An analysis of fixed-point queries on binary trees

Steven Lindell
Department of Mathematics, Haverford College, Haverford, PA 19041-1392, USA

Communicated by A. Meyer
Received June 1988
Revised June 1989

Abstract

Lindell, S., An analysis of fixed-point queries on binary trees, Theoretical Computer Science 85 (1991) 75-95.

The presence of ordering appears to play an essential role in the logical expressibility of polynomialtime queries on finite structures. By examining the expressibility and complexity of inductive queries on the class of complete unordered binary trees, we are able to show that the ability to calculate cardinality is strictly less powerful than the assumption of order.

0. Introduction

0.1. Motivation

This paper studies the expressibility of queries in fixed-point logic and the complexity of their evaluation on complete binary trees. The primary purpose of this investigation is to demonstrate that the addition of a nonlogical ordering provides an enhancement strictly beyond that of merely counting. This may enable us to understand more clearly the distinction between tractable (polynomial-time) computation and the inductive (fixed-point) queries. The reader who is unfamiliar with the idea of a query on a class of finite structures should skip ahead to Section 1 before proceeding.

On finite structures, it is well-known that all inductive queries (IND) are poly-nomial-time computable (PTIME) [3]:

$$
\mathrm{IND} \subseteq \mathrm{PTIME} .
$$

A proof follows directly from the semantic definition of evaluating fixed points (see

Section 1). But the converse fails miserably, and IND \neq PTIME. For example, the query

$$
\|G\| \text { is even }
$$

to determine whether or not a given graph has an odd or even number of vertices is not inductive [3]. A proof from a compactness argument can be found in [12]. A variety of other seemingly simple counterexamples share the property that they ask something about sizes. Examining their proofs reveals that known techniques (Ehrenfeucht-Fraisse games) rely on the inability of inductive queries to calculate the size of the domain (or some subdomain thereof). Examples appear in [12].

If we permit our formulas access to an underlying total ordering of the domain (e.g. by using the actual binary representation of a finite structure), then it is possible to count (see below). But in fact adding < to IND allows us to express all polynomialtime queries [11, 15].

$$
\text { PTIME } \subseteq \operatorname{IND}(<) .
$$

The proof is a direct simulation of Turing machines that operate in polynomial time, with the ordering used crucially to keep track of the tape's contents, to say that one step follows another, and to read the input tape (which contains a binary encoding of the input structure).

Unfortunately, PTIME $\neq \mathrm{IND}(<)$, but only because there are also formulas in $\operatorname{IND}(<)$ which express things that are not queries. For instance, consider the sentence

$$
(\exists x \in V)(\exists y \in V)[x<y \wedge E(x, y)]
$$

on unordered graphs with edge relation E and vertex set V. The result depends on the underlying representation of the graph (i.e. how the members of V are ordered), something which is specifically excluded from being a query. In summary,

$$
\mathrm{IND} \subset \mathrm{PTIME} \subset \mathrm{IND}(<),
$$

with all inclusions strict. But on those structures which contain a built-in linear order as one of their relations, inductive queries do capture all of polynomial time. Simply stated,

$$
\mathrm{IND}=\text { PTIME } \text { for } \text { ordered structures. }
$$

0.2. Calculating sizes on finite structures

In the presence of a built-in linear order, let us demonstrate how fixed-point queries can be used to calculate the size of any collection of elements U drawn from the domain, $0, \ldots, n-1$. First make an induction which exhausts all the elements of the domain, relying on the totality of the ordering. Then use this enumeration to count in unary the number of elements in U, using the ordering for the digit places. See, for

Fig. 1.
instance, Fig. 1 for $n=5$. Employ the following inductions simultaneously and let $\sup (P)$ stand for one more than the largest current element in P :

$$
\begin{array}{ll}
\phi(x, P) \equiv(\forall y)[y<x \rightarrow P(y)] & P \text { does the enumerating, } \\
\phi(x, Q) \equiv(\forall y)[y<x \rightarrow Q(y)] \wedge U(\sup (P)) & Q \text { does the counting. }
\end{array}
$$

When the induction is complete, $\sup (Q)=|U|(=3$ in Fig. 1). Unfortunately, $\sup (P)$ cannot be written positively in P (see Section 1 for definition), so an alternate method is required if we do not wish to appeal to [8].

Let $R(x, y)$ denote that there are more than y elements in U less than or equal to x, i.e.

$$
R(x, y) \Leftrightarrow|\{z \in U \mid z \leqslant x\}|>y .
$$

In particular,

$$
R(n-1, i) \Leftrightarrow i<|U| .
$$

Then the following formula (although confusing) defines R inductively:

$$
\phi(x, y, R) \equiv(\exists z<x)[R(z, y) \vee[R(z, y-1) \wedge U(x)]],
$$

where we take $R(z, y-1)$ to be vacuously true when $y=0$, even when no z exists. Precisely, $R(z, y-1) \equiv(y=0) \vee(\exists w)[w S y \wedge R(z, w)]$, where $u S v$ if and only if v is the successor of u. At the fixed point

$$
\sup \left\{y \mid \phi^{\infty}(n-1, y)\right\}=|U|,
$$

where sup is defined as one more than the maximal element. Again we require negation at this point, but the fixed-point queries are closed under negation [11].

Of course, counting is a polynomial-time query and, hence, inductive on ordered structures. The purpose of the above discussion was to provide us with concrete examples of how to count with an ordering. But is calculating sizes all the ordering allows us to do? Be aware that counting is defined as the act of ascertaining the total number of elements in a collection by noting one after another. This implies a calculation of size by enumeration. Enumeration allows one not only to determine the cardinality of a set, but also to examine each element in turn. On the other hand, methods which determine the size of a collection of elements (by no specific means) must certainly distinguish among different cardinalities but may provide no other tangible benefit.

One of the research interests behind this paper was to try to understand how an induction could be used to calculate sizes of arbitrary subsets without necessarily
counting. This weaker notion can be formalized as a query with one unary relation argument, R, which always returns a result dependent only on the size of the subset under consideration. Because U is an actual parameter of the query which is not part of the structure, we write it on the right-hand side of a semicolon.

Definition 0.1. Let K be a class of structures, and R, a new unary predicate symbol not in the original signature. The query $\Phi(\bar{x}, R)$ is a sizer on K if for all A in K and all subsets U_{1} and U_{2} of A

$$
\left|U_{1}\right|=\left|U_{2}\right| \Leftrightarrow F_{A}(\forall \bar{a})\left[\Phi\left(\bar{a} ; U_{1}\right) \leftrightarrow \Phi\left(\bar{a} ; U_{2}\right)\right] .
$$

Or, written in a simpler fashion, $\left|U_{1}\right|=\left|U_{2}\right| \Leftrightarrow \Phi^{A}\left(U_{1}\right)=\Phi^{A}\left(U_{2}\right)$.
Interestingly enough, this definition alone is sufficient to prove the result that Φ is always an automorphism invariant set on A.

Fact. Let Φ be a sizer on K. Then for all $A \in K, U \subseteq|A|$, the set $\left\{x \mid \Phi^{4}(x ; U)\right\}$ is invariant on A.

Proof. Let α be any automorphism of A, i.e. $\alpha[A]=A$. Then $\alpha\left[\Phi^{A}(U)\right]=\Phi^{\alpha[A]}(\alpha[U])$ since α is a permutation; and $\Phi^{\alpha[A]}(\alpha[U])=\Phi^{A}(\alpha[U])$ since α is an automorphism. But since $|\alpha[U]|=|U|$, our assumption that Φ is a sizer leads us to the conclusion that $\Phi^{A}(\alpha[U])=\Phi^{A}(U)$. Therefore, $\alpha\left[\Phi^{A}(U)\right]=\Phi^{A}(U)$ for all automorphisms α.

Hence, the result of Φ^{A} is always one of $\|A\|+1$ different invariant sets (there are $\|A\|+1$ possibilities for $|U|$).

0.3. Overview

From the previous discussion, it is tempting to conjecture that the incapability to calculate sizes of arbitrary subsets is the only factor which prevents the inductive queries from encompassing all of the polynomial-time queries in the absence of an ordering.

Conjecture. Let K be a class of finite structures. If there exists an inductive sizer on K, then every polynomial-time query on K is inductive.

We have found a natural counterexample - the class of complete binary trees - which shows that this conjecture is false. In other words, there is more to the ordering than just the ability to calculate sizes.

Intuitively, complete binary trees (without distinguished left and right children) are potentially interesting because their structure falls naturally in between that of a total linear order and that of a totally unordered set. By analyzing inductive computations on the class of complete binary trees we will prove that
there is a sizer \in IND and
there is a PTIME query $\notin \mathrm{IND}$

In other words, although IND \neq PTIME, inductions are capable of calculating cardinalities (although not by counting).

The remainder of this paper is organized into six sections:
Section 1. Background-finite structures, queries, IND and PTIME
Section 2. Coding invariant relations on complete binary trees
Section 3. First Result-finding a polytime query which is not inductive
Section 4. Adding numbers on complete binary trees
Section 5. Second Result-finding an inductive query which calculates sizes
Section 6. Conclusion - arithmetic, counting and logics for PTIME
In the background, Section 1, we discuss finite structures and queries, and present the basic definitions of polynomial-time computability and inductive definability. In Section 2, we develop a succinct representation of all automorphism invariant relations on a complete binary tree. Using this representation we analyze inductive queries on the class of complete binary trees and prove our first main result in Section 3. There we show, in Theorem 3.4, that on the class of complete binary trees there is a polytime query which is not inductive. It is interesting to note that our proof relies on diagonalization. In Section 4, we demonstrate a binary representation of numbers on the levels of a complete binary tree, and use this representation to perform addition. We prove our second main result in Section 5 and show, in Theorem 5.1, that on the class of complete binary trees there is an inductive query which calculates sizes. In the conclusion, Section 6, we note that other arithmetic operations can be performed inductively on complete binary trees. Finally, we elaborate on the connection between this research and a stronger conjecture originally posed in [11] regarding "counting" quantifiers. A negative answer to this leaves open the question of whether there is a logic for PTIME.

1. Background

1.1. Finite structures

We begin by briefly summarizing the notion of finite relational structures and queries upon them. For the necessary background in first-order logic, the reader is referred to the text [4].

Start with a finite list of predicate and constant symbols $L=\left\{R_{1}, \ldots, R_{k}, c_{1}, \ldots, c_{l}\right\}$ called a signature. A finite structure for the signature L,

$$
A=\langle | A\left|, R_{1}^{A}, \ldots, R_{k}^{A}, c_{1}^{A}, \ldots, c_{l}^{A}\right\rangle,
$$

consists of a finite set $|A|$ (called the domain of A), together with relations $R_{1}^{A}, \ldots, R_{k}^{A}$ (each of a specified arity) and constants $c_{1}^{A}, \ldots, c_{t}^{A}$ over $|A|$. We shall drop the superscripts for convenience whenever the context justifies it, and denote the size of A by $\|A\|$. The most common examples of finite structures are directed graphs and binary strings. A directed graph G can be represented as $\langle V, E\rangle$, where V is the set of
vertices of G, and E is the binary edge relation for G. A binary string w can be represented as $\langle B,<, U\rangle$, where B is the finite set $\{1, \ldots,|w|\}$ totally ordered (in the normal order of numbers) by the binary relation $<$, and U is a unary relation which indicates the location of ones and zeros in w. That is, for $i \in B, U(i)$ holds if and only if the i th bit of w is one.

1.2. Queries

A query is a function which assigns to each structure (in a given signature L) a relation (of some fixed arity $k \geqslant 0$) on the domain of that structure in such a way as to be invariant of isomorphism. That is, $q(\bar{x})$ is called a k-ary L-query if for all L structures A and A^{\prime}, and all k-tuples $\bar{a} \in|A|^{k}$ and $\bar{a}^{\prime} \in\left|A^{\prime}\right|^{k}$,

$$
(A, \bar{a}) \cong\left(A^{\prime}, a^{\prime}\right) \quad \Rightarrow \quad F_{A} q(\bar{a}) \Leftrightarrow \vDash_{A^{\prime}} q\left(\bar{a}^{\prime}\right),
$$

where the double turnstile indicates logical satisfaction. For example, this means that the result of a graph query $\left\{\bar{v} \mid F_{G} q(\bar{v})\right\}$ is always independent of any labelling of the vertices of G. If $k=0$, this means that $q \in\{$ false, true $\}$ and, hence, determines a graph property (i.e. q does not change its truth value for an isomorphic copy of G). It is worthwhile noting that the subrestriction of automorphism invariance (following from isomorphism invariance) is vacuous for binary string queries, as all such structures have no nontrivial automorphisms.

1.3. Examples

Queries can be classified according to the syntactical constructs needed for their expression in some logic. Standard examples include first-order formulas, fixed-point formulas, and second-order formulas. Queries can also be classified according to the asymptotic resources required for their computation on some machine model. Standard examples here include logarithmic-space, polynomial-time and polynomialspace on a Turing machine. These resource bounds are essentially model-independent.

First-order logic is a natural language to use for expressing queries on finite structures. For example, the property of graph simplicity can be written as

$$
\theta \equiv(\forall x \in V)(\forall y \in V)[E(x, y) \leftrightarrow E(y, x)] \wedge(\forall z \in V)[\neg E(z, z)] .
$$

θ is true if and only if the binary relation E on vertex set V is a simple graph (symmetric and loop-free). In symbols, letting $G=\langle V, E\rangle$,

$$
F_{G} \theta \text { iff } G \text { is simple. }
$$

Since θ evaluates to either true or false, it is called a Boolean query. Those queries expressible explicitly by first-order formulas are classically called elementary queries [13]. A natural extension of first-order logic is to allow a query to be expressed
recursively by a first-order formula. For example, the transitive closure of a graph whose edges are given by a binary relation P on a vertex set S can be written as

$$
P^{+}(x, y) \equiv P(x, y) \vee(\exists z \subset S)\left[P(x, z) \wedge P^{+}(z, y)\right] .
$$

P^{+}is defined in terms of itself in a first-order fashion. The minimal relation satisfying this recursive definition has the property that

$$
F_{G} P^{+}(u, v) \Leftrightarrow \text { there is a (directed) path from } u \text { to } v \text { in } G .
$$

Since the result of evaluating P^{+}is a binary relation, it is called a binary query. Those queries expressible recursively by first-order formulas we shall call inductive queries (according to classical terminology [13]), and the class of such queries we denote by IND.

1.4. Polynomial-time computability

Problems which can be solved in polynomial time are said to possess a tractable algorithm. For necessary background in computational complexity, the reader is referred to [10].

Not surprisingly, the property of graph simplicity is polynomial-time computable. Also, the transitive closure of a graph is computable in polynomial time. Namely, given a binary encoding of an input graph G, there is a Turing machine which outputs a binary encoding of the transitive closure of G in polynomial time. As a matter of fact, all inductive (and, hence, elementary) queries are computable in polynomial time.

Definition. A query q is polytime if it can be computed by a sequential algorithm which, when given a binary encoding of the finite structure A as input, always outputs a binary encoding of the structure $\left(A, q^{A}\right)$ in at most $\|A\|^{c}$ steps for some uniform c, where $\|A\|$ denotes the size of A.

The class of all polytime queries will be called PTIME.

1.5. Inductive definability

The fact that the transitive closure is not elementary was first shown in [6]. Because of this limitation and similar deficiencies in expressive power, augmenting first-order logic by a fixed-point operator was suggested [1]. This extension was also studied in mathematical logic as a means of formalizing the notion of an inductive definition, but the concern was primarily for fixed infinite structures [13].

This new language permits recursive first-order definitions, as in the previous example of transitive closure. The essential features shown there are:
(1) the free predicate on the left-hand side appears only positively on the right-hand side;
(2) the free variables of both sides must match.

To be formal, let $\varphi(\bar{x}, S)$ be an S-positive first-order formula for the signature L in which \bar{x} is a tuple of free individual variables, S is a free predicate variable not in the signature L (the recursion variable) allowed only to appear positively, and $k=\operatorname{arity}(S)=l e n g t h(\bar{x})$. Over any L-structure A with additional free relation $S_{0} \subseteq|A|^{k}$, $\varphi(\bar{x}, S)$ determines the query

$$
\varphi^{A}\left(S_{0}\right)=\left\{\bar{a} \mid \mathfrak{F}_{A} \varphi\left(\bar{a} ; S_{0}\right)\right\},
$$

which is monotone: $S_{1} \subseteq S_{2} \Rightarrow \varphi^{A}\left(S_{1}\right) \subseteq \varphi^{A}\left(S_{2}\right)$ (note that the arity of $\varphi^{A}(S)$ is k). Hence (dropping the superscript A for notational clarity), the stages of $\varphi, \varphi^{\circ}=\emptyset$, $\varphi^{i+1}=\varphi\left(\varphi^{i}\right)$ which result from applying φ repeatedly to the empty set form a nondecreasing chain which reaches a fixed point

$$
\emptyset=\varphi^{0} \subseteq \varphi^{1} \subseteq \cdots \subseteq \varphi^{i} \subseteq \cdots \subseteq \varphi^{\infty}
$$

in at most $\|A\|^{k}$ steps since the sizes of the φ^{i} are increasing and bounded by the size of $|A|^{k}$. This limit is the least solution to satisfy the equation

$$
S=\varphi(S) .
$$

Hence, repeated application of φ leaves φ^{∞} unchanged, implying that the above chain of iterates satisfies $\varphi^{n}=\varphi^{n+1}=\varphi^{\infty}$ for all $n \geqslant\|A\|^{k}$. Clearly, φ^{∞} does not depend on S since the fixed-point operation binds the variable S. Hence, φ^{∞} is a query defined on every L-structure. The isomorphism invariance of φ^{n} and, hence, of φ^{∞}, follows from the isomorphism invariance of φ (by induction on n). This fact will be used crucially in Corollary 3.3 .

The inductive queries are defined as projections (by constants) of fixed points.
Definition. Let $\varphi(\bar{x}, S)$ be an S-positive first-order formula for the signature $L \cup\{S\}$, with $S \notin L$ and $\operatorname{arity}(S)=\operatorname{length}(\bar{x})$. If \bar{c} is a tuple of constant symbols in L and \bar{y} is a tuple of variables such that length $(\bar{c})+$ length $(y)=$ length $(x) \geqslant 0$, then the query $\varphi^{\infty}(\bar{c}, \bar{y})$ for the signature L obtained by instantiating some of the variables in the fixed-point query $\varphi^{\infty}(\bar{x})$ by constants is an inductive query.

It should be clear that the fixed-point semantics gives us a polynomial-time algorithm for computing inductive queries. In addition, inductive queries satisfy nice closure properties. For any signature L containing at least one constant symbol, the class of inductive queries on finite L-structures is closed under composition (nested recursion), all positive first-order operations [13], and negation [11]. These closure properties will not hold if our signatures do not have a constant symbol since nonelementary fixed points must have nonzero arity (and, therefore, a Boolean query such as connected would be inexpressible). The reader is referred to [13] for a thorough treatment of positive elementary induction.

2. Coding invariant relations

2.1. Preliminary definitions

Here are the definitions and notation we will be using for complete binary trees in this paper (left and right children are not distinguished).

Definition 2.1. Let $T_{h}=\langle V, E, r\rangle$ be the complete binary tree of height h and size $2^{h}-1$ with node set V, binary parent relation E, and root r. Let $T=\left\{T_{h} \mid h \geqslant 1\right\}$. For instance, Fig. 2 has height $h=4$ and size $2^{4}-1=15$.

The transitive closure of E yields a partial order $<$ in which $u<v \Leftrightarrow u$ is a proper descendant of $v(v$ is an proper ancestor of u), and we write $u \| v$ to mean that $u \nless v$ and $v \leqslant u$ (u and v are incomparable). Note that $r \geqslant x$ for all x in V. In Fig. 2, $a \| b, b<c$ and $a<c$.

2.2. Depths, least common ancestors and automorphisms

Let $u \wedge v$ denote the least common ancestor of u and v, and define $d(v)$ as the depth of v (its distance from the root). Note that $d(r)=0$. In Fig. 2, $a \wedge b=c, a \wedge c=c$, $b \wedge c=c, d(a)=3, d(b)=2$ and $d(c)=1$.

Since T_{h} is a complete binary tree, it should be clear (see Fig. 2) that every one of its automorphisms can be generated by the transposition of sibling subtrees. Extending automorphisms to k-tuples of V

$$
\alpha\left(\left\langle v_{1}, \ldots, v_{k}\right\rangle\right)=\left\langle\alpha\left(v_{1}\right), \ldots, \alpha\left(v_{k}\right)\right\rangle
$$

induces an equivalence relation on tuples: $\bar{v} \sim \bar{v}^{\prime}$ iff there is an automorphism α such that $\alpha(\bar{v})=\bar{v}^{\prime}$. For instance, in Fig. 2, $\langle a, h\rangle \sim\left\langle a^{\prime}, h^{\prime}\right\rangle$ via the automorphism which also exchanges c and c^{\prime}.

We now present two facts which will be used to succinctly describe tuples. Our first fact says that all automorphisms preserve depth and are distributive over the least common ancestor operation.

Fact. 2.2. Let α be an automorphism. Then for all v, v_{1}, v_{2},

$$
\begin{aligned}
& d(v)=d(\alpha(v)) \\
& \alpha-\left(v_{1} \wedge v_{2}\right)=\alpha\left(v_{1}\right) \wedge \alpha\left(v_{2}\right)
\end{aligned}
$$

Fig. 2.

We can see clearly in Fig. 2 that $d(a)=d\left(a^{\prime}\right), d(b)=d\left(b^{\prime}\right), d(c)=d\left(c^{\prime}\right)$ and that $a^{\prime} \wedge b^{\prime}=c^{\prime}$.

Our second fact says that any two nodes of the same depth are equivalent via some automorphism which fixes their least common ancestor.

Fact 2.3. Suppose v and v^{\prime} are of the same depth. Then there exists an automorphism α that moves v to v^{\prime} and fixes every node which is not strictly below their least common ancestor. In particular, α fixes $v \wedge v^{\prime}$:

$$
\begin{array}{ll}
\alpha(v)=v^{\prime}, & d(v)=d\left(v^{\prime}\right), \\
\alpha(u)=u, & \forall u \nless\left(v \wedge v^{\prime}\right) .
\end{array}
$$

We can see clearly in Fig. 2 that any automorphism which maps a to a^{\prime} also fixes $a \wedge a^{\prime}=r$ (but the root must be fixed in any case).

2.3. Coding tuples

It follows that any node v can be described uniquely (up to automorphism) by its depth

$$
v \sim v^{\prime} \Leftrightarrow d(v)=d\left(v^{\prime}\right),
$$

i.e. the depth of v is a complete automorphism invariant for v.

Similarly, the triple of integers

$$
\left\langle d\left(v_{1}\right), d\left(v_{1} \wedge v_{2}\right), d\left(v_{2}\right)\right\rangle
$$

defines a complete automorphism invariant for any pair of nodes $\left\langle v_{1}, v_{2}\right\rangle$. It is slightly more complicated because automorphisms also preserve the depths of least common ancestors. Refer to the three examples $\langle c, c\rangle \sim\left\langle c^{\prime}, c^{\prime}\right\rangle,\langle b, c\rangle \sim\left\langle b^{\prime}, c^{\prime}\right\rangle$ and $\langle a, b\rangle \sim\left\langle a^{\prime}, b^{\prime}\right\rangle$ in Fig. 2.
Extending this idea to k-tuples requires the depths of all the least common ancestor pairs.

Definition 2.4. Let

$$
\begin{aligned}
& \left\langle v_{1}, \ldots, v_{k}\right\rangle^{*}=\left\langle d\left(v_{i} \wedge v_{j}\right)\right\rangle_{i \leqslant j} \\
& \quad=\left\langle d\left(v_{1} \wedge v_{1}\right), \ldots, d\left(v_{1} \wedge v_{k}\right), \ldots, d\left(v_{i} \wedge v_{i}\right), \ldots, d\left(v_{i} \wedge v_{k}\right), \ldots, d\left(v_{k} \wedge v_{k}\right)\right\rangle .
\end{aligned}
$$

Denote this invariant by \bar{v}^{*} and its length by $k^{*}=k(k+1) / 2$. The length is important because it depends only on k and not on the size or depth of the tree (we saw previously that $1^{*}=1$ and $2^{*}=3$). The following lemma proves that \bar{v}^{*} is a complete automorphism invariant for \bar{v}.

Lemma 2.5. For all k-tuples \bar{v} and $\bar{v}^{\prime}, \bar{v}^{*}=\bar{v}^{*} \Leftrightarrow \bar{v} \sim \bar{v}^{\prime}$.

Proof. (ϵ) Obvious from Fact 2.2. $(\Rightarrow$) By induction on k. The basis $k=1$ follows immediately from Fact 2.3. For the induction step, consider $\bar{v}^{*}=\bar{v}^{*}$ for $k>1$. Let $u=v_{1} \wedge \ldots \wedge v_{k}$ and $u^{\prime}=v_{1}^{\prime} \wedge \ldots \wedge v_{k}^{\prime}$. Observe that

$$
d(u)=d\left(v_{1} \wedge \ldots \wedge v_{k}\right)=\min _{i, j} d\left(v_{i} \wedge v_{j}\right)
$$

and

$$
d\left(u^{\prime}\right)=d\left(v_{1}^{\prime} \wedge \ldots \wedge v_{k}^{\prime}\right)=\min _{i, j} d\left(v_{i}^{\prime} \wedge v_{j}^{\prime}\right) .
$$

Since $d\left(v_{i} \wedge v_{j}\right)=d\left(v_{i}^{\prime} \wedge v_{j}^{\prime}\right)$ by hypothesis, this forces $d(u)=d\left(u^{\prime}\right)$. So, by Fact 2.3 , we can find an automorphism mapping u to u^{\prime} which prescrves all the depth numbers in \bar{v}^{*}. Hence, we might as well assume that $u=u^{\prime}$ from the start. Now, there are two cases.

Case I: If some $v_{i}=u$, then $d\left(v_{i}\right)=d(u)=d\left(v_{i}^{\prime}\right)$ implies $v_{i}^{\prime}-u$ also. By Definition 2.4,

$$
\left\langle v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}\right\rangle^{*}=\left\langle v_{1}^{\prime}, \ldots, v_{i-1}^{\prime}, v_{i+1}^{\prime}, \ldots, v_{k}^{\prime}\right\rangle^{*}
$$

since the equality constraints in the hypothesis $\left(\bar{v}^{*}=\bar{v}^{\prime *}\right)$ are a superset of those required. So by induction hypothesis there is an automorphism β which witnesses that

$$
\left\langle v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}\right\rangle \sim\left\langle v_{1}^{\prime}, \ldots, v_{i-1}^{\prime}, v_{i+1}^{\prime}, \ldots, v_{k}^{\prime}\right\rangle .
$$

But since all these nodes are descendants of u, it is easy to see that β must fix $u=v_{i}$ (i.e. $\left.\beta\left(v_{i}\right)=v_{i}^{\prime}\right)$. Hence, $\beta(\bar{v})=\bar{v}^{\prime}$, and β also witnesses $\bar{v}^{\prime} \sim \bar{v}$.

Case II: If for all $i, v_{i}<u$, then let u_{1} and u_{2} be the two children of u. We can partition the set of indices $I=\{1, \ldots, k\}$ into two nontrivial disjoint subsets $I_{1}=\left\{i \mid v_{i} \leqslant u_{1}\right\}$ and $I_{2}=\left\{i \mid v_{i} \leqslant u_{2}\right\}$ such that $I_{1} \cup I_{2}=I$ and $I_{1} \cap I_{2}=\emptyset$; and similarly, with I_{1}^{\prime} and I_{2}^{\prime} defined from the v_{i}^{\prime}. Observe that if we are given any pair of nodes v_{i} and $v_{j}, d\left(v_{i} \wedge v_{j}\right)=d(u)$ iff i and j lie in distinct partitions of I. Similarly, for any pair of nodes v_{i}^{\prime} and v_{j}^{\prime}. Since $d\left(v_{i} \wedge v_{j}\right)=d\left(v_{i}^{\prime} \wedge v_{j}^{\prime}\right)$ by hypothesis, this implies that $I_{1}=I_{1}^{\prime}$ (it may be necessary to automorphically transpose u_{1} and u_{2} to ensure that v_{1}^{\prime} and v_{1} lie in the same subtree). Now use induction to find an automorphism γ_{1} such that $\gamma_{1}\left(v_{i}\right)=v_{i}^{\prime}$ for each $i \in I_{1}$ and γ_{1} fixes the subtree of u_{2} (by Fact 2.3). Similarly, find an automorphism γ_{2} such that $\gamma_{2}\left(v_{i}\right)=v_{i}^{\prime}$ for each $i \in I_{2}$ and γ_{2} fixes the subtree of u_{1}. So the composition $\gamma_{1} \circ \gamma_{2}(\bar{v})=\bar{v}^{\prime}$ witnesses $\bar{v} \sim \bar{v}^{\prime}$.

2.4. Compacting relations

Automorphisms can be extended naturally to act on entire sets $\alpha[R]=\{\alpha(\bar{x}) \mid \bar{x} \in R\}$.
Definition 2.6. A relation $R_{0} \subseteq\left|T_{h}\right|^{k}$ is invariant on T_{h} if it is fixed by every automorphism, i.e. for all automorphisms α of T_{h},

$$
\alpha\left\lceil R_{0}\right\rceil=R_{0} .
$$

For instance, the binary parent relation E of T_{h} is invariant by definition.

Since invariant relations are simply composed of equivalence classes of tuples, we can succinctly describe them using the complete automorphism invariants for tuples explained previously. We simply extend the star operator to relations.

Definition 2.7. Let $R_{0}^{*}=\left\{\bar{v}^{*} \mid \bar{v} \in R_{0}\right\}$.
This provides a unique encoding of invariant relations (R_{0}^{*} simply tells which equivalence classes belong to R_{0}). The next fact follows immediately from Lemma 2.5.

Fact 2.8. If R_{1} and R_{2} are invariant relations, then

$$
R_{1}=R_{2} \Leftrightarrow R_{1}^{*}=R_{2}^{*}
$$

3. Separating IND from PTIME on complete binary trees

In this section, we show that the class of inductive queries is strictly contained within the class of polytime queries on the class of complete unordered binary trees. Consider an auxiliary class of structures.

Definition 3.1. Let $H=\left\{H_{h} \mid h \geqslant 1\right\}$, where

$$
H_{h}=\langle\{0, \ldots, h-1\}, \text { Succ, zero }\rangle,
$$

Succ is a binary successor relation satisfying $\operatorname{Succ}(i, j) \Leftrightarrow i+1=j, 0 \leqslant i, j \leqslant h-1$, and zero is a constant interpreted as being the unique element with no predecessor (i.e. 0). Note that every relation on H_{h} is invariant since H_{h} has no nontrivial automorphisms.

Combined with the compact encoding of invariant relations given by Definition 2.7, we see that if R_{0} is a k-ary relation on T_{h}, then R_{0}^{*} will be a k^{*}-ary relation on H_{h} (since $d(v) \in\{0, \ldots, h-1\}$ for all $v \in T_{h}$). Hence, every invariant relation on T_{h} is in one-to-one correspondence with a wider relation on H_{h} whose width does not depend on h. Since this is an exponentially smaller structure, we can "store" invariant relations on binary trees very compactly.

Because each stage of an induction is an invariant relation, it will be possible to rewrite inductions on complete binary trees T_{h} and simulate them on exponentially smaller structures H_{h}. In other words, given a first-order formula $\varphi(\bar{x}, S)$, we will syntactically construct a first-order formula $\varphi^{*}\left(\bar{l}, S^{*}\right)$ such that, uniformly for all h, the computation

$$
S^{*} \leftarrow \emptyset, \quad S^{*} \leftarrow\left\{\bar{\imath} \mid H_{h} \vDash \varphi^{*}\left(\bar{\imath}, S^{*}\right)\right\}
$$

will preserve the semantics of the computation

$$
S \leftarrow \emptyset, \quad S \leftarrow\left\{\bar{x} \mid T_{h} \vDash \varphi(\bar{x}, S)\right\} .
$$

Table 1

Original	Translation	Reason
root *	zero	$d($ root $)=0$
$[x=y]^{*}$	$i=j=k$	$d(x)=d(x \wedge y)=d(y)$
$[E(x, y)]^{*}$	Sucr $(i)=\operatorname{Succ}(j)=k$	$d(x)+1=d(x \wedge y)+1=d(y)$
$[S(\bar{x})]^{*}$	$S^{*}\left(i_{1}, \ldots, i_{m^{*}}\right)$	arity $y^{*}(S)=\operatorname{arity}\left(S^{*}\right)$
$[\neg \phi]^{*}$	$\neg \phi^{*}$	$\bar{R}^{*}=\overline{R^{*}}$
$\left[\psi_{1} \wedge \psi_{2}\right]^{*}$	$\psi_{1}^{*} \wedge \psi_{2}^{*}$	$\left[R_{1} \cap R_{2}\right]^{*}=R_{1}^{*} \cap R_{2}^{*}$
$[(\exists x) \theta(x, \bar{y})]^{*}$	$\left(\exists i_{0}, \ldots, i_{n}\right) \theta^{*}(\bar{i}, \bar{j})$	$(x, \bar{y})^{*}=\langle d(x)\rangle^{\wedge}\left\langle d\left(x \wedge y_{l}\right)\right\rangle_{I=1, \ldots, n} \hat{y}^{*}$

Lemma 3.2. Let S be a predicate symbol of arity m, and let S^{*} be a predicate symbol of arity m^{*}. If $\varphi(\bar{x}, S)$ is an S-positive first-order formula for the signature $\{E$, root, $S\}$, then there exists an S^{*}-positive first-order formula $\varphi^{*}\left(\bar{i}, S^{*}\right)$ for the signature $\left\{S u c c, z e r o, S^{*}\right\}$ such that for all invariant relations S_{0} on T_{h}

$$
\left\{\bar{x}_{0} \mid T_{h} \vDash \varphi\left(\bar{x}_{0}, S_{0}\right)\right\}^{*}=\left\{\bar{l}_{0} \mid H_{h} \vDash \varphi^{*}\left(\bar{l}_{0}, S_{0}^{*}\right)\right\}
$$

Proof. Construct φ^{*} inductively from the syntax of φ by Table 1 , and think of the variables i, j, k as representing $d(x), d(x \wedge y), d(y)$, respectively, where x, y, z are variables interpreted as ranging over $\left|T_{h}\right|, i, j, k$ are variables interpreted as ranging over $\left|H_{h}\right|=\{0, \ldots, h-1\}$, and \bar{y} is an n-tuple of variables.

It should be clear from the syntax that φ^{*} is always an S-positive first-order formula. It remains to be shown that φ^{*} preserves the semantics of φ, i.e. for all invariant relations S_{0}

$$
\left[\varphi^{T_{n}}\left(S_{0}\right)\right]^{*}=\left(\varphi^{*}\right)^{H_{h}}\left(S_{0}^{*}\right)
$$

(this is just a shorthanded rewriting of the conclusion). We accomplish this by applying the reasons shown in Table 1.

The basis case for the constant is obvious, as for all h

$$
\left[(\text { root })^{T_{h}}\right]^{*}=d(\text { root })=0=(\text { zero })^{H_{h}} .
$$

The basis case for the equality relation follows because if x is equal to y, then $x=x \wedge y=y$ are all of the same depth. Hence,

$$
\begin{aligned}
\left\{\langle x, y\rangle^{*} \mid T_{h} \vDash(x=y)\right\} & =\{\langle d(x), d(x \wedge y), d(y)\rangle \mid x \text { equals } y\} \\
& =\{\langle i, i, i\rangle \mid 0 \leqslant i \leqslant h-1\} \\
& =\left\{\langle i, j, k\rangle \mid H_{h} \vDash(i=j=k)\right\} .
\end{aligned}
$$

The basis case for the edge relation follows because if x is the parent of y, then the depths of x and $x \wedge y$ are one less than the depth of y. Hence,

$$
\begin{aligned}
\left\{\langle x, y\rangle^{*} \mid T_{h} \vDash E(x, y)\right\} & =\{\langle d(x), d(x \wedge y), d(y)\rangle \mid x \text { is the parent of } y\} \\
& =\{\langle i, i, i+1\rangle \mid 0 \leqslant i<h-1\} \\
& =\left\{\langle i, j, k\rangle \mid H_{h} \vDash \operatorname{Succ}(i)=\operatorname{Succ}(j)=k\right\} .
\end{aligned}
$$

For the basis case of the recursion variable, it is only necessary to check that the arity of S^{*} is correct, i.e.

$$
S\left(x_{1}, \ldots, x_{m}\right) \text { is } m \text {-ary and } S^{*}\left(i_{1}, \ldots, i_{m^{*}}\right) \text { is } m^{*} \text {-ary. }
$$

The inductive cases of negation and conjunction follow trivially from the reasons given. The inductive case of quantification will follow since the expansion of $\langle x, \bar{y}\rangle^{*}$ in accordance with Definition 2.4 is a frontal extension of \bar{y}^{*} by $n+1$ additional members ($n=$ length (y)). To prove that

$$
\left\{\bar{y}^{*} \mid T_{n} \vDash \exists x \theta(x, \bar{y})\right\}=\left\{\bar{J} \mid H_{h} \vDash \exists i_{0}, \ldots, i_{n} \theta^{*}(\bar{i}, \bar{j})\right\},
$$

we need to show that quantifying over x is equivalent to quantifying over the i 's. Our induction hypothesis is $\left\{\langle x, \bar{y}\rangle^{*} \mid T_{h} \vDash \theta(x, \bar{y})\right\}=\left\{\left\langle i_{0}, \ldots, i_{n}, \bar{j}\right\rangle \mid H_{h} \vDash \theta^{*}(\bar{y}, \bar{j})\right\}$. So, clearly, $T_{h} \vDash \exists x \theta(x, \bar{y}) \Rightarrow H_{h} \vDash \exists \bar{i} \theta^{*}(\bar{i}, \bar{J})$ by setting

$$
\begin{aligned}
& i_{0}=d(x), \\
& i_{l}=d\left(x \wedge y_{l}\right) \text { for } l=1, \ldots, n, \\
& \bar{J}=\bar{y}^{*} .
\end{aligned}
$$

Conversely, $H_{h} \vDash \exists \bar{i} \theta^{*}(\bar{i}, \bar{\jmath}) \Rightarrow T_{h} \vDash \exists x \theta(x, \bar{y})$ since if $H_{h} \vDash \theta^{*}(\bar{i}, \bar{\jmath})$ holds, then by induction hypothesis $\langle\bar{\imath}, \bar{\jmath}\rangle=\langle x, \bar{y}\rangle^{*}$ for some x, \bar{y} satisfying $T_{h} \vDash \theta(x, \bar{y})$, which implies that $T_{h} \vDash \exists x \theta(x, \bar{y})$.

Corollary 3.3. For all h,

$$
T_{h} \vDash \varphi^{\infty}(\text { root }, \ldots, \text { root }) \Leftrightarrow H_{h} \vDash\left(\varphi^{*}\right)^{\infty}(\text { zero }, \ldots, \text { zero }) .
$$

Proof. By mathematical induction on the number of stages, it is easy to see that

$$
\left[\left(\varphi^{\infty}\right)^{T_{h}}\right]^{*}=\left[\left(\varphi^{*}\right)^{\infty}\right]^{H_{h}} .
$$

The details go through precisely since $\phi^{*}=\emptyset$ (basis) and because every iterate φ^{i} is an invariant relation (induction step). To complete the proof, just notice that $\langle\text { root }, \ldots, \text { root }\rangle^{*}=\langle$ zero,\ldots, zero \rangle.

Since $\left(\varphi^{*}\right)^{\infty}$ can be computed in time $h^{c}\left(h=\left\|H_{h}\right\|\right), \varphi^{\infty}$ can be computed in time $\log ^{c} n\left(n=\left\|T_{h}\right\|=2^{h}-1\right)$. Hence, by evaluating the corresponding "star" induction on H, every Boolean inductive query on T is in fact "polylogarithmic"-time computable (using a random-access Turing machine). It comes then as no surprise that there are noninductive polynomial-time queries on T.

Theorem 3.4. There is a polytime query on T which is not inductive.
Proof (By diagonalization against the polylogtime queries). Let L_{0} be a binary language (a set of finite strings over the alphabet $\left.\{0,1\}^{*}\right)$ which is in $\operatorname{DTIME}\left(2^{2^{n}}\right)$ and
not in DTIME $\left(2^{c n}\right)$ for any c [9]. The existence of L_{0} can also be derived from Theorem 12.9 of [10]. Define q_{0} to be the Boolean query

$$
T_{h} \vDash q_{0} \Leftrightarrow \text { the binary expansion of } h \text { is a string in }\{1\} . L_{0},
$$

where leading zeros are omitted.
First, we claim that q_{0} is polytime. Construct a Turing machine M which when it is given (the encoding of) T_{h} as input ($\left\|T_{h}\right\|=n$) computes its height $h=\log (n+1)$ and writes it in binary on a separate work tape suppressing all leading zeros together with the most significant digit one. Now, M simulates the doubly exponential time machine for L_{0} and accepts if and only if this computation accepts. Since the binary encoding of h is of length about $\log h$, the whole algorithm runs in linear time

$$
\mathrm{O}\left(2^{2^{\log \log n}}\right)=\mathrm{O}(n) .
$$

Second, we claim that q_{0} is not inductive. Towards a contradiction, suppose q_{0} is inductive. Then consider the decision algorithm for L_{0} which, when given a binary string w of length m, prefixes a one to it and generates the structure H_{h}, where h is $1 . w$ written in binary ($2^{m} \leqslant h<2^{m+1}$). Now compute the result of q_{0}^{*} on H_{h}, and answer yes if and only if it evaluates to true. By Corollary 3.3 , this happens exactly when $T_{h} \vDash q_{0}$. But since $\left\|H_{h}\right\|=h$, the time required for the entire algorithm is $\mathrm{O}\left(h^{c}\right)=\mathrm{O}\left(2^{c m}\right)$: a contradiction.

4. Adding numbers on complete binary trees

4.1. Representation of numbers

With some further definitions, we shall make a precise representation of numbers by means of invariant subsets on complete unordered binary trees.

If m is a number between 0 and $2^{h}-1$, let the binary expansion of m be denoted simply as

$$
m=b_{h-1} \ldots b_{0}, \quad b_{i} \in\{0,1\}
$$

where leading zeros are included. For $0 \leqslant i<h$, let the levels of the tree T_{h} be denoted by $L_{i}=\{v \in V \mid d(v)=i\}$, and note that $\left|L_{i}\right|=2^{i}$.

Definition 4.1. For all $m=b_{h-1} \ldots b_{0}$, let

$$
\rho(m)=\bigcup_{i}\left\{L_{i} \mid b_{i}=1\right\} \text { represent } m \text { on } T_{h} .
$$

The invariant subset $\rho(m)$ has the nice property

$$
|\rho(m)|=\sum_{i}\left(b_{i} \cdot 2^{i}\right)=m .
$$

Fig. 3.
In particular, $\rho(0)-\emptyset, \rho(1)-\{$ root $\}$ and $\rho\left(2^{h}-1\right)=V$. In Fig. 3, the open circles illustrate an example for $\rho(5)$.

Our first task is to show that addition can be defined inductively using this binary representation. Before proceeding, it will be instructive to consider again the class of structures H as defined in Definition 3.1. By identifying each i in H_{h} with L_{i} in T_{h} and vice versa, we can think of numbers between 0 and 2^{h-1} in binary on H_{h} by adopting the convention that any binary number $m=b_{h-1} \ldots b_{0}$ can be used to talk about the unary relation on H_{h} :

$$
m(i)=\text { true } \Leftrightarrow b_{i}=1, \quad i \in\{0,1, \ldots, h-1\} .
$$

Similarly, identify 0 and 1 with the Boolean values false and true, respectively.

4.2. Addition

With the preceding notation, we can express the ordinary schoolbook addition algorithm which adds m to n in binary with a carry-in o. The carry bits are written recursively on H as

$$
\begin{aligned}
\operatorname{carry}(i) \equiv & {[m(i) \wedge n(i)] \vee } \\
& {[m(i) \vee n(i)] \wedge[\operatorname{carry}(i-1) \vee[(i=z e r o) \wedge o]], }
\end{aligned}
$$

where o takes the place of carry (-1), the incoming carry for the least significant bit. Once the carry bits are known, it is a simple matter to calculate the bitwise sum:

$$
\operatorname{sum}(i) \equiv m(i) \oplus n(i) \oplus[\operatorname{carry}(i-1) \vee[(i=z e r o) \wedge o]],
$$

where \oplus is the symbol for the exclusive-or. These equations reflect addition by the familiar binary full-adder with a rippled carry. Hence, the formulas above define a query on H satisfying

$$
H_{h} \vDash \operatorname{sum}(i ; m, n, o) \Leftrightarrow(m+n+o)(i) .
$$

With exactly the same idea we can express addition inductively on $T=\left\{T_{h} \mid h \geqslant 1\right\}$. This means that given the representations, $\rho(m), \rho(n)$ and o, of two numbers m, n and a carry-in o, we will calculate the representation $\rho(m+n+o)$ of their sum $(m+n+o)$.

Lemma 4.2. The unary query $\operatorname{sum}(x ; M, N, O)$ defined on T_{h} as satisfying

$$
\begin{gathered}
\left\{x \mid T_{h} \vDash \operatorname{sum}(x ; \rho(m), \rho(n), o)\right\}=\rho(m+n+o), \\
o \in\{\text { false, true }\}, \quad m, n \in\left\{0, \ldots, 2^{h}-1\right\}
\end{gathered}
$$

is inductive (remember that 0 is false and 1 is true).

Proof. Let M and N be unary predicates for $\rho(m)$ and $\rho(n)$ respectively, and let O be a nullary predicate for the carry-in (O is interpreted as true iff there is a carry-in). Using the standard schoolbook method for addition, the following formulas define the bitwise carry and sum:

$$
\begin{aligned}
\operatorname{carry}(x) \equiv & {[M(x) \wedge N(x)] \vee } \\
& {[M(x) \vee N(x)] \wedge[[(\exists y) E(y, x) \wedge \operatorname{carry}(y)] \vee[(x=\operatorname{root}) \wedge O]] } \\
\operatorname{sum}(x) \equiv & M(x) \oplus N(x) \oplus\left[\left[(\exists y) E(y, x) \wedge \operatorname{carr} y^{\infty}(y)\right] \vee[(x=\operatorname{root}) \wedge O]\right]
\end{aligned}
$$

Since the inductive queries are closed under composition, sum is inductive.

5. Calculating sizes inductively on complete binary trees

In this section, we finish our results and show that there is an inductive way to calculate the size of any subset of a complete binary tree, even though we cannot count in an enumerative fashion.

The idea is to produce a unary query which, when given any subset U of a complete binary tree, calculates $\rho(|U|)$, the invariant set representing the cardinality of U. This will then satisfy the requirements of Definition 0.1 . For instance, for any subset consisting of exactly five elements, the result would look like Fig. 3. Recall that we write U, the actual parameter for the arbitrary subset, on the right-hand side of a semicolon.

Theorem 5.1. Let R be a unary predicate symbol. Then the query $\Phi(x, R)$ for the signature $\{E$, root, $R\}$ defined on every complete binary tree T_{h} by

$$
\left\{v \mid T_{h} \vDash \Phi(v ; U)\right\}=\rho(|U|), \quad \forall U \subseteq\left|T_{h}\right|
$$

is an inductive sizer.

Proof. The set equation which defines Φ clearly satisfies the constraints of Definition 0.1 for being a sizer since $\rho(|U|)$ is unique for each choice of $|U|$. To show that Φ is inductive, the idea is to use a binary relation $Q(y, z)$ which tags each node y with the unary relation $Q_{y}=\{z \mid Q(y, z)\}$. If we intend Q_{y} to be the invariant subset representing the number of nodes below y which satisfy U,

$$
Q_{y}=\rho(|\{x \leqslant y: x \in U\}|)
$$

then the idea is to calculate $Q(y, z)$ recursively up the tree from the leaves to the root. We do this by tagging each parent with the sum of the tags of its children (if any) together with a 1 or 0 depending on whether or not U holds at the parent. We cannot choose the order of summation for the two children, but this does not matter since addition is commutative. After h iterations, $Q_{\text {root }}$ will represent the total number of nodes in the tree satisfying U. At each stage, the induction passes along information at each node as to the size of the subset seen so far (below it) to its parent. Define the formula Φ with recursion variable Q and formal unary parameter R :

$$
\Phi(y, z, Q ; R) \equiv
$$

Formula

$\left\{\begin{aligned}(\exists u)(\exists v) & {[u \neq v \wedge E(y, u) \wedge E(y, v)} \\ & \wedge \operatorname{sum}\left(z ; Q_{u}, Q_{v}, R(y)\right] \\ \vee(\forall u) & \neg E(y, u) \\ & \wedge z=\text { root } \wedge R(y)]\end{aligned}\right.$

Comments

If u and v are the children of y, then $\# y:=\# u+\# v+R(y)$.
If y is a leaf,
then $\# y:=R(y)$.

Here $\# x$ is an abbreviation for $\left|Q_{x}\right|$ and $R(y)$ is identified with 1 if $R(y)$ holds, and with 0 otherwise. The last line of the formula tags each leaf y with a 1 if and only if y is in R; otherwise, it is tagged with a 0 . The first line says that u and v are the two children of an internal node y. The middle line tags y with the tag of u plus the tag of v, plus an additional 1 if y is in R.

It is simple to verify by induction on the levels of the tree that, for all subsets U, and for all $y,\left\{z \mid \Phi^{\infty}(y, z ; U)\right\}$ is an invariant subset satisfying

$$
\left|\left\{z \mid \Phi^{\infty}(y, z ; U)\right\}\right|=|\{w \leqslant y \mid w \in U\}| .
$$

Therefore,

$$
\left\{z \mid \Phi^{\infty}(\text { root }, z ; U)\right\}=\rho(|U|)
$$

is the desired query. But we are not done because, strictly speaking, $\Phi(y, z, Q ; U)$ is not a Q-positive formula since Q appears negatively in $\operatorname{sum}\left(z ; Q_{u}, Q_{v}, U(y)\right)$ for the exclusive-or operation. To solve this problem, we monotonize the induction by adding a unary predicate done (y) and delay evaluation of $\# y$ until all the children of y satisfy done. This means that Q_{y} will remain empty until the stage at which it attains its final value, ensuring that the induction determined by Φ is monotone. We can then appeal to the result in [8], where it is shown that on finite structures the fixed point of any monotone induction is in fact inductive.

6. Conclusion

Once we have shown that sizes of unary relations can be calculated inductively on complete binary trees, similar proof techniques allow us to calculate the cardinality of
binary relations and, indeed, relations of any arity. The idea (for a binary relation R) is to calculate the size of the unary relation $\{y \mid R(x, y)\}$ for each node x

$$
n_{x}=|\{y \mid R(x, y)\}|
$$

using Theorem 5.1. Then just recursively sum the n_{x} 's over all nodes x in the binary tree in the same manner. It gets messy because the size may be large enough to require two digits, necessitating a fancier two-digit sum query, and we leave the details to the reader.

And once we have shown that addition is inductive on the class of complete binary trees, it is not difficult to show that other arithmetic operations such as multiplication are also inductive since they can be defined recursively from addition. Hence,

size calculation and arithmetic operations are inductive

on the class of complete binary trees. Yet by Theorem 3.4

$$
\text { IND } \neq \text { PTIME }
$$

on the class of complete binary trees. Therefore, we can conclude that

$$
\text { inductive size and arithmetic calculation } \nRightarrow \mathrm{IND}=\text { PTIME. }
$$

This means that the calculation of cardinality does not require the full power that an ordering has to offer. But there is still a broader question which has not been answered. The addition of ordering to fixed-point logic is unsatisfactory, primarily, because it introduces formulas which do not determine queries (isomorphism invariant) on the original unordered structure. But is there any isomorphism invariant operation which can be added to fixed-point logic so that the resulting logic captures all of the polytime queries? Loosely speaking, the question is:

Is there a logic for PTIME?
This question is equivalent to knowing if PTIME is recursively enumerable, and has also been raised in [3] and [7].

One possibility is to include counting into fixed-point logic as in [11], where it is proposed to form a two-sorted structure from the original structure A by adding an additional domain of numbers

$$
\{0,1,2, \ldots,\|A\|-1\}
$$

of the same size with the usual successor relation. The only connection between the two domains are counting quantifiers which are used like

$$
\left(\exists i x^{\prime} \mathrm{s}\right) \varphi(x, \bar{y}),
$$

where i ranges over the number domain. On the surface, this appears to only allow one to calculate cardinalities, e.g.

$$
(\exists i)[(\exists i x ’ \mathrm{~s}) \varphi(x) \wedge(\exists i x \text { 's }) \psi(x)]
$$

says that the cardinalities of the subsets determined by φ and ψ are equal. But since formulas can contain both regular variables x, y, z, \ldots and number variables i, j, k, \ldots it is possible to create inductions which use both simultaneously:

$$
\varphi(i, x, S) \equiv(\forall y) S(i-1, y) \vee(\exists i z ’ s)(z \neq z) .
$$

In particular, this is an example of an induction whose length is always $\|A\|$, even with no relations on the structure. Let us denote this class of queries by IND + counting. In fact, on the class of complete binary trees, it is easy to show that

$$
\mathrm{IND}+\text { counting }=\text { PTIME. }
$$

The question of whether or not the above identity holds on the class of all (unordered) structures was recently answered in [2], showing that fixed-point logic augmented by full counting is not all of polynomial time.

Acknowledgment

This work comes from the author's dissertation. He thanks both of his advisors, Sheila Greibach and Yiannis Moschovakis, for their time and patience. Additional appreciation is expressed to Neil Immerman for the useful discussions which helped clarify some of the consequences of these results, and to the referees for indicating the need for more concise proofs and motivational material.

References

[1] A.V. Aho and J.D. Ullman, Universality of data retrieval languages, in: Proc. 6th Symp. on the Principles of Programming Languages (1979) 110-117.
[2] J. Cai and N. Immerman, An optimal lower bound on the number of variables for graph identification, in: Proc. 30th Ann. Symp. on the Foundations of Computer Science (1989) 612-617.
[3] A. Chandra and D. Harel, Structure and complexity of relational queries, J. Comput. System. Sci. 25(1) (1982) 99-128.
[4] H.B. Enderton, A Mathematical Introduction to Logic (Academic Press, New York, 1972).
[5] R. Fagin, Generalized first-order spectra and polynomial time recognizable sets, in: R. Karp, ed., Complexity of Computation, Proc. SIAM-AMS \#7 (1974) 43-73.
[6] R. Fraisse, Course in Mathematical Logic, Vol. 1: Relation and Logical Formula (D. Louvish, translation), 1973.
[7] Y. Gurevich, Logic and the challenge of computer science, in: E. Borger, ed., Current Trends in Theoretical Computer Science (Computer Science Press, Rockville, MD).
[8] Y. Gurevich and S. Shelah, Fixed-point extensions of first-order logic, Ann. Pure Appl. Logic 32 (1986) 265-280.
[9] J. Hartmanis and R.E. Stearns, On the computational complexity of algorithms, Trans. Amer. Math. Soc. 117 (1965) 285-306.
[10] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation (Addison-Wesley, Reading, MA, 1979).
[11] N. Immerman, Relational queries computable in polynomial time, Inform. and Control, 68 (1986) 86-104.
[12] S. Lindell, The logical complexity of queries on unordered graphs, Ph.D. Dissertation, University of California, Los Angeles, 1987.
[13] Y.N. Moschovakis, Elementary Induction on Abstract Structures (North-Holland, Amsterdam, 1974).
[14] M. De Rougemont, Second-order and inductive definability on finite structures, Ph.D. Dissertation, University of California, Los Angeles, 1983.
[15] M.Y. Vardi, Complexity of relational query languages, in: Proc. 14th ACM Symp. on the Theory of Computing (1982) 137-146.

