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Abstract 

We construct a family of n spanning trees of the n-cube, called D,, with the following 
properties: (i) All the trees in D, are rooted at the same node (e.g. the all-0 node). (ii) Every tree 
in D, is of depth n, which is the optimal depth. (iii) Every edge in the n-cube is shared by at most 
two trees in D,. 

One application of this construction is a technique to perform broadcasting in a hypercube 
with faulty links. Using D, we obtain an efficient scheme-it takes the same time as in a healthy 
cube-to broadcast in the presence of up to rn/21- 1 edge faults. 

1. Introduction 

In this paper we present an interesting property of the n-cube, that is useful for 

performing broadcasting in the presence of faulty edges. In particular, we show how to 

perform broadcasting in an n-cube with rn/21- 1 edge faults in n communication 

steps. That is, without spending more time on communication with regard to 

a healthy hypercube. We make the following assumptions on the model: 

(1) The goal is to broadcast a single packet from the source node to all other nodes. 

In each step a node can send packets to several of its neighbors. In particular, 

our broadcasting algorithm assumes a double-port mode1 were a node can send 

packets to at most two of its neighbors at a time. This is a slightly more powerful 

model than the single-port model were a node can send a packet to a single 

neighbor at a time. 

(2) Broadcasting is non-redundant in the sense that a minimal number of edges, 

namely 2” - 1, are used. This is useful for minimizing the congestion. 

(3) Each node is allowed minimal local computation “for free”. Our algorithms 

have at most nm bit operations per node, where m is the number of edge 

faults. 

(4) Broadcasting is completed in optima1 time, namely in n steps. 
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(5) We address only the issue of edge (link) faults. The faults are static. In one of our 

broadcasting algorithms only the source node knows the location of the faults 

while in the other scheme the set of faults is known by all the nodes. We assume 

worst-case distribution of faults. 

The key to our results is a construction of a family of n spanning trees of the n-cube, 

which we call D,, with the following properties: 

(1) All the trees are rooted at the same node (e.g. the all-0 node). 

(2) Every tree is of depth n, which is the optimal depth. 

(3) Every edge in the n-cube is shared by at most two trees in D,. 
Clearly, by the third property, when we have [n/21 - 1 or less faulty edges, we can 

find a fault-free tree in D, that will be used for broadcasting. 

The hypercube (or n-cube) is one of the most popular interconnection topologies for 

parallel architectures [12]. Parallel machines like the iPSC/2 and iPSC/860 of Intel, 

NCUBE of NCUBE and CM-2 of Thinking Machines have a hypercube topology for 

the interconnection network. The hypercube has many interesting properties that on 

one hand allow to devise efficient parallel algorithms and on the other hand make it 

being amenable to efficient implementation. One of the important issues related to 

parallel architectures is fault tolerance. In particular, how do we compute in the 

presence of node/edge faults? 

In this paper we will be interested in the operation of broadcasting information 

from a single node to all other nodes non-redundantly. Broadcasting is an important 

operation in algebraic computations [6] as well as in many other applications. For 

a complete list of references on the general problem of broadcasting on graphs the 

reader is referred to the survey paper by Hedetniemi et al. [S]. Various schemes were 

suggested to deal with the problem of routing and broadcasting in a faulty hypercube 

[l-4,7,8,10,11]. 

In Cl-43 there are results on probabilistic analysis of routing in hypercubes with 

and without randomly distributed faults. In [l l] the idea is to broadcast the packets 

with redundancy, and let the accepting node decide by majority voting. In [7] the 

authors define the concept of a safe/unsafe node and present a broadcasting algorithm 

that takes n + 1 steps and can deal with up to [n/2] node faults. In [S, lo] the 

assumption is that the broadcasting algorithm is fixed and oblivious and processors 

do not adapt their behavior based on knowledge of the fault distribution. 

However, none of the results reported in the literature addresses the issue of 

broadcasting with edge faults under the above assumptions, in particular, all the 

known schemes handle the faults while spending some more time (than n) to comple- 

tion. 

The paper is organized as follows. In the next section we give some background on 

spanning trees of the n-cube. In particular, we describe the two constructions that are 

the basis for our construction: the binomial spanning tree due to Sullivan and 

Bashkow [13] and the edge-disjoint spanning trees (of depth n + 1) due to Johnsson 

and Ho [6]. In Section 3 we describe the construction of D,. In Section 4 we present 

efficient broadcasting algorithms which are based on the construction D,. Finally, in 
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Section 5, we address the question of the optimality of our approach and present open 

problems. 

2. Preliminaries 

In this section we will describe the two fundamental constructions of spanning trees 

of the hypercube which are the basis for our construction. The first construction is the 

well-known binomial spanning tree that was first suggested by Sullivan and Bashkow 

[13]. The second construction-which is related to the binomial tree-is the n- 

disjoint spanning trees (of depth n + 1) due to Johnsson and Ho [6]. 

A word about the notation. Qn denotes an n-cube with 2” nodes and n2”-’ edges. 

The nodes of Qn are labeled with binary vectors of length n; throughout the paper we 

will refer to nodes as being vectors and also to vectors as being the corresponding 

nodes. Two nodes are connected by an edge iff they differ in one bit. An edge between 

V= (urn2 . . . Ui . . . a,,) and p = (~~0~ . . . Vi . . . v,) is labeled as (uluZ . . . x . . . u,) . General- 

izing this notation, a set of nodes that form a subcube is denoted by a vector in 

(0, 1,~)~. The x’s are in the locations that correspond to the locations in which the 

nodes of the subcube differ. 

2.1. The binomial tree 

The binomial spanning tree seems to be the natural way to broadcast information 

packets in Q,,. Without loss of generality we will assume that the node that wants to 

broadcast to all other nodes is the all-0 node. The idea is to recursively partition every 

subcube of dimension k (starting with k = n) to k subcubes and broadcast in every 

subcube. In an n-cube the subcubes are 

{ 10.. . 00, x100. . . 00, xX100.. . 00, . ..) xxxxxxxl). 

See Fig. 1 for an example of a binomial spanning tree of Q3. 

The broadcasting is performed as follows: There is an index which is attached to 

each packet. The index is an integer in 1 . . . n. P will denote the packet and i will denote 

the index. Note that the first bit corresponds to the most significant bit. 

Fig. 1. A binomial spanning tree of a 3-cube. 



J. Bruck / Discrete Applied Mathematics 53 (1994) 3-13 

1111 

Fig. 2. The tree r, for the 4-cube. 

Initialization: At the source node: For all 1 < j d n send { P,j} to the node that 

differs in the jth bit. 

At every node: Receive {P, i}. For all 1 d j < i send {P, j} to the node that differs in 

the jth bit. 

We note here that it takes n steps (which is optimal) to complete the broadcasting 

based on a binomial tree using a single port model. 

2.2. Edge-disjoint trees 

The edge-disjoint trees (of depth (n + 1)) is a remarkable construction due to 

Johnsson and Ho [6]. The motivation for this construction was to improve the 

complexity of certain communication primitives for algebraic operations. In what 

follows, we present a new derivation of this construction and show its strong relation 

with the binomial tree. We call this set of trees HJ-trees. The idea in the HJ-trees is to 

have n spanning trees that are disjoint in an n-cube in which every edge consists of two 

directed links, hence the trees are actually link-disjoint. Here we will assume that the 

n-cube consists of undirected edges and prove that every edge is shared by at most two 

trees out of the n HJ-trees. Consider the n subcubes of dimension n - 1: 

{lx...xx,xl...xx )...) xx... xl} 

Let Ti be the binomial spanning tree of the subcube lxx. . . xx rooted at 100.. . 00. 

The depth of Ti is n - 1. See Fig. 2 for an example of T1 of Q4. Let Ti be the binomial 

spanning tree obtained from T1 by right-cyclically shifting its node labels i - 1 times. 

Hence, Ti, 1 < i < n, is a spanning tree of the above ith subcube. The following lemma 

is the key for the construction of the HJ-trees. 

Lemma 2.1. The n binomial trees, Ti, 1 < i < n, are edge disjoint. 
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Fig. 3. The tree l& for the 4-cube 

Proof. Let us assume, without loss of generality, that there is an edge e = (VI, V,) that 

appears in both T1 and T,. By the definition of T, and T2 both Vi and V2 have two l’s 

in the first two most significant bits. However, by the definition of a binomial tree, the 

parent node of (llu, . . . 0,) E T1 is (10~~ . . . u,). Clearly, (10~~ . . . u,)$ T,. Hence, we 

have a contradiction-it cannot be that Vi, V2 E T, and Vr, Vz E T,. 0 

Can we construct a spanning tree for Qn from T,? Clearly, we can do it by just 

adding 2”- ’ leaves that correspond to those nodes not in T1. Namely, we can connect 

every node (1 vi uz . . . v,) E T1 with the node (0~~ . . . u,). Let us denote the spanning tree 

of Qn obtained from Ti using the above idea by pi. See Fig. 3 for an example of ?i of 

Q4. The HJ-trees are basically the trees {pi 1 1 < i < n}. 

Lemma 2.2. Every edge in Q,, appears in at most two trees out of {pi 11 < i < n}. 

Proof. For a given i, the edges that are in ?< and not in the Ti are exactly all the edges 

in dimension i of Qn. Since the Ti’S are disjoint (Lemma 2.1), every edge in Q,, can be 

shared by at most two trees from { nil 1 < i < n}. 0 

The construction of Johnsson and Ho is basically considering each of the fi as 

a spanning tree of Q,,, rooted at the node 00 . . . 00. Note that the depth of each of these 

spanning trees is n + 1. Namely, they are not optimal in terms of their depth (this 

construction is optimal for the application in presented in [6]). Is there a set of 

n spanning trees, each rooted at 00 . . . 00 and of depth n, such that every edge in Qn is 

shared by at most two of the trees? Such a construction provides a way to perform 

broadcasting, with no penalty, in the presence of at most [n/2] - 1 edge faults. Our 

main result is a positive answer to this question-in the next section we describe 

a construction with the desired properties. 
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3. The main result 

In this section we present our main result-a construction of n spanning trees of the 

n-cube with the following three properties: 

(1) the trees are all rooted at the same node (e.g. the all-0 node), 

(2) the depth of every tree is n (this is the optimal depth), 

(3) every edge in Q,, is shared by at most two trees. 

Using this construction we can perform broadcasting in a faulty hypercube (with at 

most rn/21- 1 faulty edges) and spend the same time on communication as in 

a healthy hypercube (the trees are of depth n). 

The main idea in the construction is to start with the HJ-trees defined in Section 

2 (they satisfy properties (1) and (3) and construct a new set of trees that satisfy also 

property (2) (namely, all the trees are of depth n). 

Definition 3.1. Let e be an edge of the n-cube. The rotation class of e, to be denoted by 

R,, is the set of n edges that are obtained by cyclically shifting the edge e. 

Example. Let e = 100x. Then 

R, = {100x, x100,0x10,00x1}. 

Consider the tree pi defined in the previous section. The set of trees, { Fi 11 < i < n}, 

are rotations of ?i. The interesting property of ?i is that for every edge there is at 

most one other equivalent edge in the sense that they are in the same rotation class. 

More precisely, let e, be an edge in ?i. Then there is at most one other edge, say 

e2 E f1 such that R,, = R,,. This property is just another way to state Lemma 2.2. 

Hence, an edge will appear at most twice in {pi 11 < i < n}. 

Definition 3.2. Let Gi be a subgraph of Qn (here we are interested mostly in trees). Let 

{Gi 11 < i < n} be the n subgraphs obtained from Gi by cyclically shifting the labels of 

the nodes of G 1. The rotation index of Gi is the maximum number of times an edge of 

Qn appears in {Gill < i < n). 

Hence, our problem can be solved if we are able to obtain the following cons- 

truction: a spanning tree of Qn rooted at the all-0 node, of depth n, whose rotation 

index is 2. 

Notice that in ?i there is a single node, labeled 011 . . . 11, in distance n + 1 from 

the root. If we are able to take care of connecting this node to the root, via a path of 

length < n, while preserving the other properties of f1 we obtain the desired 

construction. 

Notation. vi (u = 0 or 1) is a string of i bits all being equal to u. 
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Fig. 4. The tree AI for the 4-cube 
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Fig. 5. The tree A, for the 4-cube. 

Main Construction. Figs. 4-6 illustrate an example for the three steps of the construc- 

tion associated with Q4. 

Step 1. Construct a binomial spanning tree of the subcube lxx . . . xx rooted at 

100. . . 00, omitting the set N1 of n - 2 nodes, where 

N1 = {llOO’l’(i +j = IZ - 3; i,j > 01. 

For instance, if n = 4, N, = { 1100,l lOl}. Note that the nodes in N, are all leaves in 

the binomial spanning tree of lxx . . . xx, that is why omitting them is possible. Call 

this tree A 1. See Fig. 4 for an example of AI of Q4. 

Step 2. Connect every node V = (lu, . . . u,) E Al, such that V$N2, with a node 

?= (002 . . . v,). The set N2 consists of n - 2 nodes, 

Nz = (llll’O’(i +j = n - 3;i,j > 0). 

For instance, for n = 4, Nz = { 1111,ll lo}. Call this tree AZ. See Fig. 5 for an example 

of AZ of Q4. Note that the tree A2 contains almost all the nodes in Q,,. There are 
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Fig. 6. The tree 7, for the 4-cube 

3n - 6 nodes in the Q,, which are not in A 2: the sets N,,i?i and G2, where I?r (also 

N2) is the set of nodes that is obtained from Nr (N2) by complementing the first bit. 

Step 3. In this step we obtain a spanning tree of Qn out of the tree A2 obtained in the 

previous step. Observe that both Nr and G5, correspond to paths of length n - 2 in 

Qn. The path that correspond to Ni is: 

Also the path that correspond to fiz is: 

We connect the paths defined by N, and G2 to the root, i.e. O”, via the node 

010nP2 E fii. We connect the rest of the set I’?i to the corresponding nodes in N,. We 

call the resulting tree ?,. See Fig. 6 for an example of ?i of Q4. 

Lemma 3.3 (main). The tree ?I has the following properties: 

(1) It is a spanning tree of the n-cube rooted at the all-0 node. 

(2) Its depth is n. 

(3) Its rotations index is 2. Namely, for any edge e, E ?I there exists at most one other 

edge e2 E fI, eI # e2, such that R,, = R,,. 

Proof. The first two properties follow directly from the construction. We prove here 

the third property by showing that ?i and f, have the same rotation classes. Since we 

know that property (3) is true in ?i the result will follow. 

From the construction, the tree A2 is a subgraph of the tree ?r. Thus, the rotation 

index of A2 is at most 2. Hence, we only need to show that the rotation classes that 
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correspond to the edges that were added to AZ in step 3 of the main construction are 

such that property 3 is not violated. 

Let El be the set of edges that were added in step 3 of the main construction. Then 

E, consists of 

(1) 0~0”~’ due to the connection of 010”~2 to O”, 

(2) { llOOixljl i + j = n - 4; i,j > 0} due to the path defined by the set Ni, 

(3) {xlOOilj(i +j = n - 3; i,j 3 0) due to the connection of @, with the set Nr, 

(4) (Oll’xOjli +j = n - 3; i, j 3 01, due to the path defined by the set E2. 

Let E2 be the set of edges in f1 but not in AZ, it consists of 

(1) {lxOO’ljli + j = n - 3; i, j 3 0) due to the nodes in Ni, 

(2) {xlOO’lj/i + j = n - 3; i, j 3 0) due to the nodes in G,, 

(3) {xlll’Ojli + j = IZ - 3; i, j > 0} due to the nodes in G2. 

When we compare the rotation classes that correspond to El and E2 we find that, for 

almost every edge ei E El there is an edge e2 E E2 such that R,, = R,,. The only 

exception is the edge 0x0”-’ which does not have an equivalent edge in E2 (in the sense 

of having the same rotation class). However, since in ?r the rotation class that 

corresponds to the edge OxOne2 appears only once the result follows. Note that the edge 

xln-’ appears only in E2; clearly this can only reduce the rotation index of ?i. 0 

Given the construction of the tree ?i we define D, to be the family of 12 trees that 

are obtained from ?i by cyclic shifts. Given the set D, it is clear that we can construct 

an isomorphic family of trees which is rooted in an arbitrary node V by simply 

adding the label of V to the labels of the nodes in D, (which is rooted at the all-0 

node). 

4. Broadcasting in a faulty n-cube 

Given the construction of the trees D, it is clear how to perform broadcasting in 

a faulty cube. Let us assume that a node S = (s1s2 . . . s,) wants to broadcast a packet to 

all other nodes. Assume that there are m,m < [n/21, faulty edges whose labels are 

known to S. Node S finds out which tree in D, is healthy and broadcasts the packet 

along this tree. It is quite easy to select a healthy tree-since most of the edges in D, 

are edges in the binomial tree (or its rotated version) and only the sets N, and G2 

correspond to special edges. In fact, finding a healthy tree takes order of nm bits 

operations-linear in the size of the input (the details of the algorithm to do that are 

omitted). 

Now given a healthy tree, say yl, we make the following observations: 

l Using a single-port model for communication it takes n + 1 steps to complete the 

broadcasting. This is because the tree ?, consists of two subtrees one of which is 

a subtree of ?r and the other consists of the sets N1 , I?1 and s2. Using a single-port 

model it takes n steps to complete broadcasting in ?i and n - 1 steps to complete 

broadcasting in the second subtree of Fr. Hence, it takes a total of n + 1 steps for Fr. 
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l It is not hard to prove that if we assume a double-port model, namely, a node can 

communicate with up to two of its neighbors at the same time, then broadcasting can 

be completed in n steps. 

We suggest two possible schemes for broadcasting. 

(1) Given the set of faults, the source node, S, selects a healthy tree and transmits 

the packet to its children in the chosen tree along with its label (n bits). At any 

other node: given the set of faults and the label of the source node it is possible 

to compute the healthy tree (the trees in D, can be numbered and the convention 

is that the chosen tree is the first tree that is healthy in D,). Knowing the chosen 

tree, every node can transmit the packet (along with the label of the source node) 

to its children in this tree. Note that the overhead in the communication is n bits 

per packet. Also we have to perform order of nm bit-operations at every node to 

determine the children. 

(2) In this scheme the selection of a healthy tree is performed by the source node. 

This scheme is useful when a host node wants to broadcast to all the other nodes 

and the information about the faulty links is stored in the host node, say as 

a result of running a diagnostic procedure. This algorithm can be used, for 

example, to distribute the knowledge about the location of the faults to all the 

nodes. The extra information which is transmitted with a packet consists of the 

label of the chosen tree (log n bits) and the actual address in the tree (n bits). At 

every node, the children can be determined in order of n bit-operations. 

5. Conclusions and extensions 

Our main result is a construction of a family of n spanning trees, rooted at the all-0 

node, each of depth n, with the property that an edge in Q, is shared by at most two 

trees. 

One of the applications of this construction is to broadcasting in a hypercube with 

at most [n/21 - 1 faulty edges. The interesting property of this approach is that the 

time spent on communication is the same as in a healthy hypercube-the depth of the 

spanning tree is n. 

The main problem is whether we can do better than dealing with [n/21 - 1 faulty 

edges? A trivial upper bound on the number of edge faults is, 

Proposition 5.1. Using depth n spanning trees we can deal with at most n - 2 edge 

faults. 

Proof. Assume there are n - 1 faults (e.g. in the first n - 1 dimensions) in the edges 

incident to the source (e.g. the all-0 node) then there is a node in distance n + 1 from 

the source (the node I”- ‘0). 0 

Also, we can prove the following proposition. 
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Proposition 5.2. Given any set of four spanning trees of Q4 each of depth 4. We can 

find two edges such that every tree contains at least one edge. 

Hence, our construction is optimal in the sense that a general construction of n trees 

that will be able to deal with [n/21 faults (or more) does not exist. Actually we can 

prove (details are omitted) that a family of trees with the desired properties of size cn 

(where c is an arbitrary constant) does not exist. We note here that recently Peleg [9] 

devised a scheme for broadcasting in optimal time on faulty hypercubes. Peleg’s 

scheme is not based on disjoint trees and camtolerate up to n - 2 faults (both nodes 

and edges). The added assumptions in the new scheme are an all-port model for 

communication and global knowledge of faults. We conclude with the following open 

problem. 

Open problem. Is it possible to achieve fault-tolerant broadcasting in n steps, using 

a single-port model, in the presence of a certain number of edge/node faults? 
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