
A privacy enforcing framework for Android
applications

Ricardo Neisse a, Gary Steri a,*, Dimitris Geneiatakis b, Igor Nai Fovino a

a European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749 Ispra, Italy
b Electrical and Computer Engineering Department, Aristotle University of Thessaloniki, GR541 24 Thessaloniki, Greece

A R T I C L E I N F O

Article history:

Received 15 February 2016

Received in revised form 15 June

2016

Accepted 18 July 2016

Available online 25 July 2016

A B S T R A C T

The widespread adoption of the Android operating system in a variety type of devices ranging

from smart phones to smart TVs, makes it an interesting target for developers of mali-

cious applications. One of the main flaws exploited by these developers is the permissions

granting mechanism, which does not allow users to easily understand the privacy impli-

cations of the granted permissions. In this paper, we propose an approach to enforce fine-

grained usage control privacy policies that enable users to control the access of applications

to sensitive resources through application instrumentation. The purpose of this work is to

enhance user control on privacy, confidentiality and security of their mobile devices, with

regards to application intrusive behaviours. Our approach relies on instrumentation tech-

niques and includes a refinement step where high-level resource-centric abstract policies

defined by users are automatically refined to enforceable concrete policies.The abstract poli-

cies consider the resources being used and not the specific multiple concrete API methods

that may allow an app to access the specific sensitive resources. For example, access to the

user location may be done using multiple API methods that should be instrumented and

controlled according to the user selected privacy policies. We show how our approach can

be applied in Android applications and discuss performance implications under different

scenarios.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:

Android

App instrumentation

Permission control

Policy enforcement

Privacy

1. Introduction

Android is the dominant operating system for mobile devices;
it currently has the largest installed base (IDC, 2013) mainly
because (a) it supports a huge variety of different devices such
as watches, tablets, TV sets, etc., and (b) it provides end-users
with a large variety of applications (a.k.a. apps) for accom-
plishing their daily needs through its official market. Due to
its large adoption and every day use to perform online tasks,

malicious developers/hackers have increasingly targeted
this operating system. Even if the Google Bouncer (Google, 2012)
security service scrutinises apps before allowing them to be
published in Google Play, there is evidence (Miners, 2014)
showing that malicious software (malware) can be found among
legitimate apps as well. In most of the cases, the main goal
of these malware apps is to access sensitive phone resources,
e.g., personal data, the phone billing system, geo-location in-
formation, home banking info, etc. Even though in this work
we focus on Android, it is worth to note that similar flaws have

* Corresponding author.
E-mail addresses: gary.steri@jrc.ec.europa.eu (G. Steri), ricardo.neisse@jrc.ec.europa.eu (R. Neisse), dgeneiat@ece.auth.gr (D. Geneiatakis),

igor.nai-fovino@jrc.ec.europa.eu (I. Nai Fovino).
http://dx.doi.org/10.1016/j.cose.2016.07.005
0167-4048/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:gary.steri@jrc.ec.europa.eu
mailto:ricardo.neisse@jrc.ec.europa.eu
mailto:dgeneiat@ece.auth.gr
mailto:igor.nai-fovino@jrc.ec.europa.eu
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2016.07.005&domain=pdf

been reported also for other well known mobile platforms (e.g.,
iOS) in the literature (Damopoulos et al., 2013; Egele et al., 2011).

Android builds a part of its security on a permission re-
stricted access model to provide access to sensitive resources (e.g.
sd card, contacts). This means that to gain access to these re-
sources, apps should declare in the manifest the required
permissions, which users may grant or not. However, appli-
cations might abuse this model in order to gain access to private
information. Typical examples are applications that request
more permissions than what they actually need, named as over-
privileged (Felt et al., 2011). These applications can be silently
transformed into malware whenever an operating system or
an app update occurs, using an attack that is called privilege
escalation through updating (pileup).

The growing number of permissions1 from the first version
of Android (78) to the version 6.0 (148) does not help to solve
the security issues as it represents and increase in the Android
attack surface. Furthermore, the majority of users are still using
previous versions that, differently from Android 6.0, does not
foresee the possibility of selectively deciding which subset of
the requested permissions should be granted to an app. This
issue, combined with the fact that it is not very easy to under-
stand the meaning of each requested permission, since they are
too many and not clearly documented, makes the situation very
dangerous for users from a security and privacy point of view.

Considering these drawbacks, in this paper we propose an
expressive and fine-grain policy enforcement approach for
Android that is able to selectively prevent privacy invasive app
behaviour. The approach we present builds upon the Model-
based Security Toolkit (SecKit) (Neisse et al., 2015), leveraging
on the policy language and Policy Decision Point (PDP) com-
ponent, and shows how policy refinement and policy
enforcement can be achieved in the context of the Android
mobile operating system. Existing approaches for enforce-
ment of Android security policies are either hard-coded
interfaces with a limited set of enforcement options (Beresford
et al., 2011; Zhou et al., 2011), or flexible and fine-grain ap-
proaches using a security policy specification language focusing
on low level actions (e.g. API invocations or system calls)
(Rasthofer et al., 2014). The first type of approach lacks in flex-
ibility since the set of enforcement options is limited, while
the second one is too low level in order to be understandable
and usable considering the complexity of policies by users. Most
policy-based approaches, with the exception of AppGuard
(Backes et al., 2013), do not implement modification of infor-
mation, since low-level activities can only be allowed or denied.
Furthermore, the supported conditions is of limited expres-
siveness, since they do not include context-based policy
specification using event-based context situations, nor trust-
based policies, but only simple context information attributes
are supported (Conti et al., 2011). For example, a policy cannot
be specified under specific event conditions, i.e., persons ar-
riving or leaving their home but only considering the state when
they are at home or when they are not at home.

In contrast to existing approaches, our framework includes
a policy refinement step that maps abstract user-centric poli-

cies to a set of low-level enforceable policies. These abstract
policies are specified in a more concise way that is more mean-
ingful in contrast to the policies used in other approaches (e.g.
Rasthofer et al., 2014), and are easier to understand without the
need to consider many low-level technical details of theAndroid
system.We are able to automatically refine policies because our
security policy language is fully integrated with a reference model
of the target system where the policies will be deployed. The
reference model of the system and refinement relations in-
cludes the structure, behaviour, data, and identity models
represented in a systematic and extensible toolkit that enables
modular specification and re-use of security policy rule templates.

After the refinement, the low-level policies are enforced
using a code injection mechanism that does not require the
app source code to be available. All apps installed in a mobile
phone must be instrumented in order to include a small code
footprint that acts as a Policy Enforcement Point (PEP) and
control the execution of the app. The injected PEP contacts a
Policy Decision Point (PDP) component that evaluates the low-
level policies and informs the PEP about the authorisation
decision to allow, deny, modify, or delay the execution of spe-
cific sensitive API invocations. Our contribution in this paper
is the design and implementation of this approach for speci-
fication, refinement, and enforcement of expressive security
policies in Android. Our solution is suitable to all Android ver-
sions, including the latest available version 6.0, and do not pose
additional constrains to the already defined minimal Soft-
ware Development Kit (SDK) compatibility in the app.

From a technical perspective, all different policy enforce-
ment solutions could be used to mitigate malware apps as well
apps that have a privacy invasive behaviour. For example, con-
sidering a malware app that exploits a vulnerability in the Inter
Process Communication (IPC) mechanism,a policy could be speci-
fied to deny access to the IPC mechanism preventing the
vulnerability from being exploited. Although we acknowledge
this possibility, our focus in this paper is on protecting the user
from privacy invasive behaviour and all our example policies
are only of this nature. Finally, we do not consider explicitly in
this paper apps that share resources and permissions that may
seem harmless in isolation but that in combination may pose
a privacy risk. Our focus is simply in the specification and en-
forcement of policies to constrain the behaviour of a single app.

The remaining of this paper is organised as follows. Section
2 briefly overviews the Android security model. Section 3 pres-
ents a threat analysis and examples of privacy invasive
behaviours. Section 4 describes in details our approach for speci-
fication, refinement, and enforcement of security policy rules.
Section 5 shows the implementation details in a case study
with injection of code, while Section 6 analyses our perfor-
mance evaluation results including a discussion on assumptions
and limitations of the proposed scheme. Section 7 discusses
the related work and highlights the main differences in con-
trast to our approach. Section 8 concludes this work and gives
pointers for future work.

2. Android security model

The security of the Android Operating System (OS) is mainly
achieved by its subdivision into layers, which provides plat-

1 According to http://developer.android.com/reference/android/
Manifest.permission.html.

258 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

form flexibility and separation of resources at the same time.
This separation is reflected in the whole software implemen-
tation, shown in Fig. 1. Each level of the stack assumes that
the level below is secured. In this paper we focus on security
of apps, which run in the Dalvik Virtual Machine (DVM), and
have their own security environment and dedicated filesystem.

The security mechanism for app isolation, which is also in
place for native code invoked by the apps2, is called the Android
Application Sandbox. This sandbox is set up in the kernel, thus
propagating the isolation on all the layers above and on all kinds
of application. All apps running in the Android OS are assigned
a low-privilege user ID, are only allowed to access their own files,
cannot directly interact with each other,and have a limited access
to the OS resources.The isolation is a protection against “inter-
process” security flaws, meaning that a security problem in a
given app will not interfere with the resources of other apps.

In the Android Software Development Kit (SDK), the
functionalities an app can use are categorised and grouped in
Application Programming Interfaces (APIs) that give access to
resources normally accessible only by the OS. For example,
among the protected APIs there are functions for SMS and MMS
management, access to location information, camera control,
network access, etc. The access to the protected APIs is regu-
lated by a permission mechanism, in which a specific permission
should be granted to an app in order to allow access to a par-
ticular API. Unprotected APIs do not require any special
permission to be executed by the app.

More specifically, permissions in the Android OS are grouped
in four different levels considering the risk level introduced to
the user: normal, dangerous, signature, and signature-or-system.
Normal permissions are considered of low risk to other apps,

the system, or the user3. Dangerous permissions have a high
risk of negative consequences for the users’ personal data and
experience. Signature permissions are used to protect ex-
ported interfaces accessible only by apps signed with the same
developer key. Signature-or-system permissions are used to
protect core resources available only to trusted system apps
signed with the firmware key.

All permissions required by an app are declared in the Mani-
fest file. Until the version 5.0 of Android, when installing an app
users are notified only about the sensitive permissions re-
quired by it, and they are not given any choice on which
permissions to grant: they have to accept all of them or abort
the installation. However, the new recent Android-M (version
6.0) release provides runtime or time-of-use permissions as well4

in addition to install-time permissions. Time-of-use permis-
sions give users the possibility of denying a permission request
at runtime and permanently revoking a requested permis-
sion. This new privacy feature shows that the Android
community recognises the need for more advanced privacy and
anonymity control for users.

Even though time-of-use permissions allow users to gain
control over the restricted resources, there is a need for back-
ward compatibility to enforce privacy control on million of
devices using previous OS versions. It is worth to note that as
of August 2016 less than 15% of available devices support An-
droid’s latest version features, according to the Android
Dashboard5. In addition, the mapping of permissions to methods
in the Android APIs is one to many, a characteristic that con-
tributes to make less clear/deterministic which kind of and the
actual functionalities an app really uses. Besides, the lack of
protection in many sensitive APIs provides the possibility of
manipulation of apps’ features and services, as well as the lack
of any restrictive policy-based approach to empower users to
automate decisions with respect to the protection of their data,
privacy, and anonymity indicates that complementary re-
search work is needed in the Android platform.

3. Threat analysis

The evolving state of modern mobile operating systems and
the proliferation of mobile services is more and more catch-
ing the attention of malicious users.Their main goal is to gain
access to otherwise private information by exploiting vulner-
abilities both at application and operating system level. This
is the case not only of malware, but also of legitimate apps that
sometimes collect an excessive amount of personal informa-
tion. Many papers in the literature (Enck et al., 2010; Gibler et al.,
2012; Stirparo and Kounelis, 2012; Zhou and Jiang, 2013) have
shown apps with high invasion and manipulation on users’
personal data. This exploitation is enabled by Android design
vulnerabilities (Shabtai et al., 2010), and is triggered by the in-
creasing value of users’ personal information in digital
businesses.

2 Libraries and classes usually written in C/C++ and compiled for
a specific hardware platform, which can be called by a Java appli-
cation running in the Dalvik VM.

3 http://developer.android.com/guide/topics/manifest/permission
-element.html.

4 http://developer.android.com/preview/features/runtime
-permissions.html.

5 https://developer.android.com/about/dashboards/index.html.

Fig. 1 – Android software stack.

259c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/preview/features/runtime-permissions.html
http://developer.android.com/preview/features/runtime-permissions.html
https://developer.android.com/about/dashboards/index.html

In this context, various solutions have been proposed to
identify possible malicious apps and behaviours (Aafer et al.,
2013; Arp et al., 2014; Google, 2012; Wu et al., 2012). However,
most of these mechanisms are based on analysis of permis-
sions granted to apps, i.e., the set of API methods they are
allowed to invoke.This type of analysis is not sufficient, because
it can result in an over-approximation that rates legitimate apps
as malicious (false positives) and it is not able to detect col-
lusion attacks6.

Furthermore, it is almost impossible to guarantee the fair-
ness of any given app, as it has been showed that centralised
security checks (e.g., Google Bouncer, 2012) can be bypassed
(Ducklin, 2012; Miller and Oberheide, 2012), while legitimate
overprivileged apps (Geneiatakis et al., 2015) can be manipu-
lated in order to provide access to personal data as shown in
Xing et al. (2014).Therefore, even the presence of security analy-
sis mechanisms in the Android app store does not guarantee
users’ privacy. Moreover, since apps consist of components
namely activities, broadcast receivers, content providers, and
services whose communication interfaces are clearly defined,
other installed services and apps might manipulate also these
interfaces to gain access to users’ private information.

Consequently, the above mentioned facts show that users’
personal data stored in mobile devices are at high risk. To
summarise, we can classify the threats in mobile devices in-
corporating Android OS apps in three main categories: (1) the
ones that derive from Android’s architecture and mainly exploit
the permissions mechanism, (2) the ones characterised by
privacy invasion features that may be exploited by malware
or even by legitimate apps and (3) those related to implemen-
tation vulnerabilities. In this paper we focus on the first two
classes of threats. Although in this analysis we concentrate on
Android OS, we believe that similar attacks could be em-
ployed for other mobile platforms like, for instance, iOS.

3.1. Android’s permission model threats

The goal of Android’s permissions model is to protect system
resources from indiscriminate and unauthorised use by apps.
However, this model has some inherent problems that might
affect users privacy and anonymity as well.The following para-
graphs describe the types of threats we have identified and that
target this model, namely threats related to: pre-installed apps,
permission management, permission granularity, permission
notification, unused permissions, and lack of security.

First of all, pre-installed or OEM apps are automatically
granted all permissions required and are considered trusted
since they are part of the OS firmware.Therefore, users are not
informed about the required permissions of these apps, since
consent is normally granted by users during the installation
process. This means that users do not have any indication on
which resources are accessed by these apps and they are vul-
nerable to privacy invasive behaviours.

The second important point is the way permissions are
managed and granted during the app life-cycle. As described
in Section 2, in several cases, if a user wants to successfully
install and use an app, he/she is obliged to grant all the

requested permissions. Consequently, a common behaviour is
just to accept all the permission requests in order to reach the
end of the installation process. Besides, most of the users do
not have knowledge about possible risks the requested per-
missions introduce toward their personal data, and the
information prompted during the installation process are not
really informative about the real functionalities the app is going
to access and how often (e.g., regular fine grain location track-
ing). More knowledgeable users might try to evaluate the list
of requested permissions, but even for experts it is unclear how
permissions are used (Felt et al., 2012).

This is due to the fact that permissions are not a one-to-
one mapping scheme with the corresponding API method calls
that implement the actual functionalities. Indeed, their granu-
larity is quite coarse, and, considering the 197 permissions of
Android SDK version 17 associated to the 1259 methods with
permission checks published in (Felt et al., 2011), on average
a permission is associated to 7 API methods. For instance, a
mobile app with CAMERA permission is allowed to take pic-
tures or to capture videos using the takePicture and
MediaRecorder methods respectively. This means that a user
after granting this permission is not aware of the precise action
performed by the app at any specific time since it can give
access to a wider group of more or less sensitive functionalities.

As a consequence of the lack of information about permis-
sions, users may lose track of the granted resources that might
be accessed by the installed apps. The new Android-M version
includes also runtime or time-of-use permissions,7 giving users
the possibility of denying a permission request at runtime or
permanently revoking an install-time permission. However, only
new models of smart-phones, high-end devices will receive this
update, leaving all the rest of the installed system with the
problem of dealing with the old permission model.

Another threat to users are the normal level permissions,
which are considered of lower risk and are automatically
granted to apps without asking users explicitly for consent. Even
if users have the possibility to review this automatic grant-
ing, the a priori categorisation as low risk may not be perceived
by all users in the same way. As a result, even though the per-
mission granting mechanism is in place, from the user
perspective this approach may be wrongly understood as if the
apps are not accessing sensitive resources at all.

Some apps may also request permissions that are not used
in the app implementation, and that are not actually needed
for accomplishing their task (useless permissions).These apps
are usually labelled as over-privileged (Geneiatakis et al., 2015),
and could lead to privilege escalation problems in terms of sen-
sitive resources they can access after an update (Xing et al.,
2014). Privilege escalation may also lead to confused deputy
attacks, when an app that has been granted a specific permis-
sion is exploited by other apps that do not have this permission
in order to perform sensitive tasks (Felt et al., 2011). A classi-
cal example is an app that is allowed to send SMS messages
and allows other apps to use its interfaces to send SMS mes-
sages as well. Finally, some methods in the Android API are
still not protected by specific permissions and introduce a lack

6 Attacks that allow apps to indirectly execute operations for which
they do not have specific permission.

7 http://developer.android.com/preview/features/runtime
-permissions.html.

260 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

http://developer.android.com/preview/features/runtime-permissions.html
http://developer.android.com/preview/features/runtime-permissions.html

of security with respect to the sensitive resources they may allow
access to. For instance, an app might use the exec(String

prog) method to execute the process prog passed as pa-
rameter.This means any app could silently execute unprotected
system commands in order to read system information from
the proc filesystem, retrieve the list of installed and running
apps, read the SD card contents, etc.

3.2. Threats to users’ privacy

Threats to users’ privacy may be posed not only by malware
apps but also by legitimate apps. Many legitimate apps are
characterised by a certain degree of privacy invasiveness, which
is related to the permissions they request and to which use
they make out of the protected methods. In this direction,
TaintDroid (Enck et al., 2010) as well as other research works
(Gibler et al., 2012; Stirparo and Kounelis, 2012; Zhou and Jiang,
2013) demonstrate the type of end-users’ personal data ma-
nipulation performed by mobile apps. Examples of privacy
invasive behaviour performed by apps are, for instance, games
that request access to unique identifiers or user location that
are not needed by the app to function. Ultimately, it is up to
each mobile device user to judge if an app behaviour is privacy-
invasive according to his/her personal perceptions.

In this direction, the Android OS provides security ser-
vices to verify apps before installation, and to periodically scan
the OS for harmful apps. Unfortunately, these services them-
selves are also potentially privacy-invasive because, according
to the Android documentation, the device “may send infor-
mation to Google identifying the app, including log information,
URLs related to the app, device ID, your OS version, and IP
address”.8 Therefore, the user-desired functionality is bound

to a privacy-invasive behaviour, and users have no choice when
using these services to control or restrict the personal data
shared. Furthermore, the Android developers documentation9

suggests as apps distribution options, alternative to the
MarketPlace, e-mail and websites, thus exposing packages to
the risk of malicious code injection. As a consequence, the ex-
isting features aimed at protecting end-users from privacy
invasive applications are quite limited.

To show evidence of potential threats in terms of privacy
for end-users relying their daily activities on mobile apps, we
have analysed two different data sets related to Android apps.
The first one is the top 100 downloaded apps in Google Play,
while the second one consists of 3000 random apps from the
same source. Our analysis consists in:

1. extracting static features (i.e., permissions and respective
invoked methods of the Android API) from apps using the
Dexpler (Bartel et al., 2012) and Soot framework (Vallee-Rai
et al., 1999);

2. identifying the sensitive method invocations incorporated
in a given application using the permission map pub-
lished in Felt et al. (2011).

Fig. 2 illustrates the first result of our analysis, showing the
twenty most frequently requested permissions in the app
datasets. Correspondingly, Fig. 3 depicts the twenty most fre-
quently method invocations accessing sensitive resources
incorporated in Android mobile apps. Note that, although the
trend between the examined data sets are slightly different,
we concentrate mainly on the features of the one hundred top
apps, because users will most probably use some of them

8 https://support.google.com/accounts/answer/2812853?hl=en.

9 http://developer.android.com/distribute/tools/open-distribution
.html.

Fig. 2 – Permission distribution for 100-top versus 3000 random selected applications.

261c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

https://support.google.com/accounts/answer/2812853?hl=en
http://developer.android.com/distribute/tools/open-distribution.html
http://developer.android.com/distribute/tools/open-distribution.html

instead of other unknown apps. However, for the sake of com-
pleteness we provide the corresponding statistics for the three
thousand randomly selected apps as well.

More specifically, the results of our analysis show that almost
all the top apps request network related permissions (100% for

ACCESS_NETWORK_STATE and 98% for INTERNET) while 80%
of the apps request permissions to write to external storage
(WRITE_EXTERNAL_STORAGE), which usually is a Secure Digital
(SD) card.These permissions grant an app the capability to iden-
tify the access networks of a user, and consequently infer his/
her position, violating the user’s privacy and anonymity. The
user’s position can be inferred using Internet services that iden-
tify the geolocation of an IP Address, therefore without requiring
access to the GPS subsystem.

Still, considering the requested network related permis-
sions, around 98% may invoke the openConnection method that
allows connections to any arbitrary URL. This connection per-
mission combined with the 70% of the apps that also request
permissions to invoke the getDeviceId method show another
way that can be used to violate users’ anonymity. An app may
use both permissions in order to monitor user online activi-
ties using a unique identifier (device ID).

Futhermore, almost 60 of the 100 top apps request access
to the GET_ACCOUNTS permission.This permission allows an
app to authenticate using the getAuthToken method without
explicitly receiving consent for each specific authentication
token. By calling this method an app is able to perform online
activities on behalf of the end-users using any of their ac-
counts available in their mobile device. A given application
might use this permission also to access other unique iden-
tifiers (e.g., e-mail) and monitor the activities of online end-
users regardless of which device they are using. Therefore,
without loss of generality, the impact on the different sides of
end-users’ privacy and anonymity depends on the type of per-
mission an app is granted.

As additional concrete evidence of privacy invasive behaviour
we show an extract of Jimple code retrieved using reverse en-
gineering techniques from a real app that performs an invasive
operation. This code is shown in Listing 1, and it accesses the
device’s unique identifier, i.e. the IMEI of the mobile device,
through the getDeviceId method.Though this part of the code
cannot be considered malicious as it is executed only when a
fatal error occurs during the app execution, the examined app
sends the device ID along with other related information to a
remote server. It is questionable why an app would need to

send the device ID or any other personal information when a
crash occurs, and it is clear the leak of information that po-
tentially allows user tracking.

Listing 1: An example of a Jimple code residing in a real
Android application that accesses the device unique Id

Similarly, an app may access multimedia sensors (e.g., mi-
crophone, camera, etc.) to record users’ private conversations,
images, or even to record real-time videos, thus violating their
private sphere. More concretely, the permission RECORD_AUDIO
allows the invocation of the HandleStartListening() method
in the Android API that could be used to record the users’ private
conversations.

All examples presented above show that attackers can use
built-in features of apps and their requested permissions to
violate the end-users’ anonymity and privacy. Other orthogo-
nal approaches such as Nan et al. (2015) and Zhou et al. (2013)
reveal that runtime information gathering could disclose users’
different states (inside/outside of their house) and impose a
real threat even for their safety.

4. Specification, refinement, and enforcement
of security policies

In this section we present a flexible approach to inhibit the
malicious behaviour of Android apps. The general idea is that
of injecting a “control mechanism” in targeted apps, allowing
the user to control or influence their behaviour. Our ap-
proach is policy-based, meaning that it uses a security policy
rule language that provides flexibility by decoupling the speci-
fication of security constraints from the enforcement. In this
way, users may modify their security constraints dynami-
cally at runtime without the need to recompile or to reinstall
the apps.

Fig. 4 presents a high level overview of the solution we
propose. Our framework starts with the decompilation of the
Android app using the ApkTool decompiler (Tumbleson and
Winiewski, 2010) that reads the App .apk file (step 1) and pro-
duces the original bytecode (step 2). In parallel to the
decompilation of the app our refinement engine transforms
an abstract policy to a concrete policy by executing a set of re-
finement rules that consider the abstract and concrete models
of the App behaviour (steps 4 and 5), and is deployed in the
Policy Decision Point (PDP, step 6).The Original bytecode and the
Concrete Policy are used as input by the Instrumentation Engine

262 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

that generates the Instrumented Bytecode, which includes ad-
ditional policy enforcement bytecode (steps 3, 7, and 8). The
Instrumented Bytecode is repackaged in a PDP-enabled App also
using the ApkTool decompiler (steps 9 and 10). The Policy En-
forcement Point (PEP) code included in the PDP-enabled App
notifies the PDP with an event whenever an activity refer-
enced in the concrete policy is executed (step 11), and
synchronously receives an authorisation action to be en-
forced in response (step 12). The PDP service is installed in the
phone and provides a central service interface for all instru-
mented apps when sensitive API invocations occur.

The following subsections report on the details of the policy
specification language we adopt, the system modeling lan-
guage and interaction refinement, the policy refinement rules,

and the policy enforcement framework that uses instrumen-
tation to enable policy enforcement.

4.1. Policy specification

Abstract and concrete policies are specified using an Event-
Condition-Action (ECA) rule language. The following
formalisation shows the abstract syntax of an ECA Rule Tem-
plate. A rule engine monitors ECA rules instantiated from the
templates with the following semantics: whenever the event
(EventPattern) is observed and the condition (Condition) evalu-
ates to true then the action (Enforcement, TrustUpdate, and/or
BehaviorInst) is executed.

The EventPattern is a pattern matching an actual or tenta-
tive activity (action or interaction) in order to support
respectively detective and preventive enforcement policy rules.
The Condition corresponds to a complex conditions including
event patterns, external actions, temporal, cardinality, context,
role, trust, identity, and data operators.The Enforcement can be
an authorisation response to allow or deny the execution of
a tentative activity, while it may also optionally modify the ac-
tivity attributes or delay the activity execution depending on
the security requirements. A rule template may also instan-
tiate a behaviour (BehaviorInst) in order to execute additional

Fig. 3 – Invoked methods distribution for 100-top versus 3000 random selected apps.

Fig. 4 – High level overview of our proposed solution.

263c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

activities or update (e.g, increase or decrease the degree) a trust
relationship (TrustUpdate). A behaviour instantiation may, for
example, notify the mobile phone user in case an app per-
forms a privacy sensitive operation.

Policies alone are not sufficient, a mechanism of informa-
tion flow tracking inside an app and in between apps is also
necessary. Our policy language addresses information flow by
assuming that an information flow tracking system is in place
and by considering quantitative data identifiers (IDs) in data
pattern operators. We assume an information flow tracking
system is in place because it is an orthogonal problem in re-
lation to specification and enforcement of security policies.With
data pattern operators using quantitative data identifiers we
can specify policies that prevent a specific data item from being
sent to a remote server or even to prevent partial disclosure,
for example, if an implicit information flow tracking algo-
rithm has determined that a certain number of bits of a
sensitive data may be disclosed in an interaction. The inte-
gration of information flow tracking systems and the use of
data-centric operators are out of the scope of this paper.

Considering that our security policy rule conditions include
cardinality and temporal operators, a policy can be specified
to limit the frequency an app access the user location even
when the location is obtained through a direct call to
getLastKnownLocation. The following lists summarises addi-
tional examples of enforcement scenarios that can be
implemented using our approach:

• App-centric pseudonyms: users may choose to allow apps
to a pseudo device ID, which is required by some apps for
purposes not always clear. However, to protect the users’
privacy and prevent apps from collectively monitoring the
user behaviour the device ID should be different for each
app used;

• Access to partial information: user may allow apps to access
their SMS messages but only see the message content,
without seeing the sender. Furthermore, users may allow
access to their contacts but not to the full name, only to a
hash of the names and phone numbers;

• Regular access: users may allow access to their sensors (e.g.,
GPS) with time and cardinality constraints, for example, once
a day;

• Usage statistics: our instrumentation framework in com-
bination with our policy rule language can also be used to
show users aggregated statistics about the app behaviour
including temporal and cardinality constraints. For example,
how often the app opens network connections and to which
servers, how much data is sent, how many files the app
keeps open per session, which app activities are the most
used, etc.

More details about our policy language are presented in our
case study in Section 5 with a running example. We refer the
reader to Neisse et al. (2015) for a complete description of all
operators and semantics of the language.

4.2. Interaction refinement

One of the big limitations of the use of policies to control low
level behaviours is that, in general, they have to be extremely

precise, requiring a non-trivial knowledge of the system, hence
de-facto making impossible to a typical end-user to express
by himself what an app is authorised or not to do. On the top
of this, in several cases, a certain operation could be per-
formed in different ways, by invoking different methods,
requiring then to specify a huge number of different policies
for the same behaviour. To solve these limitations, in our ap-
proach we provide an extensible model of high-level abstract
source and sink interactions between the app and other system
components that exchange privacy-sensitive user informa-
tion. Each of these abstract interactions is refined considering
the implementation options available in Android. To illus-
trate the refinement of sources in the following we consider
a running example where a security policy rule regulates the
access to the user location by an app.

Concretely, using the Android API, access to the location can
be directly achieved by a call or interaction with a location
manager component using the method getLastKnownLocation,
or using a publish/subscribe mechanism where an app sub-
scribes to a location manager as a listener with parameters,
indicating the frequency of updates, and implements a call-
back method onLocationChanged. From user’s centric policy
specification perspective, when protecting the user location,
the specific technical details are irrelevant, meaning that a user
wants to have his/her location protected no matter how the
app manages to obtain it.

Fig. 5 illustrates an abstract view on the Access Location in-
teraction and two possible refinement alternatives for it. From
an abstract point of view, Access Location can be defined as an
interaction between an App and a Location Manager behaviour
that exchange data t of type Location. We adopt a design lan-
guage where behaviours are represented by rounded rectangles
and the contribution or participation of each behaviour in an
interaction by half ellipses, details about this language are de-
scribed in Neisse et al. (2015).

In our model, an abstract interaction AI establishes a set
of data instantiations DIAI and is the outcome of data ex-
change between a set of roles RAI representing the contribution
of behaviour instantiations to the respective interaction. The

Fig. 5 – Two alternative refinements of Access location
interaction.

264 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

end result of an interaction makes the set of declared data in-
stantiation available to all behaviour roles participating in the
interaction. For example, the Access Location interaction in Fig. 5
defines the contributions app and prov and the data instan-
tiation l of type Location.

We consider two types of events in our policy rule lan-
guage, tentative events triggered before an interaction takes place
and actual events capturing the successful completion of an
interaction. When a tentative event is signaled we assume the
data instances are all available but have not been exchanged
between the interaction participants, given the opportunity for
preventive authorisation actions (e.g., allow, deny, modify, or
delay) to be enforced.

An interaction AI may be refined into list of k concrete in-
teractions CIk, where the union of the set of established data
instantiations for all concrete interactions DICk is a superset
of the original data instantiations established by the con-
crete interaction DI DICAI n

k
n∈ =∪ 1 . Therefore, the set of concrete

interactions must establish at least the same set of data in-
stantiations of the abstract interactions, while it may include
additional data instantiations if required by the concrete re-
finement choice. When refining an interaction a set of possible
initial CI CIstart k∈ and final CI CIend k∈ interactions must be also
specified, representing possible choices to start and finish a
concrete refined workflow of interactions. For example, the ab-
stract Access Location interaction in Fig. 5 has two concrete
refinement choices (bottom left and right side), where for both
choices when the end interaction is completed the l data in-
stantiation defined for the abstract interaction is always
available.

A final refinement step is performed with respect to the in-
teraction pattern used in the implementation. In Android
interactions may map to a subscribe–notify mechanism, an
invoke–return method call, and so on. For method invoca-
tions we refine further each interaction in two interactions, for
example, the Get Last Known Location interaction is refined in
Get Last Known Location Invoke and Get Last Known Location Return
interaction instantiations (see Fig. 6).

Interactions are referenced in our security policy lan-
guage by means of event patterns in the ECA rules. The event
part (E) contains exactly one interaction pattern and in the con-
dition part (C) zero or more interaction patterns may be

combined using the policy language operators. In case the action
part (A) includes authorisation actions (e.g., allow or deny) the
event pattern defined in (E) must necessarily be a tentative
event, since actual events represent activities that already took
place and cannot be controlled anymore.

From a policy enforcement perspective an event may ref-
erence the interaction itself considering the container behaviour
is enforcing the policies or it may have a focus in one of the
participants. The focus in the interaction participant may be
necessary when the enforcement is not possible, for example,
the container behaviour represents an abstract entity outside
the control. In our particular approach we do not modify the
operating system, therefore the focus of enforcement is always
in the app interacting with the android framework. This par-
ticular focus allows us to inject the enforcement in the app
without the need to change the Dalvik VM execution.

4.3. Policy refinement

In order to map high-level policies to their low-level enforce-
able counterparts we build on the policy refinement approach
introduced by Neisse and Doerr (2013). In their approach, the
specification and evaluation of policy refinement rules uses as
input a system model that explicitly includes abstract activi-
ties and their respective concrete refinements.

In Android, abstract activities are mapped to data sources
and data sinks. For example, an app that accesses the user
location (source) and further redistributes it (sink) by sending
it over the network, writing it to a file, encoding it in an
intent to other Android component, and so on. For instance,
in case access to the user location is allowed to an app
without anonymisation, a policy could also be defined to
limit the redistribution of the location to other apps, using
sink interactions. It is important in this case to define all the
possible concrete redistribution interactions in Android. Poli-
cies can be defined to limit all redistribution, meaning all
possible refinements, or to limit a specific more concrete
redistribution such as writing to an SD card file. In this way,
we can eliminate the consequences of a security flaw when
an adversary exploits it.

In contrast to the refinement rules proposed in Neisse
and Doerr (2013), our extension considers also the modifica-
tion of events in addition to only allowing or denying the
execution of activities.We use the mechanism of policy nesting
for refinement in order to preserve the semantics of the
original policy condition. We do not consider in our rules
refinement of actions since we consider all relevant activities
to be interactions (method invocations) in Android. Further-
more, in Android we do not consider refinement of behaviour
types and executions, where an event pattern references an
abstract interaction in an abstract behaviour or a policy rules
triggers the execution of abstract activities that should be
translated to concrete activities (e.g., abstract user notifica-
tion translated to sending an e-mail or showing a toast
notification). Refinement of behaviour types and executions
are part of our future work plans. Finally, we take a more
precise approach for policies modifying data by refining nested
policy rules for each relevant modification in the set of con-
crete activities.

Fig. 6 – Interaction implementation pattern refinement of
Get Last Known Location in method invocation and
response.

265c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

The following list describes the refinement rules adopted
by us:

• Policies defining tentative events patterns with a deny au-
thorisation action are refined to a set of nested policies with
a true referencing event patterns (E) for all the possible initial
concrete interactions in the set CIstart .With this rule we guar-
antee that all possible initial activities will be controlled;

• Policies defining tentative events with an allow and modify
authorisation action are mapped to nested policies with a
true condition for each concrete interaction in the set CIk

where the data instantiation to be modified is referenced
in the authorisation action DIC DIk modify∈ . The parent policy
event is empty and only preserves the original policy con-
dition. With this refinement rule we guarantee that all
modifications will be preserved in the concrete activities;

• Actual event patterns in (E) or (C) part are mapped to a dis-
junction of the final concrete interactions CIend. With this
rule we guarantee that any possible completion of the ab-
stract interaction will be captured by our policy rule.

Our refinement rules consider that an interaction enables
the exchange of the specified data instantiations. Security policy
rules that consider the concrete system model must be defined
at the concrete level. For example, it is not possible to specify
at the Access Location interaction level a security policy limit-
ing the time amount in between location update subscriptions.
The reason is that the abstract interaction is unaware of the
concrete interaction pattern (publish–subscribe) adopted
concretely.

For each abstract policy referencing abstract events we
provide a mapping to concrete events considering the imple-
mentation choice in Android for the abstract semantics and
bytecode analysis technique that identifies the concrete imple-
mentation used in the specific Android App. Policies are
enforced using instrumentation techniques by intercepting the
concrete events.

The concrete policies generated using the refinement rules
are deployed in a Policy Decision Point (PDP) component, which
is a rule engine that evaluates the policies at runtime.The PDP
component subscribes to events with the Policy Enforcement
Point (PEP), which in our solution is injected in any Android
application using instrumentation techniques. The following
subsection discusses possible instrumentation techniques and
presents the instrumentation technique adopted by us in this
paper.

4.4. Policy enforcement using application
instrumentation

A key point in our approach to enable the enforcement of se-
curity policies is that of being able to modify any given app
according to user security requirements ensuring the instal-
lation of appropriate authorisation hooks.10

Android apps are written in the Java language, which is com-
piled to a proprietary register-based bytecode format specifically
designed for mobile devices having in mind their limited re-
sources. This bytecode, called dalvik bytecode, can be executed
in a DVM or in the Android Runtime (ART). Consequently, similar
to pure Java applications, Android apps can be reverse-
engineered using the appropriate tools, i.e., smali/baksmali
(Gruver, 2009), ApkTool (Tumbleson and Winiewski, 2010),
Androguard (Desnos, 2012), Dexpler (Bartel et al., 2012) and
Dex2Jar (Pan, 2012).

Using this reverse engineering tools it is possible to access
an intermediate (human) readable representation of an app
compiled bytecode, without having access to the original source
code itself. In this way, we are able to modify the app’s bytecode,
without the need to recompile the original source code,
and inject specific code able to enforce a given security
policy. As an example, Listing 2 illustrates a part of a reverse
engineered app in the smali format used to invoke the
getDeviceId() API method in the TelephonyManager class,
which can be used as an unique identifier of the mobile phone
to track users.

Listing 2: A smali code example of Android mobile appli-
cation invoking the getDeviceId method.

In our proposed approach, in order to inject the PEP code
to enforce security policies in any given app we first decompile
the app and perform static analysis to locate all the API method
invocations that should be controlled as they handle user sen-
sitive information. The decompilation is performed using the
ApkTool (Tumbleson and Winiewski, 2010), which generates as
output the smali code of all classes which are part of the app.
The app’s decompiled code is analyzed through our own tai-
lored static analysis tool to identify all relevant methods and
enforce the corresponding policy depending on users’ secu-
rity requirements. To do this, our static analysis tools extract
all the methods and permission list incorporated in the

10 For a discussion about the legal issues regarding application in-
strumentation we refer the reader to Schreckling et al. (2013).

266 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

examined app and correlate them with the API map pub-
lished by Felt et al. (2011) to identify all the “sensitive” API
method invocations. Table 1 illustrates a small sample mapping
a permission to a set of instrumented sensitive invocations.

In our approach, to enforce the policies we instrument all
possibly relevant API methods which may not be needed ac-
cording to the users’ preferences expressed in the defined
security policies. At runtime when the instrumented code is
reached, the app verifies if there is a policy defined for the re-
spective method, and in case no policy is defined the execution
simply continues with an almost negligible delay (see Section
6 for our performance results). With this approach, there is no
need to re-instrument the application in case the policies
change since we have complete coverage of all possible needed
PEP code.

The injected PEP code is a simple call to the PEP library,
which is automatically added to all instrumented apps. By
having the PEP code in a library we minimise the amount of
injected code in the instrumented app and provide higher trans-
parency to the modified app. To do so, we identify through
application manifest the appropriate package name for in-
stalling the PEP library in the appropriate path location. This
means that the complete code is an additional package, while
the original code should be modified mainly before or after the
specific method invocations according to the given security
policy, defined by the user (see Fig. 7).

The PDP enabled app contacts the PDP service before and
after the invocation of the sensitive API method (see Fig. 7) and
receives the appropriate authorisation actions from the PDP
app.11 The authorisation action may deny the execution, which
simply ignores the method invocation, or may allow as is, allow

with modifications, or delay the execution. For the authorisa-
tion action after the method execution only modifications and
delays are allowed, since it is not possible to deny the method
invocation anymore. This is mapped to actual and tentative
events in our policy enforcement language already introduced.

For all PDP enabled apps, we instrument the onCreate method
of the main activity to initialise the connection to the PDP
service. In case the PDP service is not available, the PDP enabled
app asks the user if he/she wants to retry the connection, to
continue the app execution and be warned of future danger-
ous method invocations, or to quit the app execution. In case
the user chooses to continue, the instrumented code tries to
re-connect with the PDP every time a sensitive method ex-
ecution is reached in the code.

When the PDP connection is established or during the app
execution, the PDP service may become unavailable due to lack
of resources in the mobile phone. In this case, the instru-
mented code prompts the user for a decision to continue the
execution allowing the sensitive method to be executed, and
may choose to be asked again or to allow/deny automatically
any successive invocations in case the PDP continues to be un-
available. The user decision can be also generalised for all the
invocations or for the specific method invoked when the PDP
was not available, and it may be stored for the current execu-
tion instance of the app or made persistent for all the following
execution instances. Independently of the user decision or
whether the PDP was contacted or not, all sensitive invoca-
tions are logged for future verification from the user.

From a practical point of view due to copyright infringe-
ment issues apps cannot be instrumented without the consent
of their developers. Therefore, we foresee that the
operationalisation of our solution could only be achieved if the
developers themselves adopted our solution and provided an
instrumented version of their original apps, which should be
signed and certified by them as well. In this way, app devel-
opers could prove that they are indeed acting in the best interest
of end-users with respect to protection of their privacy, leading
even to a large adoption of their apps and increased trust by
end-users. It is part of our future work to provide our solu-
tion as an open platform to enable app developers in this
direction.

5. Case study and implementation

In our case study we have applied our approach to specify and
enforce security policies in a well-known social network app.
To do so, we disassemble the app and analyze its bytecode based
on our Instrumentation Engine in order to enforce a given policy,

11 We made our code available as an open source project avail-
able at: https://github.com/r-neisse/SecKitRelease.

Fig. 7 – Injection of code before and after a sensitive API method invocation.

Table 1 – Example of “Sensitive” API methods as
identified by our approach in a real Android application.

Permission Sensitive API method

MANAGE_ACCOUNTS invalidateAuthToken()
VIBRATE NotificationManager.notify()
READ_CONTACTS ContentResolver.openInputStream()
WAKE_LOCK MediaPlayer.start()

MediaPlayer.stop()
ACCESS_NETWORK_STATE getActiveNetworkInfo()

getNetworkInfo()
INTERNET URL.openConnection()

URL.connect()

267c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

https://github.com/r-neisse/SecKitRelease

and generate a PDP-enabled app. The app which we examine
for our case study requests 58 different permissions, includ-
ing the following permissions that enable the access to end-
users’ location:

• ACCESS_COARSE_LOCATION;
• ACCESS_FINE_LOCATION;
• ACCESS_NETWORK_STATE.

Specifically, the app gains access to end-users’ location
through the following API methods:

• getCellLocation();
• getNeighboringCellInfo();
• getLastKnownLocation();
• requestLocationUpdates();
• requestLocation().

Note that in order to identify these calls our Instrumenta-
tion Engine extracts all the possible API methods from the
reverse engineered app and compare them against the per-
mission map published in Felt et al. (2011) as mentioned in the
previous section. Depending on the end-users’ defined policy
we introduce the appropriate hooks in order to contact the PDP,
and repackaging a PDP enabled app. So for every user defined
sensitive operation the PDP would be contacted.

After the analysis, instrumentation, and generation of the
PDP-enabled app the abstract policy and refinement model of
the Android app must be specified. Our approach has been

implemented as part of the Model-based Security Toolkit
(SecKit), which is an integrated approach for security engi-
neering (Neisse et al., 2015). In our case study we show a
running example considering the specification and refine-
ment of policies focusing on the Access Location interaction,
already introduced in the previous section.

Fig. 8 shows the SecKit Graphical User Interface (GUI) for
specification of the app behaviour. In this GUI the interaction
type Access Location is specified with one data instantiation l
of data type Location and two possible interaction partici-
pants. The interaction participants are represented by the
interaction contributions of an app and the location provider
prov. All possible abstract and concrete interaction types con-
sidered in the specification of security policies must be defined
in this GUI. The data type Location must be also specified, and
this is done in the Data tab of the GUI (not shown here due to
space limitations).

We assume a security expert should specify abstract inter-
actions representing potential privacy invasions from the
android app side, including possible refinements. For example,
to access the user location an app may access the phone in-
formation including the connected base station and derive the
location from a database of GSM antennas and coordinates.
This third refinement option (see Fig. 5 for the first two) could
be included and a security policy automatically derived without
the need for users to change their abstract high-level policy.

Fig. 9 shows the specification of behaviour types, behaviour
instantiations, and interaction instantiations. We model the
Android Phone behaviour containing instantiations of App,

Fig. 8 – Interaction type specification.

268 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

Location Manager, and Android Framework behaviours. These
behaviour instantiations interact with abstract and concrete
interaction instantiations, which are a relative concept, since
we allow for more than one level of abstraction/refinement re-
lations. An interaction instantiation references the respective
behaviours that interact with (for example, the ic1 instantia-
tion of type Access Location represents an interaction between
an App and the Android Framework). Each interaction instan-
tiation also contains a list of possible refinements, which in
the case of the Access Location instantiation represent two pos-
sible ways of accessing the location already introduced in Fig. 5.
Start activities are shown in green and end activities are shown
in red.

Fig. 10 shows the specification of security policy tem-
plates including the refined templates automatically generated
using our refinement rules. The highlighted policy template
Anonymize Location shows a simple policy that references the
Access Location interaction instantiation ic1. This policy tem-
plate when instantiated is triggered before the interaction is
executed and modifies the data l to the value anonymous.

Fig. 10 also shows the three generated refined policy tem-
plates. According to our refinement rules, in this example, the
Access Location tentative event is defined in a policy that allows
and modifies the value of l exchanged in the interaction.There-
fore, nested policies must be generated for all concrete

interactions that instantiate l. As a result, the refined policy
template instantiates a template that modifies l for the start
refined activities, which in this case are On Location Change and
Get Last Known Location. The container refined template of
Anonymize Location instantiates these two generated tem-
plates with a true condition and the respective event pattern,
while the original more complex condition is mantained in the
container template with a generic event pattern.

The semantics of containment implies that a contained
policy is only triggered if the trigger and condition of the con-
tainer template are satisfied. Therefore, the trigger of the
contained templates must be a refinement of the trigger of the
container template. For example, if the container template
trigger matches all Access Location interaction types, the con-
tainer template may only further restrict this pattern matching
specific instantiations of this type or matching instances with
specific data values.

The SecKit implementation includes the PDP rule engine
component for evaluation of the refined policy rules and a
HTTP/JSON interface for notifications of events. The PDP-
enabled app when executed will notify PDP every time a
sensitive method is reached for execution. In the current imple-
mentation we run the PDP rule engine outside the phone, a
PDP version running directly in the phone is part of our ongoing
and future work.

Fig. 9 – Behaviour with abstract and concrete interactions.

269c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

6. Evaluation

In this section we present the evaluation of our approach in
terms of performance by analysing: (a) the overhead delay due
to the interaction between PDP-enabled app with the PDP com-
ponent, (b) the battery consumption due to the network
interaction of the PDP-enabled app with the PDP component,
and (c) the memory size of the PDP-enabled app after
instrumentation.

6.1. Increase of app execution delay due to PDP
interaction

In order to evaluate the introduced interaction delay we em-
ployed a test-bed architecture where a PDP-enabled app is
deployed in an Android OS emulator and the PDP component
runs in the host machine of the emulator. We do not evalu-
ate scalability issues and the delay introduced in the PDP due
to a high number of deployed policies, we simply have one
accept rule deployed.

The evaluation of the delay introduced exclusively by the
PDP component has to be evaluated separately because the PDP
is a back-end component that can used for evaluation of poli-
cies enforced using different technologies. We have performed
a complete isolated evaluation of the policy evaluation delay
and scalability issues in a previous publication by some of the
co-authors (Neisse et al., 2015).

With respect to an estimate number of policies for a user
a worst case scenario could be the case where each installed
app requests all possible APIs associated with all permis-
sions. According to Callaham (2014) users have an average of
95 apps installed in their Android phones, and according to Au
et al. (2012) there are around 750 API methods associated with
the available permissions in Android version 4.3.1.This average
number of apps and possible API methods would be equiva-
lent to around 71 thousand policies, which according to the
PDP evaluation results published in Neisse et al. (2015) would
correspond to a response time of around 100 ms. This is just
an indicative number since policies may be complex and make
reference to multiple API methods, or multiple policies could
reference the same API method due to different requirements.

Fig. 10 – Specification of abstract policy and concrete policies automatically generated.

270 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

In order to measure the app execution delay we devel-
oped a custom made benchmark in which we simulated an
instrumentation of one (1), ten (10), fifty (50) and one hundred
(100) API calls of a given application according to the prefer-
ences of the end-user. This was done to assess application’s
responsiveness from end-users’ perspective under different
cases. All the experiments were repeated 1000 times, while the
execution was automated by using the Android’s Monkey test
suite.12

Fig. 11 gives an overview of our evaluation results.This graph
shows that using our proposed framework for empowering
user’s privacy the total delay introduced in the app was of 1.400
msec when instrumenting 100 API method invocation to call
the PDP, while it was only 9.9 msec for instrumentation of one
method invocation.

6.2. Increase of battery consumption due to PDP
interaction

In order to evaluate the battery consumption of our solution
we have developed a Timer app that runs for 3 hours, keeping
the phone screen always on with a fixed brightness level, and
updates every second the main activity screen displaying the
current battery level. The tests were run in a Samsung Galaxy
S5 mobile phone, running Android version 5 (Lollipop), using
WiFi or 4G networking, and with automatic updates disabled
in order to prevent app updates that could cause additional
battery consumption during our tests. In order to establish a
baseline we ran this app for 3 hours after fully charging and

restarting the phone, resulting in an average battery consump-
tion of 17% for 3 runs with WiFi or 4G only enabled.

After establishing this baseline we instrumented the Timer
app including one call to the PDP every second when the battery
level was displayed in the main activity screen, resulting in a
total of around 10 thousand PDP calls. These number of PDP
calls in a 3 hours period is definitely a worst case scenario since
it is very unlikely that during normal usage an app will request
access to a sensitive/instrumented API methods every second.

We measured the increased battery consumption using WiFi
or 4G communication with the PDP running in a secure cloud
server accessible through an encrypted connection (HTTPS)
using a valid server certificate.13 The average battery consump-
tion after running the tests 3 times was of 21% using WiFi and
24% using the 4G connection, meaning and increased battery
consumption of 4% and 7% respectively for WiFi and 4G. In
summary, considering the large number of PDP calls per-
formed during our tests and the observed battery consumption
we believe our solution is feasible to be used by users since it
does not pose a significant overhead. Table 2 summarises our
evaluation results.

6.3. Increase of app size due to instrumentation

With regard to the impact on the application size, the main
overhead is due to the PDP library incorporated in the appli-
cation to enforce the corresponding policy. For example, the
original size of the examined application was 835.882KB, and
after injecting the PDP code the size increased only by 8224
bytes. It is worth noticing that the instrumentation of addi-
tional calls would add a very small overhead since, as shown

12 https://developer.android.com/studio/test/monkeyrunner/
index.html. 13 The PDP was located at the server https://seckit.eu.

Fig. 11 – PDP enabled application average delay considering different number of instrumented APIs.

271c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://seckit.eu

by our analysis, the difference between instrumenting 100
method invocations or only 1 is of 26 bytes (see Table 3). This
is an effect of the Android APK optimisation that takes place
during the app repackaging stage.

7. Related work

In this section we provide an overview of the existing related
works focusing on the security policies enforcement in Android
for enhancing users’ security and privacy levels against apps
with a privacy invasive behaviour. Approaches like Damopoulos
et al. (2014) and Grace et al. (2012) that focus specifically on
malware detection is out of the scope of this paper. We present
these solutions in chronological order, briefly analysing the func-
tionality proposed, the implementation details, limitations, and
contrast to our proposal.

Kirin, proposed by Enck et al. (2009), is a security service
running on the phone which analyses the requested permis-
sions of an app and detects potential security flaws. When an
app is about to be installed, Kirin evaluates, using a rule based
engine, if there is a match between the set of requested per-
missions and the signatures defined in the rule engine. Note
that the signatures defined in the rule engine represent pos-
sible attack vectors, for example, RECORD_AUDIO and INTERNET
permissions define a rule in the signature set. Kirin results in
a high number of false positives since legitimate apps that
follow the defined signature pattern are characterised as ma-
licious. In contrast to our proposal, Kirin does not provide
enforcement capabilities, it is only a solution to inform users
about possible risks.

Ongtang et al. (2009) propose Saint as an extension of Kirin.
In addition to the analysis performed by Kirin at install time,
Saint monitors apps also at the runtime Inter-Component Com-
munication (ICC) flows, e.g., activities initialisation, components
binding to services, access to content providers, etc. The poli-
cies defined in Saint are static and similarly to our approach
define conditions to control the runtime behaviour. For example,
when a specific activity can bind with a specific content provider

considering the allowed permissions, signature, or package
name. Saint is implemented as a modified Android middleware,
while our proposal relies on app instrumentation for policy en-
forcement. Furthermore, we propose a more flexible architecture
and expressive policy language with the possibility of deploy-
ing and changing policies at runtime without requiring changes
to the middleware or instrumented app.

Also Apex, introduced by Nauman et al. (2010), focuses on
policy enforcement for regulating ICC flows. In contrast to Saint,
Apex supports more complex policy conditions using dynamic
attributes including cardinality and time dimension con-
strains, i.e., restricting the maximum number of SMS messages
sent by an app. Policy rules must be defined to manage the
initialisation, updating, and resetting of dynamic attributes. Both
Saint and Apex support authorisation actions to allow or deny
an ICC flow, without the possibility of modifying or obfuscat-
ing a flow which is supported in our framework.

Orthogonally to our proposal, Dietz et al., 2011) propose
QUIRE as a solution to protect android apps manipulation by
other malicious apps or services. Their proposal is to enable
apps to reason about access to sensitive data through call chain
validation. To achieve this goal the authors propose the modi-
fication of the underlying OS IPCs mechanism in order to pass
the appropriate information between IPCs.

In the same direction, Porscha, proposed by Ongtang et al.
(2010), introduces a Digital Rights Management (DRM) frame-
work for Android phones that mediates the access to protected
content between different Android components. For example,
it can regulate the access of an app to the content of an SMS
message.The Porscha mediator supports constraints on devices,
apps, and on the use (e.g., cardinality) of the protected data.
Porscha mediates ICC flows, with extensions including a policy
filed, and it has been implemented as a modified Android firm-
ware that is considered to be trusted. Our proposal does not
require changes to the Android firmware, therefore, our solu-
tion could be adopted straightforwardly in all different firmware
versions.

CRePE, introduced by Conti et al. (2011)., is also a customised
Android OS system able to enforce fine-grained security poli-
cies considering time and location features. Policies in this
system intercept authorisation requests before the standard
Android permission checks, so that if the request is allowed
by CRePE the standard permission check may still deny it. In
addition to the standard permission checks, it also intercepts
and enforces policies when activities are started. Policies in
CRePE consist of propositional conditions of allow or deny
actions, which are less expressive than our policy rules that
also support modifications and delays as enforcement actions.

Bai et al. (2010) propose a context-aware usage control that
focus on a user basis mechanism for granting and revoking per-
missions, similar to the approach introduced in the latest
android OS version. To do so, authors enable users to define
policies related to application permission grants in order to
protect access to users’ sensitive resources. However, the use
of this approach requires the modification of underlying Android
OS services. In a similar direction, Sun et al. (2012) introduce
a design that requires the modification of Android sandbox as
well, in order to monitor access to sensitive information. In this
approach the hook points are installed before the actual per-
mission check occurs by Android OS. On the contrary,

Table 2 – Battery consumption.

PDP enabled WiFi 4G Battery Delta

N Y N 17% Baseline
N N Y 17% +0%
Y with HTTPS Y N 22% +5%
Y with HTTPS N Y 24% +7%

Table 3 – PDP enabled application size considering
different number of instrumented API methods
invocations.

Instrumented calls Size (KB) Diff (bytes)

− 835.882
1 844.106 8224

10 844.112 8230
50 844.118 8236

100 844.132 8250

272 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

SecureDroid (Arena et al., 2013) extends Android OS security
manager service to control access also for user defined sen-
sitive URIs.

Shabtai et al. (2010) first proposed the use of SELinux in
Android to implement low-level Mandatory Access Control
(MAC) policies. From Android 4.3 on, SELinux is used by default
to further define apps in permissive mode, only logging per-
mission denials. From Android 5.0, SELinux is used in full
enforcement mode, in which permission denials are logged and
enforced according to the specified policies.

Batyuk et al. (2011) introduced Androlyzer, a server based
solution that focuses mainly on informing users about apps
potential security and privacy risks.To do this, Androlyzer first
does the reverse engineering of the app, and then a static analy-
sis to determine possible flaws. In addition, Androlyzer provides
an approach to mitigate the identified flaws by modifying the
examined app based on users’ preferences. However,Androlyzer
does not use an expressive policy language to support users
in enforcing their security requirements into an app.

Papamartzivanos et al. (2014) propose a cloud-based crowd-
sourcing architecture where users share any locally logged
information about the app of interest. The authors’ goal is to
use the exchanged logs to calculate the app’s privacy expo-
sure level considering the exchanged information between the
various participants in the system. The authors use the Cydia
Substrate, which can only be installed in rooted devices to hook
code in method invocations and object creations. A user may
decide to always allow, deny, or be asked about what to do every
time a hooked method is invoked by the running app.

TISSA, proposed by Zhou et al. (2011), introduces a privacy
mode functionality in Android with coarse-grained control over
the behaviour of an app. Using TISSA users can have more fine-
grained control over private information like location, phone
identity, contacts, call log, etc. TISSA is implemented as a modi-
fied OS with proxy content providers for each controlled
information that are responsible for retrieving and enforcing
the corresponding policies.TISSA’s policies are hard-coded and
restricted to a static set of authorisation options without support
for complex conditions. A very similar approach with slightly
less control on private information is introduced by Beresford
et al. (2011) in their solution named MockDroid. Complemen-
tary, AppFence proposed by Hornyack et al. (2011)., also
implemented as a modified OS on the basis of TaintDroid,
shadows and ex-filtrates users’ private data according to their
preferences.

Feth and Pretschner (2012) employ information flow track-
ing as well.Their framework uses an expressive policy language
to describe users’ preferences to content providers, intents, and
certain data sinks like the network, file system and IPC in order
to eliminate access to private data. Jung et al. (2013) extend
the work of Feth and Pretschner with context-aware policy rules.
In this direction, Andriatsimandefitra et al. (2012) introduce an
approach for determining data flows, which is an important
aspect for realising a policy enforcement tool. In contrast to
all these approaches for policy enforcement in Android we are
the only ones to propose the use of policy refinement tech-
niques to simplify the management of the security policies by
end-users.

In an alternative approach, Xu et al. (2012) introduce an ad-
ditional “sandbox” security service for protecting users’ against

apps malicious behaviour, namely Aurasium. In contrast to other
similar approaches including ours, Aurasium enforces its se-
curity policies in the Android libc level through interposition
as a middleware between Android kernel and user space layer.
This means that the original app is repackaged to a new app
which includes the appropriate code enabling Aurasium to
control access to sensitive sources.

Constroid, introduced by Schreckling et al. (2012), also defines
a management framework for employing data-centric secu-
rity policies of fine granularity.To do this, Constroid adopts the
UCONABC model. However, in contrast to our contribution in
this paper only the abstract model is detailed and no con-
crete example of policy is provided.

Zefferer and Teufl (2013) propose a solution for device se-
curity assessment based on user defined preferences. The use
of security policies guarantees that each application that in-
tegrates the developed service can define and assess its own
critical aspects. In order for such a service to be employed in
a given device is required by a third party app to integrate
the appropriate controls to the app through the correspond-
ing API. However, researchers have shown that programmers
are not taking into consideration in most of the cases secu-
rity features.

SEDalvik, introduced by Bousquet et al. (2013), proposes a
MAC mechanism to regulate information flows between apps
objects building on the advantages of Dalvik internal debug-
ger. Specified policies define which interactions are allowed to
take place in a given context.

Schreckling et al. (2013) introduce Kynoid, a solution that
extends Taintdroid with security policies at the variable level.
Kynoid retains the taint propagation performed by Taintdroid
and maintains a dependency graph where a direct edge rep-
resents a security requirement (a.k.a. policy) between two
objects. In this way, Kynoid provides a fine grained control to
sensitive flows.The focus of Kynoid is on information flow poli-
cies, which are not explicitly supported in our framework and
are part of our future work.

AppGuard, introduced by Backes et al. (2013), is an app in-
strumentation framework that runs directly in users’ device
and allows user-centric security policies customisations.
AppGuard computes a risk score for each app considering the
number of dangerous permissions and provides the option
of instrumenting the app to control the access to “danger-
ous” calls. For example, in an app with NETWORK permission,
a user can choose to enable/disable the corresponding func-
tionality. The solution presented by Bartel et al. (2012) follows
the same direction. In contrast to our proposal these solu-
tions do not support context-based policy specification and
policy refinement in order to simplify the policy manage-
ment by end-users.

Zhauniarovich et al. (2014) propose MOSES, which en-
forces context-based policy specification at the kernel level,
meaning that MOSES requires a modification to the underly-
ing OS. In this approach users can define a security profile that
could be applied in a specific context, i.e., at a specific time and
location for a given app. Note that if a security profile is not
linked to an app, then MOSES does not allow access to any “sen-
sitive” resource since by default employs a negative
authorisation policy. MOSES security profile consists of allow
or deny rules according to user’s requirement.

273c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

IdentiDroid, proposed by Shebaro et al. (2014), is a customised
version of Android which gives to the user the possibility to
switch in an anonymous modality that shadows sensitive data
and block permissions at runtime. Even though there is no a
complex policy definition and refinement, the IdentiDroid Profile
Manager allows users to define different profiles specifying
which applications can access or not sensitive data and
resources.

DroidForce proposed by Rasthofer et al. (2014) relies on the
Soot framework for analysing and instrumenting an app to
enforce a security policy. This approach considers PEPs in-
jected in multiple applications with a single PDP running as
an app in the phone, addresses information flow intra-app stati-
cally and inter-app at runtime, and uses an expressive policy
language with cardinality and temporal constraints.Their poli-
cies allow or deny an activity, while do not support modification/
obfuscation of values. Complementary, Jing et al. (2015) propose
DeepDroid, which in contrast to DroidForce performs instru-
mentation at the native level with the possibility of intercepting
system calls in addition to methods invocation to regulate the
access to sensitive resources. However, DeepDroid does not con-
sider information flow tracking nor uses any expressive policy
language for enforcement.

Bagheri et al. (2015) in DroidGuard introduce a framework
for modelling inter-app vulnerabilities and employing the ap-
propriate protection mechanism to enhance user’s privacy and
security. Briefly, DroidGuard analyses statically a set of given
apps to foresee security flaws realising through apps inter-
communication. The generated model is used as a policy to
be employed as a proactive countermeasure.

More similar to our approach Cotterell et al. (2015) intro-
duce a solution to enable users to install policies for controlling
sensitive data; however, the policies are not based on access
to sensitive resources. Instead, the authors focus on known ma-
licious activities for defining a policy with a more explicit focus
on malware apps.

8. Conclusions and future work

Mobile devices are today the primary interface used by end-
users to access online services. They are the mean to perform
several different operations and they are the repository of a
huge amount of sensitive and personal information. Hence,
their security and privacy should be the building blocks to
enhance trust in digital services. In the mobile world, Android
is the dominant operating system as it is an open platform
that supports different types of hardware devices. However,
due to its popularity and its innate design properties, it is
also one of the main targets of attackers that want to access
to users’ private data. In this paper we analysed different
attack vectors leading to private data leakages, and we pro-
posed a policy based approach for enhancing users’ privacy
by empowering them in controlling the access to sensitive
resources.

Our solution provides flexibility and transparency both to
users and apps, by decoupling the specification of security con-
straint from the enforcement. Performance evaluation outcomes
show that the enforcement overhead in terms of processing

time is limited, and thus we believe that our solution pro-
vides a balance between users’ privacy and apps “unrestrained”
access. The presented approach, at the moment, foresees the
enforcement of the policy through app instrumentation. Even
if instrumentation can be easily automated to make the op-
eration accessible to the average end-users, we recognise that
code injection poses some questions related to liability issues
of the resulting new “instrumented app”. A far more logical
approach would be that of encouraging the mobile app com-
munity in developing “privacy by design applications”
integrating by default the PEP (policy enforcement point) into
their code, giving back to the end-users full control of the
behaviour of their mobile devices.

As future work we plan to include in our refinement ap-
proach the support for behaviour types, actions types, and
execution of abstract actions by policies. By addressing
behaviour types we could specify an abstract policy for a phone
that would be refined to all installed apps and components.
Furthermore we plan to investigate the integration of explicit
and implicit information flow tracking tools with quantita-
tive data policies. We also plan to launch a community-based
release of our tool where users can contribute with abstract
policies and refinement models of privacy sensitive activi-
ties, for example, integrating the results of other Android
security approaches (e.g. Rasthofer et al., 2014) that cannot be
easily reused at the moment.

R E F E R E N C E S

Aafer Y, Du W, Yin H. Droidapiminer: mining api-level features
for robust malware detection in android. In: Zia T, Zomaya A,
Varadharajan V, Mao M, editors. Security and Privacy in
Communication Networks, vol. 127. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering. Springer International
Publishing; 2013. p. 86–103.

Andriatsimandefitra R, Geller S, Tong VVT. Designing
information flow policies for android’s operating system, in:
2012 IEEE international conference on communications (ICC),
2012, pp. 976–81. doi:10.1109/ICC.2012.6364161.

Arena V, Catania V, Torre GL, Monteleone S, Ricciato F.
Securedroid: an android security framework extension for
context-aware policy enforcement, in: 2013 international
conference on privacy and security in mobile systems
(PRISMS), 2013, pp. 1–8. doi:10.1109/PRISMS.2013.6927185.

Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K. Drebin:
effective and explainable detection of android malware in
your pocket, in: 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA,
February 23–26, 2013, 2014.

Au KWY, Zhou YF, Huang Z, Lie D. Pscout: analyzing the android
permission specification, in: Proceedings of the 2012 ACM
conference on computer and communications security, CCS
’12, ACM, New York, NY, USA, 2012, pp. 217–28.

Backes M, Gerling S, Hammer C, Maffei M, von Styp-Rekowsky P.
Appguard enforcing user requirements on android apps. In:
Piterman N, Smolka S, editors. Tools and Algorithms for the
Construction and Analysis of Systems, vol. 7795. Lecture
Notes in Computer Science. Springer Berlin Heidelberg; 2013.
p. 543–8 <http://dx.doi.org/10.1007/978-3-642-36742-7_39>.

Bagheri H, Sadeghi A, Jabbarvand R, Malek S. Automated dynamic
enforcement of synthesized security policies in android, Tech.

274 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0010
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0010
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0010
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0010
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0010
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0010
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0010
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0015
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0015
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0015
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0015
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0020
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0020
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0020
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0020
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0020
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0025
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0025
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0025
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0025
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0025
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0030
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0030
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0030
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0030
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0035
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0035
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0035
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0035
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0035
http://dx.doi.org/10.1007/978-3-642-36742-7_39
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0040
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0040

Rep. Technical Report GMU-CS-TR-2015-5, George Mason
University, 2015.

Bai G, Gu L, Feng T, Guo Y, Chen X. Security and Privacy in
Communication Networks: 6th International ICST
Conference, SecureComm 2010, Singapore, September 7–9,
2010. Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010, Ch. Context-Aware Usage Control for
Android, pp. 326–43. http://dx.doi.org/10.1007/978-3-642
-16161-2_19.

Bartel A, Klein J, Monperrus M, Allix K, Traon YL. Improving
privacy on android smartphones through in-vivo bytecode
instrumentation, CoRR abs/1208.4536. <http://arxiv.org/abs/
1208.4536>; 2012 [accessed 07.16].

Bartel A, Klein J, Le Traon Y, Monperrus M. Dexpler: converting
android Dalvik bytecode to Jimple for static analysis with
soot, in: Proceedings of the ACM SIGPLAN international
workshop on state of the art in Java program analysis, SOAP
’12, ACM, New York, NY, USA, 2012, pp. 27–38.

Batyuk L, Herpich M, Camtepe SA, Raddatz K, Schmidt A-D,
Albayrak S. Using static analysis for automatic assessment
and mitigation of unwanted and malicious activities within
android applications, in: Proceedings of the 2011 6th
international conference on malicious and unwanted
software, MALWARE ’11, IEEE Computer Society, Washington,
DC, USA, 2011, pp. 66–72. http://dx.doi.org/10.1109/
MALWARE.2011.6112328.

Beresford AR, Rice A, Skehin N, Sohan R. Mockdroid: trading
privacy for application functionality on smartphones, in:
Proceedings of the 12th workshop on mobile computing
systems and applications, HotMobile ’11, ACM, New York, NY,
USA, 2011, pp. 49–54. http://doi.acm.org/10.1145/
2184489.2184500.

Bousquet A, Briffaut J, Clevy L, Toinard C, Venelle B. Mandatory
access control for the android Dalvik virtual machine, in:
Presented as part of the 2013 workshop on embedded self-
organizing systems, USENIX, Berkeley, CA, 2013. <https://
www.usenix.org/conference/esos13/workshop-program/
presentation/Bousquet>; [accessed 07.16].

Callaham J. Yahoo Aviate data shows 95 apps are installed on the
average android device. <http://www.androidcentral.com/
yahoo-aviate-data-shows-95-apps-are-installed-average
-android-device>; 2014 [accessed 07.16].

Conti M, Nguyen VTN, Crispo B. Crepe: context-related policy
enforcement for android, in: Proceedings of the 13th
international conference on information security, ISC’10,
Springer-Verlag, Berlin, Heidelberg, 2011, pp. 331–45. <http://
dl.acm.org/citation.cfm?id=1949317.1949355>.

Cotterell K, Welch I, Chen A. An android security policy
enforcement tool. Int J Electron Telecomm 2015;61(4):311–20.
doi:10.1515/eletel-2015-0040.

Damopoulos D, Kambourakis G, Anagnostopoulos M, Gritzalis S,
Park JH. User privacy and modern mobile services: are they on
the same path? Pers Ubiquitous Comput 2013;17(7):1437–48.
doi:10.1007/s00779-012-0579-1. <http://dx.doi.org/10.1007/
s00779-012-0579-1>.

Damopoulos D, Kambourakis G, Portokalidis G. The best of both
worlds: a framework for the synergistic operation of host and
cloud anomaly-based IDS for smartphones, in: Proceedings of
the seventh European workshop on system security, EuroSec
’14, ACM, New York, NY, USA, 2014, pp. 6:1–6. http://doi.acm
.org/10.1145/2592791.2592797.

Desnos A. Androguard – reverse engineering, malware and
goodware analysis of android applications and more
(ninja !) – Google project hosting. <http://code.google.com/p/
androguard/>; 2012 [accessed 07.16].

Dietz M, Shekhar S, Pisetsky Y, Shu A, Wallach DS. QUIRE:
lightweight provenance for smart phone operating
systems, in: 20th USENIX Security Symposium, San Francisco,

CA, USA, August 8–12, 2011, Proceedings, 2011. <http://
static.usenix.org/events/sec11/tech/full_papers/Dietz7-26
-11.pdf>; [accessed 07.16].

Ducklin P. Apple’s app store bypassed by Russian hacker, leaving
developers out of pocket. <http://nakedsecurity.sophos.com/
2012/07/14/apple-app-store-bypassed-by-russian-hacker
-leaving-developers-out-of-pocket/>; 2012 [accessed 07.16].

Egele M, Kruegel C, Kirda E, Vigna G. Pios: detecting privacy leaks
in ios applications, in: Proceedings of the network and
distributed system security symposium, NDSS 2011, San
Diego, California, USA, 6th February - 9th February 2011, 2011.
<http://www.isoc.org/isoc/conferences/ndss/11/pdf/9_2.pdf>.

Enck W, Ongtang M, McDaniel P. On lightweight mobile phone
application certification, in: Proceedings of the 16th ACM
conference on computer and communications security, CCS
’09, ACM, New York, NY, USA, 2009.

Enck W, Gilbert P, Chun B-G, Cox LP, Jung J, McDaniel P, et al.,
Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones, in: Proceedings of the
9th USENIX conference on operating systems design and
implementation, OSDI’10, USENIX Association, Berkeley, CA,
USA, 2010, pp. 1–6.

Felt AP, Chin E, Hanna S, Song D, Wagner D. Android permissions
demystified, in: Proceedings of the 18th ACM conference on
computer and communications security, CCS ‘11, ACM, New
York, NY, USA, 2011, pp. 627–38. http://doi.acm.org/10.1145/
2046707.2046779.

Felt AP, Hanna S, Chin E, Wang HJ, Moshchuk E. Permission re-
delegation: attacks and defenses, in: In 20th Usenix Security
Symposium, 2011.

Felt AP, Ha E, Egelman S, Haney A, Chin E, Wagner D. Android
permissions: user attention, comprehension, and behavior,
in: Proceedings of the eighth symposium on usable Privacy
and security, SOUPS ’12, ACM, New York, NY, USA, 2012, pp.
3:1–14.

Feth D, Pretschner A. Flexible data-driven security for android, in:
Proceedings of the 2012 IEEE sixth international conference
on software security and reliability, SERE ’12, IEEE Computer
Society, Washington, DC, USA, 2012, pp. 41–50.

Geneiatakis D, Fovino IN, Kounelis I, Stirparo P. A permission
verification approach for android mobile applications.
Comput Secur 2015;49(C):192–205. <http://dx.doi.org/10.1016/
j.cose.2014.10.005>.

Gibler C, Crussell J, Erickson J, Chen H. Androidleaks:
automatically detecting potential privacy leaks in android
applications on a large scale, in: Proceedings of the 5th
international conference on trust and trustworthy
computing, TRUST’12, Springer-Verlag, Berlin, Heidelberg,
2012, pp. 291–307.

Google, Android and security: Google bouncer. <http://
googlemobile.blogspot.it/2012/02/android-and-security.html>;
2012 [accessed 07.16].

Grace M, Zhou Y, Zhang Q, Zou S, Jiang X. Riskranker: scalable
and accurate zero-day android malware detection, in:
Proceedings of the 10th international conference on mobile
systems, applications, and services, MobiSys ’12, ACM, New
York, NY, USA, 2012, pp. 281–94. <http://doi.acm.org/10.1145/
2307636.2307663>.

Gruver B. Smali/baksmali assembler/disassembler for the dex
format used by Dalvik. <https://github.com/JesusFreke/smali/
wiki>; 2009 [accessed 07.16].

Hornyack P, Han S, Jung J, Schechter S, Wetherall D. These aren’t
the droids you’re looking for: retrofitting android to protect
data from imperious applications, in: Proceedings of the 18th
ACM conference on computer and communications security,
CCS ’11, ACM, New York, NY, USA, 2011, pp. 639–52. http://
doi.acm.org/10.1145/2046707.2046780.

IDC, Worldwide smartphone os market in 4q12, may 2013.

275c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0040
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0045
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0045
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0045
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0045
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0045
http://dx.doi.org/10.1007/978-3-642-16161-2_19
http://dx.doi.org/10.1007/978-3-642-16161-2_19
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr9045
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr9045
http://arxiv.org/abs/1208.4536
http://arxiv.org/abs/1208.4536
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0055
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0055
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0055
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0055
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0055
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0060
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0060
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0060
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0060
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0060
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0060
http://dx.doi.org/10.1109/MALWARE.2011.6112328
http://dx.doi.org/10.1109/MALWARE.2011.6112328
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0065
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0065
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0065
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0065
http://doi.acm.org/10.1145/2184489.2184500
http://doi.acm.org/10.1145/2184489.2184500
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0070
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0070
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0070
https://www.usenix.org/conference/esos13/workshop-program/presentation/Bousquet
https://www.usenix.org/conference/esos13/workshop-program/presentation/Bousquet
https://www.usenix.org/conference/esos13/workshop-program/presentation/Bousquet
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr9040
http://www.androidcentral.com/yahoo-aviate-data-shows-95-apps-are-installed-average-android-device
http://www.androidcentral.com/yahoo-aviate-data-shows-95-apps-are-installed-average-android-device
http://www.androidcentral.com/yahoo-aviate-data-shows-95-apps-are-installed-average-android-device
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0080
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0080
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0080
http://dl.acm.org/citation.cfm?id=1949317.1949355
http://dl.acm.org/citation.cfm?id=1949317.1949355
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0190
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0190
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0190
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0085
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0085
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0085
http://dx.doi.org/10.1007/s00779-012-0579-1
http://dx.doi.org/10.1007/s00779-012-0579-1
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0090
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0090
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0090
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0090
http://doi.acm.org/10.1145/2592791.2592797
http://doi.acm.org/10.1145/2592791.2592797
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr9030
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr9030
http://code.google.com/p/androguard/
http://code.google.com/p/androguard/
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0100
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0100
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0100
http://static.usenix.org/events/sec11/tech/full_papers/Dietz7-26-11.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Dietz7-26-11.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Dietz7-26-11.pdf
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr9015
http://nakedsecurity.sophos.com/2012/07/14/apple-app-store-bypassed-by-russian-hacker-leaving-developers-out-of-pocket/
http://nakedsecurity.sophos.com/2012/07/14/apple-app-store-bypassed-by-russian-hacker-leaving-developers-out-of-pocket/
http://nakedsecurity.sophos.com/2012/07/14/apple-app-store-bypassed-by-russian-hacker-leaving-developers-out-of-pocket/
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0110
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0110
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0110
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0110
http://www.isoc.org/isoc/conferences/ndss/11/pdf/9_2.pdf
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0115
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0115
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0115
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0115
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0120
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0120
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0120
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0120
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0120
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0120
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0125
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0125
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0125
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2046707.2046779
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0130
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0130
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0130
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0135
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0135
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0135
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0135
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0135
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0140
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0140
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0140
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0140
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0145
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0145
http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.cose.2014.10.005
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0150
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0150
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0150
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0150
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0150
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0150
http://googlemobile.blogspot.it/2012/02/android-and-security.html
http://googlemobile.blogspot.it/2012/02/android-and-security.html
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0160
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0160
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0160
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0160
http://doi.acm.org/10.1145/2307636.2307663
http://doi.acm.org/10.1145/2307636.2307663
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr9025
https://github.com/JesusFreke/smali/wiki
https://github.com/JesusFreke/smali/wiki
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0170
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0170
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0170
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0170
http://doi.acm.org/10.1145/2046707.2046780
http://doi.acm.org/10.1145/2046707.2046780
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0175

Jing J, Sun K, Wang Y, Wang X. Deepdroid: dynamically enforcing
enterprise policy on android devices, in: NDSS 2015, 2015.

Jung C, Feth D, Seise C. Context-aware policy enforcement for
android, in: 2013 IEEE 7th international conference on
software security and reliability (SERE), 2013, pp. 40–9.
doi:10.1109/SERE.2013.15.

Miller C, Oberheide J. Dissecting the android bouncer. <http://
jon.oberheide.org/blog/2012/06/21/dissecting-the-android
-bouncer/>; 2012 [accessed 07.16].

Miners Z. Report: Malware-infected android apps spike in the
Google play store. <http://www.pcworld.com/article/2099421/
report-malwareinfected-android-apps-spike-in-the-google
-play-store.html>; 2014 [accessed 07.16].

Nan Z, Kan Y, Muhammad N, Xiaoyong Z, XiaoFeng W. Leave me
alone: app-level protection against runtime information
gathering on android, in: IEEE Symposium on Security and
Privacy, 2015.

Nauman M, Khan S, Zhang X. Apex: extending android
permission model and enforcement with user-defined
runtime constraints, in: Proceedings of the 5th ACM
symposium on information, computer and communications
security, ASIACCS ’10, ACM, New York, NY, USA, 2010.

Neisse R., Doerr J., Model-based specification and refinement of
usage control policies, 11th international conference on
privacy, security and trust (PST), 2013.

Neisse R, Steri G, Fovino IN, Baldini G. Seckit: a model-based
security toolkit for the internet of things. Comput Secur
2015;<http://dx.doi.org/10.1016/j.cose.2015.06.002>, <http://
www.sciencedirect.com/science/article/pii/
S0167404815000887>.

Ongtang M, McLaughlin S, Enck W, McDaniel P. Semantically
rich application-centric security in android, in: Computer
Security Applications Conference, 2009. ACSAC ’09. Annual,
2009.

Ongtang M, Butler K, McDaniel P. Porscha: policy oriented secure
content handling in android, in: Proceedings of the 26th
annual computer security applications conference, ACSAC
’10, ACM, New York, NY, USA, 2010, pp. 221–30. http://
doi.acm.org/10.1145/1920261.1920295.

Pan B. ModifyApkWithDexTool – dex2jar – modify apk with dex-
tools – tools to work with android.dex and java.class files –
Google project hosting. <http://code.google.com/p/dex2jar/
wiki/ModifyApkWithDexTool>; 2012 [accessed 07.16].

Papamartzivanos D, Damopoulos D, Kambourakis G. A cloud-
based architecture to crowdsource mobile app privacy leaks,
in: Proceedings of the 18th Panhellenic conference on
informatics, PCI ’14, ACM, New York, NY, USA, 2014, pp. 59:1–6.
http://doi.acm.org/10.1145/2645791.2645799.

Rasthofer S, Arzt S, Bodden E. A machine-learning approach for
classifying and categorizing android sources and sinks,
Proceedings of the network and distributed system security
symposium (NDSS) 2014.

Rasthofer S, Arzt S, Lovat E, Bodden E. Droidforce: enforcing
complex, data-centric, system-wide policies in android, in:
2014 ninth international conference on availability, reliability
and security (ARES), 2014, pp. 40–9. doi:10.1109/ARES.2014.13.

Schreckling D, Posegga J, Hausknecht D. Constroid: data-centric
access control for android, in: Proceedings of the 27th annual
ACM symposium on applied computing, SAC ’12, ACM, New
York, NY, USA, 2012, pp. 1478–85. http://doi.acm.org/10.1145/
2245276.2232012.

Schreckling D, Kstler J, Schaff M. Kynoid: real-time enforcement
of fine-grained, user-defined, and data-centric security
policies for android. Inf Secur Tech Rep 2013;17(3):71–80.

Schreckling D, Huber S, Hhne F, Posegga J. Uranos: user-guided
rewriting for plugin-enabled android application security. In:
Cavallaro L, Gollmann D, editors. Information Security Theory
and Practice. Security of Mobile and Cyber-Physical Systems,

vol. 7886. Lecture Notes in Computer Science. Springer Berlin
Heidelberg; 2013. p. 50–65 <http://dx.doi.org/10.1007/978-3
-642-38530-8_4>.

Shabtai A, Fledel Y, Elovici Y. Securing android-powered mobile
devices using SELinux. Security Privacy, IEEE 2010;8(3):36–44.
doi:10.1109/MSP.2009.144.

Shabtai A, Fledel Y, Kanonov U, Elovici Y, Dolev S, Glezer C.
Google android: a comprehensive security assessment. IEEE
Secur Privacy, 2010;8(2):35–44.

Shebaro B, Oluwatimi O, Midi D, Bertino E. Identidroid: android
can finally wear its anonymous suit. Trans Data Priv
2014;7(1):27–50. <http://dl.acm.org/citation.cfm?id=2612163
.2612165>.

Stirparo P, Kounelis I. The mobileak project: forensics
methodology for mobile application privacy assessment, 2012
international conference for internet technology and secured
transactions, 2012, pp. 297–303.

Sun L, Huang S, Wang Y, Huo M. Application policy security
mechanisms of android system, in: 2012 IEEE 14th
international conference on high performance computing
and communication 2012 IEEE 9th international conference
on embedded software and systems (HPCC-ICESS), 2012, pp.
1722–5. doi:10.1109/HPCC.2012.258.

Tumbleson C, Winiewski R. A tool for reverse engineering
android APK files. <http://ibotpeaches.github.io/Apktool/>;
2010 [accessed 07.16].

Vallee-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V.
Soot – a Java bytecode optimization framework, 1999.

Wu D-J, Mao C-H, Wei T-E, Lee H-M, Wu K-P. Droidmat: android
malware detection through manifest and api calls tracing, in:
Proceedings of the 2012 seventh Asia joint conference on
information security, ASIAJCIS ’12, IEEE Computer Society,
Washington, DC, USA, 2012, pp. 62–9.

Xing L, Pan X, Wang R, Yuan K, Wang X. Upgrading your android,
elevating my malware: privilege escalation through mobile os
updating, in: Proceedings of the 2014 IEEE symposium on
security and privacy, SP ’14, IEEE Computer Society,
Washington, DC, USA, 2014, pp. 393–408. http://dx.doi.org/
10.1109/SP.2014.32.

Xu R, Saïdi H, Anderson R. Aurasium: practical policy
enforcement for android applications, in: The 21st USENIX
security symposium (USENIX Security 12), USENIX, Bellevue,
WA, 2012, pp. 539–52. <https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/xu_rubin>;
[accessed 07.16].

Zefferer T, Teufl P. Policy-based security assessment of mobile
end-user devices an alternative to mobile device
management solutions for android smartphones, in: 2013
international conference on security and cryptography
(SECRYPT), 2013, pp. 1–8.

Zhauniarovich Y, Russello G, Conti M, Crispo B, Fernandes E.
Moses: supporting and enforcing security profiles on
smartphones. IEEE Trans Dependable Secure Comput
2014;11(3):211–23. doi:10.1109/TDSC.2014.2300482.

Zhou X, Demetriou S, He D, Naveed M, Pan X, Wang X, et al.,
Identity, location, disease and more: inferring your secrets
from android public resources, in: Proceedings of the 2013
ACM SIGSAC conference on computer & communications
security, ACM, 2013, pp. 1017–28.

Zhou Y, Jiang X. Detecting passive content leaks and pollution in
android applications, in: 20th Annual Network and
Distributed System Security Symposium, NDSS 2013, San
Diego, California, USA, February 24–27, 2013, 2013. <http://
internetsociety.org/doc/detecting-passive-content-leaks-and
-pollution-and-roid-applications>; [accessed 07.16].

Zhou Y, Zhang X, Jiang X, Freeh VW. Taming information-
stealing smartphone applications (on android), in:
Proceedings of the 4th international conference on trust and

276 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0180
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0180
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0185
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0185
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0185
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0185
http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr9050
http://www.pcworld.com/article/2099421/report-malwareinfected-android-apps-spike-in-the-google-play-store.html
http://www.pcworld.com/article/2099421/report-malwareinfected-android-apps-spike-in-the-google-play-store.html
http://www.pcworld.com/article/2099421/report-malwareinfected-android-apps-spike-in-the-google-play-store.html
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0200
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0200
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0200
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0200
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0205
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0205
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0205
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0205
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0205
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0210
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0210
http://dx.doi.org/10.1016/j.cose.2015.06.002
http://www.sciencedirect.com/science/article/pii/S0167404815000887
http://www.sciencedirect.com/science/article/pii/S0167404815000887
http://www.sciencedirect.com/science/article/pii/S0167404815000887
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0215
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0215
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0215
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0215
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0220
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0220
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0220
http://doi.acm.org/10.1145/1920261.1920295
http://doi.acm.org/10.1145/1920261.1920295
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr9035
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr9035
http://code.google.com/p/dex2jar/wiki/ModifyApkWithDexTool
http://code.google.com/p/dex2jar/wiki/ModifyApkWithDexTool
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0230
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0230
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0230
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0230
http://doi.acm.org/10.1145/2645791.2645799
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0235
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0235
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0235
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0235
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0240
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0240
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0240
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0240
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0250
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0250
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0250
http://doi.acm.org/10.1145/2245276.2232012
http://doi.acm.org/10.1145/2245276.2232012
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0255
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0255
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0255
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0260
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0260
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0260
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0260
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0260
http://dx.doi.org/10.1007/978-3-642-38530-8_4
http://dx.doi.org/10.1007/978-3-642-38530-8_4
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0265
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0265
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0265
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0270
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0270
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0270
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0275
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0275
http://dl.acm.org/citation.cfm?id=2612163.2612165
http://dl.acm.org/citation.cfm?id=2612163.2612165
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0280
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0280
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0280
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0280
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0285
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0285
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0285
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0285
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0285
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0285
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr9020
http://ibotpeaches.github.io/Apktool/
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0295
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0295
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0300
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0300
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0300
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0300
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0300
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0305
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0305
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0305
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0305
http://dx.doi.org/10.1109/SP.2014.32
http://dx.doi.org/10.1109/SP.2014.32
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0310
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0310
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0310
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/xu_rubin
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/xu_rubin
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0315
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0315
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0315
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0315
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0315
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0320
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0320
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0320
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0320
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0325
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0325
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0325
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0325
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0325
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0330
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0330
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0330
http://internetsociety.org/doc/detecting-passive-content-leaks-and-pollution-and-roid-applications
http://internetsociety.org/doc/detecting-passive-content-leaks-and-pollution-and-roid-applications
http://internetsociety.org/doc/detecting-passive-content-leaks-and-pollution-and-roid-applications
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0335
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0335
http://refhub.elsevier.com/S0167-4048(16)30084-0/sr0335

trustworthy computing, TRUST’11, Springer-Verlag, Berlin,
Heidelberg, 2011, pp. 93–107. <http://dl.acm.org/citation
.cfm?id=2022245.202225>.

Ricardo Neisse received the PhD degree in Computer Science from
the University of Twente, Enschede, The Netherlands, in 2012. He
is currently a Scientific/Technical Project Officer at the Joint Re-
search Centre (JRC) of the European Commission in Ispra, Italy. His
research interests include security engineering for the Internet of
Things, mobile, and enterprise systems.

Gary Steri is a postdoctoral researcher at the Joint Research Center
of the European Commission, in Italy. He received his master’s
degree in Information Technologies in 2006 and his PhD in Com-
puter Science in 2011. His research activity first focused on security
and authentication in wireless networks and sensor networks, in
particular on wearable inertial measurement units. Currently he
is working on security aspects of Internet of Things, Device-to-
Device communication and intelligent transport systems.

Dimitris Geneiatakis holds a PhD in the field of Information and
Communication Systems Security from the Department of

Information and Communications Systems Engineering of the Uni-
versity of Aegean, Greece. His current research interests are in the
areas of security mechanisms in Internet telephony, smart cards,
intrusion detection systems, and network and software security.
Currently, he is postdoctoral researcher at Joint Research Centre
of European Commission. Previously, was within Columbia Uni-
versity as a postdoctoral researcher. He is an author of more than
thirty refereed papers in international journals and conference
proceedings.

Igor Nai Fovino holds a PhD in computer security. His research fields
belong to the area of ICT Security of industrial systems and Smart
Grids, Intrusion Detection Techniques, Cryptography and Secure
Network Protocols. He is an author of more than sixty scientific
papers published on international journals, books and confer-
ence proceedings. He is member of the IFIP Working group 11.10
for the Protection of Critical Infrastructures and serves as Inter-
national Expert within the ERNCIP European Expert Group on the
security of Energy Smart Grids. Currently, he is within the Joint Re-
search Centre of the European Commission as a scientific project
manager.

277c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 2 5 7 – 2 7 7

http://dl.acm.org/citation.cfm?id=2022245.202225
http://dl.acm.org/citation.cfm?id=2022245.202225

	 A privacy enforcing framework for Android applications
	 Introduction
	 Android security model
	 Threat analysis
	 Android's permission model threats
	 Threats to users' privacy

	 Specification, refinement, and enforcement of security policies
	 Policy specification
	 Interaction refinement
	 Policy refinement
	 Policy enforcement using application instrumentation

	 Case study and implementation
	 Evaluation
	 Increase of app execution delay due to PDP interaction
	 Increase of battery consumption due to PDP interaction
	 Increase of app size due to instrumentation

	 Related work
	 Conclusions and future work
	 References

