
ar
X

iv
:1

01
1.

29
48

v1
 [

st
at

.C
O

]
 1

2
N

ov
 2

01
0

Block clustering with collapsed latent block models

Jason Wyse and Nial Friel
University College Dublin, Belfield, Dublin 4, Ireland

November 15, 2010

Abstract

We introduce a Bayesian extension of the latent block model for model-based block

clustering of data matrices. Our approach considers a block model where block pa-

rameters may be integrated out. The result is a posterior defined over the number

of clusters in rows and columns and cluster memberships. The number of row and

column clusters need not be known in advance as these are sampled along with cluster

memberhips using Markov chain Monte Carlo. This differs from existing work on la-

tent block models, where the number of clusters is assumed known or is chosen using

some information criteria. We analyze both simulated and real data to validate the

technique.

Keywords: Block clustering, latent block model, Bayesian model choice, collapsed model

1 Introduction

Many data sets arise as a result of a number of features or variables being observed for a
collection of objects. As examples; shoppers and the items which they do or do not buy;
whether a document contains specific words or not; the expression levels of a gene under a
series of conditions in a DNA experiment. Such data will be recorded in a matrix, say, with
rows indexing objects and columns indexing features or variables. Often interest will focus on
clustering rows and further, clustering the features which distinguish these row clusters. We
refer to this task as block clustering although it is also known as block modelling, biclustering,
co-clustering and two-mode clustering.

One of the first approaches to block clustering was suggested by Hartigan (1972) and
since then, many have been proposed. Much recent work in block clustering and related
areas has been either on the analysis of microarray data (Tibshirani et al. 1999, Cheng &
Church 2000, Getz et al. 2000, Lazzeroni & Owen 2002, Kluger et al. 2003) or document
classification (Hofmann 2001, Blei et al. 2003, Griffiths & Steyvers 2004). Approaches vary
in whether they allow clusters to overlap or not. In our case, the problem can be thought of
as permuting the rows and columns of the data matrix to make a “chessboard” of blocks of
data having similar value.

While many approaches to document classification are model-based i.e. a parametric
underlying model is assumed when clustering data, this is often not the case in microarray

1

http://arxiv.org/abs/1011.2948v1

analysis. Some exceptions are Lazzeroni & Owen (2002) who assume a Gaussian error model
for gene expression with additive effects for gene and condition clusters and Sheng et al.
(2003) who assume a multinomial model for expression level in a discretized microarray. It
is common to use two-way hierarchical clustering for this data or other partitioning methods
(for example Getz et al. (2000)). One drawback of these methods is the lack of probabilistic
justification as noted by Wit & McClure (2004) (Chapter 7, page 171). A model-based
approach allows explicit modelling of noise in the data. This can be an advantage in data,
such as microarrays, which is particularly prone to noise, incorporating uncertainty in cluster
membership.

In this paper we consider an extension of the latent block model (LBM) approach of Go-
vaert & Nadif (2008). The LBM was developed as an intuitive extension of the finite mixture
model used in model-based clustering (Fraley & Raftery 2002) to allow clustering of objects
and features. We propose a Bayesian LBM. This has been considered previously by van Dijk
et al. (2009). In their approach the number of clusters in objects and features is assumed
known and Gibbs sampling is used to find clusterings. They choose the number of clusters
using an information criterion based on maximum likelihood.

We show that it is possible to sample the number of clusters and the cluster membership
jointly using simple Markov chain Monte Carlo (MCMC) on a collapsed model, so that
uncertainty in the number of clusters is naturally incorporated as part of our Bayesian LBM.
The collapsed model is obtained by integrating out block parameters analytically. This is
possible using standard prior assumptions. There is no need to resort to a trans-dimensional
sampler, such as the reversible jump sampler of Green (1995). Our idea extends the allocation
sampler of Nobile & Fearnside (2007) to two directions, with slight modifications. We discuss
differences and similarities of our approach to block clustering with those which are most
comparable qualitatively. The sampler is applied to both simulated and real datasets to
gauge performance.

The remainder of the paper is organized as follows. Section 2 reviews the LBM and
introduces the collapsed Bayesian LBM. Section 3 gives the MCMC sampler which we use.
The differences between our sampler and reversible jump samplers are also discussed. Label
switching is mentioned and the section concludes with approaches to summarize the output
of the sampler. Section 4 applies the approach to simulated data. In Section 5 we analyze
voting records data from the U.S. congress and compare this to a maximum likelihood
analysis. In Section 6 we discuss the analysis of microarray data, and use our sampler to
analyze data from a yeast microarray experiment. The paper concludes with a discussion.

2 Models

The data is Y = (yij), an n×m matrix. It is assumed rows and columns may be reordered
so that the matrix can be represented as K × G blocks with data in blocks modelled by
the same density, where K and G are the number of row and column clusters respectively.
This could be imagined as a “chessboard” effect, with K − 1 divisions in the direction of
the rows and G− 1 in the direction of the columns. The parameters of the data density are
conditional on the block and θkg denotes the parameters for block (k, g), with Θ denoting
the collection of these. We now give a review of the LBM of Govaert & Nadif (2008).

2

2.1 Latent block models

Conditional on K and G, let U be a latent space indexing the set of all possible clusterings
of rows and columns. Then the distribution of the data Y can be written

p(Y |K,G,Θ,φ) =
∑

u∈U

p(u|K,G,φ)p(Y |K,G,u,Θ)

where φ are parameters for the distribution of u. Govaert & Nadif (2008) make the as-
sumption that row and column clusterings are independent a priori, so that p(u|K,G,φ) =
p(z|K,ω)p(w|G,ρ) where zi = k if row i is in cluster k and wj = g if column j is in cluster
g. The probability of a row belonging to cluster k is ωk and ρg denotes the probability that
a column belongs to cluster g. The LBM is then

p(Y |K,G,Θ,ω,ρ) =
∑

(z,w)∈Z×W

p(z|K,ω)p(w|G,ρ)p(Y |K,G, z,w,Θ) (1)

where Z and W denote the latent spaces of all row and column clusterings respectively.
When constructing the data likelihood given the latent allocations, we make the assumption
of local independence. That is, within a block, data are independent. This gives data
likelihood conditional on z,w,

p(Y |K,G, z,w,Θ) =
K
∏

k=1

G
∏

g=1

∏

i:zi=k

∏

j:wj=g

p(yij|θkg).

As |Z ×W| = KnGm, it is not feasible to calculate (1). We now review a way to fit this
model using a method based on Expectation-Maximization (EM) (Dempster et al. 1977) due
to Govaert & Nadif (2008).

2.1.1 Estimation using BEM2

Here we outline the BEM2 algorithm of Govaert & Nadif (2008) which we will compare our
approach with later (Section 5). In the interests of avoiding ambiguities in notation, we
introduce the matrices r = (rik) and c = (cjg) such that if row i is in cluster k, rik = 1 and 0
otherwise. Similarly for cjg. The complete (or classification) log-likelihood associated with
the LBM (1) is

L(r, c,ω,ρ,Θ) =
n
∑

i=1

K
∑

k=1

rik log ωk +
m
∑

j=1

G
∑

g=1

cjg log ρg +
n
∑

i=1

m
∑

j=1

K
∑

k=1

G
∑

g=1

rikcjg log p(yij|θkg). (2)

The E step using this log-likelihood directly is intractable due to the dependence structure
among the rows and columns. Govaert & Nadif (2008) suggest a variational approximation
to the joint distribution of the latent r, c which leaves r and c independent. Then using the
interpretation of EM due to Neal & Hinton (1998) this leads to a new “fuzzy” criterion for
block clustering

G(s, t,ω,ρ,Θ) = L(s, t,ω,ρ,Θ)−
n
∑

i=1

K
∑

k=1

sik log sik −
m
∑

j=1

G
∑

g=1

tjg log tjg

3

which can be alternately maximized with respect to s, t and ω,ρ,Θ where sik = Pr(zi = k)
and tjg = Pr(wj = g).

The possible ways in which this criterion may be alternately maximized determines dif-
ferent algorithms. The BEM2 algorithm maximizes it as follows.

1. Initialize the unknowns s, t,ω,ρ,Θ at some sensible value.

2. Maximize G with respect to s,ω and Θ keeping t and ρ fixed.

3. Maximize G with respect to t,ρ and Θ keeping s and ω fixed.

4. Iterate steps 2-3 until convergence.

It is noted that each sweep of BEM2 has two maximizations of Θ. This maximization
procedure is reported to have outperformed the other schemes considered in Govaert &
Nadif (2008), so we use it here to compare with our Bayesian approach.

2.1.2 Choosing K and G when using BEM2

In (1), it is assumed that K and G are known. The number of clusters assumed can have
a considerable effect on the output of clustering algorithms. Usually, many runs, each with
a different number of clusters, are necessary. These are then compared to find the best
clustering, either based on some information criterion or visual inspection of plots.

Since the LBM is defined in terms of the latent allocation vectors z and w, it is not clear
how one could use a standard information criterion (e.g. BIC (Schwarz 1978)) here to choose
the number of components best supported by the data. Evaluation of the log density of Y
at the MLE requires a sum over all KnGm terms as in (1), which even for the moderate case
of K = 2, G = 2, n = 10, m = 10 would require the sum of roughly one million log-likelihood
evaluations. An alternative may be to use the maximized complete log-likelihood treating
the row and column allocations as unknown parameters, L(r̂, ĉ, ω̂, ρ̂, Θ̂) . van Dijk et al.
(2009) have used this approach for LBMs when using AIC-3 (Bozdogan 1994) to choose K
and G. In this case the number of parameters to be estimated is n(K − 1) + m(G − 1) +
dKG+ (K − 1) + (G− 1) where d is the dimension of any θkg. A separate model estimation
is required for each K and G combination over a grid of plausible models. Adopting this
type of approach crucially involves replacing the maximum log likelihood with a maximized
complete log likelihood and also the issue of selection of a particular information criterion,
and could therefore be criticized for both reasons.

The Bayesian LBM we propose seeks to incorporate uncertainty in K and G into the
model. This is so that the clustering task is also one of cluster model determination. The
model determination task and the allocation task are dealt with simultaneously through a
fully Bayesian approach. This has analogy with some other block clustering strategies, which
undertake greedy searches to find new row and column clusters. See for example Hartigan
(2000). An advantage here is that the search has a probabilistic justification based on a
posterior distribution for K and G. In the next section we introduce the Bayesian LBM
which is at the core of the clustering procedures we discuss.

4

2.2 Bayesian latent block models

The Bayesian LBM is formed by taking prior densities on K, G, Θ, ω and ρ. Let π(·)
denote prior and posterior densities. Then we may write down the posterior of the number
of clusters and latent cluster allocations from Bayes’ theorem

π(K,G, z,w,ω,ρ,Θ|Y) ∝ p(z|K,ω)p(w|G,ρ)p(Y |K,G, z,w,Θ)

×π(Θ|K,G)π(ω|K)π(ρ|G)π(K)π(G). (3)

Adopting a conjugate prior for ω, ρ and each θkg allows one to integrate these from the
posterior analytically. We call this collapsing. Doing this allows us to obtain the marginal
posterior π(K,G, z,w|Y). Samples can be generated from this posterior using the MCMC
sampler of Section 3. This is similar to the general approach of Nobile & Fearnside (2007).
The idea of collapsing has been used by Sheng et al. (2003) in the analysis of a discretized
microarray and by Griffiths & Steyvers (2004) in latent Dirichlet analysis for document
classification. It would be possible to estimate this model without integrating out parameters
by using reversible jump MCMC (RJMCMC) (Green 1995). We discuss this further in
Section 3.2.

We choose a standard conjugate prior for each of the parameters to be integrated out.
For example, ω ∼ Dirichlet(α, . . . , α) and ρ ∼ Dirichlet(β, . . . , β) a priori. For the examples
considered in this paper, we take the non-informative values α = 1, β = 1. The prior on θkg
will depend on the distribution assumed for the data. For the most widely used models, a
standard conjugate prior will be available. The θkg are assumed independent a priori. This
leads to the posterior

π(K,G, z,w|Y) ∝ π(K)π(G)
Γ{αK}

∏K
k=1 Γ{nk + α}

Γ{α}KΓ{n+ αK}

Γ{βG}
∏G

g=1 Γ{mg + β}

Γ{β}GΓ{m+ βG}

K
∏

k=1

G
∏

g=1

Mkg.

(4)
where

Mkg =
∫

π(θkg)
∏

i:zi=k

∏

j:wj=g

p(yij|θkg) dθkg.

where nk is the number of rows in cluster k and mg is the number of columns in cluster g.
An outline of the calculation of the posterior is given in Appendix A.

The priors for the number of clusters, π(K) and π(G) are taken to be truncated Poisson(1)
over the ranges 1, . . . , Kmax and 1, . . . , Gmax. Examples of Poisson priors being adopted for
the number of components include Phillips & Smith (1996) and Stephens (2000). The use
of a truncated Poisson(1) prior has been justified in Nobile (2005). We did experiment with
a uniform prior on the number of clusters. However, we found that this gave unnecessary
empty clusters in some situations.

We now give the Mkg for two useful data models which we will use in examples later.

2.2.1 Bernoulli model for binary data

Assume that Pr(yij = 1|zi = k, wj = g) = θkg. We take a Beta(γ, δ) prior on θkg. Then

Mkg =
Γ{γ + δ}

Γ{γ}Γ{δ}

Γ {skg + γ}Γ {nkmg − skg + δ}

Γ{nkmg + γ + δ}

5

where the block sufficient statistic skg =
∑

i:zi=k

∑

j:wj=g
yij. Further detail on the calculation is

given in Appendix B.

2.2.2 Gaussian model for continuous data

Assume yij|zi = k, wj = g ∼ N(µkg, σ
2
kg). Take the priors µkg ∼ N(ξ, τ 2σ2

kg) and σ2
kg ∼

IG(δ/2, γ/2) where IG(a, b) is the Inverse-Gamma distribution: p(x) = ba

Γ(a)
x−(a+1) exp{−b/x}.

Then

Mkg =
γδ/2 Γ{(nkmg + δ)/2}

πnkmg/2Γ{δ/2} (nkmgτ 2 + 1)1/2

(

sskg −
τ 2 (skg + ξ/τ 2)

2

nkmgτ 2 + 1
+

ξ2

τ 2
+ γ

)−(nkmg+δ)/2

where skg =
∑

i:zi=k

∑

j:wj=g
yij and sskg =

∑

i:zi=k

∑

j:wj=g
y2ij. Further details on calculating Mkg are

given in Appendix B.

3 MCMC sampling of clusterings

The sampler which we propose consists of four different moves. The first is just a standard
Gibbs update for the row/column label. The second proposes to reallocate collections of
rows and columns. The final two moves propose to add or remove clusters. We describe the
moves for rows, but they apply to columns analogously. When running the algorithm, the
moves are each applied to the rows and columns in a single sweep. Since the LBM will be
invariant to cluster labellings, we will encounter the label switching problem. We outline
how to deal with this as well as discussing how to summarize the output from the sampler.

3.1 MCMC moves

3.1.1 Gibbs sampling to update the allocation of one row

Suppose row i is currently in cluster k. We then sample its new allocation, z̃i from the
distribution

p(z̃i = k′|Y,K,G, z−i,w) ∝
nk′ + α

nk − 1 + α

G
∏

g=1

M
(+i)
k′g M

(−i)
kg

Mk′gMkg

, k′ 6= k (5)

and p(z̃i = k|Y,K,G, z−i,w) ∝ 1 where M
(−i)
kg and M

(+i)
k′g are obtained respectively by

removing row i from cluster k and adding it to cluster k′ within column cluster g. The total
computational effort required for the Gibbs sweep on rows and columns is O((n + m)KG)
which may be prohibitive for large K,G,n or m. It is possible to move one row and column
between clusters using a Metropolis-Hastings move. This could be alternated with a Gibbs
update to reduce computational overhead or some mixture of the two moves could be used.

6

3.1.2 Move to update the allocation of more than one row

This move is similar to move M3 in Nobile & Fearnside (2007). Its role is to move more
than one row at a time. The way in which new row allocations are proposed should isolate
clusters more quickly than just performing one row Gibbs updates. The procedure is as
follows. Choose two row clusters k and k′ at random. Let S be the index set of rows currently
belonging to clusters k and k′. The members of S are randomly reordered. Imagining clusters
k and k′ to be empty initially and S to be full, we sequentially take each row from S and
allocate it to k or k′. This allocation is done using the probability that the current clusters
k or k′ generated that row conditioning on rows that have already been reallocated to k or
k′. For row i in S these probabilities are denoted by p

(i)
k and p

(i)
k′ with p

(i)
k + p

(i)
k′ = 1. To

write down the proposal probability of this move we use M̄kg, g = 1, . . . , G to represent the
integrated likelihood of the members placed in cluster k before member i has been processed.
Similarly n̄k represents the number of rows in cluster k before i has been processed. Then
using similar notation to the Gibbs move it can be shown (see Appendix A.2, Nobile &
Fearnside (2007)) that

p
(i)
k′

p
(i)
k

=
n̄k′ + α

n̄k + α

G
∏

g=1

M̄
(+i)
k′g M̄kg

M̄k′gM̄
(+i)
kg

.

Using p
(i)
k + p

(i)
k′ = 1, the above can be solved for p

(i)
k′ . The proposed allocation of row i, z̃i

may then be sampled. Once the quantities n̄k′, n̄k, M̄k′g and M̄kg have been updated based
on z̃i, the next row in S can be dealt with.

When all members of S have been processed the proposal probability of moving from z

to z̃ is
1

K(K − 1)

∏

i∈S

p
(i)
z̃i
.

For the reverse move the proposal probability is

1

K(K − 1)

∏

i∈S

p(i)zi
.

The new allocation z̃ is then accepted with probability min(1, A) where

A =
Γ{ñk + α}Γ{ñk′ + α}

Γ{nk + α}Γ{nk′ + α}

G
∏

g=1

M̃k′gM̃kg

Mk′gMkg

×
∏

i∈S

p(i)zi

p
(i)
z̃i

.

and ñk, ñk′, M̃k′g, M̃kg are the proposed cluster sizes and integrated block likelihoods when
all the members of S have been processed.

3.1.3 Moves to split or combine clusters

To add a cluster we first randomly propose a cluster, k, to “split”. The new cluster will
be labelled K + 1 if the current number of clusters is K. In the same way as the move to
reallocate more than one row (Section 3.1.2), the probability of a row proposed as being in
cluster k or K + 1 is given by the conditional probability it was generated by that cluster,
the rows being processed sequentially. Clearly the order in which rows are processed is

7

important. Thus for the split and combine moves we place an ordering on the members of
cluster k, that is, the order in which the members are arranged in cluster k is important.
As well as taking members out from cluster k and placing them in cluster K + 1, this is
important when we place all members back into cluster k in the combine move. It is possible
to propose a label swap of K + 1 with any other label selected at random (itself included),
say k′. This then would split cluster k into clusters k and some {1, . . . , K + 1}\k.

Let S denote the index set of rows currently belonging to cluster k. We choose a split
move with probability pKs . For the split move, the denominator in the proposal ratio will be

p(z → z̃) = pKs
1

K(K + 1)

1

nk!

∏

i∈S

p
(i)
z̃i .

where the second term accounts for selecting the cluster to split, and then the cluster to
swap labels with, the third term accounts for the number of ways in which members may
be arranged (processed), and the fourth term is the product of conditional probabilities (see
Section 3.1.2).

For the combine move, two clusters are selected at random, say k and k′ from the K + 1
available. Then all members of cluster k′ are proposed to be placed back in k. Thus the
numerator in the proposal probability for the split move is

p(z̃ → z) = (1− pK+1
s)

1

K(K + 1)

1

nk!

where the first term is the probability of proposing a combine move, the second accounts for
the clusters selected, and the third accounts for the number of ways in which the members
of cluster k may be arranged.

The acceptance probability for the split move is then min(1, A) where

A =
π(K + 1)

π(K)

Γ{n+ αK}

Γ{n+ α(K + 1)}

Γ{α(K + 1)}

Γ{α}Γ{αK}

Γ{ñk + α}Γ{ñk′ + α}

Γ{nk + α}

×
G
∏

g=1

M̃kgM̃k′g

Mkg

×
1− pK+1

s
pKs

(

∏

i∈S

p
(i)
z̃i

)−1

and ñk, ñk′, M̃kg, M̃k′g give the proposed sizes and integrated block likelihoods of the proposed
clusters.

The acceptance probability for the combine move is min(1, A−1). These moves are similar
to the “split and combine” moves discussed by Richardson & Green (1997). Our experiments
showed that they gave satisfactory mixing and higher acceptance rates than proposing empty
clusters.

3.2 Form of reversible jump sampler

As noted, the moves discussed in the previous section resemble moves used in the RJMCMC
sampler of Richardson & Green (1997) and other RJ samplers for related classification prob-
lems (for example Robert et al. (2000)). The difference with our sampler is that the space
we sample from is of fixed dimension. This is due to collapsing. Performing an equivalent RJ

8

analysis to that presented here would be challenging for LBMs. This would mean extending
the Gibbs sampler of van Dijk et al. (2009) to include variable dimension moves for splitting
or combining clusters. The construction of proposal densities for variable dimensional moves
in RJ samplers can be crucial to their performance. Work has been done in this area (Brooks
et al. 2003, Green 2003), but for many applications construction of proposals is case spe-
cific. The reason for entertaining a RJ analysis here is that we are not only concerned with
finding a cluster allocation for a specified LBM. We are also interested in exploring different
cluster models, and so the task also becomes one of model determination as discussed in
Section 2.1.2.

Consider splitting a row cluster k into k and k′ in a typical RJ approach. This is more
difficult than the component splitting case in Richardson & Green (1997), since splitting
each row cluster gives rise to d(G+ 1) new parameters where d is the dimension of any θkg.
Finding a proposal that will mix well may require lots of trial and error, especially if d > 1
or G is even moderately large. Moreover, computational time would increase dramatically
with respect to the collapsed LBM in these situations.

Using a collapsed model, is, in a sense, a form of variance reduction for this model. We
reduce variability in sampling of allocations, by integrating out ω,ρ and Θ. This should
give better sampling of the high probability clusterings of the data, since uncertainty due to
parameter values has vanished.

3.3 Label switching

The joint posterior of cluster models and allocations or labels (4) is invariant to label switch-
ing, that is, the labels are not identifiable. If there is one labelling 1, . . . , K of the rows,
then any permutation of this, say, σ(1), . . . , σ(K), gives exactly the same information about
clustering relationships. The posterior on row labels has K! indistinguishable modes. Gen-
erally as the Markov chain progresses, we will observe switches between these equivalent
modes; the well known label switching phenomenon. In our case label switching can occur
for row and column labels independently. There are many approaches for dealing with the
label switching problem (Stephens 2000, Celeux et al. 2000). The approach we adopt here is
due to Nobile & Fearnside (2007). It is ideal for our purposes since it does not involve loss
functions based on sampled model parameters (which are no longer in our model). It just
requires the samples of z and w.

We now outline the procedure we use to deal with label switching. Some more details are
given in Appendix C. We post-process row and column allocation vectors separately. The
re-labelled data can then be used to compute posterior probability of cluster memberships
and other quantities of interest. To post process the label vectors z1, z2, . . . output from
MCMC we begin by arranging these in order of increasing number of non-empty components.
This gives the ordering z(1), z(2), . . ., where for s < t, z(s) uses either the same number of
components as z(t) in total, or less. For example, with K = 4, z(s) = (3, 3, 2, 2, 2, 1) would
come before z(t) = (4, 4, 3, 3, 1, 2). Suppose we have processed and re-labelled the vectors
z(t) up to time T − 1, and there are KT−1 non-empty components in z(T−1). Compute a cost

9

matrix with general element

C(k1, k2) =
T−1
∑

t=1

n
∑

i=1

I
{

z
(t)
i 6= k1, z

(T)
i = k2

}

.

Then the more z(T) disagrees with the vectors already processed, the higher this cost will
be (see Appendix C). The square assignment algorithm of Carpaneto & Toth (1980) returns

the permutation σ(·) of the labels in z(T) which minimizes the total cost
∑KT−1

k=1 C(k, σ(k)).
We then relabel z(T) by permuting the labels according to σ(·).

3.4 Summarizing MCMC output

Having sampled both the number of clusters and cluster memberships, it will be of interest to
give a summary of the sampling. As different (K,G) cluster models are structurally different,
it is not possible to give an “average” of cluster membership. We suggest two summaries.

3.4.1 Using the modal cluster model

The first summary focuses on using the modal, or most visited model from the MCMC
output. It takes the series of (K,G) visited models and chooses the pair which appear most
often. Call this pair (K̂, Ĝ). Suppose this pair has occured N times in the post burn-in
sample. We extract the N pairs of label vectors z and w corresponding to these occurrences.
We then post process these label vectors using the procedure to undo label switching outlined
in the previous section. This will be necessary to compute posterior distributions of row and
column cluster membership. After computing the posterior distributions of row membership,
row i has distribution (qi1, . . . , qiK̂) where qik is the estimated posterior probability row i

belongs to cluster k in the (K̂, Ĝ) cluster model. For the summary we assign i to cluster
argmaxk qik. The columns are given the same treatment.

3.4.2 Using the MAP

Since we are sampling from the fixed dimensional posterior π(K,G, z,w|Y), the maximum
a posteriori (MAP) cluster model and cluster membership (K,G, z,w)MAP is also a useful
summary of the MCMC output. The MAP gives the visited (K,G, z,w) having highest
probability a posteriori from the samples obtained.

4 Simulation experiment

To see how the sampler discriminates between different cluster models, it was run on some
simulated data. We generated three 200× 200 binary matrices with 4 and 4, 2 and 5 and 1
and 4 row and column clusters respectively. In each case, the block parameter θkg was drawn
uniformly from [0, 1]. The blocks were then generated using Bernoulli(θkg) random variates.
This is shown in the left of Figure 1. Clusters were made less distinguishable by transforming
the generated θkg to the intervals [0.2, 0.8] and [0.3, 0.7] using θ

[a,b]
kg = a + θkg(b − a) and

generating two further matrices. The rows and columns of the resulting matrices were then

10

Figure 1: Simulated data with decreasing distinguishability

11

(K,G) θkg PMP τ̂
(4,4) A 0.9550 8.79

B 0.9463 10.57
C 0.9014 17.43

(2,5) A 0.9343 4.55
B 0.8886 9.79
C 0.8369 13.66

(1,4) A 0.8035 7.86
B 0.3000 8.97
C 0.1494 4.61

Table 1: Results of simulation experiment. The PMP gives the posterior model probability
of the generating model. τ̂ is the estimated IAT.

randomly reordered, disguising the data structure. The chain was run for 1000 burn-in
iterations and a further 16,000 iterations on each data set. We assumed a Beta(1, 1) prior
for θkg in all cases. The priors for ω and ρ are as in Section 2.2.

We looked at two performance diagnostics of the sampler. The first was the posterior
model probability (PMP) of the model used to generate the data and the second was the
integrated autocorrelation time (IAT) of sampled cluster models. Computing the PMP just
amounts to counting the number of times the model in question was visited and dividing
by the total number of samples. For the IAT we identify cluster models (K,G) by a model
index R = 1, . . . , KmaxGmax. Then we estimate the quantity τ = 1 + 2

∑

∞

t=1 ρR(t), where
ρR(t) is the autocorrelation of the series of post burn-in samples R1, R2, . . . at lag t. The
series here refers to the cluster models sampled from the posterior (4). Lower values of the
IAT indicate better mixing and better performance of the MCMC sampler. The IAT can
thus be used as a measure of efficiency for MCMC algorithms. See for example Liu (2004),
Chapter 5 and Roberts (1996).

The results are shown in Table 1. The θkg column is coded A for θkg ∼ Uniform[0, 1], B
for transformation to [0.2, 0.8] and C for [0.3, 0.7]. As the noise in the data increases, the
ability to identify the model which generated the data decreases. This is to be expected. The
estimated IAT indicates that we get less efficient sampling as the noise increases, with the
exception of the (1, 4) cluster model. This is a particularly challenging situation, since two
of the clusters are very similar (see Figure 1). The transformed θ11, θ13 were for [0.2, 0.8] :
0.288, 0.320 and for [0.3, 0.7] : 0.36, 0.38. The fact that these two clusters are practically
indistinguishable would make the sampler choose a (1, 3) model as the best model after
scrambling of the data. In fact the most visited model in both these cases had 1 row cluster
and 3 column clusters (62.37% and 82.66% of the posterior probability). In this situation,
the best cluster model was not the same as the generating model. This is an artifact of the
simulation process but shows that a sensible clustering can be achieved.

12

5 Congressional voting in US senate

We apply the sampler to the UCI Congressional Voting data assuming the Bernoulli model
of Section 2.2.1. The data records whether 435 members of the 98th congress (267 democrats,
168 republicans) voted “yay”, “nay”, abstained or were absent in votes on 16 different key
issues. Here the members of congress are represented by rows, and the issues are represented
by columns. The data is available from

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

and is shown in the left panel of Figure 2. The aim was to see whether the sampler could
discover any clustering by party and issue. For example, one may expect that democrats
voted differently to republicans on certain issues. It was thought best to ignore absent and
abstain votes. Here, this is equivalent to treating these votes as a “nay”, since our focus is
on clustering rows and columns. The only sample sizes entering into our calculations are the
number of rows and columns in each cluster. For the Bernoulli model, the block sufficient
statistic is the sum of the data. This is not affected by a missing data point. We do point out
however that missing data could be easily imputed by inclusion of a Gibbs step to sample
from the full conditional of any missing point.

The sampler was run for 110,000 iterations with 10,000 as a burn-in initialized at the no

cluster model. To reduce correlation in samples, we took every 10th sample after burn-in.
The move of Section 3.1.2 had a 16% acceptance rate for rows and 51% for columns. The
cluster split and combine moves had about a 1.5% acceptance rate for rows and 8% for
columns. The run took just over an hour on a 2.5GHz processor.

Table 2 shows the distribution of the number of row and column clusters. It can be seen
that about 60% of the posterior probability is placed on 6/7 row clusters and 12/13 column
clusters. We extracted the samples with 7 row clusters and 12 column clusters to construct
an estimated clustering following Section 3.4.1. The estimated clustering is shown in the
middle panel of Figure 2. The red horizontal lines here divide the clusters of congressmen,
and the blue vertical lines divide the issue clusters. When referencing Figure 2 we say that
the congressman clusters (rows) are numbered 1 to 7 top-bottom, and the issue clusters
(columns) are numbered 1 to 12 left-right.

Issues have only three non-singleton clusters. The first contains “anti-satellite-test-
ban”, “aid-to-nicaraguan-contras” and “mx-missile” (column cluster 1). The second con-
tains “physician-fee-freeze” and “education-spending” (column cluster 3) and the third has
“handicapped-infants” and “duty-free-exports” (column cluster 6). Row cluster composi-
tion by party is shown in Table 3. The majority democrat party roughly splits into four
clusters, while the republican party splits into two. The main discrepancy between the two
large democrat clusters, 2 and 3, appear to be the issues “religious-groups-in-schools” and
“crime” in issue clusters 9 and 12. Row cluster 6 which is also mainly democrat appears
to vote similarly to the republican cluster 1. Row clusters 4 (democrat) and 5 (republican)
appear to deviate from their core party vote.

We compared the results obtained from our algorithm with those obtained from the
BEM2 algorithm of Govaert & Nadif (2008), reviewed in Section 2.1.1. The algorithm was
run using 7 row clusters and 12 column clusters. It should be noted that BEM2 requires
the number of row and column clusters to be assumed known in advance. To obtain an
estimated clustering, we took the cluster with the maximum probability of membership.

13

Voting data collapsed LBM BEM2

Figure 2: Voting data. Colour key: white = “nay”,black = “yay”. Left panel: Raw data.
Right panels: summary cluster membership from the modal 7 row and 12 column cluster
model and the cluster membership obtained from BEM2. Row clusters are numbered 1-
7, top-bottom. Column clusters are numbered left-right. The red lines divide clusters of
congressmen, and the blue lines divide the issue clusters.

14

Columns 9 10 11 12 13 14 15 16
Rows
5 0.0000 0.0002 0.0013 0.0008 0.0005 0.0000 0.0002 0.0000
6 0.0001 0.0021 0.0401 0.1238 0.1491 0.0946 0.0348 0.0029
7 0.0001 0.0041 0.0543 0.1675 0.1614 0.0697 0.0188 0.0012
8 0.0000 0.0009 0.0101 0.0270 0.0191 0.0075 0.0029 0.0005
9 0.0000 0.0000 0.0010 0.0013 0.0013 0.0007 0.0001 0.0000

Table 2: Distribution of cluster models for voting data

Cluster Democrat Republican

1 (131) 8 123
2 (125) 125 0
3 (77) 71 6
4 (38) 37 1
5 (36) 3 33
6 (23) 21 2
7 (5) 2 3

Table 3: Party distribution over row clusters from collapsed sampling.

The composition by party of the row clusters from BEM2 is shown in Table 4. Row cluster 1
is similar in both, but there are some differences in the other clusters. The BEM2 clustering
only used 10 column clusters of the 12 available. The right panel of Figure 2 shows the
clustering from BEM2. For comparison purposes with the collapsed LBM clustering, the
columns have been arranged in the same order. The collapsed LBM appears to identify
more small clusters, leading to a marginally more homogeneous blocking of the data.

Cluster Democrat Republican

1 (131) 8 123
2 (104) 104 0
3 (62) 61 1
4 (60) 50 10
5 (35) 5 30
6 (30) 26 4
7 (13) 13 0

Table 4: Party distribution over row clusters from BEM2 algorithm.

There is an advantage here over an EM approach to fitting a cluster model in that the
number of clusters need not be assumed known in advance. Here, model uncertainty is
naturally inbuilt into the approach and it is dealt with automatically by the sampler. There
is no user intervention to choose the cluster model. User intervention is only in the choice of

15

prior hyperparameters and priors on the number of clusters. In our experience, standard non
informative priors for the data model parameters, and the truncated Poisson(1) prior on the
number of clusters (as argued in Nobile (2005)), seem to perform well. The computations for
the collapsed LBM are also numerically stable if clusters empty out. In our experimentation
with EM algorithms this caused instability. Empty clusters could easily occur, say, if the
chosen cluster model is not well supported by the data.

6 Microarray experiments

A DNA microarray experiment records expression levels of a large number of genes over a
number of conditions or samples. The number of conditions or samples is usually less than
100, while the number of genes could be in the thousands. Discovering which genes behave
similarly and under which subgroups of conditions is the aim of analysis. One way to do
this is to group together genes with similar expression levels. Methods differ in whether they
allow clusters to overlap or not. Here we will not allow clusters to overlap due to the form
of the LBM.

Analyzing DNA experiments can be challenging, due to the large row dimension and
the general uncertainty in how many clusters may be present in the data. We apply our
sampler to data from DNA experiments on the budding yeast Saccharomyces Cerevisiae. The
microarray contains 419 genes and records the expression level of these under 70 conditions.
It was obtained from the R package biclust (Kaiser et al. 2009). Expression levels lay
between −6 and +7. The aim is to see how much structure the sampler can uncover, so
the rows and columns of the microarray were randomly reordered (Figure 4 (a)). In our
application the rows represent the genes and the columns represent the conditions.

We use the Gaussian model of Section 2.2.2 for expression level. This model requires
specification of four hyperparameters. Two of these (γ and δ) are for the prior on the
block error variances and two are for the prior on the block means (ξ and τ 2). We choose
γ = δ = 0.02 and ξ = 0, τ 2 = 100. This choice of γ and δ gives a proper density on the error
variance which is non-informative (see for example Spiegelhalter et al. (1996)). Similarly,
choosing ξ = 0 is a reasonable non-informative choice given the range of the data. Setting
τ 2 = 100 says that the prior information on a block mean is equal to 1% of the information
in the observed expression level of one gene under one condition within that block. This is
also non-informative.

The sampler was run for 220,000 iterations with 20,000 taken as burn-in. We stored every

20th iteration thereafter. The run was time consuming, taking approximately 3 hours. This
said, the large gene dimension of such an array does pose a challenge when searching for two
way clusters. The initial cluster model assumed had 1 row and column cluster i.e. no cluster
structure. Acceptance rates for the move of Section 3.1.2 were 25% for rows and 18% for
columns. Split and combine acceptances were about 0.5% for rows and about 25% each for
columns. The low acceptance rates of split and combine moves for rows would be expected
since finding clusters will be more difficult in a larger dimension.

Table 5 gives the PMP of the visited models from the MCMC output. The model space
visited by the sampler is large. The modal model (25 row clusters and 4 column clusters)
gave a posterior probability of 11.98%. There is posterior support for anything from 3 to

16

(a) (b)

Figure 3: Yeast data. (a) Original microarray (b) MAP clustering from sampler

5 column clusters, for 23 to 26 row clusters (PMP > 0.02 in all cases). This is an example
with considerable model uncertainty and it may be difficult to know the models to include
using an information criterion over a grid of possible models as discussed in Section 2.1.2
and adopted by van Dijk et al. (2009). Our approach has the obvious advantage of exploring
the uncertainty in the posterior model space and attaching a probability to each model.

Instead of constructing a summary based on the modal model, we took the MAP clus-
tering here (shown in Figure 4 (b)). The MAP had 26 row clusters and 4 column clusters.
To have a closer look at the row clusters, we plot a selection of these in Figure 4. The plots
show the gene expression profiles for genes in the same row cluster over conditions arranged
by condition cluster. It can be seen that in certain cases, there is a clear clustering of genes
with similar profiles. The gene clusters shown are arranged by size (left-right, top-bottom).
Some of the larger clusters appear quite noisy, while some follow a common trend closely.
Auxiliary runs of the sampler on the subsets of row clusters could be performed to try and
isolate further cluster structures.

7 Conclusion

We have considered a collapsed Bayesian extension of the Latent Block Model of Govaert
& Nadif (2008). We showed how an MCMC sampler could be used to sample both the
cluster model and the cluster memberships when clustering a data matrix into blocks. The
approach was demonstrated on simulated data and two real data examples. The application

17

Columns 3 4 5 6 7 8 9 10 11 12 13

Rows

18 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19 0.0005 0.0002 0.0005 0.0001 0.0019 0.0044 0.0013 0.0011 0.0006 0.0000 0.0000

20 0.0005 0.0000 0.0002 0.0032 0.0110 0.0192 0.0121 0.0057 0.0012 0.0004 0.0000

21 0.0029 0.0027 0.0019 0.0023 0.0128 0.0147 0.0090 0.0028 0.0008 0.0003 0.0001

22 0.0076 0.0119 0.0074 0.0053 0.0109 0.0129 0.0085 0.0033 0.0007 0.0000 0.0001

23 0.0368 0.0409 0.0242 0.0094 0.0089 0.0041 0.0030 0.0015 0.0002 0.0000 0.0000

24 0.0643 0.0706 0.0420 0.0144 0.0073 0.0049 0.0023 0.0005 0.0002 0.0000 0.0000

25 0.1016 0.1198 0.0702 0.0272 0.0082 0.0018 0.0011 0.0003 0.0002 0.0000 0.0000

26 0.0373 0.0457 0.0228 0.0095 0.0020 0.0008 0.0003 0.0000 0.0000 0.0000 0.0000

27 0.0090 0.0109 0.0058 0.0021 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

28 0.0008 0.0015 0.0010 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5: Posterior distribution of cluster models for the microarray data.

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

−
6

−
4

−
2

0
2

4
6

condition clusters

ex
pr

es
si

on
 le

ve
l

Figure 4: Selection of row clusters from the MAP clustering. Each plot corresponds to
a different row cluster. Each profile (black line) gives the gene expression level for over
all conditions. Conditions are arranged by condition cluster membership. The condition
clusters are separated by the red dashed line.

18

to simulated data suggested that the sampler’s performance deteriorates as clusters become
less distinguishable. We applied the sampler to Congressional voting records from the U.S.
senate. It was shown to perform well in isolating clusters of congressmen and “yay”, “nay”
votes in the data. In the second real data example, we used the sampler for analysis of a
DNA microarray experiment. This demonstrated that there can be considerable uncertainty
in the number of clusters in certain situations. Knowing even the range of possible models
may be difficult. Results from the microarray experiment demonstrated that clusters could
be found by a search strategy with a probabilistic basis using the collapsed LBM sampler.
Overall, the approach seems to be a robust way to block cluster a data matrix. The user need
only specify prior hyperparameters and priors on the number of clusters. Code implementing
the sampler written in the C language is available at www.ucd.ie/statdept/jwyse. This
code can be easily modified to experiment with different priors on the number of clusters.

Acknowledgements

The authors would like to thank Brendan Murphy for helpful advice on aspects of this pa-
per. Nial Friel’s research was supported by a Science Foundation Ireland Research Frontiers
Program grant, 09/RFP/MTH2199.

Appendix

Appendix A: Calculation of the posterior

Writing out all posterior terms longhand, assuming ω ∼ Dirichlet(α, . . . , α) and ρ ∼
Dirichlet(β, . . . , β) a priori gives

π(K,G, z,w,ω,ρ,Θ|Y) ∝ π(K)π(G)
Γ{αK}

Γ{α}K
Γ{βG}

Γ{β}G

K
∏

k=1

ωnk

k

G
∏

g=1

ρmg

g

K
∏

k=1

G
∏

g=1

∏

i:zi=k

∏

j:wj=g

p(yij|θkg)

×
K
∏

k=1

G
∏

g=1

π(θkg)
K
∏

k=1

ωα−1
k

G
∏

g=1

ρβ−1
g

= π(K)π(G)
Γ{αK}

Γ{α}K
Γ{βG}

Γ{β}G

K
∏

k=1

ωnk+α−1
k

G
∏

g=1

ρmg+β−1
g

×
K
∏

k=1

G
∏

g=1

π(θkg)
∏

i:zi=k

∏

j:wj=g

p(yij|θkg)

Integrating the left and right hand sides of the above with respect to ω,ρ and Θ gives

π(K,G, z,w|Y) ∝ π(K)π(G)
Γ{αK}

∏K
k=1 Γ{nk + α}

Γ{α}KΓ{n + αK}

Γ{βG}
∏G

g=1 Γ{mg + β}

Γ{β}GΓ{m+ βG}

K
∏

k=1

G
∏

g=1

Mkg

where
Mkg =

∫

π(θkg)
∏

i:zi=k

∏

j:wj=g

p(yij|θkg) dθkg

19

Appendix B: Calculation of Mkg

Bernoulli model for binary data

Assume that Pr(yij = 1|zi = k, wj = g) = θkg. We take a Beta(γ, δ) prior on θkg. Then

π(θkg)
∏

i:zi=k

∏

j:wj=g

p(yij|θkg) =
Γ{γ + δ}

Γ{γ}Γ{δ}
θγ−1
kg (1− θkg)

δ−1
∏

i:zi=k

∏

j:wj=g

θ
yij
kg (1− θkg)

1−yij

=
Γ{γ + δ}

Γ{γ}Γ{δ}
θ
skg+γ−1
kg (1− θkg)

nkmg−skg+δ−1

Integrating the left and right hand side of this with respect to θkg gives

Mkg =
Γ{γ + δ}

Γ{γ}Γ{δ}

Γ {skg + γ}Γ {nkmg − skg + δ}

Γ{nkmg + γ + δ}

Gaussian model for continuous data

Assume yij|zi = k, wj = g ∼ N(µkg, σ
2
kg). Take the priors µkg ∼ N(ξ, τ 2σ2

kg) and σ2
kg ∼

IG(δ/2, γ/2) where IG(a, b) is the Inverse-Gamma distribution: p(x) = ba

Γ(a)
x−(a+1) exp{−b/x}.

Then

π(µkg)π(σkg)
∏

i:zi=k

∏

j:wj=g

p(yij|µkg, σkg) =
(γ/2)δ/2

Γ{δ/2}
σ
−2(δ/2+1)
kg exp{−γ/2σ2

kg}

×(2πτ 2σ2
kg)

−1/2 exp{−(µkg − ξ)2/2τ 2σ2
kg}

×(2πσ2
kg)

−nkmg/2 exp
{

−(sskg − 2µkgskg + nkmgµ
2
kg)/2σ

2
kg

}

Completing the square on µkg and integrating with respect to it gives

(2π)−nkmg/2
(γ/2)δ/2

Γ{δ/2}
σ−2((nkmg+δ)/2+1)

×(nkmgτ
2 + 1)−1/2 exp

{

−
1

2σ2
kg

(

sskg −
τ 2(skg + ξ/τ 2)2

nkmgτ 2 + 1
+

ξ2

τ 2
+ γ

)}

.

Finally, integrating with respect to σ2
kg and tidying up gives

Mkg =
γδ/2 Γ{(nkmg + δ)/2}

πnkmg/2Γ{δ/2} (nkmgτ 2 + 1)1/2

(

sskg −
τ 2 (skg + ξ/τ 2)

2

nkmgτ 2 + 1
+

ξ2

τ 2
+ γ

)−(nkmg+δ)/2

.

Appendix C: Cost matrix for undoing label swiching

The cost matrix for processing the vector z(T) is

C(k1, k2) =
T−1
∑

t=1

n
∑

i=1

I
{

z
(t)
i 6= k1, z

(T)
i = k2

}

.

20

The more z(T) disagrees with the vectors already processed, the higher this cost will be. This
is made clearer by rewriting the general entry of the cost matrix:

C(k1, k2) =
T−1
∑

t=1

n
∑

i=1

(

1− I
{

z
(t)
i = k1, z

(T)
i = k2

})

= n(T − 1)−
T−1
∑

t=1

n
∑

i=1

I
{

z
(t)
i = k1, z

(T)
i = k2

}

= n(T − 1)−
n
∑

i=1

Ni(T − 1, k1)I{z
(T)
i = k2} (6)

where Ni(T − 1, k1) gives the number of processed samples up to z(T−1) which have given
label k1 to row i. For the sake of discussion, consider processing a sample where no label
switching has occurred, K is fixed and there are no changes in labels from one MCMC sample
to the next. In this case the costs will be

C(k, k) = n(T − 1)−
n
∑

i=1

Ni(T − 1, k)I{z
(T)
i = k}

= n(T − 1)− nk(T − 1)

= (n− nk)(T − 1)

and for k′ 6= k

C(k, k′) = n(T − 1)−
n
∑

i=1

Ni(T − 1, k)I{z
(T)
i = k′}

= n(T − 1)− 0

= n(T − 1).

A cost of 0 could only be obtained when all rows have the same label, that is, when there
is no clustering. Of course this discussion simplifies the problem somewhat. The key is in
finding a permutation of the labels to minimize all costs. This permutation is found by
solving the square assignment problem using the algorithm of Carpaneto & Toth (1980)
in our case. Finally, we note that (6) can be exploited to give an online post processing

procedure. Define the K × n matrix S(T−1) with general entry S
(T−1)
ki =

∑T−1
t=1 I{z

(t)
i = k}.

Then we have C(k, k′) = n(T − 1) −
∑n

i=1 S
(T−1)
ki I(z

(T)
i = k′). After calling the square

assignment algorithm and permuting the labels z(T) according to its solution, we can update
S, using S

(T)
ki = S

(T−1)
ki + I{z

(T)
i = k}.

References

Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003), ‘Latent Dirichlet Allocation’, Journal of
Machine Learning Research 3, 993–1022.

Bozdogan, H. (1994), Mixture-model cluster analysis using model selection criteria and a
new information measure of complexity, in H. Bozdogan, ed., ‘Proceedings of the first
US/Japan conference on the frontiers of statistical modeling: An informational ap-
proach, Volume 2’, Kluwer, Boston, pp. 69–113.

21

Brooks, S. P., Giudici, P. & Roberts, G. O. (2003), ‘Efficient construction of reversible jump
Markov chain Monte Carlo proposal distributions (with discussion)’, Journal of the

Royal Statistical Society: Series B 65, 3–39.

Carpaneto, G. & Toth, P. (1980), ‘Algorithm 548: Solution of the assignment problem’,
ACM Transactions on Mathematical Software 6, 104–111.

Celeux, G., Hurn, M. & Robert, C. P. (2000), ‘Computational and inferential difficulties
with mixtures posterior distribution’, Journal of the American Statistical Association

95, 957–979.

Cheng, Y. & Church, G. M. (2000), Biclustering of expression data, in ‘ISMB 2000 proceed-
ings’, pp. 93–103.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977), ‘Maximum likelihood from incomplete
data via the EM algorithm (with discussion)’, Journal of the Royal Statistical Society:

Series B 39, 1–38.

Fraley, C. & Raftery, A. E. (2002), ‘Model-based clustering, discriminant analysis and density
estimation’, Journal of the American Statistical Association 97, 611–631.

Getz, G., Levine, E. & Domany, E. (2000), ‘Coupled two-way clustering analysis of gene
microarray data’, PNAS 97, 12079–12084.

Govaert, G. & Nadif, M. (2008), ‘Block clustering with Bernoulli mixture models: Compari-
son of different approaches’, Computational Statistics and Data Analysis 52, 3233–3245.

Green, P. (1995), ‘Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model determination’, Biometrika 82, 711–732.

Green, P. J. (2003), Trans-Dimensional Markov Chain Monte Carlo, in P. J. Green, N. L.
Hjord & S. Richardson, eds, ‘Highly Structured Stochastic Systems’, Oxford University
Press, Oxford U.K., pp. 179–198.

Griffiths, T. L. & Steyvers, M. (2004), ‘Finding scientific topics’, PNAS 101, 5228–5235.

Hartigan, J. A. (1972), ‘Direct Clustering of a Data Matrix’, Journal of the American Sta-

tistical Association 67, 123–129.

Hartigan, J. A. (2000), ‘Bloc Voting in the United States Senate’, Journal of Classification
17, 29–49.

Hofmann, T. (2001), ‘Unsupervised Learning by Probabilistic Latent Semantic Analysis’,
Machine Learning 42, 177–196.

Kaiser, S., Santamaria, R., Sill, M., Theron, R., Quintales, L. & Leisch., F. (2009), biclust:
BiCluster Algorithms. R package version 0.9.1.

Kluger, Y., Basri, R., Chang, J. T. & Gerstein, M. (2003), ‘Spectral Biclustering of Microar-
ray Data: Coclustering Genes and Conditions’, Genome Research 13, 703–716.

22

Lazzeroni, L. & Owen, A. (2002), ‘Plaid models for gene expression data’, Statistica Sinica

12, 61–86.

Liu, J. S. (2004), Monte Carlo Strategies in Scientific Computing, Springer, New York.

Neal, R. M. & Hinton, G. E. (1998), A view of the EM algorithm that justifies incremental,
sparse, and other variants, in M. I. Jordan, ed., ‘Learning in Graphical Models’, Kluwer
Academic Publishers, Dordrecht, pp. 355–358.

Nobile, A. (2005), Bayesian finite mixtures: a note on prior specification and posterior
computation, Technical report, Department of Statistics, University of Glasgow.

Nobile, A. & Fearnside, A. T. (2007), ‘Bayesian finite mixtures with an unknown number of
components: The allocation sampler’, Statistics and Computing 17, 147–162.

Phillips, D. B. & Smith, A. F. M. (1996), Bayesian model comparison via jump diffusions,
in W. R. Gilks, S. Richardson & D. J. Spiegelhalter, eds, ‘Markov Chain Monte Carlo
in Practice’, Chapman & Hall, London, pp. 215–239.

Richardson, S. & Green, P. J. (1997), ‘On Bayesian Analysis of Mixtures with an Unknown
Number of Components (with discussion)’, Journal of the Royal Statistical Society,

Series B 59, 731–792.

Robert, C. P., Rydén, T. & Titterington, D. M. (2000), ‘Bayesian inference in hidden Markov
models through the reversible jump Markov chain Monte Carlo method’, Journal of the
Royal Statistical Society, Series B 62, 57–76.

Roberts, G. O. (1996), Markov chain concepts related to sampling algorithms, in W. R.
Gilks, S. Richardson & D. J. Spiegelhalter, eds, ‘Markov Chain Monte Carlo in Practice’,
Chapman & Hall, London, pp. 45–58.

Schwarz, G. (1978), ‘Estimating the Dimension of a Model’, The Annals of Statistics 6, 461–
464.

Sheng, Q., Moreau, Y. & Moor, B. D. (2003), ‘Biclustering microarray data by Gibbs sam-
pling’, Bioinformatics 19, 196–205.

Spiegelhalter, D. J., Best, N. G., Gilks, W. R. & Inskip, H. (1996), Hepatitis B: a case study
in MCMC methods, in W. R. Gilks, S. Richardson & D. J. Spiegelhalter, eds, ‘Markov
Chain Monte Carlo in Practice’, Chapman & Hall, London, pp. 21–44.

Stephens, M. (2000), ‘Bayesian analysis of mixture models with an unknown number of
components- an alternative to reversible jump methods’, The Annals of Statistics

28, 40–74.

Tibshirani, R., Hastie, T., Eisen, M., Ross, D., Botstein, D. & Brown, P. (1999), Clustering
methods for the analysis of DNA microarray data, Technical report, Stanford University.

van Dijk, B., van Rosmalen, J. & Paap, R. (2009), A bayesian approach to two-mode clus-
tering, Technical report, Econometric Institute Report, Erasmus University Rotterdam.

23

Wit, E. & McClure, J. (2004), Statistics for Microarrays: design, analysis and inference,
John Wiley & Sons Ltd., West Sussex, England.

24

	1 Introduction
	2 Models
	2.1 Latent block models
	2.1.1 Estimation using BEM2
	2.1.2 Choosing K and G when using BEM2

	2.2 Bayesian latent block models
	2.2.1 Bernoulli model for binary data
	2.2.2 Gaussian model for continuous data

	3 MCMC sampling of clusterings
	3.1 MCMC moves
	3.1.1 Gibbs sampling to update the allocation of one row
	3.1.2 Move to update the allocation of more than one row
	3.1.3 Moves to split or combine clusters

	3.2 Form of reversible jump sampler
	3.3 Label switching
	3.4 Summarizing MCMC output
	3.4.1 Using the modal cluster model
	3.4.2 Using the MAP

	4 Simulation experiment
	5 Congressional voting in US senate
	6 Microarray experiments
	7 Conclusion

