spheri
al trap, for in
reas-ing values of N , in Fig. 1. As expe
ted, the 
al
ulations predi
t a depletionof 
entral 
ondensate density, and 
orresponding delo
alization of the 
on-densate, with in
reasing N . The results presented are in ex
ellent agreement20



with similar results presented by various other authors[9,15℄. Moreover, if we
ompare the value of the 
ondensate at the 
enter of the trap (|ψ(0, 0, 0)|) forthe isotropi
 trap with the published results of Bao and Tang[15℄, we againobtain ex
ellent agreement for all values of N .6.2 Anharmoni
 PotentialsRe
ently, several studies have appeared in the literature studying the in�uen
eof trap anharmoni
ities on the 
ondensates, in light of rotating 
ondensates,and the resultant vortex stru
ture[26℄. However, we approa
h the in�uen
eof trap anharmoni
ity from a di�erent perspe
tive, namely that of quantum
haos. Therefore, the anharmoni
ities 
onsidered here are in the absen
e ofany rotation, and the aim is to study their in�uen
e on the ground and theex
ited states of the 
ondensate. We assume the unperturbed harmoni
 trap tobe the 
ylindri
al one 
orresponding to the JILA parameters[25℄, and 
onsidertwo types of anharmoni
 perturbations in the x − y plane: (a) the Henon-Heiles potential with V anh(x, y) = α(x2y − 1
3
y3), and (b) the Fourleg poten-tial V anh(x, y) = αx2y2, where α is the anharmoni
ity parameter. Note thatthe Henon-Heiles potential redu
es the 
ir
ular symmetry of the 
ylindri
altrap in the x − y plane to the triangular one (symmetry group C3v), andthe fourleg potential redu
es the symmetry to that of a square (group C4v).In 
ase of Henon-Heiles potential the inversion symmetry of the 
ylindri
altrap is also destroyed, while for the fourleg potential, it is still preserved. TheHenon-Heiles potential introdu
es de
on�nement in the trap, the Fourleg po-tential, on the other hand, strengthens the 
on�nement of the original trap.Both these potentials are known to lead to 
haoti
 behavior for higher energystates, both at the 
lassi
al and quantum-me
hani
al levels of theories[27,28℄.In a separate work 
ommuni
ated elsewhere, we have examined the ex
itedstates of 
ondensates under the in�uen
e of these potentials, in order to an-alyze the signatures of 
haoti
 behavior. In the present work, however, weintend only to demonstrate the 
apabilities of our program as far as the an-harmoni
ity is 
on
erned, and restri
t ourselves only to the ground states ofthe 
ondensates in presen
e of these potentials. Results of our 
al
ulations onthe 
hemi
al potentials of 
ondensates in a 
ylindri
al trap 
orresponding tothe JILA experiment[25℄, and N = 1000, are presented in table 6 as a fun
tionof anharmoni
ity α. Corresponding plots of the 
ondensate along the y axis arepresented in Fig. 2. As far as the in�uen
e of anharmoni
ity on the 
hemi
alpotential is 
on
erned, from table 6 we 
on
lude that, for a given value of N ,for in
reasing α, it in
reases for the Henon-Heiles potential, and de
reases forthe fourleg potential. Similarly, upon examining the Fig. 2, we 
on
lude thatfor the Henon-Heiles potential, the 
entral 
ondensate density gets depletedwith in
reasing α, while the behavior in 
ase of the fourleg potential is just theopposite. Additionally, the fa
t that the inversion symmetry is broken in 
ase21



of Henon-Heiles potential, is obvious from the asymmetry of 
orresponding
ondensate plots.
6.3 Entropy Cal
ulationsHere we dis
uss the Shannon entropy of 
ondensates in isotropi
 and 
ylin-dri
al traps, as a fun
tion of the dimensionless strength parameter κ = 4πaN

ax
.Sin
e the s
attering length in most of the traps is �xed, for su
h 
ases the
hange in κ 
an be 
onstrued as due to 
hanges in N . In Fig. 3 we present theplots of Shannon entropy versus κ plots for the 
ondensates trapped both inisotropi
, as well as 
ylindri
al traps. Although a detailed analysis of the Shan-non entropy of 
ondensates is being presented elsewhere, we make a 
ouple ofimportant observations: (i) For both types of traps the entropy in
reases as afun
tion of κ. Initially, the rate of in
rease is quite high, but for larger valuesof κ, it settles down to a mu
h lower value. (ii) For a given nonzero value of κ,the entropy of a 
ondensate in a 
ylindri
al trap is always larger than that ofa 
ondensate in a spheri
al trap. In other words, the trap anisotropy appearsto in
rease the Shannon entropy of the system.

7 Con
lusionsIn this paper we have reported a Fortran 90 implementation of a harmoni
os
illator basis set based approa
h towards obtaining the numeri
al solutionsof time independent GPE. We have presented appli
ations of our program toa variety of situations in
luding anharmoni
 potentials, and in 
al
ulations ofthe Shannon entropy of the 
ondensate. We also 
ompared the results obtainedfrom our program to those obtained by other authors, and found near-perfe
tagreement. Therefore, we en
ourage the users to apply our program to a varietyof situations, and 
onta
t us in 
ase they en
ounter errors. We have extensiveplans for further development of our program. Some of the possible dire
tionsare: (a) extension of our approa
h to time-dependent GPE, allowing one todeal with 
ondensate dynami
s, (b) taking 
ondensate rotation into a

ount,allowing one to study the vortex phenomena, and (
) dealing with 
ondensateswith nonzero spins, i.e., the so-
alled spinor 
ondensates[29℄. Work along theselines is presently in progress in our group, and, upon 
ompletion, will bereported in future publi
ations. 22



A AppendixHere our aim is to 
ompute the two-parti
le integral of Eq. (10) de�ned as
Jninjnknl

=
∫ ∞

−∞
dξφnl

(ξ)φnk
(ξ)φnj

(ξ)φni
(ξ), (A.1)where, in terms of the dimensionless 
oordinates ξ, the single parti
le wavefun
tion φni

(ξ) is given by
φni

(ξ) =
1

√√
π2nini!

Hni
(ξ)e−

ξ2

2 . (A.2)Substituting Eq.A.2 in Eq. (10), we get
Jninjnknl

=
1

π
√

2ni+nj+nk+nlni!nj !nk!nl!
Ininjnknl

, (A.3)where
Ininjnknl

=
∫ ∞

−∞
e−2ξ2

Hni
(ξ)Hnj

(ξ)Hnk
(ξ)Hnl

(ξ)dξ. (A.4)Sin
e Hermite polynomials have a de�nite parity, the integral Ininjnknl
will benonvanishing only if the sum ni +nj +nk +nl is an even number. Now we willuse a standard result for the produ
t of two Hermite Polynomials,

Hm(ξ)Hn(ξ) =
min{m,n}

∑

k=0

2kk!







m

k













n

k





Hm+n−2k(ξ), (A.5)
where 





m

k





 et
. are the binomial 
oe�
ients. Upon substituting Eq. A.5 inEq. A.4, we obtain
Im,n,q,r =

min{m,n}
∑

k=0

min{q,r}
∑

l=0

2k+lk!l!







m
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q

l













r

l







∫ ∞

−∞
e−2ξ2

Hm+n−2k(ξ)Hq+r−2l(ξ)dξ.(A.6)In order to perform the integral above, we re
all the result derived by Busbridge[19℄
∫ ∞

−∞
e−2ξ2

Hm(ξ)Hn(ξ)dξ = (−1)
m−n

2 2
m+n−1

2 Γ(
m+ n+ 1

2
), (A.7)23



for m+ n = even. Substituting this we get
Im,n,q,r =(−1)

m+n−p−q

2 2
m+n+p+q−1

2 Km,n,q,r, (A.8)where
Km,n,q,r =

min{m,n}
∑

k=0

min{q,r}
∑

l=0

(−1)l−kk!l!







m

k
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
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n
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q

l













r

l





 Γ(
m+ n+ q + r − 2k − 2l

2
+

1

2
).(A.9)Upon substituting Eqs. (A.8) and (A.9) in Eq. (A.3), we get

Jm,n,q,r = (−1)
m+n−q−r

2

1

π
√

2(m!n!q!r!)
Km,n,q,r. (A.10)On using the expression

Γ(
2n+ 1

2
) =

2n!

22nn!

√
π, (A.11)and setting m+ n + q + r = 2t, we have

Γ(
m+ n+ q + r − 2k − 2l

2
+

1

2
) =

(2t− 2k − 2l)!
√
π

22t−2k−2l(t− k − l)!
. (A.12)Upon substituting Eq. (A.12) and the values of binomial 
oe�
ients in Eq.(A.9), we have

Km,n,q,r =

√
π

2m+n+q+r
m!n!q!r!×

∑

k,l

(−1)l−k22(k+l)(2t− 2k − 2l)!

(m− k)!(n− k)!(q − l)!(r − l)!(k!)(l!)(t− k − l)!
,

(A.13)whi
h, upon substitution in Eq. (A.10), leads to the �nal expression
Jm,n,q,r =

(−1)
m+n−q−r

2

2m+n+q+r

√

m!n!q!r!

2π
Lm,n,q,r, (A.14)where

Lm,n,q,r =
min{m,n}

∑

k=0

min{q,r}
∑

l=0

(−1)l−k22k+2l(2t− 2k − 2l)!

(m− k)!(n− k)!(q − l)!(r − l)!(k!)(l!)(t− k − l)!
.(A.15)Expressions of Eqs. (A.14) and (A.15) have been used in the fun
tion JINTT,whi
h is 
alled via subroutine JMNPQ_CAL, to 
ompute these two-body in-tegrals. We would like to emphasize that the series of Eq. (A.15) has terms24



with alternating signs, and, therefore, is potentially unstable for large values of
m, n, q, and r. Thus, it is 
ru
ial to use high arithmeti
 pre
ision while sum-ming the series. With the usual double-pre
ision arithmeti
 (REAL*8 vari-ables), we found that the the series was unstable for values of m, n, q, rlarger than 16. To 
ir
umvent these problems, we used quadruple pre
ision(REAL*16 variables) in fun
tion JINTT to sum the series. On
e the summa-tion is performed, the results are 
onverted into the double-pre
ision format.We believe that this approa
h has made the two-parti
le integral 
al
ulationpro
ess very robust, and a
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Table 1Convergen
e on the 
hemi
al potential and the mixing entropy of the 
ondensatein an isotropi
 trap with s
attering length a = 2.4964249 × 10
−3ax and number ofbosons N = 1500, with respe
t to the basis set size. nmax is the maximum value ofthe quantum number of the SHO basis fun
tion in a given dire
tion, Nbasis is thetotal number of basis fun
tions 
orresponding to a given value of nmax, and Niterrepresents the total number of SCF iterations needed to a
hieve 
onvergen
e onthe 
ondensate energy per parti
le. In all the 
al
ulations iterative diagonalizationmethod, along with Fo
k matrix mixing with xmax = 0.6, was used. The SCF
onvergen
e threshold was 1.0 × 10

−7.
nmax Nbasis Niter Chemi
al Potential Entropy2 4 19 2.939116 0.50836694 10 11 2.915046 0.53870746 20 14 2.911181 0.53969758 35 14 2.911278 0.53908810 56 15 2.911375 0.539242312 84 15 2.911346 0.539277014 120 15 2.911337 0.539282216 165 13 2.911337 0.5392797
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Table 2Convergen
e on the 
hemi
al potential and the mixing entropy of the 
ondensate ina 
ylindri
al trap with trap parameters 
orresponding to the JILA experiment[25℄,and the number of bosons N = 1500, with respe
t to the basis set size. nxmax isthe maximum value of the quantum number of the SHO basis fun
tion in x- and
y−dire
tion, nzmax is the same number 
orresponding to the z-dire
tion. Rest ofthe quantities have the same meaning as explained in the 
aption of table 1. Inall the 
al
ulations iterative diagonalization, along with Fo
k matrix mixing with
xmax = 0.3, was used. The SCF 
onvergen
e threshold was 1.0 × 10

−8.
nxmax nzmax Nbasis Niter Chemi
al Potential Entropy4 0 6 39 5.786323 0.93871244 2 12 19 5.421930 0.93832274 4 18 27 5.423981 0.93800136 0 10 31 5.737602 0.97707276 2 20 19 5.405221 0.95491946 4 30 20 5.405440 0.95454416 6 40 20 5.404970 0.95459208 0 15 21 5.737074 0.97524918 2 30 20 5.404605 0.95465308 4 45 21 5.404691 0.95427738 6 60 21 5.404218 0.95432918 8 75 21 5.404147 0.954323910 0 21 21 5.736935 0.975536510 2 42 20 5.404741 0.954481410 4 63 20 5.404540 0.954104410 6 84 20 5.404066 0.954156110 8 105 18 5.403994 0.954150810 10 126 18 5.403991 0.954147712 0 28 21 5.736763 0.975653912 2 56 20 5.404636 0.954578912 4 84 20 5.404436 0.954200412 6 112 20 5.403962 0.954251712 8 140 20 5.403891 0.954246312 10 168 20 5.403888 0.954243212 12 196 18 5.403888 0.954242828



Table 3Comparison of the 
hemi
al potentials (µ) obtained using the iterative diagonaliza-tion (ID) te
hnique, and the steepest-des
ent (SD) te
hnique[9℄, for the 
ondensatesin a 
ylindri
al trap with trap parameters 
orresponding to the JILA experiment[25℄,and a given number of bosons (N). Quantities Niter, nxmax, and nzmax have thesame meaning as in the 
aption of table 2, and µ is expressed in the units of ~ωx.In the ID based 
al
ulations for N ≤ 2000, SHO ground state solution was used tostart the iterations, while for larger values of N the iterations were started usingthe Thomas-Fermi approximation. In all the 
ases 
orresponding to the ID method,Fo
k matrix mixing was used, with 0.05 ≤ xmax ≤ 0.3. In the SD based 
al
ula-tions, the iterations were started using the Thomas-Fermi approximation, with thesize of the time step being 0.02 units.
N nxmax nzmax Niter(ID) Niter(SD) µ(ID) µ(SD)500 8 6 16 62 3.938611 3.9388651000 8 6 14 88 4.770707 4.7720551500 8 6 21 95 5.404218 5.4054912000 12 8 23 104 5.931870 5.93287810000 14 8 86 99 10.505267 10.50512415000 14 8 105 129 12.239700 12.23946520000 14 8 104 109 13.665923 13.665686Table 4Comparison of the 
hemi
al potentials (in the units of ~ω) obtained from our pro-gram, and those reported by Bao and Tang[15℄, for an isotropi
 trap, with in
reasingvalues of intera
tion parameter κ. The negative value of κ implies attra
tive inter-parti
le intera
tions. For the value of s
attering length stated in table 1, κ = 3137.1
orresponds to N = 1× 10

5 bosons. Symbols nmax and Niter have the same mean-ing as in the previous tables. For the last two 
al
ulations, SD method with a timestep of 0.02 units, and Thomas-Fermi initial guess were employed. Our 
hemi
alpotentials have been trun
ated to as many de
imal pla
es as reported by Bao andTang[15℄.
κ nmax Nbasis µ(This work) µ(Ref.[15℄)-3.1371 14 120 1.2652 1.26523.1371 14 120 1.6774 1.677412.5484 14 120 2.0650 2.065031.371 14 120 2.5861 2.5861125.484 14 120 4.0141 4.0141627.42 16 165 7.2485 7.24843137.1 16 165 13.553 13.55329



Table 5Comparison of the 
hemi
al potentials (in the units of ~ωx) obtained from our pro-gram, and those reported by Dalfovo and Stringari[9℄, for a 
ylindri
al trap 
orre-sponding to the JILA parameters[25℄, with in
reasing number N of bosons. Symbols
nxmax, nzmax, and Niter have the same meaning as in the previous tables. Cal-
ulations for N ≥ 10000 were performed by the SD method using Thomas-Fermistarting orbitals, a time-step of 0.02 units, and a 
onvergen
e threshold of 1.0×10

−7.We have trun
ated our 
hemi
al potentials to as many de
imal pla
es as reportedby Dalfovo and Stringari[9℄.
N nxmax nzmax Nbasis µ(This work) µ(Ref.[9℄)100 8 6 60 2.88 2.88200 8 6 60 3.21 3.21500 8 6 60 3.94 3.941000 8 6 60 4.77 4.772000 8 6 60 5.93 5.935000 10 8 105 8.14 8.1410000 10 8 105 10.5 10.515000 14 8 180 12.2 12.220000 14 8 180 13.7 13.7

Table 6In�uen
e of trap anharmoni
ities on the 
hemi
al potential. The table below presentsresults for the Henon-Heiles, and the fourleg potentials, for 
ylindri
al trap 
orre-sponding to JILA parameters[25℄, with N = 1000.
α µ(Henon-Heiles) µ(Fourleg)0.00 4.7712 4.77120.03 4.7662 4.82610.06 4.7497 4.87520.09 4.7207 4.92020.12 4.6764 4.96190.15 4.6131 5.0009
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Figure 1. Plots of 
ondensates along the x axis for an isotropi
 trap, with an in-
reasing number of N of bosons. The trap parameters used were the same as in thedata of tables 1 and 4. Lines 
orrespond to N = 100, 500, 1000, 5000, and 10000,and are in the des
ending order of the 
entral 
ondensate density, and distan
es arein the units of ax.
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Fig 1: Tiwari and Shukla
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Figure 2. In�uen
e of various types of anharmoni
ities on 
ondensates in 
ylin-dri
al traps with N = 1000, and s
attering length 
orresponding to the JILAparameters[25℄. The plots 
orrespond to: (a) the Henon-Heiles potential, and (b)the Fourleg potential. In ea
h graph, solid, dotted, and dashed lines represent valuesof anharmoni
ity parameter (see text) α = 0.0, 0.05, and 0.15, respe
tively. The y
oordinate is measured in the units of ax.
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Figure 3. Plots of Shannon entropy of 
ondensates in an isotropi
 trap (solid line) and
ylindri
al trap (dashed line), as a fun
tion of the dimensionless strength parameter
κ =

4πaN
ax

.
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Fig 3: Tiwari and Shukla
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