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Abstract

We present two algorithms for packing two largest disks in a polygon. The first algorithm locates two disks in
a simple polygon in time Gt log?n) improving the best previous deterministic result (Bespamyatnikh, 1999) by
a factor of log:. The second algorithm finds two disks in a convex polygon such that the disks are separated by a
diagonal of the polygon. It runs in time(@log? n) improving previous result (Kim et al., 2000) by a linear factor.
0 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction
In this paper we consider the following problem.

Two disk problem. Find two largest non-overlapping disks of equal radius in a simple polyyarith
n vertices.

This problem is an example of the obnoxious facility location [4,10,13-15]. Obnoxious location
models are models in which customers no longer consider the facility desirable and try to have it as
close as possible to their own location, but instead avoid the facility and stay away from it. Typical
applications are optimal locations of nuclear reactors, garbage dumps, or water purification plants. The
centers of the disks can be viewed as the locations of two obnoxious facilities.

The two disk problem has another nice motivation. Biedl et al. [6] consider a gift wrapping problem
which asks whether a given polyhedron can be wrapped up, or hidden, using a given piece of paper.
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They study a problem of wrapping the disk by a piece of paper that has a polygonal form. The two disk
problem is to the disk wrapping using only one straight fold.
Kim et al. [17] consider the following problem.

Folding line problem. Given a convex polygor® with n vertices, find an optimdblding line which is
a diagonal ofP separating two largest non-overlapping disks of equal radids in

Related to the two disk problem is the largest-empty-circle problem: find the largest disk that fits in
a given polygon. The standard solution uses the fact that the center of the largest disk is a vertex of the
medial axis [22]. The medial axis can be computed in linear time [12].

Biedl et al. [6] obtained a polynomial-time algorithm for finding the largest disk that can be hidden
by one simple fold of an input polygon, i.e., an algorithm for the two disk problem. Their algorithm
takesQ (n?) time because it looks through all pairs of edges in the medial axis. Bespamyatnikh [5] gave
an Qi log®n) algorithm for the two disk problem. Bose et al. [7] obtained a linear-time algorithm for
packing two disks in a convex polygon. Very recently, Bose et al. [8] obtained a simple randomized
O(nlogn) algorithm for finding two disks in polygons with holes.

We improve the previous algorithm [5] for the two disk problem by a factor of:loghe algorithm
is based on parametric searching of Megiddo [18]. We show that the decision problem that asks whether
there exist two non-overlapping disks of fixed radius, can be solved in linear time improving the best
previous deterministic result [5].

Kim et al. [17] gave an @:2log®n) algorithm for computing an optimal vertex folding line. Their
algorithm is based on parametric searching. We show that the folding line problem can be solved by
searching in a binary tree avoiding the use of parametric searching. The running time of our algorithm is
O(n log?n), substantially improving upon the previous bound.

2. Preliminaries

Themedial axis M [1,12] of a simple polygorP is the locus of all centers of disks that are contained
in P and touch the boundary @t in two or more points. It is related to thdoronoi diagram [3]. The
Voronoi diagram of a set of sites is the partition of the plane into connected regions having the same set
of closest sites. This partition consistsMaronoi cells, edges andvertices.

If we select the vertices and edges (open line segments) of the poR/¢gmbe the sites, then Voronoi
vertices and edges clipped Byform the medial axigf. An edge of the medial axis can be either a line
segment or a piece of parabola, see Fig. 1. The points of a line edge are equidistant from two &dges of
The points of a parabolic edge are equidistant from an edgeasfd a non-convex vertex @f.

line-segment edge parabolic edge

Fig. 1. Medial axis.



S Bespamyatnikh / Computational Geometry 23 (2002) 31-42 33
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Fig. 2. Contracted region is shaded.

The medial axis can be computed in linear time by an algorithm of Chin et al. [12]. Their algorithm
uses the technique of Aggarwal et al. [1] for computing a medial axis of a convex polygon. Note that the
medial axis of a convex polygoR is a tree whose edges are line segments and leaves are the vertices
of P.

The centers of two largest disks in a simple polygon belong to its medial axis [6§.A.dEnote the
boundary of a polygorP. For a pointp € P, D(p) denotes the distance fromto § P. For anyr > O,
the contracted region P (r) is the locus of points of the polygoR at distance at leastfrom § P.

Using the medial axis one can compute the distarizgs) for all verticesp of M in linear time. The
medial axis has a tree form. Each edgeMpfcontains the points closest to the same sites (vertices and
open edges oP) of the Voronoi diagram. To compute the distan@@gy) we find the associated sites
for each edge oM (it can be done simultaneously with computing the medial axis). The sites can be
found by contracting the tree of the medial akfs The basic procedure is the deletion of leaves that are
adjacent to same node.

The contracted regio®(r) can be disconnected, see Fig. 2. Each connected componédtr pf
is bounded by line segments and circle arcs. The vertice®(of can be computed in linear time by
inspecting edges af/. Each line-segment edge 8f contains at most one vertex &f(r). Note that a
parabolic edge may contain two verticesrxfr) [6].

3. Two disksin ssmple polygon

We apply the parametric searching technique [18]. The radiostwo disks is a parameter of the
decision problem that asks whether there exists a pair of non-intersecting disks of therradie
polygon P. We obtain two algorithms, sequential and parallel, for the decision problent;lbt the
running time of the sequential decision algorithm. Igiand P’ be the running time and the number of
processors of the parallel algorithm, respectively. The parametric searching scheme allows us to solve
the optimization problem, i.e., the two disk problem, iGFOT, + T Tslog P’) time.
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We show that the decision problem can be solved (n)@me using one processor and inl@y»)
time using Qn) processors. Hence two largest disks in a simple polygon can be fountilogn)
time.

3.1. Sequential algorithm

The idea of the algorithm is to construct the convex hull of the contracted poligon P (r) could
be disconnected and we use connectivity induced by the medialaxinfortunately the edges af(r)
and segments connecting componentsPéf) that are induced by, may intersect properly (not at
endpoints). In spite of this we found a simple way to solve the decision problem in linear time. The
algorithm contains four steps.

Algorithm TwoDi sks(P,r).
Input: A simple polygonP with n vertices, a real numbet.
Output: Answer whether there exist two disks of radium P.

1. Compute the vertices of the contracted reghun).

2. Connect each pair of consecutive (in topological order) verticeB(ef by a line segment. If the
distance between consecutive vertices is at leggh2n the algorithm stops and replies “yes” (there
are two non-intersecting disks of the radius the polygonP).

3. The segments form a simple closed chairind the convex hull of the chai@.

4. Compute diameter aZH(C). If the diameter is at leastrZhen the answer is “yes”. Otherwise the
answer is “no”.

Theorem 1. The decision algorithm TwoDi sks iscorrect and runsin linear time using linear space.

Proof. The first step can be done in linear time by examining each edge of the medial axis. Each line-
segment edge contains at most one verteR @f). Note that parabolic edge can produce two vertices of
P(r).

In Step 2 the medial axis tree is traversed in topological order so that every edge is traversed twice, see
Fig. 3 (note thaip, = p; and p3 = pg). We connect every two consecutive verticesPaf) found along
the traversal. If a parabolic edge produces two vertices we list them in the order according to the walk. If
the algorithm does not stop in Step 2, then it builds the cldaof the segments (to make chain closed

Ps

Fig. 3. Step 2 offwoDi sks. A walk of M produces closed chajp p> ... pgp;.
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we connect the last found vertex and the first one, see Fig. 3) and its convex hull in Step 3. The segments
of the chain do not intersect properly by Lemma 2. We use the linear algorithm [20] to construct the
convex hull of the chair€. The convex hull ofC and the convex hull of the vertices Bf(r) coincide by
Lemma 3.

To compute the diameter of the set of verticesRaf) we apply calipers [21] to the convex hull
CH(C). The reply in Step 4 is correct by Lemma 30

Lemma 2. If two edges of the chain C have lengths at most 2r then they do not intersect properly.

Proof. Lete; = (p1, g1) ande, = (p», g2) be two edges of the chaifi such that their lengths are at most
2r. We can assume that the segmenis horizontal and the poing; is above the ling,q», see Fig. 4.
For any pointsp and g of the medial axis, letr(p, ¢g) denote the path of the medial axis connecting
verticesp andg. The disks of radius centered at pointg;, ¢; lie in the polygonP because their centers
are vertices ofP (r). Hence the segmenig;, ¢;1, i = 1, 2, lie inside the polygonP. Suppose that the
segment$p1, g1] and[p,, g»] intersect properly.

Let R;,i =1, 2, denote the region bounded by the patlp;, ¢;) and the segmenp;, ¢;]1 (if 7 (p;, g;)
intersectq p;, ¢;1, then the regiorR; is defined as a set of points that cannot be moved away to infinity
without crossing the path(p;, g;) or the segmentp;, ¢;1). The regionsk; andR; lie inside the polygon
P because their boundaries lie insigte

The pathsr(p1, g1) and 7 (p2, g2) do not intersect because, for eaghthe pointsp; and ¢, are
consecutive in topological order defined by the medial axis. Hence an endpoint of one of the edges
e;,i =1, 2,is surrounded by another edge and the corresponding path. In other words, this endpoint, say
p1, belongs to the regioR;, see Fig. 4.

Consider the subtree of the medial axis that is defined as a set of panfithe medial axis such that

the pathn (p, p1) lies in the regionR,. Let p be a point of this subtree with largegtcoordinate. The
point p does not belong to the path p», ¢») due the topological order of choosing the segmeéntsy; 1.
The pointp cannot be a vertex of the polygdhbecause it belongs to the regi®a lying in the interior
of P. The pointp is the center of a disk that is containedAnand touches the boundary 8fin two or
more points. At least one of these points, gais above the horizontal line passing throyghThe point
q lies outside the regioR,. Hence the segmenp, ¢] intersects the path(p-, ¢,).

Let p’ be a point of intersection of the segmépt ¢ and the pathr (p,, g2). The pointg is the closest
point of the boundary of to p’. The circle with center ap’ and radiug p’ — ¢| touches the boundary
of P in only one pointg. Hencep’ cannot belong to the medial axis. Contradictionm

Lemma 3. The diameter of P(r) coincides with the diameter of the set of vertices of P(r).

Proof. The endpoints of a diameter &(r) belong to the boundary of the contracted regi). The
boundary of P(r) consists of segments and arcs.Afr) is bounded by only segments, thér) is

a union of simple polygons and the furthest points are verticeB(ej. In general case, if one of the
points defining the diameter @f(r) belongs to an arc, then it is an endpoint of the arc because the arc is
concave, see Fig. 2.0
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Fig. 4. RegionR> is shaded.

3.2. Paralle algorithm

The parallel algorithm uses the medial axisPfand it can be difficult to compute the medial axis
in O(logn) time using Qn) processors. Instead, we precompute the medial axis in linear time [12] by
sequential algorithm and assume that it is accessible in the parallel algorithm. In other words, we assume
that the input of the decision algorithm includes the medial axiB.of

First, the parallel decision algorithm constructs the vertices of the contracted ®gipim O(1) time
using Qn) processors. We assign one processor to each edge of the medial axes. AoEtigemedial
axes can be either a line segment or a parabolic arc. The processor corresponding to ¢érmetqgees
one or two points ot at distance: from the boundary of the polygon. The convex hull of these points
can be computed in @gn) time using an algorithm of Miller and Stout [19].

In order to compute the diameter of the convex poly@bih( P (r)) we can findall furthest neighbors,
i.e., for each vertexp of the polygon, find its furthest neighbor among the vertices of the polygon.
Clearly, the diameter is the largest distance from a vertex to its furthest neighbor. There are several
papers describing parallel algorithms for computing all-furthest-neighbors in a convex polygon [2,9]. We
apply a parallel algorithm of Atallah and Kosaraju [2] for computing all-furthest-neighborglog®)
time using Gn) processors.

We conclude the following theorem.

Theorem 4. Two largest disjoint disks in a simple polygon P can be found in O(n log®n) time.
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4. Vertex foldingline

Kim et al. [17] solved the folding line problem by adapting the parametric search technique. We show
that one can avoid the parametric searching since the polygon has a simple shape (it is convex). We prove
that the number of candidates for the folding line is at most linear although the® (af¢ possible
folding lines.

Lemma 5. Let P be a convex polygon with n vertices. The number of optimal folding linesin P is at
most n.

Proof. Let p1, po, ..., p,, n >3, be the vertices oP in clockwise order. We show that the number of
optimal folding lines passing through a vertgxof P is at most 2. Without loss of generalify = p;.
Consider a directed lingp;, i = 3,4, ...,n — 1. The directed lingp; splits P into two polygons, the
left polygon P; and the right polygorQ;, see Fig. 5. LeD; be the largest disk in the polygan. Let D,

be the largest disk in the polyga®;. Letr;, j =1, 2, be the radius of the disR;.

Roughly speaking, the idea is as follows. The left polygons grow wheareases. Hence the largest
disk inscribed in the left polygon increases simultaneously wiimilarly the largest disk in the right
polygon strictly decreases whenncreases. The minimum of two radii (left and right disks) defines
concave sequence and the largest value is achieved at some unique foldeg lovetwo consecutive
lines pp;, ppi+1. We give the detailed proof.

First we prove the property of the disk3; that at least one of them touches the lipg;. Indeed,
the sum of the anglesp,pp, and /p;.1p; pi—1 (measured in clockwise order, see Fig. 5) is less than
27 . This implies that the sum of the anglég, pp; and/pp; p;_1 or the sum of the anglesp; pp,, and
Lpiy1pip is less thant (both sums can be less thar). Without loss of generality we can assume that
/p2ppi + Lppipi—1 < 7. If the disk D1 is not tangent to the lingp; then it can be translated in the
direction of the bisector of lineg,p and p;_1p;, see Fig. 6(a). Note that the size of translated disk can
be increased. Contradiction.

We consider two cases comparing the ragliij =1, 2.

\j

Pn Pi+1

Fig. 5. DisksD1 and D».
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\j

Dy

\j

Fig. 6. Pushing diskD1.

Case 1. r1 = rp. Inthis case, both diskB;, i = 1, 2, touch the linepp;. Suppose, on the contrary, that
the diskD; does not touch the lingp;. Consider the convex hull of the union of two disks. Its boundary
contains two common tangent segments of the disks, see Fig. 6(b). This region is contathethie
P is convex polygon. The disk; can be slightly translated in direction of the diBk and radius oD,
can be increased keeping it insiddeand abovepp,. Contradiction.

In the case of the equal radii the lipg; can be a unique optimal folding line passing throygfany
other linepp;, j # i, decreases the size of eithB{ or D,).

Case 2. r1 # ro. We assume that < r,. Consider the convex hull of two disk8; and D,. Moving
the disk D, towards D, and increasing linearly its radius keep the di3kinside P. The only barrier
preventing the motion is the diagonap;. Thus, the diskD; touches the linep;. It implies that the
largest disk in the polygo®;, j =3, ..., i — 1, has smaller radius thaf. Therefore there is at most one
optimal folding line pp; whose corresponding radii are in relatian< r,. Similarly there is at most one
optimal folding line withr; > r,.

The total number of optimal folding lines is at mastsince every diagonal has two endpoints (the
definition of the optimal folding lines is symmetric). Lemma followsa

Theorem 6. The folding line problem can be solved in O(x log? n) time using O(n) space.

Proof. The proof of Lemma 5 implies that, for every vertgexe P, there are at most two folding
lines maximizing mitir,, ) over all folding linespp;. We call these linesandidate folding lines. The
algorithm finds all the candidate folding lines. We show that, after preprocessing the points into a data
structure, the candidate folding lines for a vertexPotan be found in @og?») time. Lemma 5 provides
the binary search for finding a candidate folding lines. In fact the algorithm can anshver guery
which asks, for a ling, sizes of the largest inscribed disks in the polygons obtained by cuttimgng!.
It suffices to make a query algorithm with(ldg») running time.

First, we construct the medial axig in linear time [1]. The edges of the medial axis for a convex
polygon are line segments. By a symbolic perturbation, we may assume that each internal véthex
tree M has degree 3. The pointis equidistant from three edges Bf Each edgé of M is the locus of
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points equidistant from two edges Bf, saye;(b) ande,(b). The medial axis can be viewed as a binary
tree if we chose any vertex @ff as the root. Unfortunately, the binary tree can be unbalanced which
makes a problem for efficient search.

We apply the balancing technique usiregntroid decomposition. A binary treeT can be split into
two parts, each of size at leasiT’| + 1)/3], by removing acentroid edge. Guibas et al. [16] give an
algorithm that computes a centroid decomposition of a binaryTréelinear time. The decomposition
also can be obtained by a polygon cutting theorem of Chazelle [11].

We describe how to answer a line query using the centroid decompositidn bét/ be a query line
passing through verticeg,, p; € P. Let P’ be one of the polygons cut off by We want to find the
largest disk inscribed i?’. Note that the center of any largest diskin (the largest disk could be not
unique) belongs to the medial axi$ since it touches at least three edgesP6aind at least two of them
differ from p1p; (and, therefore, define an edgedf). We find an edge oM, sayep, containing the
center of the largest disk in@gn) time. Letey, be the centroid edge of the tra€. The removal ok,
splits M into two subtrees\; and Ms. It is suffices to determine whethep belongs toM; U {e,,} or
M5 U {ey} in O(L) time.

We observe the following property of the medial axis: the locus of the centers of the largest disks is
either a vertex of\f or an edge equidistant from two parallel edgesPol_et L (M) denote the locus of
the centers of the largest disks ih Another useful property is that, for any pathc M from a vertex
of P to a point of L(M), the distance® (p) for points p € IT define a monotone function.

Let D, and D, be the disks corresponding to the endpointg,pfLetr;,i = 1, 2, be the radius of the
disk D; and letO; be the center oD,. Without loss of generality we assume thak r,, see Fig. 7(a).
We show how to locatep, by considering the following three cases.

Case 1. The linel does not intersect the digh;.

Note that the lind does not intersect any disk of radil p) centered at poinp in a sufficiently
small neighborhood 0;. The radiusD(p) increases when it center moves frap toward O,. (Note
that the radius does not changeif= r,. In this caser; is the radius of the largest disk i’ since P’
contains two parallel sides.) Therefore some part of the egjgeontainingO; is an edge of the medial
axis of P’. By the monotonicity property of the medial axis, the subt¥edoes not contaia, and can
be discarded.

Case 2. The linel intersect the diskD; but not the diskD-.

By the monotonicity property of the medial axig, the points ofM; U {e),} are within distance-,
from the boundary oP (the distance té P’ can only decrease). Therefal®, U {e,,} can be discarded.

Case 3. The linel intersects both the disk, and the diskD-.

There are two subcases depending on the relation betiveen ¢;(e);). Suppose that the edges
e1(ey) andez(ey) lie on the same side of the lifle Let A; and A, be the points of the edg& (ey)
such thatO; A; is perpendicular t@;(ey), see Fig. 7(b). Without loss of generality we can assume
that p1A,A1B1B,p; is the clockwise order of points on the boundaryRf Note that the interior of
the quadrilaterald; 0;0,A, (and O1B1B,0;) does not intersect the medial axié. The edgeep is
contained either in the polygon bounded by the closed path. B;01A; in clockwise order (the path
betweenA; and B; lies on the boundary of) or in the polygon bounded by,0,B;... A,. The point
0, is closer to the edge; (ey) than to the lind. There is a unique point; of A;0; equidistant from
e1(ey) andl. The pointa; can be computed in @) time. Note that the projection @, onto! belongs
to the edgep,p; since the disk of radiufi; A;| centered at; is contained in the dislD; and, thus, it
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Fig. 7. Case 3 of line query.

cannot be tangent to/aat point outside of the edge; p;. Similarly, there is a unique poiab of A,0>
equidistant frome,(ey,) andl.

The segmenti;a, is contained in the medial axis @t’. Similarly, there is a unique segmehih,,
by € By, b, € By, which is a part of the medial axis &'. The intersection of the 6-ga#; 01B1B,0,A,;
and the medial axis aP’ is [a1a2] U [b1b;]. The medial axis ofP’ outside of this 6-gon consists of three
connected subtrees located in the shaded areas in Fig. 7(b). We compute the distanege®froms 1, 2
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to I. We can decide which part contains the center of the largest disk inscrili®d e use one of the
subtrees\f; or M to proceed the binary search.

Suppose that the lineseparates the segmetge,,) ande,(e,,). Without loss of generality we can
assume that the segmeBy{ B, is on the boundary of the polygaP’, see Fig. 7(c). We define the points
b, andb, as above. If the ling is parallel to the lineB; B, then the disk of radiugh, B;| centered ab;
is the largest disk irP’. We assume that the ray emanating frémtoward B, intersectd, see Fig. 7(d).
Then|b1B1| > |b2B>| and the largest disk i®’ cannot be tangent to an edge of the chBqn.. p; in
clockwise order by the monotonicity property of the medial axi®ofTherefore we proceed the search
in M. Similarly, if the ray B, B; intersectd then we proceed the searchiy.

Finally, only one edge of the medial axi$ survives. The solution can be found as follows. We use
the same notation as above. If the diskdoes not intersect the segmentp;, then it is the largest disk
in P. Otherwise, the dislD; intersectsp; p; but the diskD; does not. There is a unique point 6f 0>
that defines the center of the largest disk tangeet(@y ), ex(ey) andpyp;. It can be computed in Q)
time. O

5. Conclusion

We presented two algorithms for packing two disks in a polygon. The first algorithm packs disks in
a simple polygon and the second one packs disks in a convex polygon with the extra constraint that the
disks are separated by a diagonal. Both algorithms run(inl@? ) time. It would be interesting to
improve these algorithms.
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