Available online at www.sciencedirect.com

ScienceDirect

ELSEVIER Procedia CIRP 21 (2014) 46 — 51

www.elsevier.com/locate/procedia

24th CIRP Design Conference

Architectural Design Space Exploration of Cyber-Physical Systems using
the Functional Modeling Compiler

Arquimedes Canedo?, Jan H. Richter®

“Siemens Corporation, Corporate Technology, 755 College Road East, Princeton, 08540, USA
bSiemens AG, I IA ATS 43, Gleiwitzer Str. 555, 90475, Nuremberg, Germany

* Corresponding author. Tel.: +1-609-734-3317; fax: +1-609-734-3583. E-mail address: arquimedes.canedo@siemens.com

Abstract

This paper reports our experience in the development of a novel concept design support tool for cyber-physical systems (CPS). We show that
the various disciplines in CPS design can be brought together to enhance the communication and requirements negotiation among engineers and
organizations, to enable multi-disciplinary simulations to evaluate the system-level impact of domain-specific design decisions, and to reduce the
overall design cycle. Our method relies on functional modeling to create a technology-independent description of what the system does, and uses
a Functional Modeling Compiler (FMC) to synthesize technology-dependent solutions that can be directly used to perform architectural design
space exploration using multi-disciplinary simulations in AMESim and Modelica. We show that our FMC is capable of performing detailed

multi-domain design space exploration of realistic automotive architectures.
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1. Introduction

Cyber-physical system (CPS) applications in automotive,
aerospace, energy, and manufacturing are currently facing an
unprecedented level of complexity due to the real-time interac-
tions among hundreds to thousands of heterogeneous data pro-
cessing components and physical processes (e.g. mechanical,
electrical, thermal, chemical). Automotive companies (OEMs),
for example, are at the forefront of CPS design due to the global
competition for new features, heterogeneity of components,
quality and development cost targets, and product launch dates.
It has been estimated that more than 80% of the innovations
in a car come from computer systems [1]. In premium cars,
software alone represents an investment of about one billion
dollars [2]. To minimize risk, automotive manufacturers de-
velop architectures, or platforms, to allow component reusabil-
ity across brands and car models [3]. Architecture-based design
is an important process because it facilitates the selection of
components from catalogues provided by the OEM’s suppliers.
Current market trends for green transportation are forcing auto-
motive companies to come up with disruptive innovations that
may require drastic changes in the existing architectures. De-
termining the impact of new design alternatives requires a very
expensive and long redesign process that is not well supported
by state-of-the-art CPS design tools.

Currently, CPS design is siloed into specific disciplines and

supported by highly specialized but domain-specific model-
based design (MBD) automation tools. For example, mechan-
ical engineering is done in computer-aided design (CAD) and
engineering (CAE) tools; electrical engineering is done in elec-
tronic design automation (EDA) and wire harness design tools;
control engineering is done in Matlab/Simulink and Modelica;
and software engineering is done in UML and in-house soft-
ware development environments. Unfortunately, these detail
design tools are often not compatible with each other and the
data exchange between them is difficult or sometimes impos-
sible. In order to better support the CPS design process, it
is important to recognize that a single design is passed hun-
dreds of times through hundreds of personnel from various or-
ganizations from the initial concept through the construction
and product test. Therefore, we believe it is essential that the
next-generation CPS design tools focus on supporting three key
aspects: (i) meaningful evaluation of design choices as early
as possible, (ii) system-level, cross-architecture, and multi-
disciplinary analysis, and (iii) seamless transition from concept
design to detail design.

This paper reports our experience in the development of a
novel multi-disciplinary integrated design automation tool for
cyber-physical systems. Our tool shows that the various dis-
ciplines in CPS design can be brought together to enhance
the communication and requirements negotiation among en-
gineers and organizations, enable multi-disciplinary simula-
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tions to evaluate the system-level impact of domain-specific de-
sign decisions, and reduce the overall design cycle. Our con-
cept design method relies on functional modeling to create a
technology-independent description of what the system does,
and uses a Functional Modeling Compiler (FMC) to synthe-
size technology-dependent solutions that can be directly used in
multi-disciplinary simulations for validation and architectural
design-space exploration. The contributions of this paper are:

e A new top-down architectural design space exploration ap-
proach that supports designers to broaden the design space
during the creative phase, and helps them narrow the solu-
tion space to feasible solutions.

e A tool chain to allow a realistic and accurate comparison
of different architectures and evaluate the system-level ef-
fects of architectural parameters.

e A demonstration of the feasibility of our idea using a real-
istic automotive use-case.

The paper is organized as follows. Section 2 motivates
the use of and architecture-based design for CPS. Section 3
presents our Functional Modeling Compiler and the process
on how functional models are allocated to various high-fidelity
simulation models of various architectures. Section 4 provides
an automotive use-case and demonstrates the main features of
the FMC. Section 5 summarizes the paper and provides the di-
rection of our future work.

2. Architectural Design Space Exploration of CPS

At the heart of architecture are the functional and physi-
cal structures of a CPS, and the allocation relations connect-
ing them [4]. Architecture-based design' allows companies to
streamline the development process of complex products across
different organizations [6]. Automotive architectures (or plat-
forms), for example, are estimated to save billions of dollars
annually to companies because they allow reusability of com-
ponents across different models and brands [3]. Architectural
parameters are used to provide configurability to an architec-
ture and are also relevant to evaluate its performance [7]. For
example, the number of cylinders in an internal combustion en-
gine architecture is an architectural parameter that designers
vary to evaluate the performance, fuel consumption, emission
rating, and handling of various vehicle architectures.

Architectural design spaces grow exponentially due to the
many interacting parameters. Even with efficient simulation
software available, performing a complete architectural design
space exploration remains an open challenge due to the large
number of simulations required to explore the space. In this pa-
per we do not intend to automatically explore the architectural
design space, but instead we focus on providing the tool chain
to allow a realistic and accurate comparison of architectures and
to allow the investigation of how diverse architectural parame-
ters affect the system-level performance. During the creative
stage of design, designers broaden the space of options and
concepts; evaluation narrows this space down to a few feasi-
ble options. Our tool chain supports this creative process by
first automating the generation of many options and concepts
faster, and then accelerating the evaluations and the decisions
made to find few feasible options.

CPS is currently an active area of research and recent pub-

IThis methodology when applied to electronics design is referred to as
platform-based design [5]

lications highlight the idea of architecture-based CPS design.
Figure 1(a) shows the multi-domain modeling of CPS using
architectural views approach presented in [8]. This approach
allows existing multi-domain models to be consistently related
through an architecture as the unifying framework. The authors
use typed graph matching algorithms [9] to create a base ar-
chitecture from existing heterogeneous models (i.e. Simulink,
Modelica, Finite State Process) and therefore we refer to it as
architectural bottom-up approach. Rather than relying on exist-
ing models, our approach uses a functional top-down approach
aided by a context-based synthesis algorithm [10] to generate
multiple architectures and their corresponding simulation mod-
els from a unifying functional model as shown in Figure 1(b). A
functional model is an embodiment-independent design ratio-
nale that describes what the system does [11]. Since there are
multiple possible embodiments of the same functional model,
different architectures can be expressed by the same functional
model and this enables discipline-specific engineers to test their
designs on multiple different architectural configurations. Cou-
pled with the context-based synthesis, our method enables con-
current design because a high-level change to the functional
model gives engineers the ability to generate new physical con-
figurations of the system that can be used for the detailed design
of controllers, software and hardware. This is possible because
within a functional architecture, several physical configurations
can be developed.
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Fig. 1. In practice, the (a) architectural bottom-up approach [8] is suitable for
existing workflows that attempt to reuse, as much as possible, the models cre-
ated for similar products during the detail design phase. Our functional top-
down approach (b) is better suited for next-generation workflows that begin
during the concept design and allow architectural design space exploration of
new designs created from scratch.

3. Functional Modeling Compiler

Our FMC leverages the technological advances in hybrid
simulation languages such as AMESim [12] and Modelica [13]
to generate multi-disciplinary simulation models to validate
the interactions between the physical and the cyber compo-
nents of a car. The commercial support of simulation com-
ponent libraries written in these languages allows us to gener-
ate high-fidelity functional simulation models with components
that have been validated by the vendors and are very close to
the behavior of their real-life counterpart. These components
include multi-physics components, and ECUs and control algo-
rithms for internal combustion engines, automatic gearboxes,
fuel cells, series- and parallel-hybrid cars. Figure 2 shows how
the FMC is used to perform a design-space exploration of dif-
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ferent architectures by combining different simulation compo-
nents (e.g. engines, ECUs, controllers, etc.) stored and classi-
fied in an architecture & simulation component repository. The
input to the FMC is a functional model and it generates multi-
disciplinary simulation models as an output.
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Fig. 2. FMC selects target architectures and allocates simulation components
to functions in a functional model. The result are multi-disciplinary simulation
models that domain-engineers can use during concept design to validate new
components in various architectures.

3.1. Functional Modeling

Functional modeling is a concept design phase activity
where the CPS product requirements are formally specified
in terms of functions. A function describes what the sys-
tem does in terms of energy, material, and signal transfor-
mations yet it remains technology independent. Our func-
tional models are written in the Functional Basis [14], a
high-level language close to natural language with well de-
fined syntax and semantics to facilitate inter-disciplinary com-
munication among engineers from different domains. For
example, the function “convert chemical energy to
rotational mechanical energy” implies the use of
fuel (chemical energy) to generate torque (rotational mechani-
cal energy) but does not specify whether it is a gasoline, gas, or
diesel car with a four-stroke or a Wankel cycle. The Functional
Basis taxonomy provides 32 elementary functions and 18 flow
types that can be used to compose more complex functions.

In the existing practice, functional models are static docu-
ments or non-executable models used by the domain engineers
to translate requirements into engineering specifications. Un-
fortunately, it is very difficult for computer-aided design tools
from different disciplines to exchange data and take advantage
of the model-based design at the system-level. To overcome the
limitations of the current siloed CPS development, this paper

2The details of our mapping algorithm that allocates components to func-
tions according to a context-sensitive analysis can be found in [10].

presents a FMC capable of automating the allocation of func-
tions to components and generating feasible multi-disciplinary
simulation models to validate different architectures and vari-
ous components (e.g. ECUs, transmissions, engines, etc.) at the
system-level. Our FMC is intended to be used as a design-space
exploration tool at the concept design phase to evaluate how
different combinations of CPS components can be leveraged to
achieve the functional and non-functional® requirements.

3.2. Architecture Selection

Architectures are often associated to mature products and
architecture-based design is considered to be more appropriate
for evolutionary designs. In [15], the authors argue that gen-
uine product innovation is often associated with design from
first principles and not with modular design methods such as
architecture-based design. While this is a valid argument, we
believe that architecture-based design is now and will continue
to be the design methodology of choice for complex CPS. For
this reason, we believe it is important to first develop new tools
that support the development of products with existing archi-
tectures. Thus, in this paper we assume that at least one archi-
tecture is available for the FMC to map functions to simulation
components.
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Fig. 3. Architecture description using a visual-based architecture description
language (ADL). Architecture objects have well defined typed interfaces and
are defined in terms of functions (blocks) and flows (arrows). Architecture
object reusability is possible as shown in the hybrid architecture objects.

Architectures are typically defined using architecture de-
scription languages (ADL) [16]. In our system, the architec-
ture information is stored in the Architecture and Simulation
Component Repository. For example, Figure 2 shows that sim-
ulation components are organized according to root architec-
ture objects including the Engine, ECU, and Controller.
Architecture variability is expressed in each of the root archi-
tecture objects. For example, Figure 3 shows the four architec-
ture alternatives for the Engine using a visual architecture de-
scription language. These objects inherit the properties of the
architecture object Engine but each specializes a particular
architectural choice such as internal combustion engine, elec-
tric motor, and series-hybrid and parallel-hybrid implementa-
tions of a car. Notice that architecture objects have typed ports
and contain fragments of functional models with functions in-

3Non-functional requirements refer to performance characteristics of a car
such as acceleration, noise-vibration-harshness (NVH), etc.
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terconnected by flows. For example, the Engine: :Engine
ICE object contains “Convert Chemical Energy to
Rotational Mechanical Energy”, “Control” and
“Sense” functions. Similarly, the Engine::Electric
Mot or object describes the design intent of having “Convert
EE to RME” and “Store EE” functions. Our object ori-
ented ADL is composable and it allows us to reuse ar-
chitecture objects as seen in Engine::Series Hybrid
and Engine: :Parallel Hybrid, where each references
the Engine::Engine ICE and Engine::Electric
Motor components.

FMC selects the target architectures for which to generate
simulation models by matching the functions in the input func-
tional model to functions contained in the architecture objects.
For example, an input functional model that describes a car
with “Convert Chemical Energy to Rotational
Mechanical Energy” matches three of the four ar-
chitectures in Figure 3, namely Engine::Engine ICE,
Engine::Series Hybrid, and Engine::Parallel
Hybrid. Thus, FMC generates three simulation models as
outputs corresponding to each one of the matched architectures.
Generating simulation models for multiple architectures is use-
ful for performing cross-architectural studies related to archi-
tectural parameters such as weight, fuel consumption, emis-
sions, etc.

3.3. System-level Simulation Generation

Simulation has become standard practice during the devel-
opment of complex systems because it is an economical and
effective way to design, validate, and test the CPS early. Sys-
tems can be virtually explored and analyzed without the need
for physical prototypes because software is used to estimate the
dynamic behavior of the system under a large variety of con-
ditions. This, in principle, enables the early identification of
system-level problems. In practice, however, simulation has
evolved independently on the different engineering domains
and coupling different tools for a holistic analysis and multi-
domain simulation is very complicated and most of the time
not even possible.

CPS design requires a general cross-disciplinary simulation
approach capable of characterizing how the design changes in
one domain affect the rest of the domains in the system and the
system-level behavior. When developing a heterogeneous com-
plex system, coupling models and simulation of different en-
gineering disciplines (e.g. mechanical, electrical, software) is
necessary because it speeds up the development time, increases
the understanding and communication, facilitates design and
optimization, and enables virtual prototyping and verification.
Physical modeling languages such as bond graphs [17], Mod-
elica [13], and Simscape [18] have been developed for inter-
disciplinary modeling and simulation of complex heteroge-
neous systems that describe the structure and the behavior of
physical, control, and software systems. Physical modeling re-
lies on the interconnection between physical components (i.e.
resistor, pump, gear box) that encapsulate behavioral descrip-
tions (mathematical models). Components interact through
physical ports while honoring the energy conservation prin-
ciples using the effort-flow variables such as voltage-current
in electrical, temperature-heat flow in thermal, and angular
velocity-torque in rotational mechanics domain. This model-
ing paradigm based on energy conservation principles couples
various disciplines, allows the integration of user-defined dis-
ciplines, and facilitates model reusability. Because each com-
ponent defines a behavioral model using energy conservation
principles, physical models can be translated into compatible

mathematical models and numerically solved in a holistic sim-
ulation.

Commercially available compilers and code generators
transform the system-level simulation models into different ex-
ecutable models used for CPS validation and verification. For
example, in model-in-the-loop simulation (MILS), the con-
troller and the physical system are simulated sequentially in an
interpreter that allows early validation of the control logic and
the plant. Similarly, software-in-the-loop simulation (SILS)
compiles the models and allows the validation of the behav-
ior of the low level code executed in the controller (typically
embedded C code). Hardware-in-the-loop simulation compiles
the models and the controller code is executed in the actual em-
bedded processor for timing and behavior validation.

Despite the available support tools, system-level simulation
models are still manually created and maintained by experts
making it a lengthy and error-prone process. In this paper, we
show how functional models can be used to automatically gen-
erate system-level simulation models according to the latest en-
gineering specifications. This not only eliminates the manual
effort, but creates a more efficient concept design phase where
engineers are allowed to try alternative designs at the func-
tional level and obtain the corresponding system-level simula-
tion models automatically. Although we target AMESim and
Modelica language, our method is general to functional mod-
eling and system simulation and can be easily adapted to other
physical modeling languages.

Obtaining a system-level simulation from a functional model
requires concrete architectural decisions that specify how func-
tions are mapped to components [7]. In the FMC, these design
guidelines are obtained from the architecture descriptions and
the design intent provided in the functional model. We define
synthesis as the process by which a functional model describ-
ing what the system does is transformed into a concrete de-
sign implementation describing its structure (architecture) and
its behavior (simulation model). The most important aspect of
our synthesis method is building a context in order to eliminate
the ambiguity and variability associated to functional model-
ing. Functions-to-components are many-to-many relationships.
For example, the function “convert RME to TME” in the
second-level decomposition in Figure 4 can be mapped to two
or four wheels depending on whether the architecture specifies
whether the car is rear/front-wheel drive or four wheel drive.

It is important to note that the current implementation of
the FMC focuses on generating simulation models that are
compliant with the intended behavior expressed in the func-
tional model. Unintended behavior is partially addressed; some
AMESim components model unexpected and unintended be-
havior in the form of energy losses that are detrimental to their
performance. This information is propagated back by the FMC
in the form of emergent functions that create refinements of the
original functional model in the following design cycle. These
emergent functions serve two purposes: (1) inform the user
about unexpected, unintended, or unfulfilled functions, and (2)
refine the functional models. However, all phenomena cannot
be represented and the need for verification [4] remains but is
beyond the scope of automatically generated simulations.

4. Automotive Use-Case

A functional model of a car consisting of a two-level func-
tional decomposition is shown in Figure 4. The top-level func-
tion “transport people” describes the main function of
the “Car”. It inputs three material flows (bold arrows for Air,
People, and Fuel) and outputs two material flows (People and
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designers can validate architectural parameters such as fuel consumption, and emissions.

Hot Gas) and one energy flow (arrow representing transla-
tional mechanical energy or TME). Notice that the second-level
functions and flows that can be naturally mapped to the main
subsystems of a car represented by architectural objects. For
example, the function “convert chemical energy to
rotational mechanical energy” function can be
mapped to an Engine: :Engine ICE,Engine::Series
Hybrid, and Engine: :Parallel Hybrid architecture
objects as discussed in Section 3.2. Similarly, the func-
tion “transmit rotational mechanical energy”
is mapped to a “Transmission::Manual” and not to a
“Transmission: :Automatic” because there is a “Gear
Selection” control flow flowing from “convert human
energy” function to “convert chemical energy to
rotational mechanical energy” function. The
shaded areas enclosing the functions in Figure 4 show
how functions and flows are mapped to architectural ob-
jects, and how these architectural objects are allocated to
AMESim simulation components to produce a simulation
model of an internal combustion engine architecture. Fig-
ure 5 shows the generated simulation models after allo-
cating functions to the Engine::Series Hybrid and
Engine::Parallel Hybrid architecture objects.

Using functional models, the design intent remains
technology-independent and allow non-experts to model the en-
vironment to design their subsystems. For example, this par-
ticular functional model was created by a software engineer
with marginal understanding of mechanical engineering princi-
ples who wanted to design the engine control system (ECU and
its controller software) represented by the “Sense” function
(gray box) and the “Control” function (black-box). FMC
simplifies the design process by allocating functions to high-
fidelity simulation components with the help of architecture ob-
jects and creating a multi-disciplinary simulation models that
domain engineers can use to design and validate their subsys-
tems in software- and hardware-in-the-loop simulations (SILS,
HILS). In this example, as it is shown in Figure 6, the effects
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Fig. 5. Synthesized hybrid vehicle architectures from a functional model using
the FMC and AMESim components.
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of the ECU on fuel consumption, CO, HC, and NOx emissions
can be tested and validated for the internal combustion engine
architecture. Similar results can be obtained for the hybrid ar-
chitectures.
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Fig. 6. Simulation results used to validate the effects of an ECU on fuel con-
sumption, CO, HC, and NOx emissions of an internal combustion engine archi-
tecture.

Notice that with the help of the FMC, a software engineer
can simply change the “Fuel” flow for an “Electrical Energy”
flow in the functional model and automatically synthesize an
electric vehicle simulation — as shown in Figure 7 — that, in-
stead of a combustion engine, it includes a battery, an electric
motor, and a suitable ECU to control these electric components.
Figure 7 shows the validation of the ECU’s “torque command”
control signals sent to the electric motor, and the motor behav-
ior or “motor torque” accomplished with this controller. Cur-
rently, our FMC supports functional models written using the
NIST Functional Basis [14] and synthesizes multi-disciplinary
simulation models using AMESim and Modelica libraries.

5. Summary and Future Work

This paper highlights our research activities in developing
the Functional Modeling Compiler, a new model-based design
automation tool for the concept design of cyber-physical sys-
tems. The FMC synthesizes multi-disciplinary simulation mod-
els in AMESim and Modelica from functional information and
architecture descriptions. Using an automotive use-case, we
show that FMC enables embedded software engineers to au-
tomatically synthesize multiple vehicle architectures ready for
SILS and HILS and validate new ECUs and control strategies
for existing and new architectures (e.g. hybrid and electric vehi-
cles). Because embedded software may be auto-generated from
such simulation models using existing tools, we believe that
high-level synthesis is a promising technology for the design

ELECTRIC
MOTOR

—— mator torque at port 2 [Nm)
-~~~ torque command at port 3 [nul]

0.6
Time [s]

Fig. 7. Synthesized electric vehicle architecture simulation model from a func-
tional model using the FMC and AMESim components.

of future complex CPS. In the future, we intend to extend our
architectural design space exploration tool to explore and eval-
uate innovative designs of new products not built upon existing
architectures. The open challenge is not only to synthesize sim-
ulation models but also to synthesize innovative architectures.
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