
Automatic Verification of

Combined Specifications:

An Overview

Ernst-Rüdiger Olderog1 ,2

Department of Computing Science
University of Oldenburg
Oldenburg, Germany

Abstract

This paper gives an overview of results of the project “Beyond Timed Automata” carried out in the Col-
laborative Research Center AVACS (Automatic Verification and Analysis of Complex Systems) of the Uni-
versities of Oldenburg, Freiburg, and Saarbrücken. We discuss how properties of high-level specifications
of real-time systems combining the dimensions of process behaviour, data, and time can be automatically
verified, exploiting recent advances in semantics, constraint-based model checking, and decision procedures
for complex data.
As specification language we consider CS-OZ-DC, which integrates concepts from Communicating Sequential
Processes (CSP), Object-Z (OZ), and Duration Calculus (DC). Our approach to automatic verification
of CSP-OZ-DC rests on a compositional semantics of this languages in terms of Phase-Event-Automata.
These can be translated into Transition Constraint Systems which serve as an input language of an abstract
refinement model checker called ARMC which can handle constraints covering both real-time and infinite
data. This is demonstrated by a case study concerning emergency messages in the European Train Control
System (ETCS). For CSP-OZ-DC we also discuss a UML profile and tool support.

Keywords: Real-time systems, complex data, CSP, Object-Z, Duration Calculus, model checking, abstrac-
tion refinement, UML profile, tool support

1 Introduction

Computers are more and more used to control the behavior of complex systems,

for instance in the traffic domain. Such applications are typically safety critical,

i.e., a malfunction of the computers is costly and dangerous. Think of assistance

systems that should guarantee the collision freedom of traffic agents such as cars,

trains, and planes. Such applications necessitate the use of formal models of the

1 This work was partly supported by the German Research Council (DFG) as part of the Transregional
Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS, http://www.avacs.org/).
2 Email: olderog@informatik.uni-oldenburg.de

Electronic Notes in Theoretical Computer Science 207 (2008) 3–16

1571-0661 © 2008 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.03.082
Open access under CC BY-NC-ND license.

mailto:olderog@informatik.uni-oldenburg.de
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


overall system and of formal verification for establishing the relevant safety proper-

ties. The models must be able to represent various aspects of the systems such as

state spaces and their transformation, communication between system components,

real-time constraints, interfaces to a continuously evolving physical environment,

and dynamically changing system structures. To cope with such models in a man-

ageable way, combined specification techniques have been proposed, integrating well

researched specification techniques for individual system aspects. It is a major re-

search challenge to develop methods for the automatic verification and analysis of

such combined specifications modeling complex real-life systems.

To address this challenge the research center AVACS (Automatic Verification

and Analysis of Complex Systems) was initiated in 2004. In AVACS, researchers

of the Universities of Oldenburg, Freiburg and Saarbrücken as well as the Max-

Planck-Institute for Informatics in Saarbrücken collaborate [2]. The idea of AVACS

is to bring experts in semantic modeling and specification together with experts in

verification and analysis techniques. Research in AVACS is organized in four layers:

(i) Complex Systems:

e.g., the European Train Control System (ETCS)

(ii) Models of Complex Systems:

real-time – hybrid – systems of systems

(iii) Combining Verification and Analysis Technologies:

combine technologies t1, ..., tn for system s

(iv) Verification and Analysis Kernel Technologies:

Abstraction – BDDs – Constraint Solving – Heuristic Search – Integer Linear

Programming – Model Checking – Lyapunov Method – SAT Solver – Theorem

Proving

At the top layer (i) are complex systems like the European Train Control System

(ETCS). In ETCS trains communicate wireless with radio block centers (RBCs)

that control the traffic in certain areas (see Fig. 1). The RBCs grant movement

authorities for trains up to a position closely behind the preceding train. In case of

an emergency incident of the first train, the RBC has to ensure that this train and

all successive trains will stop safely in order to avoid collisions.

At the bottom layer (iv) there are various individual verification and analysis

technologies like “Abstraction” or “Heuristic Search”. The idea is to combine at

layer (iii) such technologies in a suitable novel way so that particlar system classes

can be verified and analyzed. To be successful with such a combination, AVACS

pursues a divide and conquer strategy whereby (in the first phase of the project)

systems are classified into real-time systems, hybrid systems, and systems of sys-

tems. The corresponding research areas are called R, H, and S, each organized into

three subprojects.

In this paper we give an overview of one subproject on real-time systems. These

are systems that interact with their environment in such a way that for certain inputs

the corresponding outputs have to occur within given time bounds. Many embedded

systems, in particular those in safety critical applications like the ETCS, are of this

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–164



Fig. 1. Case study ETCS

type. The subproject presented here is called “R1: Beyond Timed Automata” and

it is coordinated by the author. R1 is motivated by the observation that currently

the behavioral verification of specifications of real-time systems is based on their

representation as timed automata and relies on model checkers like UPPAAL [20]. A

limitation of this approach is that model checking with timed automata is restricted

to real-time systems with finite data only. However, in applications systems often

exhibit both real-time and complex, infinite data structures.

The goal of R1 is to advance the state of the art in automatic verification of

high-level specifications of systems with the three dimensions of process behaviour,

data, and real-time — beyond the capabilities of timed automata. In the first

phase of R1, the core activities comprised the development of a system specification

language, an approach to the automatic verification of real-time properties, and

the application to the case study ETCS. As system specification language, CSP-

OZ-DC (combining subsets from Communicating Sequential Processes, Object-Z,

and Duration Calculus) was developed [18,16]. A key result in this development

was a compositional semantics on the basis of Phase Event Automata (PEA), an

extension of timed automata to represent data [16]. It involves a translation of the

DC subsets of counterexample formulas (with events) and so-called test formulas

into equivalent PEA. It was shown that PEA can be translated into Transition

Constraint Systems (TCS), which serve as input for the abstraction refinement model

checker ARMC [29] and the deductive slicing abstraction model checker SLAB [4].

While ARMC is based on predicate abstraction, SLAB is a combination of deductive

model checking (based on Craig interpolation) and slicing. Both tools call decision

procedures when checking entailment of constraints [13,36,37] as well as methods for

computing interpolants [35,32]. By combining CSP-OZ-DC with ARMC (or SLAB)

and decision procedures, properties of systems with both real-time constraints and

(certain) infinite data types can be verified automatically, as demonstrated by case

studies [17]. In particular, real-time properties of emergency messages in the ETCS

case study were verified [23,11,22].

These core activities were complemented by research into reducing the size of

the state spaces of specifications with the help of slicing techniques. This approach

has been applied both at the level of CSP-OZ-DC [5,3] and at the level of TCS [4].

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–16 5



This paper is organized as follows. In Section 2 the combined specification lan-

guage CSP-OZ-DC is outlined. In Section 3 an approach to automatic verification of

real-time properties of CSP-OZ-DC specification is presented. Section 4 reports on

case studies preformed in this setting. Section 5 describes the tool support available

for the approach, and Section 6 concludes the paper.

2 Combined Specifications

To specify real-time systems with a rich data part, we developed a high-level sys-

tem specification language called CSP-OZ-DC [18,16] which separates the aspects of

process behavior, data, and time. CSP-OZ-DC combines concepts from Communi-

cating Sequential Processes (CSP) [14,31], Object-Z (OZ) [7,33], and the Duration

Calculus (DC) [41,40]. The central notion is that of a class, consisting of an inter-

face, a CSP part, an OZ part, and a DC part. An example of (part of) a class is

shown Fig. 2. It models the rear train in the ETCS for the case of two trains.

The idea is that the rear train measures its position periodically and adjusts its

speed so that is is always able to brake safely before reaching the limit of authority

(LOA) along the track by applying its service brake. For this purpose, it periodi-

cally computes the service brake intervention limit (SBI), which represents the last

position at which the train can apply the service brake in order to stop before the

current end of authority.

The class has three parameters: the identity ID of the train, the position

StartPos of the train at its start, and the position StartSBI of the SBI at its start.

The interface declares channel names and types used by the class. Here we see the

channels updPos for updating the train’s position and compSBI for computing the

next SBI.

The CSP part constrains the sequencing of events (communication) along the

interface channels using CSP process notation. It may consist of multiple processes

defined by CSP process equations, one of which is a distinguished process named

main, which denotes the initial process. Here we see that the CSP part consists of

two subprocesses working in parallel (denoted by ‖|). The subprocess Running is

taking care of the normal operation of speed control and the subprocess HandleEM

takes care of emergency situations. The subprocess Running first inputs the current

position pos of the train and the current limit of authority loa and then computes

the SBI in the state variable sbi . If the position pos of the train has got beyond the

value sbi the service brake has to be applied.

The OZ part specifies the state space and operations upon it. It comprises a

nameless state schema describing the state space, a schema Init constraining the

initial state, and communication schemas com c describing the transformation of

the state space induced by communicating along an interface channel c. Here we

see that the state contains two variables sbi (for the current SBI) and curPos (for

the current position) of type Position and curSpd (for the current speed) of type

Speed . Of the communication schemas we exhibit the one for the channel compSBI

which specifies how the new value of the variable sbi is defined. The notation Δ(sbi)

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–166



RearTrain(ID : TrainID ; StartPos, StartSBI : Position)

chan updPos : [id : {ID}, pos! : Position]

chan compSBI : [loa?, sbi ! : Position]

. . .

main
c
= Running ‖|HandleEM

Running
c
= updPos.ID ? pos → getLOA.ID ? loa → compSBI ! loa ? sbi →

if sbi ≤ pos then . . . else . . .

. . .

sbi : Position

curPos : Position

curSpd : Speed

. . .

com compSBI

Δ(sbi)

loa?, sbi ! : Position

sbi ′ = loa? − TargetSpdDist − StopDist − MaxDist

sbi ! = sbi ′

. . .

¬� (� updPos ; � < updBound ; � updPos)

. . .

Fig. 2. A class in CSP-OZ-DC

of Object-Z defines that sbi is the only state variable changed by the schema.

The DC part constraints the timing of states and events. Here we see a so-

called counterexample formula that states a lower time bound: any two successive

communication events on the channel updPos should not be less than updBound

seconds apart.

The ETCS with two trains consists of several classes. Besides RearTrain there

are the classes for the LeadingTrain, the RBC, the CommunicationNetwork (be-

tween trains and RBC), the Track, and the Driver [22]. Objects of classes may

be combined into systems using the CSP operators of parallel composition and

renaming.

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–16 7



2.1 UML Profile

Often specifiers use diagrams to support their understanding of a system. To facil-

itate this, a UML profile in the notations of UML 2.0 [39] has been developed for

CSP-OZ [25] and extended to CSP-OZ-DC. The profile comprises class diagrams,

protocol state machines, and component diagrams. These diagrams are annotated

by suitable tags to represent the contents of classes in the form of Z and DC ex-

pressions. The semantics of the UML profile is given by a translation of the profile

into CSP-OZ-DC as illustrated by Fig. 3. For details of the CSP-OZ part we refer

to the paper [25].

CSP

OZ

DC

CSP

OZ

DC

Component DiagramState MachineClass Diagram

DC annotation

A

Fig. 3. Semantics of the UML profile for CSP-OZ-DC

2.2 Operational Semantics

The key for an automatic verification of CSP-OZ-DC is an operational semantics of

this language defined by J. Hoenicke on the basis of Phase Event Automata (PEA)

[16]. PEA extend timed automata [1] such that the parallel composition synchro-

nizes on both phases (state formulae) and events. This permits the a compositional

semantics definition for CSP-OZ-DC, i.e., one satisfying the equation

A(CSP -OZ -DC ) = A(CSP) || A(OZ ) || A(DC )

where || denotes the (synchronous) parallel composition of PEA A(...). In fact,

A(DC ) decomposes even further into a parallel composition of PEA for each indi-

vidual timing constraint in the DC part. An important property of this semantics

is that whenever a subset of PEA in a parallel composition satisfies a requirement

(represented as a DC formula) then also the full parallel composition does. This

allows for a cone-of-influence verification technique.

For the DC part the class of counterexample formulae (with facilities to constrain

the occurrences of both state changes and communication events) was introduced,

extending the well-known class of “DC implementables” by A.P. Ravn [30]. The

main theorem proved by J. Hoenicke in [16] is that every counterexample formula

F has an operational semantics in form of a deterministic PEA A(F ) such that the

runs of A(F ) are equivalent to the DC interpretations of F . The proof of this theo-

rem uses a so-called powerset construction to cope with the nondeterminism arising

from overlapping phases in F . Overlapping phases allow for concise specifications.

The determinism of A(F ) permits an easy treatment of negation, which underlies

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–168



the specification with counterexample formulae as well as an automata-theoretic

approach to model checking DC. In the latter approach, the desired property is

negated and then represented as a PEA running in parallel to the system.

For the real-time requirements, R. Meyer extended the class of translatable

formulae even further to so-called test formulae [21]. Whereas counterexample for-

mulae are negated traces (of timed phases), test formulae contain arbitrary Boolean

combinations of such traces and are closed under disjunction, conjunction, and the

DC chop. Using so-called sync events, test formulae can be brought into a disjunc-

tive normal form over traces and their negations, which facilitates their translation

into PEA. To date, test formulae are the largest class of DC formulae that have an

equivalent operational semantics in terms of automata [24].

Figure 4 shows the automaton PEAOZ representing the semantics of the OZ part

of the class in Fig. 2. Here updPos and comSBI are Boolean variables representing

the presence or absence of a communication event on the corresponding channel in

the CSP part.

pinit

Init

p

trueφidle

φidle φidle

updPos ∧ com updPos

comSBI ∧ com comSBI

. . .

Fig. 4. Phase Event Automaton PEAOZ for the OZ part of the class in Fig. 2

Note that for each communication schema in the OZ part there is a corresponding

transition labeled with the Boolean event variable and the formula of the commu-

nication schema, here com updPos and com comSBI . The idling transition φidle is

taken if none of the communications in the OZ part of the class is enabled. Here

φidle abbreviates the formula

φidle ⇔ ¬ updPos ∧ ¬ comSBI ∧ . . . ∧ sbi = sbi ′ ∧ curPos = curPos ′ ∧ . . .

Figure 5 shows the automaton PEADC representing the semantics of the counterex-

ample formula

¬ �( �updPos ; � < 5 ; updPos )

in the DC part of the class in Fig. 2. Here c is a clock that is used to measure the

duration of 5 seconds.

3 Automatic Verification

We consider the problem whether a given specification CSP -OZ -DC satisfies a real-

time requirement expressed by a DC formula. The aim is an automatic verification

method. Our approach is illustrated by the following scheme:

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–16 9



p0

true

p1

c ≤ 5

updPos, c := 0

c = 5 ∧ ¬ updPos

¬ updPos ¬ updPos

c = 5 ∧ updPos, c := 0

Fig. 5. Phase Event Automaton PEADC for the DC part of the class in Fig. 2

CSP -OZ -DC satisfies DC ?

↓ ↓

PEA: A(CSP) ‖ A(OZ ) ‖ A(DC ) ‖ Atest(DC )

Is the bad state of Atest(DC ) reachable ?

↓

TCS: T (...)

In order to check whether a specification CSP -OZ -DC satisfies a real-time property,

represented by a test formula DC , both the specification and the property are

translated to Phase Event Automata running in parallel. The property DC is

translated to a so-called test automaton Atest(DC ), which has a distinguished bad

state such that specification CSP -OZ -DC satisfies the test formula DC if and only

if at the PEA level the bad state is reachable in Atest(DC ) as part of the overall

parallel composition.

To check for reachability we apply the abstraction refinement model checker

ARMC developed by A. Podelski and A. Rybalchenko [28,29]. ARMC takes as input

Transition Constraint Systems (TCS). The PEA semantics of CSP-OZ-DC is very

well suited as an intermediate language in the translation process from CSP-OZ-DC

down to TCS. At the level of TCS, the clocks of PEA are represented as real-valued

data variables, following the “old-fashioned recipe” advocated by L. Lamport. As

an example consider the transition constraint system T (PEADZ) for the automaton

PEADZ for the DC constraint shown in Fig. 5:

T (PEADZ) ⇔ ph = 0 ∧ ¬updPos ∧ c ′ = c + len ∧ ph ′ = 0

∨ ph = 0 ∧ updPos ∧ c ′ = len ∧ c ′ ≤ 5 ∧ ph ′ = 1

∨ ph = 1 ∧ ¬updPos ∧ c ′ = c + len ∧ c ′ ≤ 5 ∧ ph ′ = 1

∨ ph = 1 ∧ updPos ∧ c = 5 ∧ c ′ = len ∧ c ′ ≤ 5 ∧ ph ′ = 1

∨ ph = 1 ∧ ¬updPos ∧ c = 5 ∧ c ′ = c + len ∧ ph ′ = 0

Here c is a real-valued variable representing the corresponding clock of PEADZ

and len is a real-valued variable with the constraint len > 0 that represents time

progress. The variables ph represents the current phase of PEADZ.

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–1610



3.1 Abstraction Refinement

Verification of temporal safety and liveness properties can be effectively automated

by applying a reduction to least fixpoint computation [6,27]. Such a fixpoint com-

putation engine serves as a basis for the verification tool ARMC [28,29]. ARMC

is a model checking tool that applies abstraction refinement to efficiently handle

the high complexity of verification tasks envisaged in the AVACS project. Its dis-

tinguishing characteristics lie in the way it applies logical reasoning to deal with

abstraction [29]. ARMC is implemented in a Prolog system together with Con-

straint Logic Programming extensions. Interpolation is an important component of

the abstraction refinement algorithm used by ARMC. It provides an effective means

for computing the separation between the sets of ‘good’ and ‘bad’ states. ARMC

uses an algorithm for the generation of interpolants for the combined theory of lin-

ear arithmetic and uninterpreted function symbols [32]. It uses a reduction of the

problem to constraint solving in linear arithmetic, which allows for the application

of existing highly optimized Linear Programming solvers in black-box fashion.

Note that the PEA and hence the TCS representing the semantics of CSP-OZ-

DC specifications are in general infinite state systems due to both clocks and data

values. So reachability is in general not decidable. Thus the fixpoint computation

of ARMC need not terminate. However, as our case studies demonstrate, ARMC

can be applied successfully to various examples.

4 Case Studies

A first application of this approach to verification dealt with a parametric elevator

by J. Hoenicke and P. Maier [17]. In this example the number of floors are treated as

parameters. A safety property that depended on all parts of the specification (i.e.,

communication, data, and time) was verified automatically with ARMC. The spec-

ification of the elevator in CSP-OZ-DC comprised both infinite data (i.e., integers

representing an arbitrary number of floors) and continuous real-time.

4.1 Emergency Messages

The benchmark for the project “R1: Beyond Timed Automata” was defined as the

verification of timing requirements for the radio communication between trains and

the radio block center (RBC) in the ETCS. Starting from a comprehensive but

informal description of the ETCS in [9], J. Faber defined the case study Emergency

Messages (EM) for the scenario where an RBC controls consecutive trains on a

track segment (see Fig. 1). In the case of two trains, if the first train detects

an emergency situation it immediately applies the emergency brake and sends an

emergency message via the radio connection to the RBC, which has to inform the

follower train within a predefined time interval. The train control system has to

stop the follower such that no collision occurs. This property depends on several

real-time requirements for the message transfer times and the reaction times of the

RBC and the follower.

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–16 11



In [10,12,24], this case study is modeled in the specification language CSP-OZ-

DC. The model involves continuous real time, real-valued variables representing

train positions (on an infinite track segment) and speeds and messages transferred

via CSP channels. Other quantities like the length of the train and the braking

distance were treated as parameters. A part of one class of the specification is shown

in Fig. 2. Then the techniques of Section 2 [17,16] were applied to translate the

CSP-OZ-DC model via Phase Event Automata (PEA) into Transition Constraint

Systems (TCS) that are the input of the abstraction refinement model checker

ARMC [28,29].

For the case study EM, properties formalizing reaction times in the communi-

cation between trains and RBC could be verified automatically with ARMC. Thus

the benchmark for R1 was fully achieved.

However, the global property of collision freedom could not be verified automat-

ically with ARMC. The reasons are as follows. According to [16] each CSP-OZ-DC

specification is represented as a parallel composition of PEA. In the case study

this composition consisted of 18 automata. At present ARMC requires the parallel

product of this composition to be computed. An attempt to compute the parallel

product of all 18 automata of EM failed due to memory shortage. By contrast, for

the verification of the reaction times in the benchmark case it is sufficient to consider

only 5–7 of the automata and compute their parallel product. By the compositional

semantics [16] of CSP-OZ-DC, this allows us to infer the verified property for the

full parallel composition of all automata (without computing the product).

To prove collision freedom for the EM case study, a manual decomposition of

this property into simpler subtasks was performed. Each of these subtasks was a

variant of a reaction time property that could be verified automatically with ARMC.

Moreover, variants of the case study EM were examined which had a more

sophisticated and realistic data part, but a less complicated control structure: the

RBC maintains an array of consecutive trains (on an infinite track segment) where

the size of the array is kept as a parameter. In case of an emergency, every train

behind the emergency train has to be instructed to stop (Fig. 1). Message transfer

times were not considered in this extended scenario. For this variant, collision

freedom for an arbitrary number of trains [19,11] could be shown. To cope with the

data type used for representing the train positions (in this case: arrays with integer

elements and real numbers as elements, with a parametric dimension) methods

for hierarchical reasoning in theories of complex data types developed in [34] were

employed.

5 Tool Support

Tool support has been developed to handle system specifications expressed in CSP-

OZ-DC, real-time requirements in form of test formulae, and their translation into

Phase Event Automata (PEA) and Transition Constraint Systems (TCS).

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–1612



5.1 Syspect

For CSP-OZ-DC specifications, a graphical modeling environment called Syspect

(System Specification Tool) [38] has been implemented on the basis of the Eclipse

platform [8]. An overview of Syspect is given in Fig. 6. The graphic modeling

uses the UML profile mentioned in Subsection 2.1. See Fig. 7 for a screen shot

of the class editor. The graphic model is automatically converted into an internal

representation of CSP-OZ-DC, which offers the possibility to export the specification

into their semantic model in terms of PEA for a subsequent verification. To this

end, Syspect also permits to enter real-time requirements expressed as test formulae

(see Section 2). Test formulae also serve as the slicing criterion in a Slicing Plugin of

Syspect that has been implemented to perform slicing of CSP-OZ-DC specifications

in order to reduce their size [5,3].

Fig. 6. Overview of tool support

Since verification is based on the transformation of PEA into TCS, the so-

called PEA toolkit [26] provides an automatic computation of the parallel product

of PEA and an automatic translation of PEA into TCS, the input representation

for both model checkers developed in R1, namely ARMC [29] as well as SLAB [4].

The latter integrates of slicing techniques with abstraction mechanisms. Moreover,

counterexample traces produced by ARMC can be automatically traced back to the

given high-level CSP-OZ-DC specification and visualized in the Syspect tool [15].

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–16 13



Fig. 7. Screen shot of Syspect

6 Conclusion

We have explained how real-time properties of systems specified in the combina-

tion CSP-OZ-DC can be automatically verified using recent advances in semantics,

constraint-based model checking, and decision procedures for complex data. The

verification is based on the abstraction refinement model checker ARMC that can

deal with variables ranging over continuous real-time and infinite data.

A shortcoming of the current version of ARMC is that it cannot exploit the

parallel composition that is present in the Phase Event Automata (PEA). Since

ARMC expects as input Transition Constraint Systems (TCS) in disjunctive normal

form, the parallel product of PEA, which corresponds to the conjunction of TCS,

has to be computed before it can be handled by ARMC. For the full benchmark case

study this leads to state spaces that are too large to be computed (see Section 4).

This shortcoming will be addressed in the future work of the subproject R1.

References

[1] Alur, R. and D. Dill, A theory of timed automata, Theoret. Comp.Science 126 (1994), pp. 183–235.

[2] Becker, B., A. Podelski, W. Damm, M. Fränzle, E.-R. Olderog and R. Wilhelm, SFB/TR 14 AVACS
– automatic verification and analysis of complex systems, it – Informatiton Technology 49 (2007),
pp. 118–126, see also http://www.avacs.org .

[3] Brückner, I., Slicing concurrent real-time system specifications for verification, in: J. Davies and
J. Gibbons, editors, Integrated Formal Methods (IFM), LNCS 4591 (2007), pp. 54–74.

[4] Brückner, I., K. Dräger, B. Finkbeiner and H. Wehrheim, Slicing abstractions, in: Proceedings of
the International Symposium on Fundamentals of Software Engineering (FSEN), 2007, accepted for
publication.

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–1614

http://www.avacs.org


[5] Brückner, I., B. Metzler and H. Wehrheim, Optimizing slicing of formal specifications by deductive
verification, Nordic Journal of Computing 13 (2006), pp. 22–45.

[6] Cousot, P. and R. Cousot, Abstract interpretation: a unified lattice model for the static analysis of
programs by construction or approximation of fixpoints, in: Proc. POPL (1977), pp. 238–252.

[7] Duke, R., G. Rose and G. Smith, Object-Z: A specification language advocated for the description of
standards, Computer Standards and Interfaces 17 (1995), pp. 511–533.

[8] Eclipse Foundation Inc., Homepage of the Eclipse Community (2005), http://www.eclipse.org .

[9] ERTMS User Group, UNISIG, ERTMS/ETCS System requirements specification, version 2.2.2 (2002),
http://www.aeif.org/ccm/default.asp .

[10] Faber, J., Verifying real-time aspects of the European Train Control System, in: Proceedings of the 17th
Nordic Workshop on Programming Theory (2005), pp. 67–70.

[11] Faber, J., S. Jacobs and V. Sofronie-Stokkermans, Verifying CSP-OZ-DC specifications with complex
data types and timing parameters, in: J. Davies and J. Gibbons, editors, Integrated Formal Methods,
LNCS 4591 (2007), pp. 233–252.

[12] Faber, J. and R. Meyer, Model checking data-dependent real-time properties of the european train
control system, in: Proc. of the Conf. on Formal Methods in Computer Aided Design (FMCAD) (2006),
pp. 76–77.

[13] Ganzinger, H., V. Sofronie-Stokkermans and U. Waldmann, Modular proof systems for partial functions
with Evans equality, Information and Computation 204 (2006), pp. 1453–1492.

[14] Hoare, C. A. R., “Communicating Sequential Processes,” Prentice Hall, 1985.

[15] Hobelmann, U., “Verifying Properties of Processes, Data, and Time: Linking Counterexamples to High-
Level Specifications,” Master’s thesis, University of Oldenburg (2007).

[16] Hoenicke, J., “Combination of Processes, Data, and Time,” Ph.D. thesis, Report Nr. 9/2006, University
of Oldenburg (2006).

[17] Hoenicke, J. and P. Maier, Model-checking of specifications integrating processes, data and time, in:
J. Fitzgerald, I. Hayes and A. Tarlecki, editors, FM 2005, LNCS 3582 (2005), pp. 465–480.

[18] Hoenicke, J. and E.-R. Olderog, CSP-OZ-DC: A combination of specification techniques for processes,
data and time, Nordic Journal of Computing 9 (2002), pp. 301–334.

[19] Jacobs, S. and V. Sofronie-Stokkermans, Applications of hierarchical reasoning in the verification of
complex systems, in: Proc. of the Fourth Intern. Workshop on Pragmatics of Decision Procedures in
Automated Reasoning, 2006, pp. 15–26.

[20] Larsen, K., P. Petterson and Wang Yi, Uppaal in a nutshell, Software Tools for Technology Transfer 1

(1997), pp. 134–152.

[21] Meyer, R., “Model-Checking von Phasen-Event-Automaten bezüglich Duration Calculus Formeln
mittels Testautomaten,” Master’s thesis, University of Oldenburg (2005).

[22] Meyer, R., J. Faber, J. Hoenicke and A. Rybalchenko, Model checking duration calculus: A practical
approach, Formal Aspects of Computing (2008), accepted for publication.

[23] Meyer, R., J. Faber and A. Rybalchenko, Model checking duration calculus: A practical approach, in:
K. Barkaoui, A. Cavalcanti and A. Cerone, editors, Theoretical Aspects of Computing (ICTAC), LNCS
4281 (2006), pp. 332–346.

[24] Meyer, R., J. Faber and A. Rybalchenko, Model checking duration calculus: A practical approach, in:
K. Barkaoui, A. Cavalcanti and A. Cerone, editors, 3rd International Colloquium on Theoretical Aspects
of Computing, ICTAC, LNCS 4281 (2006), pp. 332–346.

[25] Möller, M., E.-R. Olderog, H. Rasch and H. Wehrheim., Integrating a formal method into a software
engineering process with uml and java, Formal Aspects of Computing (2007), accepted for publication.

[26] PEA toolkit, Department of Computing Science, University of Oldenburg,
http://csd.informatik.uni-oldenburg.de/projects/pea.html (2006).

[27] Podelski, A. and A. Rybalchenko, Transition invariants, in: LICS’2004: Logic in Computer Science
(2004), pp. 32–41.

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–16 15

http://www.eclipse.org
http://www.aeif.org/ccm/default.asp
http://csd.informatik.uni-oldenburg.de/projects/pea.html


[28] Podelski, A. and A. Rybalchenko, Transition predicate abstraction and fair termination, in: J. Palsberg
and M. Abadi, editors, Proc. of the 32nd ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL) (2005), pp. 132–144.

[29] Podelski, A. and A. Rybalchenko, ARMC: the logical choice for software model checking with
abstraction refinement, in: M. Hanus, editor, PADL’2007: Practical Aspects of Declarative Languages,
LNCS 4354 (2007), pp. 245–259.

[30] Ravn, A., Design of embedded real-time computing systems, Technical Report ID-TR 1995-170,
Technical University of Denmark (1995).

[31] Roscoe, A. W., “Theory and Practice of Concurrency,” Prentice-Hall, Englewood Cliffs, NJ, 1998.

[32] Rybalchenko, A. and V. Sofronie-Stokkermans, Constraint solving for interpolation, in: B. Cook and
A. Podelski, editors, 8th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI 2007), LNCS 4349 (2007), pp. 346–362.

[33] Smith, G., “The Object-Z Specification Language,” Kluwer Academic Publisher, 2000.

[34] Sofronie-Stokkermans, V., Hierarchic reasoning in local theory extensions, in: R. Nieuwenhuis, editor,
20th International Conference on Automated Deduction (CADE-20), Lecture Notes in Artificial
Intelligence 3632 (2005), pp. 219–234.

[35] Sofronie-Stokkermans, V., Interpolation in local theory extensions, in: U. Furbach and N. Shankar,
editors, Automated Reasoning: Third Intern. Joint Conf. (IJCAR), LNCS 4130 (2006), pp. 235–250.

[36] Sofronie-Stokkermans, V., Hierarchical and modular reasoning in complex theories: The case of local
theory extensions, in: B. Konev and F. Wolter, editors, Proc. of the 6th Intern. Symp. on Frontiers of
Combining Systems (FroCos), LNCS 4720 (2007), pp. 47–71.

[37] Sofronie-Stokkermans, V. and C. Ihlemann, Automated reasoning in some local extensions of ordered
structures, in: Proc. of the 37th Intern. Symp. on Multiple-Valued Logics (ISMVL) (2007).

[38] Syspect – System Specification Tool, Department of Computing Science, University of Oldenburg,
http://csd.informatik.uni-oldenburg.de/∼syspect (2006).

[39] OMG Unified Modeling Language: Superstructure, version 2.0 – final adopted specification (2003),
http://www.omg.org.

[40] Zhou, C. and M. R. Hansen, “Duration Calculus: A Formal Approach to Real-Time Systems,” Springer,
2004.

[41] Zhou, C., C. A. R. Hoare and A. P. Ravn, A calculus of durations, Inform. Proc. Letters 40 (1991),
pp. 269–276.

E.-R. Olderog / Electronic Notes in Theoretical Computer Science 207 (2008) 3–1616

http://csd.informatik.uni-oldenburg.de/~syspect
http://www.omg.org

	Introduction
	Combined Specifications
	UML Profile
	Operational Semantics

	Automatic Verification
	Abstraction Refinement

	Case Studies
	Emergency Messages

	Tool Support
	Syspect

	Conclusion
	References

