
 Procedia Technology 6 (2012) 57 – 66

2212-0173 © 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Department of Computer Science &
Engineering, National Institute of Technology Rourkela
doi: 10.1016/j.protcy.2012.10.008

2nd International Conference on Communication, Computing & Security

An optimal novel Byzantine agreement protocol (ONBAP)
for heterogeneous distributed database processing systems

Dharavath Ramesha,* and Chiranjeev Kumar a
aIndian School of Mines (ISM), Dhanbad, Jharkhand 826004, India

Abstract

Reliability deserves utmost position in processing the transaction effectively in distributed environment.
Conservatively, the problems of consensus, Byzantine Agreement, and interactive consistency are studied in a fully
connected network with multi nodes (processors) in malicious failure only. Such problematic instances are re-
examined with the assumption of malicious faults on the side of both the nodes. The proposed ONBAP protocol use
the minimum number of message exchanges and can endure the maximum number of allowable faulty components to
make each fault-free processor reach a common agreement for the cases of processor failure to reach a goal
effectively.

© 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Department
of Computer Science & Engineering, National Institute of Technology Rourkela

Key words: Fault tolerance, Distributed database systems, Agreement protocols

1. Introduction

 In general, in a distributed processing system each node (processor) communicates with the others.
Under such difficulties, providing some protocols defined by Colon, Siu, Yan, and Wang to help all fault-
free nodes or sites reach an agreement and then do some related activities, even if some instances caused
by faulty nodes exist, becomes necessary. The Byzantine agreement (BA) problem was extensively
studied by Lamport in 1982. This problem depicts that each fault-free nodes can reach a common value,

* Dharavath Ramesh. Tel.: 91-326-2235795.
E-mail address: ramesh.d.cse@ismdhanbad.ac.in.

Available online at www.sciencedirect.com

© 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Department of Computer

Science & Engineering, National Institute of Technology Rourkela Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

58 Dharavath Ramesh and Chiranjeev Kumar / Procedia Technology 6 (2012) 57 – 66

and that, in an n-node distributed environment, at most [(n 1)/3] nodes are insane. The Byzantine
Agreement problem has been defined by Lamport as follows.

1) There are n nodes, and at most [(n 1)/3] nodes that could fail without breaking down a workable
network.

2) The nodes communicate with each other through message exchange (one with other) in a fully
connected area.

3) receiver (participated
nodes).

4) A random node is chosen as a source (root node), and its initial value, v(SN) is broadcasted to
other nodes (participated nodes) and itself to execute the protocol

1.1 A Simple application approach

 A distributed database comprises a set of databases stored at multiple sites or nodes that work together
and appear as a single database to the user (Distributed scenario). Consider an example of making
reservation through node n1 (reservation site or node) to other nodes n2 (bank1) and n3 (bank2).
Scenario 1: If n1 is fault-free then it completes the agreement algorithm by having the conversation with
n2 and n3 and books the ticket successfully within the stipulated time. Here the conversation will occur by
the exchange of messages between all the three nodes.
Scenario 2: If n1 is a fault one then it completes the algorithm by taking much time and it diverse the
nodes n2 and n3, i.e. amount is deducted from the bank accounts but the ticket will not be booked.

This is one of the difficult instances to make the case of agreement protocol possible.

 Table 1. A simple Fault-tolerant transaction approach

 Based on the assumptions above, various agreement protocols by Lamport, Wang, Pease, Chan, Yan,
and Liang for the BA problem have been developed to satisfy the following requirements.

 (Agreement): All fault-free nodes agree on a common value.
 (Validity): If the source node is fault-

initial value.

Debit (amount) ------- Request made by node n1
if(balance>=amount) -------- Processed at node n2
 {
 balance=balance-amount; ---------Operation status at n2
 r ---------Reverted to node n1
 }
else
 {
 r balance); ---------- Reverted to node n1
 }

 end;

 ----- Same request is processed at node n3 simultaneously

59 Dharavath Ramesh and Chiranjeev Kumar / Procedia Technology 6 (2012) 57 – 66

 (Message passing1): If all fault-free processors agree on a common value then they have to
complete the algorithm with minimum number of required rounds.

 (Message passing2): If some of the nodes are fault-free and some are faulty then they have
to complete the algorithm with sufficient number of rounds.

 While there can be no other option that the proposed protocols of Pease, Wang, Lamport, and Fischer
can allow all correct nodes to reach an agreement value with [(n-1)/3 + 1] rounds of message exchange,
those protocols are somewhat inefficient due to the large number of messages resulting in a large protocol
overhead.

Fig 1. (a) The Case where source node is faulty (b) the case where participant node is faulty

 Hence, the instance we must consider next is improving the computation efficiency. In other words, if
all correct nodes can reach an agreement value within fewer rounds of message exchange, the processing
time and communication time can all be reduced in a distributed processing system? As a result, the
protocol ONBAP is proposed in this paper.

 According to the previous results by Pease, Wang, Lamport, and Fischer, there are two important
parameters to consider when solving the BA problem in a distributed environment. At first, there will be
at least n -free node in a distributed system, and these nodes will always send the
received values to others honestly. Second, the total number of messages received from fault-free node is
more than the number of messages received from faulty nodes (processors or sites). Hence, if these two
features can be utilized properly, the proposed protocol ONBAP can be improved efficiently.

2. Common methodology

 A heterogeneous distributed database comprises a set of databases stored at multiple nodes that work
together and appear as a single database to the user (Distributed scenario). We consider a scenario of
heterogeneous nodes and one of the nodes becomes as source to lead the entire message passing system.

 In this proposal, a protocol called an optimal novel byzantine agreement protocol (ONBAP) is
proposed to solve the traditional BA problem. The ONBAP protocol can compare and count the received
values from the message exchange to discover the reliable nodes. Subsequently, the values received from
insane nodes can be replaced by the values received from reliable nodes. In other words, the influences
caused by the faulty nodes can be reduced after applying the replacing procedure. Finally, all correct
nodes can take the simple majority value to get the agreement value. The majority value is decided at
ELECT function.

60 Dharavath Ramesh and Chiranjeev Kumar / Procedia Technology 6 (2012) 57 – 66

Fig 2. The case where Source node (RN) is faulty and passing the values between the nodes.

 For an instance an n-node network requires [(n-1)/3] +1 rounds of message exchange to reach a
common, and the message complexity is O (n [(n-1)/3]). ONBAP only requires three rounds of message
exchange and the complexity is O (n2). In this way the proposed ONBAP protocol is said to be optimal
why because the ONBAP is reducing the number of rounds up to the minimum level. In this study, we
convey this protocol is to make all fault-free nodes reach an agreement. This is comparatively less than
that of the traditional protocols proposed by Pease, Wang, Lamport, and Fischer.

2.1 The mg-tree used by the ONBAP protocol

 During the exchange procedure, each node will use a tree structure to keep the messages received
from others. Also, in each round of exchange, these messages are saved into the corresponding level of
the tree. In this manuscript, this tree structure is called as mg-tree (a message gathering tree), which is
similar to what Bar- Noy . The concept of mg-tree is depicted in Fig. 3. Here, each
fault free node maintains the received messages into its mg-tree during the execution of the ONBAP
protocol. In the first round, the source node SN broadcasts its initial value v (SN) to the others and itself.
Each node knows where the message comes from. Therefore, each fault-free node can identify the
received message (here denoted as v(SN)) from the source and stores it in the root of its mg-tree.
However, each processor cannot identify whether the source one is a correct node or faulty one. So each
sane node requires additional rounds of message exchange to eliminate the faulty occurrences generated
by a faulty source node. This gathering makes the time complexity of the ONBAP protocol O(n2), why

proposed protocol is said to be optimal one compared to the existing [Lamport, Wang, Pease, Chin].
During the message sending and exchange of values, ONBAP utilizes the portion of mg-tree.

Table 2. Messages sent by all participated nodes in round1

61 Dharavath Ramesh and Chiranjeev Kumar / Procedia Technology 6 (2012) 57 – 66

In the second round, each participated node

 of its mg-tree to all
other nodes. Subsequently, each participant
receives the values from other nodes and keeps
the received values into the second level of its
mg-tree. If the value is received from the node

n1, the vertex name will be v(SN: n1). The
method of the third round is the same as the
second round, and the received values must be
stored into the third level of the mg-tree. If the
value is received from the participated node n2,
the vertex name will be v (SN: n1:n2). Here, the
vertices with repeated names of the root and
other participated nodes (v(SN:SN),
v(SN:n1:n1), v(SN:n2:n2), v(SN:n3:n3),
v(SN:n4:n4),and v(SN:n5:n5)) are eliminated
from the mg-tree to eliminate the cyclical
instances from the faulty nodes. The cyclical
instances are caused by the messages from
faulty participant nodes, and they may be stored
repeatedly in the mg-tree, resulting in an
incorrect value caused by taking a simple
majority. The configuration of each and every
participated node is shown in the table 2. This
example, using a sample of 6 nodes (One is the
Source one and other 5 are participating n odes),
depicts how to execute the exchange process.
We assume that, in Round 0 the source node
SN, which is faulty one told n1, n2, and n3 that
the command value was 1, and told n4 and n5
that the command value was 0. In round 1, the
following messages would be sent:

 While sending, each node distributes its message along with identification (ID) number. Assume that
1=12), (n2=13), (n3=14), (n4=15), (n5=16)}.

 The five messages, that node n1 received in round 1 were {1, 12}, {1, 13}, {1, 14}, {1, 15}, and {1,
16}. According to the earlier definition, n1 will append its process ID to the path and forward each
resulting message to all other participated nodes. The possible messages it could store in round 2 are {1,
12:12}, {1, 12:13}, {1, 12:14}, {0, 12:15}, and {0, 12:16}. The first message, {1, 12:12} contains a
cyclical occurrence in the path value, so it is tossed out, leaving four messages to be stored at that tree
level.

2.2 The improvement of the ONBAP (A comparison)

 In the traditional BA protocol proposed by Lamport, all correct nodes need to run the algorithm OM
([]) recursively to solve the BA problem. This means that all nodes require [] + 1 rounds
of message exchange for collecting messages. Finally, the agreement can be reached by taking the
majority value of the received values. The proposed protocol is compared with Yan and Wang in order to
eliminate the deficiencies. Yan followed the method of Lamport to execute the scenario of BA which
requires 2 * [(n-1)/3] + 3 rounds for agreement and [tn+1] rounds for finding the faulty occurrences. But
the proposed one is found to be less in all rounds.

62 Dharavath Ramesh and Chiranjeev Kumar / Procedia Technology 6 (2012) 57 – 66

 Required Rounds

(for agreement)
Required Rounds
(finding Faulty nodes)

 Idea

Kuo-Qin Yan

ONBAP

2 * [(n-1)/3] + 3

3

 [tn +1]

 3

By product of the alg.

Comparison

Table 3. The comparison between the ONBAP protocol and others

2.3 The majority of the ELECT function utilized by the ONBAP

The ELECT (function is applied from the third level to root of mg-tree. After applying this, all the
correct nodes can find an exact agreement value, and it is reached. Here, the majority of the ELECT
function is the value which is sent by the nodes at root and child levels of the mg-tree up to maximum
times, i.e. maximum number of nodes have sent the value 1 to the remaining.

The Function ELECT (=

1. V(
2. The max value in the set of

{ELECT (i
, if max value exists.

3. A default value $ is chosen, otherwise.

2.4 Required rounds for the ONBAP protocol is three

 The protocols of Pease, Wang, Lamport, Fischer, and Dolev needs + 1 rounds of message
exchange for gathering messages. Under such protocols, each correct node always requires + 1
rounds of message exchange to reach agreement even if all participated nodes are correct. Moreover, the
methods of Pease, Wang, and Dolev can make all correct nodes reach agreement based on only
exchanging message with others continuously without comparing the characteristic values sent by the n-
(n-1)/3 fault-free nodes or revising the characteristic values sent by the faulty nodes. Hence, the

previous protocols always require + 1 rounds of message exchange, and will result in a large
overhead in the network environment. If one node is the correct one, then it will send a correct value to
others. Since there are at least n [(n 1)/3] correct nodes in the distributed environment, this also mean
that n-[(n 1)/3] fault-free nodes must agree on this value and send this value to others again. Thus, after
taking the majority value of these values in (i + 1) th (1 i [(n 1)/3]) level of the mg-tree, the final
agreement value will equal the values in the ith level of the mg-tree if the values are sent by a correct
node. In this paper, the proposed ONBAP protocol only requires three rounds of message exchange and it
compares the values which it received.

2.5 Number of allowable processors

 According to the existing protocols proposed by Pease, Wang, Lamport, Fischer, and Dolev, the liberal
number of faulty nodes is [] for the agreement. When the total number of faulty nodes exceeds
the count, the correct nodes cannot reach an agreement. For example, if there are 10 processors in the
system, then the number of allowable faulty nodes in our proposed protocol is [3] = [] =
3. The more nodes we have, the greater the efficiency of the proposed protocol. Because the traditional
protocols of Pease, Wang, Lamport, Fischer, and Dolev always require [] + 1 rounds of message
exchange, the required number of rounds of message exchange grows when the number of nodes becomes
more. So, the ONBAP protocol is more efficient than those in previous works proposed by Shostak, Yan,
Lamport, and Lynch in solving the agreement problem with three rounds of message exchange.

63 Dharavath Ramesh and Chiranjeev Kumar / Procedia Technology 6 (2012) 57 – 66

3. The Proposed ONBAP protocol

 In this, the ONBAP is introduced to solve the BA in an n-node system. Our proposed protocol can bear
[(n-1)/3] malicious faulty nodes, and only requires three rounds of messages to reach an agreement. There
are two phases in the ONBAP protocol:

 Message exchange phase
 Decision making phase

The responsibility of the message exchange phase is to collect and store the values in the mg-tree at each
round. Upon message exchange, the decision making phase is invoked.

3.1 Executing the ONBAP (Working Procedure)

 Fig 4. The 10 node environment

64 Dharavath Ramesh and Chiranjeev Kumar / Procedia Technology 6 (2012) 57 – 66

 In this, two examples are shown, in Figs. 4 and 5, to illustrate how the ONBAP protocol can make
each correct node reach an agreement. In the first, ten nodes in a distributed environment only require
three rounds of message exchange to reach an agreement even when the source one is faulty (shown in fig
2). (The previous tasks require four rounds [(n 1)/3] + 1 = [(10 1)/3] + 1 = 4) of exchange under the
ten-processor environment.) We assume that the source node SN is the faulty one, which sends different
values to the other nodes. Node n1 and n2 are also assumed to be faulty nodes.

 The environment is shown in Fig. 4. Furthermore, to check the condition of the ONBAP protocol, we
design a scenario (the numbers of and the behaviour of the faulty node is shown in Fig. 5(a). At the
beginning, the source node SN broadcasts its initial value to all nodes in the first round of the message
exchange phase. Unfortunately, source node SN is a faulty one; it sends different values 0, 1, 0, 1, 0, 1, 0
nodes n3, n4, n5, n6, n7, n8, and n9.

 Fig 5(a). The behaviour of faulty nodes Fig 5(b). The value stored at each root node

Here, each fault-free node stores the received value v (SN, n1, and n2) in the root of its mg-tree in the
round 0, as shown in Fig. 5(b). However, the results of faulty node do not need to be discussed; thus this
only shows the results of reliable nodes. Subsequently, each node exchanges the value from the first
round of the message exchange phase with all nodes in the round1 of the message exchange phase.
Similarly, the received values are loaded in the second level of their mg-tree and the name for each vertex
will be given following the concept given above. For example, vertex v(XY) means that this value is
received from node Y and the value was first sent by node X. The overall results for the round1 of
message exchange are shown in Fig. 5(c).

 In round3 exchange phase, each node exchanges the received values from the round2 of the message
exchange phase with all nodes and keeps the received values in the third level of tree. Actually, the
principles of forming the third level of the mg-tree are the same as for the round2 of message exchange.

 In the coming phase, the decision making phase, each node must first recognize which nodes are
reliable. For instance, the nodes SN, n2, n3, n4, n5, n6, n7, n8 and n9 can go for examining when the
following conditions are satisfied:

1. v(SN:n3) = max3 (SN:n3)=0
2. #max3 (SN:n3) = 8>= (n-[(n-1)/3]-1) = 6 (where # is the total number of values that are equal to

(SN:n3) for each sub-tree which is expanded from the vertex v(SN:n3))
3. v(SN:n3:X) = max3(SN:n3) { such as , v(SN:n3:SN),v(SN:n3:n2),v(SN:n3:n4),v(SN:n3:n5),

v(SN:n3:n6), v(SN:n3:n7), v(SN:n3:n8), and v(SN:n3:n9) =max3(SN:n3) = 0}.

65 Dharavath Ramesh and Chiranjeev Kumar / Procedia Technology 6 (2012) 57 – 66

 Fig 5(c). The mg-tree of nodes n3, n4.n5, n6, n7, n8, and n9

3.2 Number of allowable faulty nodes is [(n-1)/3] for ONBAP

If the number of faulty nodes is greater than (n/2), then all may send different values to each node.
Correct nodes cannot have common vertices. Thus, one cannot be sure that all correct nodes can reach
agreement. If the total number of faulty nodes is equal to (n/2), and n is an even number, then the number
of 0s and 1s in the second level may be the same after applying the ELECT function. Under such
conditions, all correct nodes cannot get a common value. According to the assumptions and limitations of
the BA problem, the number of faulty nodes cannot exceed [(n 1)/3]. These are identical to our
constraints. So, the total number of allowable faulty nodes is ((n 1)/3), i, e. The optimality is proven.

3.3 Message complexity is O (n2)
 In the round 0 of the exchange phase, the source node (SN) sends its value to the other nodes. Hence,
one message must be generated. In the round 1 of the exchange phase, all nodes must send the received
values in round0 of message exchange to others, and n messages must be generated. In the round2, (n n)
messages must be generated. So, the total number of messages to be generated during the execution of the
ONBAP protocol is ON (1 + n + n n). After the acceptance testing we found that, the message
complexity for the proposed protocol is O (n2). We considered and tested a 7 node methodology to find
out the majority function which is optimal according to the mg-tree structure.

3.4 Optimality of ONBAP Protocol

Let M1 M be the set of receiving nodes which receives more than three messages in each round and the
sender which receives more than one message in each round of the ONBAP. Let be either 1 or 0,
according to the sender is in M or not. Then the total number of messages in each round runs of N at least

66 Dharavath Ramesh and Chiranjeev Kumar / Procedia Technology 6 (2012) 57 – 66

|R0| + |R1|+ 2 (|M| - |M1|) + 3 (|M1|) - = (n 1+ - |M|) + 2 (|M - M1|) + 3 (|M1|) - = n -1 + |M| +| M1|.

 Since N has optimal message complexity with the proposed, we have n + t - 1 > n 1 + |M| + |M1|,
which implies that |M| + |M1

messages. With this consideration the proposed protocol is having optimality according to the majority of
the ELECT function of each round.

4. Conclusion
 To ensure that all correct nodes reach agreement and do required actions in distributed computing
are an important research consideration. In previous literatures of Pease, Wang, Lamport, Fischer,
Reischuk, and Dolev, each fault-free node could reach an agreement and tolerate faulty
occurrences, using + 1 rounds of message exchange. However, these protocols only apply the
majority function to eliminate the influences caused by the 1)/3 faulty nodes by gathering messages
from a large number of round levels. In this study, we revisit the characteristics that there will always be n

 correct nodes in a distributed system and that these nodes will always send the received
values correctly. Furthermore, the values sent by the fault-free nodes will always be in the majority.
Based on these two, we propose a novel agreement protocol, which we termed the ONBAP protocol. This
protocol requires only three rounds of message exchange to collect the values sent by the participated
fault-free nodes for finding the correct one, and then it uses the majority (max function) values of the
correct nodes to replace the values sent by the faulty nodes.

References

F.C. Colon Osorio, Using Byzantine agreement in the design of IPS systems, in: IEEE International Conference on
Performance, Computing, and Communications Conference, 2007, pp. 528 537.

H.S. Siu, Y.H. Chin, W.P. Yang, Byzantine agreement in the presence of mixed faults on processors and links, IEEE
Transactions on Parallel and Distributed Systems 9 (4) (1998) 980 986.

K.Q. Yan, S.C. Wan, Grouping Byzantine agreement, Computer Standard & Interfaces 28 (1) (2005) 75 92.

K.Q. Yan, S.C. Wang, M.L. Chiang, Optimal agreement in a scale-free network environment, Informatica
International Journal 17 (1) (2006) 137 150.

L. Lamport, R. Shostak, M. Pease, the Byzantine generals problem, ACM Transactions on Programming Languages
and Systems 4 (3) (1982) 382 401.

L. Lamport, P. Melliar-Smith, Byzantine clock synchronization, in: ACM 3rd PODC Conf. Proc., 1984, pp.10 16.

S.C. Wang, S.C. Liang, K.Q. Yan, G.Y. Zheng, Efficient malicious agreement in a virtual subnet network, in: The
Second International Conference on Availability, Reliability and Security, ARES2007, Vienna, April, 2007, pp. 10
13.M.
Pease, R. Shostak, L. Lamport, Reaching agreement in presence of faults, Journal of the ACM 27 (2) (1980) 228 234.
S.C. Wang, Y.H. Chin, K.Q. Yan, Byzantine agreement in a generalized connected network, IEEE Transactions on
Parallel and Distributed Systems 6 (4) (1995) 420 427.
S.C. Wang, M.L. Chiang, K.Q. Yan, Streets of consensus under unknown unreliable network, ACM Operating
Systems Review 39 (4) (2005) 80 96.
M. Fischer, N. Lynch, A lower bound for the assure interactive consistency, Information Processing Letters 14 (4)
(1982) 183 186.

A. Bar-Noy, D. Dolev, C. D work, R. Strong, Shifting gears: changing algorithms on the fly to expedite Byzantine
agreement, in: Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing, 1987, pp.
42 51.

D. Dolev, R. Reischuk, H.R. Strong, Early stopping in Byzantine agreement, Journal of the ACM 37 (1990) 720 741.

D. Dolev, M. Fischer, R. Fowler, N. Lynch, R. Strong, An efficient algorithm for Byzantine agreement without
authentication, Information and Control 52 (3) (1982) 257 274.

