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Abstract 

Lindell, S., An analysis of fixed-point queries on binary trees, Theoretical Computer Science 85 

(1991) 75-95. 

The presence of ordering appears to play an essential role in the logical expressibility of polynomial- 

time queries on finite structures. By examining the expressibility and complexity of inductive queries 

on the class of complete unordered binary trees, we are able to show that the ability to calculate 

cardinality is strictly less powerful than the assumption of order. 

0. Introduction 

0.1. Motivation 

This paper studies the expressibility of queries in fixed-point logic and the complex- 

ity of their evaluation on complete binary trees. The primary purpose of this investiga- 

tion is to demonstrate that the addition of a nonlogical ordering provides an 

enhancement strictly beyond that of merely counting. This may enable us to under- 

stand more clearly the distinction between tractable (polynomial-time) computation 

and the inductive (fixed-point) queries. The reader who is unfamiliar with the idea 

of a query on a class of finite structures should skip ahead to Section 1 before 

proceeding. 

On finite structures, it is well-known that all inductive queries (IND) are poly- 

nomial-time computable (PTIME) [3]: 

IND c PTIME. 

A proof follows directly from the semantic definition of evaluating fixed points (see 
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Section 1). But the converse fails miserably, and IND# PTIME. For example, the 

query 

to determine whether or not a given graph has an odd or even number of vertices is 

not inductive [3]. A proof from a compactness argument can be found in [12]. 

A variety of other seemingly simple counterexamples share the property that they 

ask something about sizes. Examining their proofs reveals that known techniques 

(Ehrenfeucht-Fraisse games) rely on the inability of inductive queries to calculate the 

size of the domain (or some subdomain thereof). Examples appear in [12]. 

If we permit our formulas access to an underlying total ordering of the domain (e.g. 

by using the actual binary representation of a finite structure), then it is possible to 

count (see below). But in fact adding < to IND allows us to express all polynomial- 

time queries [ 11, 151. 

PTIME c IND ( <). 

The proof is a direct simulation of Turing machines that operate in polynomial time, 

with the ordering used crucially to keep track of the tape’s contents, to say that one 

step follows another, and to read the input tape (which contains a binary encoding of 

the input structure). 

Unfortunately, PTIME # IND( <), but only because there are also formulas in 

IND( <) which express things that are not queries. For instance, consider the sentence 

WEV(3YEVCX<Y A J%Y)l 

on unordered graphs with edge relation E and vertex set V. The result depends on the 

underlying representation of the graph (i.e. how the members of V are ordered), 

something which is specifically excluded from being a query. In summary, 

IND c PTIME c IND (<), 

with all inclusions strict. But on those structures which contain a built-in linear order 

as one of their relations, inductive queries do capture all of polynomial time. Simply 

stated, 

IND = PTIME for ordered structures. 

0.2. Calculating sizes on jinite structures 

In the presence of a built-in linear order, let us demonstrate how fixed-point queries 

can be used to calculate the size of any collection of elements U drawn from the 

domain, 0, , II - 1. First make an induction which exhausts all the elements of the 

domain, relying on the totality of the ordering. Then use this enumeration to count in 

unary the number of elements in U, using the ordering for the digit places. See, for 
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: I O/Z 
0 < 1 < 2 < 3 < 4 

Fig. 1 

instance, Fig. 1 for n= 5. Employ the following inductions simultaneously and let 

sup(P) stand for one more than the largest current element in P: 

4(X>P) E (vY)cY<x+p(Y)l P does the enumerating, 

4(x, Q) = (Vy)[y<x-+Q(y)] A U(sup(P)) Q does the counting. 

When the induction is complete, sup(Q)= I UI (= 3 in Fig. 1). Unfortunately, sup(P) 

cannot be written positively in P (see Section 1 for definition), so an alternate method 

is required if we do not wish to appeal to [8]. 

Let R(x, y) denote that there are more than y elements in U less than or equal to x, 

i.e. 

R(x,y) * I{zEUIZ<X}I>.Y. 

In particular, 

R(n-l,i) 0 i<JUJ 

Then the following formula (although confusing) defines R inductively: 

4(x, Y, R) = (3z<x)CR(z, Y) v CR@> Y- 1) A ~6411, 

where we take R(z, y- 1) to be vacuously true when y =O, even when no z exists. 

Precisely, R(z,y-l)=(y=O) v (3w)[wS~ A R( z, w)], where tlSu if and only if u is the 

successor of u. At the fixed point 

SUPIYI d”(n-Ly)) = IW 

where sup is defined as one more than the maximal element. Again we require 

negation at this point, but the fixed-point queries are closed under negation [ll]. 

Of course, counting is a polynomial-time query and, hence, inductive on ordered 

structures. The purpose of the above discussion was to provide us with concrete 

examples of how to count with an ordering. But is calculating sizes all the ordering 

allows us to do? Be aware that counting is defined as the act of ascertaining the total 

number of elements in a collection by noting one after another. This implies a calcula- 

tion of size by enumeration. Enumeration allows one not only to determine the 

cardinality of a set, but also to examine each element in turn. On the other hand, 

methods which determine the size of a collection of elements (by no specific means) 

must certainly distinguish among different cardinalities but may provide no other 

tangible benefit. 

One of the research interests behind this paper was to try to understand how an 

induction could be used to calculate sizes of arbitrary subsets without necessarily 
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counting. This weaker notion can be formalized as a query with one unary relation 

argument, R, which always returns a result dependent only on the size of the subset 

under consideration. Because U is an actual parameter of the query which is not part 

of the structure, we write it on the right-hand side of a semicolon. 

Definition 0.1. Let K be a class of structures, and R, a new unary predicate symbol 

not in the original signature. The query @(X, R) is a sizer on K if for all A in K and all 

subsets U1 and U2 of A 

Or, written in a simpler fashion, IU11=IU21 o @“(U1)=@A(U2). 

Interestingly enough, this definition alone is sufficient to prove the result that @ is 

always an automorphism invariant set on A. 

Fact. Let @ be a sizer on K. Then for all AEK, USIAI, the set {x[@(x; U)} is 

invariant on A. 

Proof. Let CI be any automorphism of A, i.e. a[ A] = A. Then CI [@( U )] = cV[“~(CC [ U 1) 

since c1 is a permutation; and @“[A1(a[U])= @(a[U]) since a is an automorphism. 

But since I ECU] I = I U 1, our assumption that @ is a sizer leads us to the conclusion that 

cP~(cc[U])=@~(U). Therefore, a[QA(U)]=QA(U) for all automorphisms LX 0 

Hence, the result of QA is always one of II A (I + 1 different invariant sets (there are 

11 A II + 1 possibilities for I U I). 

0.3. Overview 

From the previous discussion, it is tempting to conjecture that the incapability to 

calculate sizes of arbitrary subsets is the only factor which prevents the inductive 

queries from encompassing all of the polynomial-time queries in the absence of an 

ordering. 

Conjecture. Let K be a class ofjnite structures. If there exists an inductive sizer on K, 

then every polynomial-time query on K is inductive. 

We have found a natural counterexample - the class of complete binary trees 
_ which shows that this conjecture is false. In other words, there is more to the 

ordering than just the ability to calculate sizes. 

Intuitively, complete binary trees (without distinguished left and right children) are 

potentially interesting because their structure falls naturally in between that of a total 

linear order and that of a totally unordered set. By analyzing inductive computations 

on the class of complete binary trees we will prove that 

there is a sizer E IND and 

there is a PTIME query $IND 
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In other words, although IND # PTIME, inductions are capable of calculating car- 

dinalities (although not by counting). 

The remainder of this paper is organized into six sections: 

Section 1. Background-finite structures, queries, IND and PTIME 

Section 2. Coding invariant relations on complete binary trees 

Section 3. First Result-finding a polytime query which is not inductive 

Section 4. Adding numbers on complete binary trees 

Section 5. Second Result -finding an inductive query which calculates sizes 

Section 6. Conclusion-arithmetic, counting and logics for PTIME 

In the background, Section 1, we discuss finite structures and queries, and present 

the basic definitions of polynomial-time computability and inductive definability. In 

Section 2, we develop a succinct representation of all automorphism invariant rela- 

tions on a complete binary tree. Using this representation we analyze inductive 

queries on the class of complete binary trees and prove our first main result in 

Section 3. There we show, in Theorem 3.4, that on the class of complete binary trees 

there is a polytime query which is not inductive. It is interesting to note that our proof 

relies on diagonalization. In Section 4, we demonstrate a binary representation of 

numbers on the levels of a complete binary tree, and use this representation to perform 

addition. We prove our second main result in Section 5 and show, in Theorem 5.1, 

that on the class of complete binary trees there is an inductive query which calculates 

sizes. In the conclusion, Section 6, we note that other arithmetic operations can be 

performed inductively on complete binary trees. Finally, we elaborate on the connec- 

tion between this research and a stronger conjecture originally posed in [l l] regard- 

ing “counting” quantifiers. A negative answer to this leaves open the question of 

whether there is a logic for PTIME. 

1. Background 

1.1. Finite structures 

We begin by briefly summarizing the notion of finite relational structures and 

queries upon them. For the necessary background in first-order logic, the reader is 

referred to the text [4]. 

Start with a finite list of predicate and constant symbols L= {R,, . . . , Rk, cl, . . . . cl} 

called a signature. A jnite structure for the signature L, 

A=(IAl, R;4 ,..., R;, cf ,..., c:), 

consists of a finite set IAl (called the domain of A), together with relations Rf, . . . . Rt 

(each of a specified arity) and constants cf, . .., cp over 1 Al. We shall drop the 

superscripts for convenience whenever the context justifies it, and denote the size of 

A by II A 11. The most common examples of finite structures are directed graphs and 

binary strings. A directed graph G can be represented as ( V, E), where V is the set of 
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vertices of G, and E is the binary edge relation for G. A binary string w can be 

represented as (B, <, U), where B is the finite set { 1, . . . . 1 WI} totally ordered (in the 

normal order of numbers) by the binary relation <, and U is a unary relation which 

indicates the location of ones and zeros in w. That is, for iel?, U(i) holds if and only if 

the ith bit of w is one. 

1.2. Queries 

A query is a function which assigns to each structure (in a given signature L) 

a relation (of some fixed arity k 3 0) on the domain of that structure in such a way as to 

be invariant of isomorphism. That is, q(X) is called a k-ary L-query if for all L- 

structures A and A’, and all k-tuples 6~) A Ik and a’~ 1 A’lk, 

(A, iqE(A’, 2’) * 1_4q(i) 0 +,&q(2), 

where the double turnstile indicates logical satisfaction. For example, this means that 

the result of a graph query {VI bGq(U)} is always independent of any labelling of the 

vertices of G. If k =O, this means that qE (false, true} and, hence, determines a graph 

property (i.e. q does not change its truth value for an isomorphic copy of G). It is 

worthwhile noting that the subrestriction of automorphism invariance (following 

from isomorphism invariance) is vacuous for binary string queries, as all such 

structures have no nontrivial automorphisms. 

I .3. Examples 

Queries can be classified according to the syntactical constructs needed for their 

expression in some logic. Standard examples include first-order formulas, fixed-point 

formulas, and second-order formulas. Queries can also be classified according to the 

asymptotic resources required for their computation on some machine model. Stan- 

dard examples here include logarithmic-space, polynomial-time and polynomial- 

space on a Turing machine. These resource bounds are essentially model-independent. 

First-order logic is a natural language to use for expressing queries on finite 

structures. For example, the property of graph simplicity can be written as 

8 is true if and only if the binary relation E on vertex set V is a simple graph 

(symmetric and loop-free). In symbols, letting G = ( V, E), 

F,6’ iff G is simple. 

Since 0 evaluates to either true or false, it is called a Boolean query. Those queries 

expressible explicitly by first-order formulas are classically called elementary queries 

[13]. A natural extension of first-order logic is to allow a query to be expressed 
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recursively by a first-order formula. For example, the transitive closure of a graph 

whose edges are given by a binary relation P on a vertex set S can be written as 

P+(x, y) = P(x, y) v @ZES)[ P(x, z) A P+(z, y)]. 

P+ is defined in terms of itself in a first-order fashion. The minimal relation satisfying 

this recursive definition has the property that 

l=oP+(u, u) o there is a (directed) path from u to u in G. 

Since the result of evaluating P+ is a binary relation, it is called a binary query. Those 

queries expressible recursively by first-order formulas we shall call inductive queries 

(according to classical terminology [13]), and the class of such queries we denote 

by IND. 

1.4. Polynomial-time computability 

Problems which can be solved in polynomial time are said to possess a tractable 

algorithm. For necessary background in computational complexity, the reader is 

referred to [lo]. 

Not surprisingly, the property of graph simplicity is polynomial-time computable. 

Also, the transitive closure of a graph is computable in polynomial time. Namely, 

given a binary encoding of an input graph G, there is a Turing machine which outputs 

a binary encoding of the transitive closure of G in polynomial time. As a matter of fact, 

all inductive (and, hence, elementary) queries are computable in polynomial time. 

Definition. A query q is polytime if it can be computed by a sequential algorithm 

which, when given a binary encoding of the finite structure A as input, always outputs 

a binary encoding of the structure (A, qA) in at most )I A I/’ steps for some uniform c, 

where /I A /I denotes the size of A. 

The class of all polytime queries will be called PTIME. 

1.5. Inductive de$nability 

The fact that the transitive closure is not elementary was first shown in [6]. Because 

of this limitation and similar deficiencies in expressive power, augmenting first-order 

logic by a fixed-point operator was suggested [l]. This extension was also studied in 

mathematical logic as a means of formalizing the notion of an inductive definition, but 

the concern was primarily for fixed infinite structures [13]. 

This new language permits recursive first-order definitions, as in the previous 

example of transitive closure. The essential features shown there are: 

(1) the free predicate on the left-hand side appears only positively on the right-hand 

side; 

(2) the free variables of both sides must match. 



To be formal, let cp(X, S) be an S-positive first-order formula for the signature L 

in which X is a tuple of free individual variables, S is a free predicate variable not 

in the signature L (the recursion variable) allowed only to appear positively, and 

k = arity(S) = length(Z). Over any L-structure A with additional free relation Se G 1 A Ik, 

cp(X, S) determines the query 

which is monotone: S1 gS2 * #(S,) c @‘(S,) (note that the arity of #(S) is k). 

Hence (dropping the superscript A for notational clarity), the stages of cp, cp” = #, 

cp ‘+i = cp( cp’) which result from applying cp repeatedly to the empty set form a nondec- 

reasing chain which reaches aJixed point 

in at most 11 A Ilk steps since the sizes of the cpi are increasing and bounded by the size of 

IAlk. This limit is the least solution to satisfy the equation 

s= q(S). 

Hence, repeated application of cp leaves cp” unchanged, implying that the above chain 

of iterates satisfies cp” = cp” + ’ = cpm for all n2 11 A Ilk. Clearly, (pm does not depend on 

S since the fixed-point operation binds the variable S. Hence, (pm is a query defined on 

every L-structure. The isomorphism invariance of cp” and, hence, of cpco, follows from 

the isomorphism invariance of cp (by induction on n). This fact will be used crucially in 

Corollary 3.3. 

The inductive queries are defined as projections (by constants) of fixed points. 

Definition. Let cp(X, S) be an S-positive first-order formula for the signature Lu{S}, 

with S#L and arity(S)=length(Z). If C is a tuple of constant symbols in L and jj is 

a tuple of variables such that length(c)+ length( j)= length(Z)>O, then the query 

cp”(C, jj) for the signature L obtained by instantiating some of the variables in the 

fixed-point query q”(X) by constants is an inductive query. 

It should be clear that the fixed-point semantics gives us a polynomial-time 

algorithm for computing inductive queries. In addition, inductive queries satisfy nice 

closure properties. For any signature L containing at least one constant symbol, the 

class of inductive queries on finite L-structures is closed under composition (nested 

recursion), all positive first-order operations [13], and negation [ll]. These closure 

properties will not hold if our signatures do not have a constant symbol since 

nonelementary fixed points must have nonzero arity (and, therefore, a Boolean query 

such as connected would be inexpressible). The reader is referred to [13] for a tho- 

rough treatment of positive elementary induction. 
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2. Coding invariant relations 

2.1. Preliminary dejinitions 

Here are the definitions and notation we will be using for complete binary trees in 
this paper (left and right children are not distinguished). 

Definition 2.1. Let T, = (V, E, r) be the complete binary tree of height h and size 
2h- 1 with node set V, binary parent relation E, and root r. Let T= ( Th 1 h 2 l}. For 
instance, Fig. 2 has height h = 4 and size 24 - 1 = 15. 

The transitive closure of E yields a partial order < in which U<U o u is a proper 
descendant of v (v is an proper ancestor of u), and we write u 11 v to mean that u $ v and 
v # u (U and v are incomparable). Note that r 3x for all x in V. In Fig. 2, a 11 b, b < c 
and a<c. 

2.2. Depths, least common ancestors and automorphisms 

Let u A v denote the least common ancestor of u and v, and define d(v) as the depth 
of v (its distance from the root). Note that d(r)=O. In Fig. 2, a A b=c, a A c=c, 
b A c=c, d(a)=3, d(b)=2 and d(c)= 1. 

Since Th is a complete binary tree, it should be clear (see Fig. 2) that every one of its 
automorphisms can be generated by the transposition of sibling subtrees. Extending 
automorphisms to k-tuples of V 

a((v1,... ,vk))=(tl(v1),...,cI(vk)) 

induces an equivalence relation on tuples: 0 --V’ iff there is an automorphism c( such 
that c@)=U’. For instance, in Fig. 2, (a, b) -(a’, b’) via the automorphism which 
also exchanges c and c’. 

We now present two facts which will be used to succinctly describe tuples. Our first 
fact says that all automorphisms preserve depth and are distributive over the least 
common ancestor operation. 

Fact. 2.2. Let LY be an automorphism. Then for all v, vl, v2, 

d(V) = WV)), 

c(-(VI A V2) = C&) A cI(Vz). 

Fig. 2. 



We can see clearly in Fig. 2 that d(a)=d(a’), d(b)=d(b’), d(c)=d(c’) and that 

a’ A b’=c’. 

Our second fact says that any two nodes of the same depth are equivalent via some 

automorphism which fixes their least common ancestor. 

Fact 2.3. Suppose v and v’ are of the same depth. Then there exists an automorphism 
c1 that moves v to v’ and$xes every node which is not strictly below their least common 
ancestor. In particular, a jxes v A v’: 

a(v) = v’, d(v)=d(v’), 

a(u)=u, Vuqt:(v A v’). 

We can see clearly in Fig. 2 that any automorphism which maps a to a’ also fixes 

a A u’=r (but the root must be fixed in any case). 

2.3. Coding tuples 

It follows that any node v can be described uniquely (up to automorphism) by its 

depth 

v,=v’ o d(v)=d(u’), 

i.e. the depth of v is a complete automorphism invariant for v. 

Similarly, the triple of integers 

(d(v,), d(v, A 4, d(vl)) 

defines a complete automorphism invariant for any pair ofnodes (vl, vz). It is slightly 

more complicated because automorphisms also preserve the depths of least common 

ancestors. Refer to the three examples (c, c)- (c’, c’), (b, c)- (b’, c’) and 

(a, b)-(a’, b’) in Fig. 2. 

Extending this idea to k-tuples requires the depths of all the least common ancestor 

pairs. 

Definition 2.4. Let 

(0 1, . . ..vk)*=(d(vi A Vj))i<j 

=(d(v, A Al), . . ..d(v. A Ok), ...) d(vi A Vi), . . ..d(vi A ok), . . ..d(vk A Ok)). 

Denote this invariant by V* and its length by k* = k(k + 1)/2. The length is import- 

ant because it depends only on k and not on the size or depth of the tree (we saw 

previously that 1* = 1 and 2* = 3). The following lemma proves that V* is a complete 

automorphism invariant for V. 

Lemma 2.5. For all k-tuples V and 17, V* = U’* o 17% 6’. 
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Proof. (G=) Obvious from Fact 2.2. (a) By induction on k. The basis k= 1 follows 

immediately from Fact 2.3. For the induction step, consider U* = V’* for k > 1. Let 

U’U1 A . . . A vk and u’ = vi A . . . A vi. Observe that 

and 

d(u)=d(v, A . . . A Uk)=mini, j d(Vi A Uj), 

d(U’)=d(v; A ... A U;)=mini,j d(UI A UI). 

Since d(oi A uj)=d(ui A uj) by hypothesis, this forces d(u)=d(u’). So, by Fact 2.3, we 

can find an automorphism mapping u to U’ which preserves all the depth numbers in 

v*. Hence, we might as well assume that u = U’ from the start. Now, there are two cases. 

Case I: If some oi = u, then d(Ui) cd(U) = d(Ui) implies vi = u also. By Definition 2.4, 

(0 1,...,Vi_l, Vi+l,...,Vk)*=(V;,...,Vi-l,Vi)+l,...,V; )* 

since the equality constraints in the hypothesis (V* =U’*) are a superset of those 

required. So by induction hypothesis there is an automorphism B which witnesses that 

But since all these nodes are descendants of u, it is easy to see that p must fix u = Vi (i.e. 

B(Ui)=vi). Hence, p(V)=&, and p also witnesses U’--V. 

Case II: If for all i, Vi <u, then let u1 and u2 be the two children of u. We can 

partition the set of indices I= { 1, . . . . k} into two nontrivial disjoint subsets 

Z~~{i~~~~~~}andZ~~{i~~~~~~}suchthatZ~uZ~=ZandZ~nZ~=~;andsimilarly, 

with 1; and 1; defined from the vi. Observe that if we are given any pair of nodes vi and 

Vj, d(Vi A Vj) = d(u) iff i and j lie in distinct partitions of I. Similarly, for any pair of 

nodes vl and vi. Since d(Vi A Vj)=d(V; A vj) by hypothesis, this implies that I1 =I; (it 

may be necessary to automorphically transpose u1 and u2 to ensure that u; and v1 lie 

in the same subtree). Now use induction to find an automorphism y1 such that 

yl(Oi)=Uj for each ill, and y1 fixes the subtree of u2 (by Fact 2.3). Similarly, find an 

automorphism y2 such that y2(vi)= vi for each ieZ2 and y2 fixes the subtree of ul. So 

the composition y1 0 y2(6)= 5’ witnesses V- 6’. 0 

2.4. Compacting relations 

Automorphisms can be extended naturally to act on entire sets CI [R] = {E(X) 1 XE R}. 

Definition 2.6. A relation R, s 1 T,,lk is invariant on Th if it is fixed by every auto- 

morphism, i.e. for all automorphisms a of T,,, 

cc[Ro]=Ro. 

For instance, the binary parent relation E of T,, is invariant by definition. 
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Since invariant relations are simply composed of equivalence classes of tuples, we 

can succinctly describe them using the complete automorphism invariants for tuples 

explained previously. We simply extend the star operator to relations. 

Definition 2.7. Let R,* = {V* 1 VE R,} 

This provides a unique encoding of invariant relations (R,* simply tells which 

equivalence classes belong to R,). The next fact follows immediately from Lemma 2.5. 

Fact 2.8. If RI and R2 are invariant relations, then 

Rl=Rz o R;=R;. 

3. Separating IND from PTIME on complete binary trees 

In this section, we show that the class of inductive queries is strictly contained 

within the class of polytime queries on the class of complete unordered binary trees. 

Consider an auxiliary class of structures. 

Definition 3.1. Let H= {H,, I h> l}, where 

H*=({O, . ..) h- l}, Succ, zero), 

Succ is a binary successor relation satisfying Succ(i, j) o i + 1 = j, 0 < i, j < h - 1, and 

zero is a constant interpreted as being the unique element with no predecessor (i.e. 0). 

Note that every relation on Hh is invariant since Hh has no nontrivial automorphisms. 

Combined with the compact encoding of invariant relations given by Definition 2.7, 

we see that if R,, is a k-ary relation on T,,, then R,* will be a k*-ary relation on Hh (since 

d(V)E{O, . ..) h - l} for all DE T,,). Hence, every invariant relation on Th is in one-to-one 

correspondence with a wider relation on H,, whose width does not depend on h. Since 

this is an exponentially smaller structure, we can “store” invariant relations on binary 

trees very compactly. 

Because each stage of an induction is an invariant relation, it will be possible to 

rewrite inductions on complete binary trees T,, and simulate them on exponentially 

smaller structures H,,. In other words, given a first-order formula cp(X, S), we will 

syntactically construct a first-order formula cp*(I, S*) such that, uniformly for all h, 

the computation 

S*+$, S*+{tl H,, by*@, S*)} 

will preserve the semantics of the computation 

S+fl, S+{X 1 Th k qo(X, S)}. 
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Table 1 

Original Translation Reason 

root* 

cx=y1* 
CE(x> Y)I* 
c.w1* 
[141* 

[$I A +21* 
Wx)Q(x, 31* 

zero 
i=j=k 
Succ(i) = Succ( j) = k 
S*(iI, . . . . i,.) 

14* 

(L: A CL:: 
(Ii,, . . . . i.)S*(C,J) 

d(root) = 0 
d(x)=d(x A y)=d(y) 
d(x)+l=d(x A y)+l=d(y) 
arity*(S)=arity(S*) 

R*=R* 
[R,nR,]*=R;nR; 

(x. Y)* = (d(x)) - <d(x A Y,)>,, 1 . . ...” ̂  Y* 

Lemma 3.2. Let S be a predicate symbol of arity m, and let S* be a predicate symbol of 
arity m*. Zf cp(X, S) is an S-positivefirst-orderformulafor the signature {E, root, S}, then 
there exists an S*-positiveJirst-orderformula cp*(T, S*)for the signature (Succ, zero, S*} 
such that for all invariant relations SO on T,, 

Proof. Construct (p* inductively from the syntax of cp by Table 1, and think of the 

variables i, j, k as representing d(x), d(x A y), d(y), respectively, where x, y, z are 

variables interpreted as ranging over 1 T,,[, i, j, k are variables interpreted as ranging 

over IHhI={O,...,h-1), and jj is an n-tuple of variables. 

It should be clear from the syntax that ‘p* is always an S-positive first-order 

formula. It remains to be shown that ‘p* preserves the semantics of cp, i.e. for all 

invariant relations So 

CcPTh(SO)l*=((P*)Hh(SO*) 

(this is just a shorthanded rewriting of the conclusion). We accomplish this by 

applying the reasons shown in Table 1. 

The basis case for the constant is obvious, as for all h 

[(root)Th]* = d(root) = 0 = (.zero)nh. 

The basis case for the equality relation follows because if x is equal to y, then 

x=x A y = y are all of the same depth. Hence, 

{<x, Y>* I Th +(x=y)I = {<d(x), d(x A y), d(y)) Ix equals Y> 

={(i,i,i))Odibh-1) 

={(i,j,k)IH,,b(i=j=k)}. 

The basis case for the edge relation follows because if x is the parent of y, then the 

depths of x and x A y are one less than the depth of y. Hence, 

{<x, Y>* I Th b E(x, Y)} = {<d(x), d(x A YX d(y)) Ix is the parent of y) 

={(i,i,i+l)lOQi<h-1) 

={(i,j,k)IH,bSucc(i)=Succ(j)=k}. 
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For the basis case of the recursion variable, it is only necessary to check that the 

arity of S* is correct, i.e. 

S(x 1, . . . . x,) is m-ary and S*(i,, . . . . i,*) is m*-ary. 

The inductive cases of negation and conjunction follow trivially from the reasons 

given. The inductive case of quantification will follow since the expansion of (x, y)* in 

accordance with Definition 2.4 is a frontal extension of y* by n + 1 additional 

members (n = length( j)). To prove that 

( j* I T,, k 3x&x, j)} = {J 1 Hh k 3i,,, . . . . &,0*&j)}, 

we need to show that quantifying over x is equivalent to quantifying over the i’s Our 

induction hypothesis is {(x, jQ* 1 Th 10(x, j)> = {(i,, . . . . i,,~) 1 Hh H*(T, J)}. So, 

clearly, T,, b3xO(x, j) G- Hh I=38*(I,J) by setting 

io = d(x), 

i[=d(x A y[) for 1= 1, . . ..II. 

Conversely, Hh b 3 to* (I, J) * T, k 3x0(x, j) since if H,, 1 f3* (I, 7) holds, then by induc- 

tion hypothesis (i, 7) = (x, y)* for some x, j satisfying T,, I= 0(x, j), which implies that 

T,, 13x0(x, j). 0 

Corollary 3.3. For all h, 

T,, k (pm (root, . . . , root) o H,, b ((p*)W(zero, . . . , zero). 

Proof. By mathematical induction on the number of stages, it is easy to see that 

The details go through precisely since #* = # (basis) and because every iterate cpi is an 

invariant relation (induction step). To complete the proof, just notice that 

(root, . . . , root)* = (zero, . . . , zero). 0 

Since (cp*)” can be computed in time h’ (h= I/ Hh II), (pm can be computed in time 

log’ IZ (n = II T,, II = 2h - 1). Hence, by evaluating the corresponding “star” induction on 

H, every Boolean inductive query on T is in fact “polylogarithmic”-time computable 

(using a random-access Turing machine). It comes then as no surprise that there are 

noninductive polynomial-time queries on T. 

Theorem 3.4. There is a polytime query on T which is not inductive. 

Proof (By diagonalization against the polylogtime queries). Let LO be a binary lan- 

guage (a set of finite strings over the alphabet (0, l}*) which is in DTIME(2’“) and 
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not in DTIME(2’“) for any c [9]. The existence of Lo can also be derived from 

Theorem 12.9 of [lo]. Define q0 to be the Boolean query 

Th k q. o the binary expansion of h is a string in (1). Lo, 

where leading zeros are omitted. 

First, we claim that q. is polytime. Construct a Turing machine A4 which when it is 

given (the encoding of) Th as input (11 T, II= ) n computes its height h = log(n + 1) and 

writes it in binary on a separate work tape suppressing all leading zeros together with 

the most significant digit one. Now, A4 simulates the doubly exponential time machine 

for Lo and accepts if and only if this computation accepts. Since the binary encoding of 

h is of length about log h, the whole algorithm runs in linear time 

O(2 
2’0s log “) = 0 (n), 

Second, we claim that q. is not inductive. Towards a contradiction, suppose q. is 

inductive. Then consider the decision algorithm for Lo which, when given a binary 

string w of length m, prefixes a one to it and generates the structure H,,, where h is 1. w 
written in binary (2” <h < 2”+ ’ ). N ow compute the result of qz on Hh, and answer yes 

if and only if it evaluates to true. By Corollary 3.3, this happens exactly when T,, kqo. 

But since )/ Hh II = h, the time required for the entire algorithm is O(h’)=O(2’“): 

a contradiction. 0 

4. Adding numbers on complete binary trees 

4.1. Representation of numbers 

With some further definitions, we shall make a precise representation of numbers by 

means of invariant subsets on complete unordered binary trees. 

If m is a number between 0 and 2h- 1, let the binary expansion of m be denoted 

simply as 

where leading zeros are included. For 0 d i < h, let the levels of the tree Th be denoted 

by L,={u~VId(u)=i}, and note that ILiI=2’. 

Definition 4.1. For all m = b,_ 1 . bo, let 

p(m) = u { Li I bi = 1 } represent m on T, . 

The invariant subset p(m) has the nice property 

Ip(m)I=C(bi.2’)=m. 



90 S. Lindell 

Fig. 3. 

In particular, p(O)=pI, p(l)= {root} and ~(2~- l)= V. In Fig. 3, the open circles 

illustrate an example for p(5). 

Our first task is to show that addition can be defined inductively using this binary 

representation. Before proceeding, it will be instructive to consider again the class of 

structures H as defined in Definition 3.1. By identifying each i in Hh with Li in Th and 

vice versa, we can think of numbers between 0 and 2h-’ in binary on Hh by adopting 

the convention that any binary number m= bh_ 1.. . b,, can be used to talk about the 

unary relation on Hh: 

m(i)=true o bi=l, iE{O, l,..., h-l}. 

Similarly, identify 0 and 1 with the Boolean values false and true, respectively. 

4.2. Addition 

With the preceding notation, we can express the ordinary schoolbook addition 

algorithm which adds m to n in binary with a carry-in o. The carry bits are written 

recursively on H as 

carry(i) = [m(i) A n(i)] v 

[m(i) v n(i)] A [carry(i- 1) v [(i=zero) A o]], 

where o takes the place of carry(- l), the incoming carry for the least significant bit. 

Once the carry bits are known, it is a simple matter to calculate the bitwise sum: 

sum(i) = m(i) 0 n(i) 0 [carry(i- 1) v [(i=zero) A o]], 

where 0 is the symbol for the exclusive-or. These equations reflect addition by the 

familiar binary full-adder with a rippled carry. Hence, the formulas above define 

a query on H satisfying 

Hh k sum(i; m, n, 0) 0 (m+n+o)(i). 

With exactly the same idea we can express addition inductively on T= { Th 1 h > l}. 

This means that given the representations, p(m), p(n) and o, of two numbers m, n and 

a carry-in o, we will calculate the representation p(m + n + o) of their sum (m + n + 0). 
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Lemma 4.2. The unary query sum(x; M, N, 0) defined on Th as satisfying 

{xIT,bsum(x; 0&p(n), o)}=p(m+n+o), 

oE{fulse, true}, m, nE{O, . . . . 2h-1} 

is inductive (remember that 0 is false and 1 is true). 

Proof. Let M and N be unary predicates for p(m) and p(n) respectively, and let 0 be 

a nullary predicate for the carry-in (0 is interpreted as true iff there is a carry-in). 

Using the standard schoolbook method for addition, the following formulas define the 

bitwise carry and sum: 

carry(x)=[M(x) A N(x)] v 

CM(x) v N(x)1 A CC(~YMY, 4 A carry(~)I v C(x=root) A 011, 

sum(x)= M(x) @ N(x) 0 [[(3y)E( y, x) A carry”(y)] v [(x=root) A 0]] . 

Since the inductive queries are closed under composition, sum is inductive. 0 

5. Calculating sizes inductively on complete binary trees 

In this section, we finish our results and show that there is an inductive way to 

calculate the size of any subset of a complete binary tree, even though we cannot count 

in an enumerative fashion. 

The idea is to produce a unary query which, when given any subset U of a complete 

binary tree, calculates p( 1 VI), the invariant set representing the cardinality of U. This 

will then satisfy the requirements of Definition 0.1. For instance, for any subset 

consisting of exactly five elements, the result would look like Fig. 3. Recall that we 

write U, the actual parameter for the arbitrary subset, on the right-hand side of 

a semicolon. 

Theorem 5.1. Let R be a wary predicate symbol. Then the query @(x, R) for the 

signature {E, root, R} dejned on every complete binary tree Th by 

{vt Thk@(v; U)}=P(tU\), vU~lT,,l 

is an inductive sizer. 

Proof. The set equation which defines @ clearly satisfies the constraints of Definition 

0.1 for being a sizer since p (/ U I) is unique for each choice of ( U (. To show that @ is 

inductive, the idea is to use a binary relation Q( y, z) which tags each node y with the 

unary relation Q, = {z ( Q( y, z)}. If we intend Q, to be the invariant subset representing 

the number of nodes below y which satisfy U, 



92 S. Lindell 

then the idea is to calculate Q( y, z) recursively up the tree from the leaves to the root. 

We do this by tagging each parent with the sum of the tags of its children (if any) 

together with a 1 or 0 depending on whether or not U holds at the parent. We cannot 

choose the order of summation for the two children, but this does not matter since 

addition is commutative. After h iterations, Qr,,, will represent the total number of 

nodes in the tree satisfying U. At each stage, the induction passes along information at 

each node as to the size of the subset seen so far (below it) to its parent. Define the 

formula @ with recursion variable Q and formal unary parameter R: 

@(Y,z, Q;R)= 

Formula Comments 

(3u)(3v)Cu#u A E(y, u) A E(Y, VI If u and u are the children of y, 

A sum@; QU, QD, R(y)1 then #y:= #a+ #u+R(y). 

” W)C1WY, u) If y is a leaf, 

A z=root A R(y)] then #y:= R(y). 

Here #x is an abbreviation for 1 QXl and R(y) is identified with 1 if R(y) holds, and 

with 0 otherwise. The last line of the formula tags each leafy with a 1 if and only if y is 

in R; otherwise, it is tagged with a 0. The first line says that u and u are the two 

children of an internal node y. The middle line tags y with the tag of u plus the tag of u, 

plus an additional 1 if y is in R. 
It is simple to verify by induction on the levels of the tree that, for all subsets U, and 

for all y, {z I @“( y, z; U)} is an invariant subset satisfying 

I{Zl@m(Y, z; ~)}I=l{wbYlw~U)I. 

Therefore. 

{zl@m(~oo4 z; ~)}=P(lw 

is the desired query. But we are not done because, strictly speaking, @(y, z, Q; U) is not 

a Q-positive formula since Q appears negatively in sum(z; Q”, Q”, U(y)) for the 

exclusive-or operation. To solve this problem, we monotonize the induction by adding 

a unary predicate done( y) and delay evaluation of # y until all the children of y satisfy 

done. This means that Q, will remain empty until the stage at which it attains its final 

value, ensuring that the induction determined by @ is monotone. We can then appeal 

to the result in [8], where it is shown that on finite structures the fixed point of any 

monotone induction is in fact inductive. Cl 

6. Conclusion 

Once we have shown that sizes of unary relations can be calculated inductively on 

complete binary trees, similar proof techniques allow us to calculate the cardinality of 
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binary relations and, indeed, relations of any arity. The idea (for a binary relation R) is 

to calculate the size of the unary relation { y 1 R(x, y)} for each node x 

using Theorem 5.1. Then just recursively sum the n,‘s over all nodes x in the binary 

tree in the same manner. It gets messy because the size may be large enough to require 

two digits, necessitating a fancier two-digit sum query, and we leave the details to the 

reader. 

And once we have shown that addition is inductive on the class of complete binary 

trees, it is not difficult to show that other arithmetic operations such as multiplication 

are also inductive since they can be defined recursively from addition. Hence, 

size calculation and arithmetic operations are inductive 

on the class of complete binary trees. Yet by Theorem 3.4 

IND # PTIME 

on the class of complete binary trees. Therefore, we can conclude that 

inductive size and arithmetic calculation + IND = PTIME. 

This means that the calculation of cardinality does not require the full power that an 

ordering has to offer. But there is still a broader question which has not been 

answered. The addition of ordering to fixed-point logic is unsatisfactory, primarily, 

because it introduces formulas which do not determine queries (isomorphism invari- 

ant) on the original unordered structure. But is there any isomorphism invariant 

operation which can be added to fixed-point logic so that the resulting logic captures 

all of the polytime queries? Loosely speaking, the question is: 

Is there a logic for PTIME? 

This question is equivalent to knowing if PTIME is recursively enumerable, and has 

also been raised in [3] and [7]. 

One possibility is to include counting into fixed-point logic as in [ll], where it is 

proposed to form a two-sorted structure from the original structure A by adding an 

additional domain of numbers 

1% 1, 2, “.> II A II -I> 

of the same size with the usual successor relation. The only connection between the 

two domains are counting quantifiers which are used like 
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where i ranges over the number domain. On the surface, this appears to only allow 
one to calculate cardinalities, e.g. 

(3) [(3i x’s) q(x) A (3 x’s) l)(x)] 

says that the cardinalities of the subsets determined by q and $ are equal. But since 
formulas can contain both regular variables x, y, z, . . . and number variables i, j, k, . . . 
it is possible to create inductions which use both simultaneously: 

cp(i, x, S)-(Vy)S(i-1, y) v (3 z’s)(z#z). 

In particular, this is an example of an induction whose length is always 11 A 11, even with 
no relations on the structure. Let us denote this class of queries by IND + counting. In 
fact, on the class of complete binary trees, it is easy to show that 

IND + counting = PTIME. 

The question of whether or not the above identity holds on the class of all (unordered) 
structures was recently answered in [2], showing that fixed-point logic augmented by 
full counting is not all of polynomial time. 

Acknowledgment 

This work comes from the author’s dissertation. He thanks both of his advisors, 
Sheila Greibach and Yiannis Moschovakis, for their time and patience. Additional 
appreciation is expressed to Neil Immerman for the useful discussions which helped 
clarify some of the consequences of these results, and to the referees for indicating the 
need for more concise proofs and motivational material. 

References 

[l] A.V. Aho and J.D. Ullman, Universality of data retrieval languages, in: Proc. 6fh Symp. on the 
Principles of Programming Languages (1979) 110-l 17. 

[2] J. Cai and N. Immerman, An optimal lower bound on the number of variables for graph identifica- 

tion, in: Proc. 30th Ann. Symp. on the Foundations of Computer Science (1989) 612-617. 
[3] A. Chandra and D. Harel, Structure and complexity of relational queries, J. Comgut. System. Sci. 25(l) 

(1982) 99-128. 
[4] H.B. Enderton, A Mathematical Introduction to Logic (Academic Press, New York, 1972). 
[S] R. Fagin, Generalized first-order spectra and polynomial time recognizable sets, in: R. Karp, ed., 

Complexity of Computation, Proc. SIAM-AMS #I (1974) 43-73. 
[6] R. Fraisse, Course in Mathematical Logic, Vol. 1: Relation and Logical Formula (D. Louvish, 

translation), 1973. 
[7] Y. Gurevich, Logic and the challenge of computer science, in: E. Borger, ed., Current Trends in 

Theoretical Computer Science (Computer Science Press, Rockville, MD). 

[S] Y. Gurevich and S. Shelah, Fixed-point extensions of first-order logic, Ann. Pure Appl. Logic 32 (1986) 
265-280. 



Analysis of fixed-point queries on binary trees 95 

[9] J. Hartmanis and R.E. Stearns, On the computational complexity of algorithms, Trans. Amer. Math. 

Sot. 117 (1965) 285-306. 

[lo] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation 

(Addison-Wesley, Reading, MA, 1979). 

[ll] N. Immerman, Relational queries computable in polynomial time, Inlorm. and Control, 68 (1986) 

86-104. 

[12] S. Lindell, The logical complexity of queries on unordered graphs, Ph.D. Dissertation, University of 

California, Los Angeles, 1987. 

[13] Y.N. Moschovakis, Elementary Induction on Abstract Structures (North-Holland, Amsterdam, 1974). 

[14] M. De Rougemont, Second-order and inductive definability on finite structures, Ph.D. Dissertation, 

University of California, Los Angeles, 1983. 

[lS] M.Y. Vardi, Complexity of relational query languages, in: Proc. 14th ACM Symp. on the Theory of 

Computing (1982) 137-146. 


