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ABSTRACT 

 

We present a biologically motivated manifold learning 

framework for image set classification inspired by 

Independent Component Analysis for Grassmann manifolds.  

A Grassmann manifold is a collection of linear subspaces, 

such that each subspace is mapped on a single point on the 

manifold.  We propose constructing Grassmann subspaces 

using Independent Component Analysis for robustness and 

improved class separation.  The independent components 

capture spatially local information similar to Gabor-like 

filters within each subspace resulting in better classification 

accuracy. We further utilize linear discriminant analysis or 

sparse representation classification on the Grassmann 

manifold to achieve robust classification performance. We 

demonstrate the efficacy of our approach for image set 

classification on face and object recognition datasets. 

 

Index Terms— Image Set Classification, Independent 

Component Analysis, Grassmann Manifold, Face 

Recognition, Object Recognition 

 

1. INTRODUCTION 

 

Image set classification has attracted a lot of attention in the 

past decade [1-10] and finds applications in biometric 

authentication, surveillance and security, human computer 

interaction, etc.  In image set classification, each set consists 

of a number of images that belong to the same class and can 

capture natural variations in the object’s appearance, e.g. 

due to pose changes and varying illumination conditions.  

Compared to typical classification based on a single image, 

image set classification provides a richer representation of 

the object of interest and is well-suited for analysis of video 

and multi-camera data.  The challenge is how to represent 

image sets due to the large variations displayed by images 

within the same class.  Methods for image set representation 

include modeling with distributions [1], subspace learning 

[2, 3, 10], and dictionary learning [4].   

Subspace learning methodologies, including manifold 

learning, suggest that high dimensional visual data can be 

efficiently represented using low dimensional subspaces 

[11]. These representations offer both efficiency due to the 

reduced dimensionality and improved classification 

accuracy due to better organization of the data in the low 

dimensional subspace.  

Learning on the Grassmann manifold has received 

attention because it is efficient, discriminative and 

furthermore it can accommodate image set classification 

[7,12,13,14]. Grassmann geometry represents linear 

subspaces as points on the Grassmann manifold.  Principal 

Component Analysis (PCA) is typically used to obtain sets 

of basis functions that represent the subspaces for an image 

set. However, principal components are based on global 

information and are limited in terms of capturing the local 

structure of the data within each subspace.  

In this paper, we introduce a biologically inspired 

framework for perceptual subspace learning based on 

Independent Component Analysis (ICA) for Grassmann 

manifold construction to promote class discrimination and 

obtain natural means for image set comparison. The 

resulting GRAssmann ICA Learning (GRAIL) approach is 

more robust and discriminative compared to standard 

Grassmann learning using PCA. The independent 

components [15,16] effectively capture local image 

characteristics in contrast to the principal components that 

only capture global information. Thus, the independent 

components provide natural discrimination capability that 

plays a key role in improving classification. Following this 

introduction, Section 2 discusses related work, Section 3 

overviews the GRAIL framework, Section 4 presents results 

that demonstrate the effectiveness of GRAIL for face and 

object recognition, and Section 5 concludes the paper. 

 

2. RELATED WORK 

 

Image sets may be modeled as distributions [1], or 

alternatively, they may be modeled as subspaces [2, 3, 10], 

so that the distance between subspaces indicates the distance 

between image sets. Grassmann manifolds efficiently model 

image sets using subspace learning that promotes excellent 

class discrimination [7,12,13,14].      

 

2.1. Grassmann Manifolds 

 

The collection of 𝑚 dimensional linear subspaces of ℝ𝐷 , 
denoted as 𝔾(𝐷, 𝑚), constitutes the Grassmann manifold. 

Each subspace is represented by a set of principal 



components obtained from images belonging to the same 

class. Fig. 1 shows two subspaces representing classes in 

image space and their mapping on the Grassmann manifold.  

 

 

Fig 1. A conceptual illustration of the Grassmann manifold. Two 

image sets are described by linear subspaces in ℝ𝑫. On the right, 

the subspaces represented by the span of their principal 

components are mapped as points on the Grassmann manifold.  

Computing distances on the Grassmann manifold is based 

on geodesics instead of Euclidian distance.  Geodesics can 

be computed using principal angles Θ = [𝜃1, 𝜃2, … , 𝜃𝑚], 

where 𝜃𝑖=1:𝑚 ∈ [0, 𝜋
2⁄ ].  For example, the projection metric 

is a measure of distance between two points on the manifold 

and is defined as follows. 

𝑑Proj(𝑌1, 𝑌2) = (𝑚 − ∑ cos2 𝜃𝑖

𝑚

𝑖=1

)

1
2⁄

 (1) 

Although geodesics are easy to compute, they are 

sensitive to noise and image variability.  To overcome the 

limitations of geodesics, kernelization is used to map in a 

Hilbert space where Euclidian distances are computed.  

There are various kernels to induce isometric embedding 

that map the points on the Grassmann manifold to Hilbert 

spaces. The projection kernel associated with this 

embedding is given by 

ΦProj(𝑌1, 𝑌2) = 𝑡𝑟[(𝑌1𝑌1
𝑇)(𝑌2𝑌2

𝑇)]         (2) 

The advantage of kernelization is that Euclidian distances 

computed in kernelized Hilbert space can be used for any 

type of classification.   

 

2.2. Independent Component Analysis 

 

Independent Component Analysis (ICA) is a generalization 

of PCA that is sensitive to higher order statistics. We 

consider the signal 𝑥 which represents observations and can 

be written as a linear combination of the mixing matrix 𝐴 

and source signals 𝑠: 

𝑥 = 𝐴𝑠          (3) 

where 𝑠 denotes the unknown source signals, assumed to be 

independent, and 𝐴 is a mixing matrix that is invertible. The 

ICA algorithm tries to find A, or equivalently the separating 

matrix 𝑊, based on the above assumptions and knowledge 

of observations 𝑥 as follows, 

𝑈 = 𝑊𝑥 = 𝑊(𝐴𝑠)            (4) 

 

Fig 2. Visualization of the principal and independent components 

extracted from a data that not Gaussian distributed. 

Fig. 2 shows an example where the ICA correctly 

identifies the components in contrast to PCA when the data 

is not Gaussian distributed. To speed up the process of ICA 

learning, the observations are preprocessed by whitening 

transformation. This essentially removes correlation and 

reduces the dimensionality. The whitening transformation 

matrix is obtained by performing the eigenvalue 

decomposition on the covariance matrix. It has been shown 

that in addition to removing correlation among components, 

the whitening transformation helps the convergence of the 

ICA algorithm and also improves performance in 

applications. The redundancy is reduced in the whitened 

data when compared with the raw data. After performing 

PCA, only the top eigenvectors were retained such that they 

account for 99% of the variance of that class.  

To compute the independent components, we use the 

InfoMax algorithm proposed by Bell & Sejnowski [17].  

The algorithm is based on the principle of optimal 

information transfer in neurons with sigmoidal transfer 

function. 

Following the architecture proposed in [16], the data 

matrix 𝑋 consists of faces formed by a linear combination of 

independent basis images 𝑆 and a mixing matrix 𝐴. Let 𝑉 be 

the matrix of dimension (D × m) be the top 𝑚 eigenvectors. 

The ICA basis images are obtained by multiplying the 

weights with 𝑉T i.e., 𝑊 𝑉T. 

 

2.3. Sparse Representation Classification 
 

Sparse representation classification has been widely used 

since it was initially introduced for face recognition [18].  

We utilize sparse representation classification in kernelized 

space using kernel embedding. Following [14], we construct 

the projection kernel matrix from the training 

subspaces: Φ𝑡𝑟𝑎𝑖𝑛 ∈ ℝ𝑁train×𝑁train , where 𝑁train is the 

number of training subspaces, each one corresponding to a 

different class.  This constitutes our dictionary.  In a similar 

way we construct the projection kernel matrix from the test 

subspaces Φtest ∈ ℝ𝑁train×𝑁test , where 𝑁test is the number of 

training subspaces. The classification approach selects the 

class that minimizes the reconstruction error. 



𝑎∗ = arg min
𝑎

‖Φtrain𝑎 − Φtest(𝑖)‖2
2 + 𝜆‖𝑎‖1 

  𝑠. 𝑡. Φ𝑡𝑒𝑠𝑡 = Φtrain𝑎, 𝑖 = (1, … , 𝑁test) 

   (5) 

where 𝑎 are the sparse coefficients.  Under this setting, 

image set comparisons are possible, as each atom in our 

dictionary is a subspace corresponding to one class. 

 

3. PERCEPTUAL GRASSMANN MANIFOLD 

 

3.1. Biological Motivation Underlying the Learning 

Framework 

 

The human visual system is confronted with high 

dimensional visual information, but has the ability to extract 

only perceptually pertinent features [19]. These features 

intrinsically lie on a low dimensional space. The biological 

inspiration underlying our learning framework is twofold: 

(i) the basis functions extracted by ICA resemble Gabor-like 

filters, which closely model the responses of V1 simple cells 

[17]. These filters are spatially localized and exhibit 

separate high-order dependencies. Moreover, the high order 

statistics contain image phase information. (ii) The manifold 

hypothesis states that high dimensional data resides in a low 

dimensional manifold embedded in a Euclidean space. Once 

the visual system extracts the features, they are embedded 

on a perceptual manifold that characterizes the intrinsic 

dimensionality of the data [20].  We model this process by 

utilizing Independent Component Analysis. 

 

3.2. Grassmann Manifold Learning with Independent 

Component Analysis 

 

The Grassmann structure (see Fig. 1) offers an efficient 

framework for modeling and comparing image sets. An 

important step in generating the Grassmann manifold is the 

subspace construction. We propose GRAssmann 

Independent component analysis Learning (GRAIL), a 

robust and biologically inspired approach for constructing 

the Grassmann manifold, as described below.  

The first step is image preprocessing, which involves 

cropping, scaling, centering and whitening the data.  Then 

the images available in each class are used to form a 

subspace using Independent Component Analysis and each 

subspace is mapped to a point on the Grassmann manifold. 

In order to make sure that the components are orthonormal 

we performed Gram-Schmidt orthonormalization.  

The process of kernelization using the projection kernel 

is used to map to a Hilbert space where classification is 

performed with Linear Discriminant Analysis (LDA) or 

Sparse Representations (SR) based on minimum 

reconstruction error.  It is notable that this framework allows 

image set comparisons, such as when multiple images of an 

individual are available for use in face recognition.  

In this paper, we utilize the projection kernel (see Eq. 

(2)) as it was shown to have the best performance for 

classification problems. In our experiments we utilize a 

discriminative analysis framework on the Grassmann 

manifold as proposed in [13]. Additionally, following the 

approach in [14], we incorporate sparse representation 

classification in kernelized Hilbert space. 

 

4. EXPERIMENTAL RESULTS 

 

We evaluate our proposed approach on multiple image sets 

datasets such as Extended Yale [21], LFW [22], and ETH-

80 [23]. In our experiments each class is modeled by a linear 

subspace extracted from a collection of images in that class. 

 

 
(a) 

 
(b) 

 
(c) 

Fig 3. Examples of image sets in (a) Extended Yale, (b) LFW, and  

(c) ETH-80 datasets. 

 

4.1. Datasets and Experimental Protocol 

 

The Extended Yale Face Database B [21] consists of 38 

subjects with 9 different poses and 45 different lighting 

conditions that vary significantly. Fig. 3(a) shows a subset 

of typical variations in an image set from this dataset.   

The Labeled Faces in the Wild (LFW) [22] is 

challenging face dataset are a face database with 5749 

individuals and 13,233 total face images collected from the 

web. The subjects vary by many parameters including pose, 

lighting, expression, etc. Fig. 3(b) shows a subset of typical 

variations in an image set from this dataset. 

For the LFW dataset we only used subjects that had at 

least 20 images to make a valid image set comparison. 

Hence, we selected 62 subjects with a total of 3,024 images 

in total from the LFW dataset that met this criterion and 

performed image set comparison. 

For the Extended Yale and LFW dataset, we performed 

two-fold cross validation. This ensures that there are enough 

samples per subject to construct the training and testing 

subspaces. 

The ETH-80 [23] benchmark dataset for object 

recognition task has images of 8 object categories with each 

category including 10 different object instances. Each object 



instance has 41 images captured under different views, 

which form an image set. Fig. 3(c) shows a subset of typical 

variations in an image set from this dataset. For comparing 

our results with literature we followed the protocol given in 

[6], wherein we perform 10 trials in which the training 

image sets have five object instances from each category 

and remaining five object instances for testing. In each trial 

the object instances are randomly chosen. 

All the images were resized into 32×32 intensity 

images. We extracted linear subspaces using ICA for each 

image set. In Fig. 4, we present sample ICA components 

extracted from the ETH-80 “cup” and “horse” image set. 

Table 1: Image set classification results on Extended Yale 

Method Accuracy 
k-NN [14] 94.16% 
LDA [14] 92.98% 
LPP [14] 99.14% 
GDA [14] 100% 
GRAIL + LDA (ours) 100% 
GRAIL + SR (ours) 100% 

Table 2: Image set classification results on LFW dataset 

Features Method Accuracy 

Linear  

Subspaces  

LTP 

features 

LDA [14] 43.20% 
SR [14] 69.53% 
GDA [14] 58.87% 
GSR [14] 96.77% 

Linear  

Subspaces 

Raw Image 

MSM [24] 71.00% 

GRAIL + LDA (ours) 91.94% 
GRAIL + SR (ours) 89.52% 

Table 3: Image set classification results on ETH-80 dataset 

Method Accuracy 
MSM [24] 87.8% 
DCC [6]  90.5% 
MDA [6]  89.0% 
GDA [6] 92.8% 
COV + LDA [6]  94.5% 
CDL [8] 92.5% 
GRAIL + LDA (ours)  94.0% 
GRAIL + SR (ours) 90.8% 

 

4.2. Results 

We compare the results our proposed approach with 

published results of various image set classification 

methods, such as Mutual Subspace Method (MSM), 

Discriminant Canonical Correlation analysis (DCC), 

Manifold Discriminant Analysis (MDA), Grassmann 

Discriminant Analysis (GDA), Covariance Discriminative 

Learning (CDL) and Grassmannian Sparse Representation 

(GSR). Tables 1 and 2 show face recognition rates on the 

Extended Yale and LFW face datasets respectively, and 

Table 3 shows the recognition rates on the ETH-80 dataset, 

all based on image set comparisons. For the Extended Yale 

dataset the proposed GRAIL approach outperforms the 

standard linear subspace methods and attains 100% 

classification, as does GDA. It is interesting to note that 

Grassmann approaches (with PCA/SVD or ICA) perform 

extremely well on datasets without using any handcrafted 

features, such as Histogram of Oriented Gradients (HOG) or 

Local Binary Patterns (LBP), while the results in [14] used 

Local Ternary Pattern (LTP) features. 

 
(a) 

 
(b) 

Fig 4. Sample visualizations of one instance of (a) “cup” and (b) 

“horse” image set in the ETH-80 dataset. 

In the challenging LFW dataset the proposed approach 

performs well without any handcrafted features but does not 

outperform the results in [14] where LTP features are used. 

When only the normalized face images were used, the GDA 

approach (based on PCA) gave poor accuracy (61.29%) in 

contrast to GRAIL which obtained 91.94%. The subspace 

construction using PCA is limited to second order statistics 

and performs well when images in the image set are not 

appreciably different. However, the images in LFW vary in 

pose, background, color, saturation, and image quality. 

Hence, the GRAIL approach, which extracts independent 

components based on higher order statistics, exploits the 

nonlinearity of data and outperforms the PCA based 

Grassmann approach.  

Finally, in the object recognition task GRAIL 

outperforms GDA. The independent components capture 

spatially local features which are essential for object 

recognition tasks. For image set classification, in both ETH-

80 and LFW, GRAIL with LDA performs better than 

GRAIL with SR. 

 

5. CONCLUSION 

 

In this paper we propose Grassmann Independent 

component analysis Learning (GRAIL), a biologically 

inspired framework for robust and discriminative image set 

classification. The motivation behind using ICA over PCA 

for subspace learning was that ICA captures local image 

features and offers better discrimination among classes. We 

further incorporated sparse coding within the GRAIL 

framework by formulating the problem in kernelized Hilbert 

space using Grassmann kernels. This natural extension 

further adds robustness to the algorithm.  Testing on 

standard datasets for face and object recognition 

demonstrates that in general GRAIL classifies image sets 

more effectively than PCA-based Grassmann methods. 
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