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The problem of hardware Trojans is becoming more serious especially with the widespread of

fabless design houses and design reuse. Hardware Trojans can be embedded on chip during

manufacturing or in third party intellectual property cores (IPs) during the design process.

Recent research is performed to detect Trojans embedded at manufacturing time by comparing

the suspected chip with a golden chip that is fully trusted. However, Trojan detection in third

party IP cores is more challenging than other logic modules especially that there is no golden

chip. This paper proposes a new methodology to detect/prevent hardware Trojans in third party

IP cores. The method works by gradually building trust in suspected IP cores by comparing the

outputs of different untrusted implementations of the same IP core. Simulation results show

that our method achieves higher probability of Trojan detection over a naive implementation

of simple voting on the output of different IP cores. In addition, experimental results show that

the proposed method requires less hardware overhead when compared with a simple voting

technique achieving the same degree of security.

ª 2013 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

In the past two decades, security researches have focused on
both network and information security and how to prevent cy-

ber attacks. However, hardware Trojan Horses cause a deeper
breach bypasses upper security layers and threaten all the en-
tire critical infrastructures such as military infrastructure,

financial systems and transportation vehicles. Hardware chips
are becoming more vulnerable to malicious activities and alter-
ations during both design and manufacturing phases.

In general, hardware Trojans try to bypass or destroy the

three major security concerns (CIA) of any system by: leaking
confidential information and secret keys covertly to the adver-
sary (Confidentiality attack); changing the value of a certain
register (Integrity attack); disabling, deranging or destroying

the entire hardware or components of it (Availability attack).
Traditional Hardware testing strategies cannot effectively

detect Trojans because the probability of triggering a hardware

Trojan during functional testing is extremely low. Plus, the
small Trojan size with respect to chip overall size reduces the
Trojan impact on side channels such as static and dynamic

power.
Hardware Trojans can be a simple modification to the ori-

ginal circuit as shown in Fig. 1; Adversary inserts a simple two

input AND gate between the original circuit output and logical
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Fig. 1 ‘‘SAZ’’ hardware Trojan.
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one. If Trojan is inactive, circuit will produce the real output;
and if Trojan is triggered and becomes active, Input will be
logical zero so circuit will produce ‘‘Zero’’ output disregarding

original input value as explained in Eqs. (1) and (2). It is called
SAZ Trojan (Stuck at Zero) as circuit output will stick at
‘‘Zero’’ if Trojan is activated.

X � 1 ¼ X ð1Þ

X � 0 ¼ 0 ð2Þ

Majority voting technique can be used for protection with
no need for a fully trusted chip as shown in Fig. 2. We aim
to produce a Trojan free output from infected IP cores. We

use voting techniques for the output of odd number of mul-
ti-vendor IP cores trying to achieve negligible probability of in-
fected output and report the infected IP core. Although the use
of simple majority voting was suggested in other papers by

Waksman and Sethumadhavan [1], it was not thoroughly eval-
uated using hardware implementation. In this paper, we eval-
uate the protection method based on the probability of

Trojans detection, probability of false positives, and probabil-
ity of false negatives. We also suggest an advanced voting tech-
nique based on giving a higher voting weight for trusted IP

cores. We evaluate both the security properties and hardware
overhead of both voting methods. Hardware overhead here
means circuit area, circuit delay and Leaked power (see Fig. 3).
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Fig. 2 Majority voting technique.
Hardware chips fabrication process contains two major
steps: design (including IP, models, tools, and designers); and
fabrication (including mask generation and packaging). In an

ASIC design process, the IP core blocks and standard model
cells which are used by the designer during the design process
are considered untrusted, also hardware fabrication step may
be considered untrusted because an attacker may replace Tro-

jan logic for original ones or inject a Trojan into chip silicon
mask.

The attacker is assumed to alter the design maliciously be-

fore or during fabrication, and detecting these alterations is ex-
tremely difficult, as detecting small malicious alteration is
extremely harsh in today’s high complex IP cores. Nano-meter
physical inspection is very sophisticated and costs a lot. Tro-
jans are activated under rare conditions so normal function
testing is not sufficient to detect them.

It is mandatory to provide methods that resolve the trust
issues among fabrication facilities, designers, and end users.
Designers need to assure that their designs are not altered

while maintaining fabrication facilities technology secrets and
third party IP core design properties.
Related work

Many hardware Trojan detection methods have been devel-
oped to protect against Trojans [2–6]. These methods either

try to detect the existence of a Trojan by analyzing side chan-
nels [7–13], or try to introduce architectural modifications to
make Trojan insertion more difficult [14–17]. However, these

methods mainly depend on comparing the suspected chip with
a golden chip (a known trusted chip). In practice, a golden chip
might not be available especially when using third party IP
cores. Attempts to depend on using the system integrator’s de-

sign specifications for comparisons were introduced by Zhang
and Tehranipoor [18].

Logic duplication is proposed by Waksman and Sethu-

madhavan [1], where outputs from the modules are then
checked cycle-by-cycle, they proposed to obfuscate and ran-
domize the inputs to different hardware modules to misguide

any Trojans and prevent it from recognizing triggers. They fo-
cused on proposing three main methods of hardware random-
ization that match with the three major types of Trojans
triggers. Power reset obfuscates timing information to prevent

units from detecting how long they have been powered on.
Data obfuscation misguides infected units by using inputs
encryption. Sequence breaking reorders micro-architectural

events to handle Trojans triggered by control information.
McIntyre et al. [19] utilize a method for dynamically evaluating
the trust in hardware at run-time. They proposed using a mul-

ti-core processing system to take advantage of in-build redun-
dancy, and the ability to discard cores if they are found to be
untrusted. The variation in processes may be obtained from

different compilation, implementation, or algorithms used.
They have explored the effectiveness of dynamic distributed
multicore trust determination by simultaneously executing a
variant of the subtask on another core module to detect Tro-

jans. The subtask scheduling is mandatory to coordinate the
subtask variants produces both new learning with high confi-
dence of core module trusts and high confidence of valid sub-

task execution results. Their scheduler is able to use learned
core module trust to more efficiently execute needed jobs with
increased throughput. Critical to their approach of dynamic

trust determination are the generation and execution of func-
tionally equivalent binary variants of a subtask. Baumgarten
et al. [20] introduced using reconfigurable logic barriers within
a design to prevent the activation and operation of hardware

Trojans added during the manufacturing stage of an IC and
then they evaluated the resiliency of their approach to Trojan
detection. Their contributions include a combinational-locking

scheme integrated into a standard CAD tool flow to prevent
IC piracy, the first metering scheme that does not disclose
the entire schematic to the foundry, and efficient node selection

heuristics for maximizing security while minimizing associated
overhead. Newgard and Hoffman [21] introduce a tightly cou-



Table 1 Simple voting truth table.

IP1 IP2 IP3 SVR

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Start

x=0
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pled dual-processor lock-step configuration implemented in-
side an FPGA – an implementation of replication and voting
at the macro-level. Both processors receive and process the

same instructions at the same time. Hardware check logic
examines and compares all bus control signals on every bus
transaction. If an error is detected, the system is forced into

an error recovery sequence. Beaumont et al. [22] run replica
of a program on multiple processing elements to achieve pro-
tection form hardware Trojans. All the mentioned methods did

not give too much attention to the voting technique among the
duplicated logic gates. This paper mainly focuses on analyzing
majority voting techniques among duplicated IP cores and pre-
senting a new majority voting technique to achieve better hard-

ware security performance.

Majority voting

Comparing the output, timing, and power consumption of a
suspected chip with a trusted chip is the common way to detect
hardware Trojans. However, this way cannot be used with

third party IP cores as there is no golden IP core to compare
with.

In this work, we eliminate the need to golden chip to detect

a Trojan. Our main concern is dynamically protecting the chip
from any suspicious activity. This is achieved by majority vot-
ing technique by using an odd number of untrusted IP cores

from multiple vendors; the outputs from IP cores are validated
on bit-by-bit basis by doing effective voting to produce the cor-
rect output. The main two benefits for using different imple-
mentations of IP cores are the following: (1) protecting

against any functional disruptions using the duplicated logic
and (2) protecting against (DoS) availability attacks by provid-
ing redundancy in operation of logic elements within the

design.
Our countermeasure can be deployed at various levels from

gate, RTL, logic design, functional modules, and IP cores,

even though the IC and macro-level devices. The protection
mechanisms rely on a non-collusion assumption among the
duplicated IP cores within the design.
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Fig. 3 Voting circuit.
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Fig. 4 Simple voting algorithm.

Simple voting

Simple voting is a naive majority voting technique. By doing a
bit level democratic majority voting among multiple IP cores
outputs, we are producing the majority consensus result. Ta-
ble 1 shows an example of simple voting on 3 IP cores, each
IP core has 1 bit only. If the number of logical ones is greater
than number of logical zeroes, the output will be logical one
and vice versa. Table 1 describes the truth table of simple vot-
ing circuit (see Tables 2–4).

Simple democratic voting is producing efficient results in
terms of security performance. It produces high Trojan detec-
tion percentage, low false positives and low false negatives.

The main problem in this technique is the assurance of major-
ity result. If some Trojans are fired on most of IP cores at the
same time, the majority result will be infected. Fig. 4 explains

the flowchart of simple voting technique. Eq. (3) explains a
simple implementation of 1-bit simple voting logic circuit with
using 3 different IP cores, below equations are conducted from
truth table in Table 1, Vbx is the voted result of bit in position

x while bx|1 is the bit in position x of the first IP core and WL
is the word length for all three IP cores.

Vbx ¼ ðbxj10 � bxj2 � bxj3Þ þ ðbxj1 � bxj20 � bxj3Þ þ ðbxj1
� bxj2 � bxj30Þ þ ðbxj1 � bxj2 � bxj3Þ; x

¼ ½0!WL� ð3Þ
Weighted voting

The second proposed method is doing weighed majority voting
among multiple IP cores. Voting algorithm selects the higher
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weighted IP core bit. Each IP core initial weight counter is zero
as explained in Eq. (4). After each cycle, voting algorithm cal-
culates sum of weights for each IP cores resulting logical one

and sum of weights for each IP cores resulting logical zero.
Then it compares both sums as explained in Eqs. (5) and (6).
The higher sum will be considered the correct result bit and

the voted output, and the lower sum is the infected IP cores
bit. Weight counters are increased by one for all IP cores which
produce the same result as clear bit as explained in Eq. (7), and
the weight counters of disagreeing result IP cores are divided

by 2 (right shifted) as explained in Eq. (8). It is done to simplify
voting circuit hardware implementation. This technique pro-
duces supreme results especially when using a minimum num-

ber of IP cores.

Wjinitial ¼ 0 ð4Þ

Wj½b ¼ 0� ¼
X

b¼0
Wbx ð5Þ

Wj½b ¼ 1� ¼
X

b¼1
Wbx ð6Þ

Wiþ 1jClear ¼Wiþ 1 ð7Þ

Wiþ 1jTrojan ¼Wi=2 ð8Þ

Fig. 5 explains the flowchart of weighted voting technique.
Simulation

A lightweight Java simulator application is developed from
scratch using Java Programming Language to simulate trigger-

ing Trojans in odd number of IP cores, do both majority vot-
ing techniques on the output and generate needed statistics.

Input for simulation process is 4 values:

1. Trojan Trigger Probability Array (TTP): it is a fraction
number less than 1 to represent the Trojan trigger probabil-
ity in each IP core.

2. Number of IPs (Nips): It is a positive odd number to repre-
sent how many IP cores will be used in our simulation.

3. IP Word Length (WL): it is positive number to represent

the word length for the used IP cores.
4. Total number of Samples (Ns): it is a positive integer num-

ber to represent the total number of simulation samples.

Output from simulation is the results for both simple and
weighted voting such as:

1. Probability of occurrence (PO) = number of actual occur-
rence Trojans (Not)/{number of IP (Nips) \ number of
samples (Ns)} as explained in Eq. (9).

PO ¼ Not=ðNs �NipsÞ ð9Þ



Hardware Trojan detection using weighted voting 503
2. Probability of detection (PD) = number of detected Tro-

jans (Ndt)/number of generated Trojans (Ngt) as explained
in Eq. (10).

PD ¼ Ndt=Ngt ð10Þ

3. Number of false positives (Nfps): It occurs if the reported

IP core has no Trojan.
4. Number of false negatives (Nfpn): It occurs if there is no

reported Trojan (alarm) while the final output is infected.
5. Probability of successful attacks (PS) = number infected

results (Ntr)/number of generated alarms (Na) as explained
in Eq. (11).

PS ¼ Ntr=Na ð11Þ
Hardware overhead versus security cost

Cost of security is a necessary metric for evaluating any secu-

rity countermeasure. Being able to determine security costs
accurately is a prerequisite for any cost benefit calculation.
Our countermeasure consists of multi-vendor hardware dupli-

cation with extra voting circuit which adds overhead in terms
of hardware such as path delay, consumed power and extra
gates area. Verilog is used as HDL (Hardware Description

Language) to describe our voting modules in order to simulate
and measure the overhead. Details are explained in experiment
3.

Experimental results

Three main experiments have been achieved to measure the

effectiveness of our proposed voting techniques and measure
the hardware overheads:

Experiment (1)

Simulation is done for many times to conduct a comparison
between simple and weighted voting using 3 IP cores (IP1,
IP2 and IP3) with all possible combinations of trust. It is done

using our Java simulator. Table 2 is generated from simula-
tion, we assume that high trusted IP core (H) has trigger prob-
ability of 0%; moderate trusted IP core (M) has trigger

probability of 1%; and lower trusted IP core (L) has trigger
probability of 10%.

� PDs: Probability of detection for simple voting.
Table 2 Simple and weighted voting results.

IP1 IP2 IP3 PDs (%) PDw (%)

L L L 80.8998 59.9439

L L M 88.8216 94.1887

L L H 89.9835 100.0000

L M H 98.1624 100.0000

M M L 96.4453 90.7573

M M M 98.0031 65.9921

M M H 98.9235 100.0000

H H L 100.0000 100.0000

H H M 100.0000 100.0000

H H H 100.0000 100.0000
� PDw: Probability of detection for weighted voting.

� Pfps: Probability of false positives for simple voting.
� Pfpw: Probability of false positives for weighted voting.
� Pfns: Probability of false negatives for simple voting.

� Pfnw: Probability of false negatives for weighted voting.

Table 2 shows that weighted voting is showing a better
security performance than simple voting especially if there is

higher trust in the used IP cores. It is also noticed that
weighted voting is producing minimal false negatives than sim-
ple voting. Regarding false positives, both of them are almost

producing the same results.

Experiment (2)

Itmeasures the suitable number of IP cores on the both of voting
techniques that generate detection probability of 100%. Simula-
tion results show that using simple voting among 9 different IP
cores is achieving the ideal result as same as using weighted vot-

ing among 3 different IP cores as shown in Figs. 6–8.
Detection ratio (Rd) is the ratio between probability of

detection for simple voting and probability of detection for

weighted voting as shown in Eq. (12). False positives ratio
(Rfp) is the ratio between probability of false positives for sim-
ple voting and probability of false positives for weighted vot-

ing as shown in Eq. (13). False negatives ratio (Rfn) is the
ratio between probability of false negatives for simple voting
and probability of false negatives for weighted voting as shown

in Eq. (14).

Rd ¼ Pds=Pdw ð12Þ

Rfp ¼ Pfps=Pfpw ð13Þ

Rfn ¼ Pfns=Pfnw ð14Þ
Experiment (3)

It measures hardware overhead for both simple and weighted
voting circuits. Verilog is used to write the description of both.
Synopsis DC (Design Compiler) and PT (Prime Time) are used
to synthesis and measure the overhead. Hardware overhead

KPIs are based on circuit delay, leaked power and extra added
area.

As shown in Fig. 6 that ideal results {100% detection, zero

false positives and zero false negatives} are achieved by using
only 3 IP cores with weighted voting circuit. Same ideal results
are achieved using 9 IP cores with simple voting circuit; our
Pfps (%) PFpw (%) PFns (%) PFnw (%)

10.0669 50.0096 0.3664 0.2749

5.8448 8.4551 0.0533 0.0489

5.2723 0.0000 0.0000 0.0000

0.9273 0.0000 0.0000 0.0000

1.7970 14.7709 0.0085 0.0078

1.0035 49.9444 0.0034 0.0025

0.5411 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000



Table 3 ODD-number of IPs results.

IPs# Detection Ratio (PDs/PDw) False +ves ratio (Pfps/Pfpw) False �ves ratio (Pfns/Pfnw)

3 0.9902 0.00493 0.00003

5 0.9998 0.00015 0.00000

7 0.9999 0.00005 0.00000

9 1.0000 0.00000 0.00000

11 1.0000 0.00000 0.00000

13 1.0000 0.00000 0.00000

15 1.0000 0.00000 0.00000

Table 4 Hardware overhead for both ALU and AES.

Voting circuit Delay overhead Power overhead Area overhead

Simple Weighted Simple Weighted Simple Weighted

Number of IPs 9 3 9 3 9 3

AES 2.90% 39.10% 833.11% 287.35% 494.25% 369.53%

ALU 2.80% 37.80% 219.12% 13.57% 252.31% 234.37%
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experiment shows the hardware overhead for both ideal com-
binations. Experiment 3 is done on two IP cores: ALU and
AES. The description of each core is as below:

� ALU IP core: This core presents a ‘‘4-bits’’ ALU. It per-
forms arithmetic operations such as: addition, subtraction,
multiplication, and division. It also supports logical opera-

tions like AND, OR, XOR, and NOR.
Fig. 7 False negatives ratio.

Fig. 8 False positives ratio.Fig. 6 Detection ratio.
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� AES IP core: This core represents an advanced encryption

standard (AES) core with 128 bits key. It supports 128 bits
plain text port.

Conclusions

We have showed the methodology that aims to dynamically

protect from hardware Trojans embedded in third party IP
cores during regular operation. The method operates at run-
time instead of the traditional test-time techniques. Also, we
aim to protect from Trojans without the availability of golden

reference IP core. We presented both simple and weighted
majority voting among different implementations of the same
IP core from different vendors. In contrast to simple voting,

weighted voting gives a higher voting weight to more trusted
IP cores. Initial trust levels in the IP cores are initially set by
the user; however, they are automatically fine-tuned at run

time.
We studied security performance and the hardware imple-

mentation overhead of both voting methods. Experimental re-

sults showed that the weighted voting method using three IP
cores variants are almost equivalent to the simple voting using
nine IP cores variants. This justified the lower hardware over-
head of the weighted voting method despite the higher com-

plexity of the weighted voting circuit over simple voting.
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