
Theoretical Computer Science 85 (1991) 75-95

Elsevier

75

An analysis of fixed-point queries
on binary trees

Steven Lindell
Departmeni of Mathematics. Haverford College, Haverford. PA 19041-1392, USA

Communicated by A. Meyer

Received June 1988

Revised June 1989

Abstract

Lindell, S., An analysis of fixed-point queries on binary trees, Theoretical Computer Science 85

(1991) 75-95.

The presence of ordering appears to play an essential role in the logical expressibility of polynomial-

time queries on finite structures. By examining the expressibility and complexity of inductive queries

on the class of complete unordered binary trees, we are able to show that the ability to calculate

cardinality is strictly less powerful than the assumption of order.

0. Introduction

0.1. Motivation

This paper studies the expressibility of queries in fixed-point logic and the complex-

ity of their evaluation on complete binary trees. The primary purpose of this investiga-

tion is to demonstrate that the addition of a nonlogical ordering provides an

enhancement strictly beyond that of merely counting. This may enable us to under-

stand more clearly the distinction between tractable (polynomial-time) computation

and the inductive (fixed-point) queries. The reader who is unfamiliar with the idea

of a query on a class of finite structures should skip ahead to Section 1 before

proceeding.

On finite structures, it is well-known that all inductive queries (IND) are poly-

nomial-time computable (PTIME) [3]:

IND c PTIME.

A proof follows directly from the semantic definition of evaluating fixed points (see

0304-3975/91/$03.50 0 1991-Elsevier Science Publishers B.V.

16 S. Lindell

Section 1). But the converse fails miserably, and IND# PTIME. For example, the

query

to determine whether or not a given graph has an odd or even number of vertices is

not inductive [3]. A proof from a compactness argument can be found in [12].

A variety of other seemingly simple counterexamples share the property that they

ask something about sizes. Examining their proofs reveals that known techniques

(Ehrenfeucht-Fraisse games) rely on the inability of inductive queries to calculate the

size of the domain (or some subdomain thereof). Examples appear in [12].

If we permit our formulas access to an underlying total ordering of the domain (e.g.

by using the actual binary representation of a finite structure), then it is possible to

count (see below). But in fact adding < to IND allows us to express all polynomial-

time queries [11, 151.

PTIME c IND (<).

The proof is a direct simulation of Turing machines that operate in polynomial time,

with the ordering used crucially to keep track of the tape’s contents, to say that one

step follows another, and to read the input tape (which contains a binary encoding of

the input structure).

Unfortunately, PTIME # IND(<), but only because there are also formulas in

IND(<) which express things that are not queries. For instance, consider the sentence

WEV(3YEVCX<Y A J%Y)l

on unordered graphs with edge relation E and vertex set V. The result depends on the

underlying representation of the graph (i.e. how the members of V are ordered),

something which is specifically excluded from being a query. In summary,

IND c PTIME c IND (<),

with all inclusions strict. But on those structures which contain a built-in linear order

as one of their relations, inductive queries do capture all of polynomial time. Simply

stated,

IND = PTIME for ordered structures.

0.2. Calculating sizes on jinite structures

In the presence of a built-in linear order, let us demonstrate how fixed-point queries

can be used to calculate the size of any collection of elements U drawn from the

domain, 0, , II - 1. First make an induction which exhausts all the elements of the

domain, relying on the totality of the ordering. Then use this enumeration to count in

unary the number of elements in U, using the ordering for the digit places. See, for

Analysis ofjixed-point queries on binary trees

: I O/Z
0 < 1 < 2 < 3 < 4

Fig. 1

instance, Fig. 1 for n= 5. Employ the following inductions simultaneously and let

sup(P) stand for one more than the largest current element in P:

4(X>P) E (vY)cY<x+p(Y)l P does the enumerating,

4(x, Q) = (Vy)[y<x-+Q(y)] A U(sup(P)) Q does the counting.

When the induction is complete, sup(Q)= I UI (= 3 in Fig. 1). Unfortunately, sup(P)

cannot be written positively in P (see Section 1 for definition), so an alternate method

is required if we do not wish to appeal to [8].

Let R(x, y) denote that there are more than y elements in U less than or equal to x,

i.e.

R(x,y) * I{zEUIZ<X}I>.Y.

In particular,

R(n-l,i) 0 i<JUJ

Then the following formula (although confusing) defines R inductively:

4(x, Y, R) = (3z<x)CR(z, Y) v CR@> Y- 1) A ~6411,

where we take R(z, y- 1) to be vacuously true when y =O, even when no z exists.

Precisely, R(z,y-l)=(y=O) v (3w)[wS~ A R(z, w)], where tlSu if and only if u is the

successor of u. At the fixed point

SUPIYI d”(n-Ly)) = IW

where sup is defined as one more than the maximal element. Again we require

negation at this point, but the fixed-point queries are closed under negation [ll].

Of course, counting is a polynomial-time query and, hence, inductive on ordered

structures. The purpose of the above discussion was to provide us with concrete

examples of how to count with an ordering. But is calculating sizes all the ordering

allows us to do? Be aware that counting is defined as the act of ascertaining the total

number of elements in a collection by noting one after another. This implies a calcula-

tion of size by enumeration. Enumeration allows one not only to determine the

cardinality of a set, but also to examine each element in turn. On the other hand,

methods which determine the size of a collection of elements (by no specific means)

must certainly distinguish among different cardinalities but may provide no other

tangible benefit.

One of the research interests behind this paper was to try to understand how an

induction could be used to calculate sizes of arbitrary subsets without necessarily

78 S. Lindell

counting. This weaker notion can be formalized as a query with one unary relation

argument, R, which always returns a result dependent only on the size of the subset

under consideration. Because U is an actual parameter of the query which is not part

of the structure, we write it on the right-hand side of a semicolon.

Definition 0.1. Let K be a class of structures, and R, a new unary predicate symbol

not in the original signature. The query @(X, R) is a sizer on K if for all A in K and all

subsets U1 and U2 of A

Or, written in a simpler fashion, IU11=IU21 o @“(U1)=@A(U2).

Interestingly enough, this definition alone is sufficient to prove the result that @ is

always an automorphism invariant set on A.

Fact. Let @ be a sizer on K. Then for all AEK, USIAI, the set {x[@(x; U)} is

invariant on A.

Proof. Let CI be any automorphism of A, i.e. a[A] = A. Then CI [@(U)] = cV[“~(CC [U 1)

since c1 is a permutation; and @“[A1(a[U])= @(a[U]) since a is an automorphism.

But since I ECU] I = I U 1, our assumption that @ is a sizer leads us to the conclusion that

cP~(cc[U])=@~(U). Therefore, a[QA(U)]=QA(U) for all automorphisms LX 0

Hence, the result of QA is always one of II A (I + 1 different invariant sets (there are

11 A II + 1 possibilities for I U I).

0.3. Overview

From the previous discussion, it is tempting to conjecture that the incapability to

calculate sizes of arbitrary subsets is the only factor which prevents the inductive

queries from encompassing all of the polynomial-time queries in the absence of an

ordering.

Conjecture. Let K be a class ofjnite structures. If there exists an inductive sizer on K,

then every polynomial-time query on K is inductive.

We have found a natural counterexample - the class of complete binary trees
_ which shows that this conjecture is false. In other words, there is more to the

ordering than just the ability to calculate sizes.

Intuitively, complete binary trees (without distinguished left and right children) are

potentially interesting because their structure falls naturally in between that of a total

linear order and that of a totally unordered set. By analyzing inductive computations

on the class of complete binary trees we will prove that

there is a sizer E IND and

there is a PTIME query $IND

Analysis of Jixed-point queries on binary trees 19

In other words, although IND # PTIME, inductions are capable of calculating car-

dinalities (although not by counting).

The remainder of this paper is organized into six sections:

Section 1. Background-finite structures, queries, IND and PTIME

Section 2. Coding invariant relations on complete binary trees

Section 3. First Result-finding a polytime query which is not inductive

Section 4. Adding numbers on complete binary trees

Section 5. Second Result -finding an inductive query which calculates sizes

Section 6. Conclusion-arithmetic, counting and logics for PTIME

In the background, Section 1, we discuss finite structures and queries, and present

the basic definitions of polynomial-time computability and inductive definability. In

Section 2, we develop a succinct representation of all automorphism invariant rela-

tions on a complete binary tree. Using this representation we analyze inductive

queries on the class of complete binary trees and prove our first main result in

Section 3. There we show, in Theorem 3.4, that on the class of complete binary trees

there is a polytime query which is not inductive. It is interesting to note that our proof

relies on diagonalization. In Section 4, we demonstrate a binary representation of

numbers on the levels of a complete binary tree, and use this representation to perform

addition. We prove our second main result in Section 5 and show, in Theorem 5.1,

that on the class of complete binary trees there is an inductive query which calculates

sizes. In the conclusion, Section 6, we note that other arithmetic operations can be

performed inductively on complete binary trees. Finally, we elaborate on the connec-

tion between this research and a stronger conjecture originally posed in [l l] regard-

ing “counting” quantifiers. A negative answer to this leaves open the question of

whether there is a logic for PTIME.

1. Background

1.1. Finite structures

We begin by briefly summarizing the notion of finite relational structures and

queries upon them. For the necessary background in first-order logic, the reader is

referred to the text [4].

Start with a finite list of predicate and constant symbols L= {R,, . . . , Rk, cl, cl}

called a signature. A jnite structure for the signature L,

A=(IAl, R;4 ,..., R;, cf ,..., c:),

consists of a finite set IAl (called the domain of A), together with relations Rf, Rt

(each of a specified arity) and constants cf, . .., cp over 1 Al. We shall drop the

superscripts for convenience whenever the context justifies it, and denote the size of

A by II A 11. The most common examples of finite structures are directed graphs and

binary strings. A directed graph G can be represented as (V, E), where V is the set of

80 S. Lindell

vertices of G, and E is the binary edge relation for G. A binary string w can be

represented as (B, <, U), where B is the finite set { 1, 1 WI} totally ordered (in the

normal order of numbers) by the binary relation <, and U is a unary relation which

indicates the location of ones and zeros in w. That is, for iel?, U(i) holds if and only if

the ith bit of w is one.

1.2. Queries

A query is a function which assigns to each structure (in a given signature L)

a relation (of some fixed arity k 3 0) on the domain of that structure in such a way as to

be invariant of isomorphism. That is, q(X) is called a k-ary L-query if for all L-

structures A and A’, and all k-tuples 6~) A Ik and a’~ 1 A’lk,

(A, iqE(A’, 2’) * 1_4q(i) 0 +,&q(2),

where the double turnstile indicates logical satisfaction. For example, this means that

the result of a graph query {VI bGq(U)} is always independent of any labelling of the

vertices of G. If k =O, this means that qE (false, true} and, hence, determines a graph

property (i.e. q does not change its truth value for an isomorphic copy of G). It is

worthwhile noting that the subrestriction of automorphism invariance (following

from isomorphism invariance) is vacuous for binary string queries, as all such

structures have no nontrivial automorphisms.

I .3. Examples

Queries can be classified according to the syntactical constructs needed for their

expression in some logic. Standard examples include first-order formulas, fixed-point

formulas, and second-order formulas. Queries can also be classified according to the

asymptotic resources required for their computation on some machine model. Stan-

dard examples here include logarithmic-space, polynomial-time and polynomial-

space on a Turing machine. These resource bounds are essentially model-independent.

First-order logic is a natural language to use for expressing queries on finite

structures. For example, the property of graph simplicity can be written as

8 is true if and only if the binary relation E on vertex set V is a simple graph

(symmetric and loop-free). In symbols, letting G = (V, E),

F,6’ iff G is simple.

Since 0 evaluates to either true or false, it is called a Boolean query. Those queries

expressible explicitly by first-order formulas are classically called elementary queries

[13]. A natural extension of first-order logic is to allow a query to be expressed

Analysis ofjixed-point queries on binary trees 81

recursively by a first-order formula. For example, the transitive closure of a graph

whose edges are given by a binary relation P on a vertex set S can be written as

P+(x, y) = P(x, y) v @ZES)[P(x, z) A P+(z, y)].

P+ is defined in terms of itself in a first-order fashion. The minimal relation satisfying

this recursive definition has the property that

l=oP+(u, u) o there is a (directed) path from u to u in G.

Since the result of evaluating P+ is a binary relation, it is called a binary query. Those

queries expressible recursively by first-order formulas we shall call inductive queries

(according to classical terminology [13]), and the class of such queries we denote

by IND.

1.4. Polynomial-time computability

Problems which can be solved in polynomial time are said to possess a tractable

algorithm. For necessary background in computational complexity, the reader is

referred to [lo].

Not surprisingly, the property of graph simplicity is polynomial-time computable.

Also, the transitive closure of a graph is computable in polynomial time. Namely,

given a binary encoding of an input graph G, there is a Turing machine which outputs

a binary encoding of the transitive closure of G in polynomial time. As a matter of fact,

all inductive (and, hence, elementary) queries are computable in polynomial time.

Definition. A query q is polytime if it can be computed by a sequential algorithm

which, when given a binary encoding of the finite structure A as input, always outputs

a binary encoding of the structure (A, qA) in at most)I A I/’ steps for some uniform c,

where /I A /I denotes the size of A.

The class of all polytime queries will be called PTIME.

1.5. Inductive de$nability

The fact that the transitive closure is not elementary was first shown in [6]. Because

of this limitation and similar deficiencies in expressive power, augmenting first-order

logic by a fixed-point operator was suggested [l]. This extension was also studied in

mathematical logic as a means of formalizing the notion of an inductive definition, but

the concern was primarily for fixed infinite structures [13].

This new language permits recursive first-order definitions, as in the previous

example of transitive closure. The essential features shown there are:

(1) the free predicate on the left-hand side appears only positively on the right-hand

side;

(2) the free variables of both sides must match.

To be formal, let cp(X, S) be an S-positive first-order formula for the signature L

in which X is a tuple of free individual variables, S is a free predicate variable not

in the signature L (the recursion variable) allowed only to appear positively, and

k = arity(S) = length(Z). Over any L-structure A with additional free relation Se G 1 A Ik,

cp(X, S) determines the query

which is monotone: S1 gS2 * #(S,) c @‘(S,) (note that the arity of #(S) is k).

Hence (dropping the superscript A for notational clarity), the stages of cp, cp” = #,

cp ‘+i = cp(cp’) which result from applying cp repeatedly to the empty set form a nondec-

reasing chain which reaches aJixed point

in at most 11 A Ilk steps since the sizes of the cpi are increasing and bounded by the size of

IAlk. This limit is the least solution to satisfy the equation

s= q(S).

Hence, repeated application of cp leaves cp” unchanged, implying that the above chain

of iterates satisfies cp” = cp” + ’ = cpm for all n2 11 A Ilk. Clearly, (pm does not depend on

S since the fixed-point operation binds the variable S. Hence, (pm is a query defined on

every L-structure. The isomorphism invariance of cp” and, hence, of cpco, follows from

the isomorphism invariance of cp (by induction on n). This fact will be used crucially in

Corollary 3.3.

The inductive queries are defined as projections (by constants) of fixed points.

Definition. Let cp(X, S) be an S-positive first-order formula for the signature Lu{S},

with S#L and arity(S)=length(Z). If C is a tuple of constant symbols in L and jj is

a tuple of variables such that length(c)+ length(j)= length(Z)>O, then the query

cp”(C, jj) for the signature L obtained by instantiating some of the variables in the

fixed-point query q”(X) by constants is an inductive query.

It should be clear that the fixed-point semantics gives us a polynomial-time

algorithm for computing inductive queries. In addition, inductive queries satisfy nice

closure properties. For any signature L containing at least one constant symbol, the

class of inductive queries on finite L-structures is closed under composition (nested

recursion), all positive first-order operations [13], and negation [ll]. These closure

properties will not hold if our signatures do not have a constant symbol since

nonelementary fixed points must have nonzero arity (and, therefore, a Boolean query

such as connected would be inexpressible). The reader is referred to [13] for a tho-

rough treatment of positive elementary induction.

Analysis of fixed-point queries on binary trees 83

2. Coding invariant relations

2.1. Preliminary dejinitions

Here are the definitions and notation we will be using for complete binary trees in
this paper (left and right children are not distinguished).

Definition 2.1. Let T, = (V, E, r) be the complete binary tree of height h and size
2h- 1 with node set V, binary parent relation E, and root r. Let T= (Th 1 h 2 l}. For
instance, Fig. 2 has height h = 4 and size 24 - 1 = 15.

The transitive closure of E yields a partial order < in which U<U o u is a proper
descendant of v (v is an proper ancestor of u), and we write u 11 v to mean that u $ v and
v # u (U and v are incomparable). Note that r 3x for all x in V. In Fig. 2, a 11 b, b < c
and a<c.

2.2. Depths, least common ancestors and automorphisms

Let u A v denote the least common ancestor of u and v, and define d(v) as the depth
of v (its distance from the root). Note that d(r)=O. In Fig. 2, a A b=c, a A c=c,
b A c=c, d(a)=3, d(b)=2 and d(c)= 1.

Since Th is a complete binary tree, it should be clear (see Fig. 2) that every one of its
automorphisms can be generated by the transposition of sibling subtrees. Extending
automorphisms to k-tuples of V

a((v1,... ,vk))=(tl(v1),...,cI(vk))

induces an equivalence relation on tuples: 0 --V’ iff there is an automorphism c(such
that c@)=U’. For instance, in Fig. 2, (a, b) -(a’, b’) via the automorphism which
also exchanges c and c’.

We now present two facts which will be used to succinctly describe tuples. Our first
fact says that all automorphisms preserve depth and are distributive over the least
common ancestor operation.

Fact. 2.2. Let LY be an automorphism. Then for all v, vl, v2,

d(V) = WV)),

c(-(VI A V2) = C&) A cI(Vz).

Fig. 2.

We can see clearly in Fig. 2 that d(a)=d(a’), d(b)=d(b’), d(c)=d(c’) and that

a’ A b’=c’.

Our second fact says that any two nodes of the same depth are equivalent via some

automorphism which fixes their least common ancestor.

Fact 2.3. Suppose v and v’ are of the same depth. Then there exists an automorphism
c1 that moves v to v’ and$xes every node which is not strictly below their least common
ancestor. In particular, a jxes v A v’:

a(v) = v’, d(v)=d(v’),

a(u)=u, Vuqt:(v A v’).

We can see clearly in Fig. 2 that any automorphism which maps a to a’ also fixes

a A u’=r (but the root must be fixed in any case).

2.3. Coding tuples

It follows that any node v can be described uniquely (up to automorphism) by its

depth

v,=v’ o d(v)=d(u’),

i.e. the depth of v is a complete automorphism invariant for v.

Similarly, the triple of integers

(d(v,), d(v, A 4, d(vl))

defines a complete automorphism invariant for any pair ofnodes (vl, vz). It is slightly

more complicated because automorphisms also preserve the depths of least common

ancestors. Refer to the three examples (c, c)- (c’, c’), (b, c)- (b’, c’) and

(a, b)-(a’, b’) in Fig. 2.

Extending this idea to k-tuples requires the depths of all the least common ancestor

pairs.

Definition 2.4. Let

(0 1,vk)*=(d(vi A Vj))i<j

=(d(v, A Al),d(v. A Ok), ...) d(vi A Vi),d(vi A ok),d(vk A Ok)).

Denote this invariant by V* and its length by k* = k(k + 1)/2. The length is import-

ant because it depends only on k and not on the size or depth of the tree (we saw

previously that 1* = 1 and 2* = 3). The following lemma proves that V* is a complete

automorphism invariant for V.

Lemma 2.5. For all k-tuples V and 17, V* = U’* o 17% 6’.

Analysis of fixed-point queries on binary trees 85

Proof. (G=) Obvious from Fact 2.2. (a) By induction on k. The basis k= 1 follows

immediately from Fact 2.3. For the induction step, consider U* = V’* for k > 1. Let

U’U1 A . . . A vk and u’ = vi A . . . A vi. Observe that

and

d(u)=d(v, A . . . A Uk)=mini, j d(Vi A Uj),

d(U’)=d(v; A ... A U;)=mini,j d(UI A UI).

Since d(oi A uj)=d(ui A uj) by hypothesis, this forces d(u)=d(u’). So, by Fact 2.3, we

can find an automorphism mapping u to U’ which preserves all the depth numbers in

v*. Hence, we might as well assume that u = U’ from the start. Now, there are two cases.

Case I: If some oi = u, then d(Ui) cd(U) = d(Ui) implies vi = u also. By Definition 2.4,

(0 1,...,Vi_l, Vi+l,...,Vk)*=(V;,...,Vi-l,Vi)+l,...,V;)*

since the equality constraints in the hypothesis (V* =U’*) are a superset of those

required. So by induction hypothesis there is an automorphism B which witnesses that

But since all these nodes are descendants of u, it is easy to see that p must fix u = Vi (i.e.

B(Ui)=vi). Hence, p(V)=&, and p also witnesses U’--V.

Case II: If for all i, Vi <u, then let u1 and u2 be the two children of u. We can

partition the set of indices I= { 1, k} into two nontrivial disjoint subsets

Z~~{i~~~~~~}andZ~~{i~~~~~~}suchthatZ~uZ~=ZandZ~nZ~=~;andsimilarly,

with 1; and 1; defined from the vi. Observe that if we are given any pair of nodes vi and

Vj, d(Vi A Vj) = d(u) iff i and j lie in distinct partitions of I. Similarly, for any pair of

nodes vl and vi. Since d(Vi A Vj)=d(V; A vj) by hypothesis, this implies that I1 =I; (it

may be necessary to automorphically transpose u1 and u2 to ensure that u; and v1 lie

in the same subtree). Now use induction to find an automorphism y1 such that

yl(Oi)=Uj for each ill, and y1 fixes the subtree of u2 (by Fact 2.3). Similarly, find an

automorphism y2 such that y2(vi)= vi for each ieZ2 and y2 fixes the subtree of ul. So

the composition y1 0 y2(6)= 5’ witnesses V- 6’. 0

2.4. Compacting relations

Automorphisms can be extended naturally to act on entire sets CI [R] = {E(X) 1 XE R}.

Definition 2.6. A relation R, s 1 T,,lk is invariant on Th if it is fixed by every auto-

morphism, i.e. for all automorphisms a of T,,,

cc[Ro]=Ro.

For instance, the binary parent relation E of T,, is invariant by definition.

86 S. Lindell

Since invariant relations are simply composed of equivalence classes of tuples, we

can succinctly describe them using the complete automorphism invariants for tuples

explained previously. We simply extend the star operator to relations.

Definition 2.7. Let R,* = {V* 1 VE R,}

This provides a unique encoding of invariant relations (R,* simply tells which

equivalence classes belong to R,). The next fact follows immediately from Lemma 2.5.

Fact 2.8. If RI and R2 are invariant relations, then

Rl=Rz o R;=R;.

3. Separating IND from PTIME on complete binary trees

In this section, we show that the class of inductive queries is strictly contained

within the class of polytime queries on the class of complete unordered binary trees.

Consider an auxiliary class of structures.

Definition 3.1. Let H= {H,, I h> l}, where

H*=({O, . ..) h- l}, Succ, zero),

Succ is a binary successor relation satisfying Succ(i, j) o i + 1 = j, 0 < i, j < h - 1, and

zero is a constant interpreted as being the unique element with no predecessor (i.e. 0).

Note that every relation on Hh is invariant since Hh has no nontrivial automorphisms.

Combined with the compact encoding of invariant relations given by Definition 2.7,

we see that if R,, is a k-ary relation on T,,, then R,* will be a k*-ary relation on Hh (since

d(V)E{O, . ..) h - l} for all DE T,,). Hence, every invariant relation on Th is in one-to-one

correspondence with a wider relation on H,, whose width does not depend on h. Since

this is an exponentially smaller structure, we can “store” invariant relations on binary

trees very compactly.

Because each stage of an induction is an invariant relation, it will be possible to

rewrite inductions on complete binary trees T,, and simulate them on exponentially

smaller structures H,,. In other words, given a first-order formula cp(X, S), we will

syntactically construct a first-order formula cp*(I, S*) such that, uniformly for all h,

the computation

S*+$, S*+{tl H,, by*@, S*)}

will preserve the semantics of the computation

S+fl, S+{X 1 Th k qo(X, S)}.

Analysis ofjxed-point queries on binary trees 87

Table 1

Original Translation Reason

root*

cx=y1*
CE(x> Y)I*
c.w1*
[141*

[$I A +21*
Wx)Q(x, 31*

zero
i=j=k
Succ(i) = Succ(j) = k
S*(iI, i,.)

14*

(L: A CL::
(Ii,, i.)S*(C,J)

d(root) = 0
d(x)=d(x A y)=d(y)
d(x)+l=d(x A y)+l=d(y)
arity*(S)=arity(S*)

R*=R*
[R,nR,]*=R;nR;

(x. Y)* = (d(x)) - <d(x A Y,)>,, 1” ̂ Y*

Lemma 3.2. Let S be a predicate symbol of arity m, and let S* be a predicate symbol of
arity m*. Zf cp(X, S) is an S-positivefirst-orderformulafor the signature {E, root, S}, then
there exists an S*-positiveJirst-orderformula cp*(T, S*)for the signature (Succ, zero, S*}
such that for all invariant relations SO on T,,

Proof. Construct (p* inductively from the syntax of cp by Table 1, and think of the

variables i, j, k as representing d(x), d(x A y), d(y), respectively, where x, y, z are

variables interpreted as ranging over 1 T,,[, i, j, k are variables interpreted as ranging

over IHhI={O,...,h-1), and jj is an n-tuple of variables.

It should be clear from the syntax that ‘p* is always an S-positive first-order

formula. It remains to be shown that ‘p* preserves the semantics of cp, i.e. for all

invariant relations So

CcPTh(SO)l*=((P*)Hh(SO*)

(this is just a shorthanded rewriting of the conclusion). We accomplish this by

applying the reasons shown in Table 1.

The basis case for the constant is obvious, as for all h

[(root)Th]* = d(root) = 0 = (.zero)nh.

The basis case for the equality relation follows because if x is equal to y, then

x=x A y = y are all of the same depth. Hence,

{<x, Y>* I Th +(x=y)I = {<d(x), d(x A y), d(y)) Ix equals Y>

={(i,i,i))Odibh-1)

={(i,j,k)IH,,b(i=j=k)}.

The basis case for the edge relation follows because if x is the parent of y, then the

depths of x and x A y are one less than the depth of y. Hence,

{<x, Y>* I Th b E(x, Y)} = {<d(x), d(x A YX d(y)) Ix is the parent of y)

={(i,i,i+l)lOQi<h-1)

={(i,j,k)IH,bSucc(i)=Succ(j)=k}.

88 s. Lindell

For the basis case of the recursion variable, it is only necessary to check that the

arity of S* is correct, i.e.

S(x 1, x,) is m-ary and S*(i,, i,*) is m*-ary.

The inductive cases of negation and conjunction follow trivially from the reasons

given. The inductive case of quantification will follow since the expansion of (x, y)* in

accordance with Definition 2.4 is a frontal extension of y* by n + 1 additional

members (n = length(j)). To prove that

(j* I T,, k 3x&x, j)} = {J 1 Hh k 3i,,, &,0*&j)},

we need to show that quantifying over x is equivalent to quantifying over the i’s Our

induction hypothesis is {(x, jQ* 1 Th 10(x, j)> = {(i,, i,,~) 1 Hh H*(T, J)}. So,

clearly, T,, b3xO(x, j) G- Hh I=38*(I,J) by setting

io = d(x),

i[=d(x A y[) for 1= 1,II.

Conversely, Hh b 3 to* (I, J) * T, k 3x0(x, j) since if H,, 1 f3* (I, 7) holds, then by induc-

tion hypothesis (i, 7) = (x, y)* for some x, j satisfying T,, I= 0(x, j), which implies that

T,, 13x0(x, j). 0

Corollary 3.3. For all h,

T,, k (pm (root, . . . , root) o H,, b ((p*)W(zero, . . . , zero).

Proof. By mathematical induction on the number of stages, it is easy to see that

The details go through precisely since #* = # (basis) and because every iterate cpi is an

invariant relation (induction step). To complete the proof, just notice that

(root, . . . , root)* = (zero, . . . , zero). 0

Since (cp*)” can be computed in time h’ (h= I/ Hh II), (pm can be computed in time

log’ IZ (n = II T,, II = 2h - 1). Hence, by evaluating the corresponding “star” induction on

H, every Boolean inductive query on T is in fact “polylogarithmic”-time computable

(using a random-access Turing machine). It comes then as no surprise that there are

noninductive polynomial-time queries on T.

Theorem 3.4. There is a polytime query on T which is not inductive.

Proof (By diagonalization against the polylogtime queries). Let LO be a binary lan-

guage (a set of finite strings over the alphabet (0, l}*) which is in DTIME(2’“) and

Analysis of fixed-point queries on binary trees 89

not in DTIME(2’“) for any c [9]. The existence of Lo can also be derived from

Theorem 12.9 of [lo]. Define q0 to be the Boolean query

Th k q. o the binary expansion of h is a string in (1). Lo,

where leading zeros are omitted.

First, we claim that q. is polytime. Construct a Turing machine A4 which when it is

given (the encoding of) Th as input (11 T, II=) n computes its height h = log(n + 1) and

writes it in binary on a separate work tape suppressing all leading zeros together with

the most significant digit one. Now, A4 simulates the doubly exponential time machine

for Lo and accepts if and only if this computation accepts. Since the binary encoding of

h is of length about log h, the whole algorithm runs in linear time

O(2
2’0s log “) = 0 (n),

Second, we claim that q. is not inductive. Towards a contradiction, suppose q. is

inductive. Then consider the decision algorithm for Lo which, when given a binary

string w of length m, prefixes a one to it and generates the structure H,,, where h is 1. w
written in binary (2” <h < 2”+ ’). N ow compute the result of qz on Hh, and answer yes

if and only if it evaluates to true. By Corollary 3.3, this happens exactly when T,, kqo.

But since)/ Hh II = h, the time required for the entire algorithm is O(h’)=O(2’“):

a contradiction. 0

4. Adding numbers on complete binary trees

4.1. Representation of numbers

With some further definitions, we shall make a precise representation of numbers by

means of invariant subsets on complete unordered binary trees.

If m is a number between 0 and 2h- 1, let the binary expansion of m be denoted

simply as

where leading zeros are included. For 0 d i < h, let the levels of the tree Th be denoted

by L,={u~VId(u)=i}, and note that ILiI=2’.

Definition 4.1. For all m = b,_ 1 . bo, let

p(m) = u { Li I bi = 1 } represent m on T, .

The invariant subset p(m) has the nice property

Ip(m)I=C(bi.2’)=m.

90 S. Lindell

Fig. 3.

In particular, p(O)=pI, p(l)= {root} and ~(2~- l)= V. In Fig. 3, the open circles

illustrate an example for p(5).

Our first task is to show that addition can be defined inductively using this binary

representation. Before proceeding, it will be instructive to consider again the class of

structures H as defined in Definition 3.1. By identifying each i in Hh with Li in Th and

vice versa, we can think of numbers between 0 and 2h-’ in binary on Hh by adopting

the convention that any binary number m= bh_ 1.. . b,, can be used to talk about the

unary relation on Hh:

m(i)=true o bi=l, iE{O, l,..., h-l}.

Similarly, identify 0 and 1 with the Boolean values false and true, respectively.

4.2. Addition

With the preceding notation, we can express the ordinary schoolbook addition

algorithm which adds m to n in binary with a carry-in o. The carry bits are written

recursively on H as

carry(i) = [m(i) A n(i)] v

[m(i) v n(i)] A [carry(i- 1) v [(i=zero) A o]],

where o takes the place of carry(- l), the incoming carry for the least significant bit.

Once the carry bits are known, it is a simple matter to calculate the bitwise sum:

sum(i) = m(i) 0 n(i) 0 [carry(i- 1) v [(i=zero) A o]],

where 0 is the symbol for the exclusive-or. These equations reflect addition by the

familiar binary full-adder with a rippled carry. Hence, the formulas above define

a query on H satisfying

Hh k sum(i; m, n, 0) 0 (m+n+o)(i).

With exactly the same idea we can express addition inductively on T= { Th 1 h > l}.

This means that given the representations, p(m), p(n) and o, of two numbers m, n and

a carry-in o, we will calculate the representation p(m + n + o) of their sum (m + n + 0).

Analysis ofjxed-point queries on binary trees 91

Lemma 4.2. The unary query sum(x; M, N, 0) defined on Th as satisfying

{xIT,bsum(x; 0&p(n), o)}=p(m+n+o),

oE{fulse, true}, m, nE{O, 2h-1}

is inductive (remember that 0 is false and 1 is true).

Proof. Let M and N be unary predicates for p(m) and p(n) respectively, and let 0 be

a nullary predicate for the carry-in (0 is interpreted as true iff there is a carry-in).

Using the standard schoolbook method for addition, the following formulas define the

bitwise carry and sum:

carry(x)=[M(x) A N(x)] v

CM(x) v N(x)1 A CC(~YMY, 4 A carry(~)I v C(x=root) A 011,

sum(x)= M(x) @ N(x) 0 [[(3y)E(y, x) A carry”(y)] v [(x=root) A 0]] .

Since the inductive queries are closed under composition, sum is inductive. 0

5. Calculating sizes inductively on complete binary trees

In this section, we finish our results and show that there is an inductive way to

calculate the size of any subset of a complete binary tree, even though we cannot count

in an enumerative fashion.

The idea is to produce a unary query which, when given any subset U of a complete

binary tree, calculates p(1 VI), the invariant set representing the cardinality of U. This

will then satisfy the requirements of Definition 0.1. For instance, for any subset

consisting of exactly five elements, the result would look like Fig. 3. Recall that we

write U, the actual parameter for the arbitrary subset, on the right-hand side of

a semicolon.

Theorem 5.1. Let R be a wary predicate symbol. Then the query @(x, R) for the

signature {E, root, R} dejned on every complete binary tree Th by

{vt Thk@(v; U)}=P(tU\), vU~lT,,l

is an inductive sizer.

Proof. The set equation which defines @ clearly satisfies the constraints of Definition

0.1 for being a sizer since p (/ U I) is unique for each choice of (U (. To show that @ is

inductive, the idea is to use a binary relation Q(y, z) which tags each node y with the

unary relation Q, = {z (Q(y, z)}. If we intend Q, to be the invariant subset representing

the number of nodes below y which satisfy U,

92 S. Lindell

then the idea is to calculate Q(y, z) recursively up the tree from the leaves to the root.

We do this by tagging each parent with the sum of the tags of its children (if any)

together with a 1 or 0 depending on whether or not U holds at the parent. We cannot

choose the order of summation for the two children, but this does not matter since

addition is commutative. After h iterations, Qr,,, will represent the total number of

nodes in the tree satisfying U. At each stage, the induction passes along information at

each node as to the size of the subset seen so far (below it) to its parent. Define the

formula @ with recursion variable Q and formal unary parameter R:

@(Y,z, Q;R)=

Formula Comments

(3u)(3v)Cu#u A E(y, u) A E(Y, VI If u and u are the children of y,

A sum@; QU, QD, R(y)1 then #y:= #a+ #u+R(y).

” W)C1WY, u) If y is a leaf,

A z=root A R(y)] then #y:= R(y).

Here #x is an abbreviation for 1 QXl and R(y) is identified with 1 if R(y) holds, and

with 0 otherwise. The last line of the formula tags each leafy with a 1 if and only if y is

in R; otherwise, it is tagged with a 0. The first line says that u and u are the two

children of an internal node y. The middle line tags y with the tag of u plus the tag of u,

plus an additional 1 if y is in R.
It is simple to verify by induction on the levels of the tree that, for all subsets U, and

for all y, {z I @“(y, z; U)} is an invariant subset satisfying

I{Zl@m(Y, z; ~)}I=l{wbYlw~U)I.

Therefore.

{zl@m(~oo4 z; ~)}=P(lw

is the desired query. But we are not done because, strictly speaking, @(y, z, Q; U) is not

a Q-positive formula since Q appears negatively in sum(z; Q”, Q”, U(y)) for the

exclusive-or operation. To solve this problem, we monotonize the induction by adding

a unary predicate done(y) and delay evaluation of # y until all the children of y satisfy

done. This means that Q, will remain empty until the stage at which it attains its final

value, ensuring that the induction determined by @ is monotone. We can then appeal

to the result in [8], where it is shown that on finite structures the fixed point of any

monotone induction is in fact inductive. Cl

6. Conclusion

Once we have shown that sizes of unary relations can be calculated inductively on

complete binary trees, similar proof techniques allow us to calculate the cardinality of

Analysis ofjxed-point queries on binary trees 93

binary relations and, indeed, relations of any arity. The idea (for a binary relation R) is

to calculate the size of the unary relation { y 1 R(x, y)} for each node x

using Theorem 5.1. Then just recursively sum the n,‘s over all nodes x in the binary

tree in the same manner. It gets messy because the size may be large enough to require

two digits, necessitating a fancier two-digit sum query, and we leave the details to the

reader.

And once we have shown that addition is inductive on the class of complete binary

trees, it is not difficult to show that other arithmetic operations such as multiplication

are also inductive since they can be defined recursively from addition. Hence,

size calculation and arithmetic operations are inductive

on the class of complete binary trees. Yet by Theorem 3.4

IND # PTIME

on the class of complete binary trees. Therefore, we can conclude that

inductive size and arithmetic calculation + IND = PTIME.

This means that the calculation of cardinality does not require the full power that an

ordering has to offer. But there is still a broader question which has not been

answered. The addition of ordering to fixed-point logic is unsatisfactory, primarily,

because it introduces formulas which do not determine queries (isomorphism invari-

ant) on the original unordered structure. But is there any isomorphism invariant

operation which can be added to fixed-point logic so that the resulting logic captures

all of the polytime queries? Loosely speaking, the question is:

Is there a logic for PTIME?

This question is equivalent to knowing if PTIME is recursively enumerable, and has

also been raised in [3] and [7].

One possibility is to include counting into fixed-point logic as in [ll], where it is

proposed to form a two-sorted structure from the original structure A by adding an

additional domain of numbers

1% 1, 2, “.> II A II -I>

of the same size with the usual successor relation. The only connection between the

two domains are counting quantifiers which are used like

94 S. L&dell

where i ranges over the number domain. On the surface, this appears to only allow
one to calculate cardinalities, e.g.

(3) [(3i x’s) q(x) A (3 x’s) l)(x)]

says that the cardinalities of the subsets determined by q and $ are equal. But since
formulas can contain both regular variables x, y, z, . . . and number variables i, j, k, . . .
it is possible to create inductions which use both simultaneously:

cp(i, x, S)-(Vy)S(i-1, y) v (3 z’s)(z#z).

In particular, this is an example of an induction whose length is always 11 A 11, even with
no relations on the structure. Let us denote this class of queries by IND + counting. In
fact, on the class of complete binary trees, it is easy to show that

IND + counting = PTIME.

The question of whether or not the above identity holds on the class of all (unordered)
structures was recently answered in [2], showing that fixed-point logic augmented by
full counting is not all of polynomial time.

Acknowledgment

This work comes from the author’s dissertation. He thanks both of his advisors,
Sheila Greibach and Yiannis Moschovakis, for their time and patience. Additional
appreciation is expressed to Neil Immerman for the useful discussions which helped
clarify some of the consequences of these results, and to the referees for indicating the
need for more concise proofs and motivational material.

References

[l] A.V. Aho and J.D. Ullman, Universality of data retrieval languages, in: Proc. 6fh Symp. on the
Principles of Programming Languages (1979) 110-l 17.

[2] J. Cai and N. Immerman, An optimal lower bound on the number of variables for graph identifica-

tion, in: Proc. 30th Ann. Symp. on the Foundations of Computer Science (1989) 612-617.
[3] A. Chandra and D. Harel, Structure and complexity of relational queries, J. Comgut. System. Sci. 25(l)

(1982) 99-128.
[4] H.B. Enderton, A Mathematical Introduction to Logic (Academic Press, New York, 1972).
[S] R. Fagin, Generalized first-order spectra and polynomial time recognizable sets, in: R. Karp, ed.,

Complexity of Computation, Proc. SIAM-AMS #I (1974) 43-73.
[6] R. Fraisse, Course in Mathematical Logic, Vol. 1: Relation and Logical Formula (D. Louvish,

translation), 1973.
[7] Y. Gurevich, Logic and the challenge of computer science, in: E. Borger, ed., Current Trends in

Theoretical Computer Science (Computer Science Press, Rockville, MD).

[S] Y. Gurevich and S. Shelah, Fixed-point extensions of first-order logic, Ann. Pure Appl. Logic 32 (1986)
265-280.

Analysis of fixed-point queries on binary trees 95

[9] J. Hartmanis and R.E. Stearns, On the computational complexity of algorithms, Trans. Amer. Math.

Sot. 117 (1965) 285-306.

[lo] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation

(Addison-Wesley, Reading, MA, 1979).

[ll] N. Immerman, Relational queries computable in polynomial time, Inlorm. and Control, 68 (1986)

86-104.

[12] S. Lindell, The logical complexity of queries on unordered graphs, Ph.D. Dissertation, University of

California, Los Angeles, 1987.

[13] Y.N. Moschovakis, Elementary Induction on Abstract Structures (North-Holland, Amsterdam, 1974).

[14] M. De Rougemont, Second-order and inductive definability on finite structures, Ph.D. Dissertation,

University of California, Los Angeles, 1983.

[lS] M.Y. Vardi, Complexity of relational query languages, in: Proc. 14th ACM Symp. on the Theory of

Computing (1982) 137-146.

