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Abstract

We discuss the model of valence grammars, a simple extension of context-free grammars. We
show closure properties of context-free valence languages over arbitrary monoids. Chomsky and
Greibach normal form theorems and an iteration lemma for context-free valence grammars over
the groups Zk are proved. The generative power of di4erent control monoids is investigated.
In particular, we show that context-free valence grammars over 6nite monoids or commutative
monoids have the same power as valence grammars over 6nite groups or commutative groups,
respectively. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Valences were introduced in 1980 by P=aun [19] as a mechanism of regulated rewrit-
ing. The original idea was to assign to a context-free core rule an integer, the so-called
valence, and to compute for a derivation a value by adding all the valences of the
applied rules. A derivation is valid i4 this sum evaluates to 0, re@ecting the balance of
positive and negative valences in chemical molecules or in directed graphs. This mech-
anism can be easily extended to monoids di4erent from (Z;+; 0). In some sense, the
valence regulation is similar to the framework of control languages, see [2]. By using
a di4erent acceptance criterion, we exhibit a characterization of context-free grammars
controlled by regular languages in a related paper [9]. Another acceptance criterion for
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context-free valence grammars was introduced and studied as weighted grammars by
Salomaa [24].
Context-free valence languages have been in the focus of several papers; we refer the

reader to [10, 16, 17, 20, 21, 28, 29]. We think for several reasons that valence grammars
are worth a deeper investigation. First of all, valences are a very natural and simple
mechanism. The context-free derivation process is not changed at all; the validity of a
derivation is only checked at the end. Thus, many attractive properties of context-free
grammars can be immediately transferred. Moreover, it is possible to describe several
language families by context-free valence grammars over di4erent monoids, and one
can hope to simplify investigations concerning these families by studying the corre-
sponding context-free valence grammars. For example, unordered vector languages can
be characterized via context-free valence languages over the monoid of positive ratio-
nal numbers with multiplication, and Greibach’s family BLIND of languages accepted
by blind multi-counter automata can be generated by regular valence grammars over
(Q+; ·; 1). Finally, valences are very @exible and can be incorporated into parallel sys-
tems, grammars with other means of regulation and machine models (in fact, “6nite
valence automata” were discussed by several authors even before the introduction of
valence grammars, e.g., in [11, 15, 22]).
This paper discusses valences in sequential context-free grammars. Valences in par-

allel systems and in combination with other modes of regulation are considered in
separate papers [6, 7]. The necessary notations are given in Section 2.
Valence automata and transducers are discussed in Section 3. In Section 4, we discuss

context-free valence languages over various monoids. It is shown that context-free and
regular languages over arbitrary monoids are semi-AFL’s. The known results regarding
closure properties for speci6c monoids are extended and generalized, while the proofs
are simpli6ed. The concept of a derivation tree is generalized. As regards the generative
power of context-free valence grammars, in Section 4.3, we show that context-free va-
lence grammars over 6nite monoids or commutative monoids have the same power as
context-free valence grammars over 6nite groups or commutative groups, respectively.
Then, we concentrate on context-free valence grammars over the monoids (Zk ;+; 0̃)
and (Q+; ·; 1). In Section 5, we show how to construct (Chomsky and Greibach) nor-
mal forms for these context-free valence grammars, a result which also applies to the
equivalent class of unordered vector grammars. 2 An iteration lemma for the same
control monoids is given in Section 6.

Remark. Some results of this paper appeared in an extended abstract which was pub-
lished within the proceedings of the 22nd MFCS conference 1997, see [5]. There,
results on parallel grammars with valences were also shown. For a long version of
these results, the reader is referred to [6].

2 Inspired by the technical report version of this paper, Hoogeboom [13] gave an alternative derivation of
these normal form results.
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2. Preliminaries

Throughout the paper, we assume the reader to be familiar with the theory of context-
free languages, see, e.g., [14, 25]. Moreover, some familiarity with basic algebraic
notions is helpful.
Firstly, we recall some algebraic notions. A semigroup is a set together with a binary,

associative operation on it. A semigroup with a neutral element is called a monoid.
Formally, a monoid M can be speci6ed as M=(M; ◦; e), where M is the underlying
set of the monoid, ◦ is the binary operation of the monoid, and e is its neutral element.
A monoid in which every element a possesses an inverse a−1 is called a group. A
semigroup (homo)morphism is a mapping of one semigroup into another one which
respects the two involved semigroup operations. A bijective morphism is called an
isomorphism. If A is the subset of a semigroup S, 〈A〉 denotes the subsemigroup
generated by A, i.e., the smallest subsemigroup of S containing A. Similar notions can
be introduced for monoids and groups (instead of semigroups).
N is the set of natural numbers including 0. N+ =N\{0} is the set of positive

integers. Z is the set of integers. Q+ denotes the set of positive rational numbers.
The monoids (Zk ;+; 0̃) and (Q+; ·; 1) are sometimes simply denoted by Zk and Q+.

The canonical basis vectors of Zk are written ẽi, 16i6k, i.e., all components of ẽi are
zero except for the ith component which equals one. For a vector r̃=(r1; r2; : : : ; rk)∈Zk ,
we de6ne the max-norm by ‖̃r‖max = max{|ri|: 16i6k} and the 1-norm by ‖̃r‖1 =∑k

i=1 |ri|. We de6ne the modulo and integer division operations for vectors, mod; div :
Zk ×Z→Zk , as the component-wise application of the integer operations mod; div : Z×
Z→Z, and denote them by r̃modm and r̃ divm, for r̃ ∈Zk ; m∈Z.
If R is some binary relation, R+ denotes the transitive closure of R and R∗ the

transitive re@exive closure of R. The inclusion relation is denoted by ⊆, proper inclusion
by ⊂.
Now, we recall some formal language notions. Let V = {a1; : : : ; an}, n¿1, be an

alphabet. The set of all words over V is denoted by V ∗, the empty word by �, and
V+ =V ∗\{�}. Together with the concatenation operation, V+ forms a semigroup, and
V ∗ is a monoid with � as its neutral element. For w∈V ∗, the length of w is denoted by
|w|, the number of appearances of the letter a∈V in w is denoted by |w|a. The Parikh
mapping associated with V is a map � : V ∗ →Nn such that �(w)= (|w|a1 ; : : : ; |w|an).
For a language L⊆V ∗, we de6ne the Parikh set of L by �(L)= {�(w): w∈L}. Two
languages L1; L2 ⊆V ∗ are called letter equivalent i4 their Parikh sets are equal. For a
word w, let Perm(w) denote the set of all words obtained by permuting the symbols
of w. For a language L, we de6ne Perm(L)=

⋃
w∈L Perm(w).

A context-free grammar is a quadruple G=(N; T; P; S), consisting of a nonterminal
alphabet N , a terminal alphabet T , N ∩T = ∅, a set of rules P⊆N × (N ∪T )∗, and a
start symbol S ∈N . A string �∈ (N ∪T )∗ directly derives the string �∈ (N ∪T )∗, de-
noted as �⇒ �, i4 there is a rule A→ � in P such that �= �1A�2 and �= �1��2.
The language generated by G is L(G)= {w∈T ∗: S ∗⇒w}, where ∗⇒ denotes the
re@exive and transitive closure of ⇒. For a derivation � in G which applies the
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rules p1; p2; : : : ; pn (in this order), the control word of � is de6ned as c(�)=
p1p2 : : : pn.
Finally, we de6ne the central concept of this paper. A (context-free) valence gram-

mar over the monoid M=(M; ◦; e) is a construct G=(N; T; P; S;M), where N , T ,
S are de6ned as in a context-free grammar, i.e., N is the alphabet of nontermi-
nals, T (with T ∩N = ∅) is the alphabet of terminals, S ∈N is the start symbol, and
P⊆N × (N ∪T )∗ ×M is a 6nite set of valence rules. For a valence rule p=(A→ �; m),
the rule A→ � is called the core rule of p, while m is called the valence of p. The
function val : P→M , mapping a valence rule to its valence, is called the valence
mapping (which can be extended to a monoid morphism from P∗ to M). To avoid
explicit reference to the monoid, we write Lab(G) for the set of all valences appear-
ing in P, instead of val(P). The yield relation ⇒ over (N ∪T )∗ ×M is de6ned as:
(w;m)⇒ (w′; m′) i4 there is a rule (A→ �; n) such that w=w1Aw2, w′ =w1�w2 and
m′ =m ◦ n. The language generated by G is L(G)= {w∈T ∗: (S; e) ∗⇒ (w; e)}.

A context-free valence grammar is called regular or, more speci6cally, right-linear
if all its core rules are right-linear, i.e., they are all of the form A→wB with A∈N ,
w∈T ∗ and B∈N ∪{�}; a valence grammar is �-free if it has no core rule of the
form A→ �. The language families generated by context-free, context-free �-free and
regular valence grammars over M are denoted by L(Val;CF;M), L(Val;CF− �;M)
and L(Val;REG;M), respectively. For brevity, let Z0 denote the trivial monoid. Then,
L(Val; X;Z0)=L(X ) for X ∈{REG;CF− �;CF}.
In terms of control words, a derivation in the underlying context-free grammar is

valid in a context-free valence grammar i4 its control word is mapped by the valence
morphism to the neutral element. Next, we de6ne some other regulation mechanisms
depending on control words and, hence, related to context-free valence grammars. A
matrix grammar is a quintuple G=(N; T; P; S;M), where G′ =(N; T; P; S) is a context-
free grammar and M ⊂P∗ is a 6nite set of matrices. A terminal derivation � in G′

is valid in G i4 c(�)∈M∗. L(G) consists of all words obtained by valid derivations.
An unordered vector grammar is de6ned like a matrix grammar, with the di4erence
that a terminal derivation � in G′ is valid in G i4 c(�)∈Perm(M∗). The families of
unordered vector languages of type X ∈{REG;CF−�;CF} are denoted by L(UV; X ).

An important tool for proving closure properties is the notion of a 6nite transducer,
which is de6ned next. A (>nite-state) transducer is a sextuple

A = (Z; I; O; z0; $; zf );

consisting of the 6nite set of states Z , the input and output alphabets I and O, the
initial state z0 ∈Z , the 6nite transition relation $⊂ I∗ ×Z ×Z ×O∗, and the 6nal state
zf ∈Z . A is called �-free i4 $⊂ I∗ ×Z ×Z ×O+.
The yield relation |= over I∗ ×Z ×O∗ is de6ned as: (win ; z; wout) |=(w′

in ; z
′; w′

out) i4,
for some x∈ I∗ and u∈O∗, win = xw′

in, w
′
out =woutu and (x; z; z′; u)∈ $.

For w∈ I∗, the transduced image of w under A is de6ned as

'A(w) = {w′ ∈ O∗: (w; z0; �) |=∗ (�; zf ; w′)}:
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For a language L⊆ I∗, the transduced image is 'A(L)=
⋃

w∈L '(w). The operator 'A
on languages is also called a (rational) transduction.
We brie@y mention two well-known facts on 6nite-state transducers:

(1) A language family is a full trio (or trio, respectively) i4 it is closed under rational
transductions (or �-free rational transductions, respectively).

(2) Every rational transduction can be de6ned by a 6nite-state transducer in normal
form, i.e., with transition relation $⊂ (I ∪{�})×Z ×Z × (O∪{�}).

Let us further mention (see [4]) that every �-free rational transduction is representable
as the composition '= '2'1 of a transduction '1, given by a �-free “normal form”
transducer A1, followed by a restricted erasing '2. Recall that a k-restricted erasing
is a rational transduction ' which realizes the morphism gX : (X ∪{$})∗ →X ∗ (where
$ =∈ X ), given by a �→ a for a∈X and $ �→ �, on the domain

dom(') =
(

k⋃
i=0

{$i}X
)+

:

3. Valence automata

In analogy to context-free valence grammars, one can de6ne 6nite valence automata,
(6nite-state) valence transducers, and valence pushdown automata where, for each such
automaton, a valence is assigned to each transition, and a run of the automaton is
valid i4 the valence product evaluates to the neutral element. The family of lan-
guages accepted by nondeterministic 6nite valence automata over M (possibly with
�-moves) is denoted by L(Val;NFA;M). The family of languages accepted by non-
deterministic valence pushdown automata over M (possibly with �-moves) is denoted
by L(Val;NPDA;M). The main purpose of this section is to list relations between va-
lence automata and other kinds of enhanced automata. Moreover, we show that several
interesting operations are valence transductions, mostly over Zk .
Finite valence automata over Q+ have been investigated as one-way >nite automata

with multiplication without equality by Ibarra et al. [15].
Blind k-counter machines studied by Greibach [11] are equivalent to 6nite valence

automata over Zk . An interesting generalization considered in that paper is the notion
of a partially blind k-counter automaton, where no component is allowed to reach a
negative value during a run.
Valence automata over semigroups, with a slightly di4erent acceptance condition

(namely, accepting with a 6nite set or with the homomorphic image of a regular
language instead of accepting with the neutral element), were discussed by Red’ko
and Lisovik [22]. The most remarkable results are:
• a characterization of the context-free languages by 6nite valence automata over F2
and

• a characterization of the recursively enumerable languages by 6nite valence automata
over F2 ×F2,

where F2 denotes the free group generated by two elements.
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We continue this section by mentioning some interesting properties of valence trans-
ductions. The proofs of the propositions are left to the reader, see also [6].

Proposition 3.1. Let X be an alphabet with k letters; and let � : X ∗ →Zk be a Parikh
mapping. The relation Perm := {(v; w):�(v)=�(w)} is a valence transduction over Zk .

Proposition 3.2. The operation “intersection with languages from L(Val;NFA;M)”
is a valence transduction over M for each monoid M.

Proposition 3.3. If ' is a valence transduction over M; then '−1 is a valence trans-
duction over M; as well.

Proposition 3.4. Let X be an alphabet with k letters; let � : X ∗ →Nk be a Parikh
mapping; and let S ⊆Nk be a semilinear set. Then;

�−1(S) := {v ∈ X ∗: �(v) ∈ S} ∈ L(Val;NFA;Zk):

Theorem 3.5. Let M;M′ be monoids. Then; L∈L(Val;REG;M×M′) iA there are
a language L′ ∈L(Val;REG;M′) and a valence transduction ' over M such that
L= '(L′).

Proof. Let L∈L(Val;REG;M×M′). Then, L⊆T ∗ is generated by a right-linear
valence grammar G over the product monoid M×M′. We have to construct a right-
linear valence grammar G′ over the monoid M′ and a valence transduction ' over
M such that L= '(L(G′)). Let X ⊂M be the monoid elements occurring in rules
of G plus the neutral element e. Then, let (T ∪{,})×X be the terminal alphabet
of G′, as well as the input alphabet of '. For every rule (A→ �B; (m;m′)) in G
with �∈T ∗, A∈N and B∈N ∪{�}, where N is the nonterminal alphabet of G, we
put a rule (A→-(�; m′)B;m) into G, where -(�; m′)= (,;m′)∈ (T ∪{,})×X , and
-(a1 : : : aj; m′)= (a1; m′)(a2; e) : : : (aj; e)∈ ((T ∪{,})×X )+ with a1; : : : ; aj ∈T . Now,
consider a valence transduction ' with a single state 3 which basically maps (,;m′)
into � and (a; m′) into a (with a∈T ), taking m′ into account by means of a corre-
sponding valence of the transduction. Thus, L= '(L(G′)) as required.
The other direction is quite similar to the classical triple construction for show-

ing closure of the regular languages under transductions and is, hence, left to the
reader.

Remark 3.6. A result similar to the preceding theorem can be proved for valence
NPDAs instead of regular valence grammars.
In the case of context-free valence grammars, M has to be commutative. Moreover,

in the case when X =CF−�, note that ' is non-erasing, since the arti6cial introduction
of the empty-word marker , is not necessary.

3 These special valence transductions could be called valence morphisms.
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Finally, we give some simple relations between valence automata and the “corre-
sponding” valence grammars. Let Lleft(Val;CF;M) be the family of languages gener-
ated by leftmost derivations of context-free valence grammars over M.

Theorem 3.7. (1) For any monoid M; L(Val;REG;M)=L(Val;NFA;M).
(2) For any monoid M; Lleft(Val;CF;M)=L(Val;NPDA;M).

Proof. Nearly literally the same construction as in the classical cases (compare with
[14, Theorems 9:1; 9:2; 5:3; 5:4]) can be applied, additionally integrating the valences.
It has just to be noticed that the construction of a regular grammar from a given
DFA [14, Theorem 9:2] works for NFA with �-moves as well, and that the con-
struction of an NPDA [14, Theorem 5:3] can also be done for arbitrary context-free
grammars.

Corollary 3.8. For any commutative monoid M; the families L(Val;CF;M) and L

(Val;NPDA;M) are equal.

Remark 3.9. Note that the equivalence between pushdown automata and context-free
grammars can only be generalized in the case of commutative monoids, when inspecting
the classical equivalence proof. One basic reason for this is the fact that in the case of
non-commutative monoids, we cannot assume without loss of generality all context-free
derivation steps to be leftmost.

4. Valences over various monoids

4.1. Basic properties

As regards closure properties, valence language classes form semi-AFL’s, i.e., they
are closed under union and rational transductions. This fact can be shown quite gen-
erally, not requiring a separate proof for each monoid, as done in [17, 29]. Analogous
results for 6nite automata with valences can be found in [18].

Theorem 4.1. For each monoid M and each X ∈{REG;CF−�;CF}; the class L(Val;
X;M) is a semi-AFL which is full in the cases X =REG and X =CF. Moreover;
L(Val; X;M) is closed under substitution by L(X )-languages.

Proof (Sketch): The triple constructions known for the basic Chomsky families show-
ing closure under rational transductions given by 6nite-state transducers in normal form
can be adapted for the families of valence languages. Furthermore, the “block coding
technique” used for showing closure under restricted erasing can be adapted for our
purposes, too.
Thus L(Val; X;M) is closed under �-free transductions for X =CF − � and under

arbitrary rational transductions for X ∈{REG;CF}.
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As regards the other properties, namely, closure under union and L(X )-substitutions,
the standard constructions known from the theory of context-free languages can easily
be carried over.

Since context-free unordered vector languages coincide with context-free valence
languages over Q+, the above reasoning also shows that unordered vector languages
languages form a semi-AFL. This proves that the question marks in the “UV-column” in
[3, Table 1] can be replaced by “+”, as indicated in the footnote of that
page.
There is also a certain simple normal form for context-free grammars with arbitrary

valence monoids.

Theorem 4.2. Let M be an arbitrary monoid. Any language L⊆L(Val;CF;M) can
be generated by a context-free valence grammar G=(N; T; P; S;M) over M with
core rules of the forms A→B; A→BC; A→ a; and A→ �; where A; B; C ∈ N and
a∈T .

Proof. Nearly the same construction as in [14, Theorem 4.5] is applied to transfer
rules with right-hand sides of length 2 or greater to rules of the required forms. One
way of assigning labels to these new rules would be to give the valence of the original
rule to the 6rst of the newly created rules and assign the neutral element of M to the
other rules.

Note that the proof of the previous theorem depends on the fact that monoids have
neutral elements. Hence, it does not carry over to general semigroups. A similar note
applies to many proofs of this paper.
Finally, we give two more simple results on the generative power of valences over

arbitrary monoids. We omit the obvious proof of the 6rst assertion.

Theorem 4.3. Let M and M′ be isomorphic monoids. Let X ∈{REG;CF − �;CF}.
Then; we can show that L(Val; X;M)=L(Val; X;M′).

Theorem 4.4. Let M be an arbitrary monoid; and let F(M) be the family of >nitely
generated submonoids of M. For X ∈{REG;CF− �;CF}.

L(Val; X;M) =
⋃

M′∈F(M)
L(Val; X;M′):

Proof. The inclusion ⊇ is trivial. If L∈L(Val; X;M), then L is generated by an
X -grammar G with valences in M. Obviously, only elements of M which can be
represented as product of rule valences of G can appear in derivations of G. In other
words, one could consider the submonoid M′ generated by all the rule valences of G,
so that L∈L(Val; X;M′), with M′ ∈F(M).
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4.2. Derivation trees

The very useful notion of a derivation tree for a context-free grammar can be gener-
alized as follows. Let G=(N; T; P; S;M) be a context-free valence grammar. A directed
tree D=(V; E) is a derivation tree for G if:
(1) Every node has a label, which is a symbol of N ∪T ∪{�}.
(2) Every interior node has a valence, which is an element in M.
(3) The label of the root is S.
(4) If a node is interior and has label A, then A must be in N .
(5) If node v has label A and valence r̃, and if the nodes v1; v2; : : : ; vk are the sons

of node v, in order from left to right, with labels X1; X2; : : : ; Xk , respectively, then
(A→X1X2 : : : Xk ; r̃ ) must be in P.

(6) If node v has label �, then it is the only son of its father and a leaf.
As in [14, Section 4.3], the leaves of the tree can be ordered from left to right; their

labels (in this order) de6ne a word. We also need the concept of a subtree. Let D be
a derivation tree and v be a node in D. The subtree of D consisting of root v, all its
descendants, the edges connecting them, their labels, and their valences, is denoted by
D(v) and referred to as the subtree of D with root v. Let v1 and v2 be two di4erent
nodes in D, where v2 is a descendant of v1. The subtree (with labels and valences)
induced by v1 and all its descendants that are not descendants of v2 is denoted by
D(v1 − v2) and called the subtree of D between v1 and v2. A subtree whose root is
labeled A is called an A-tree.
Next we de6ne admissible orders for the nodes of a derivation tree. For a directed

tree D=(V; E), the transitive closure E+ of E is a partial order. A total order on the
interior nodes of V is called admissible if it is a re6nement of E+ restricted to the
interior nodes of D. An example for an admissible order is the DFS order, obtained
when traversing the nodes of the tree in depth-6rst-search (the sons of a node are
traversed from left to right). This corresponds to the use of leftmost derivations. A
pair (D;≺) consisting of a derivation tree D and an admissible ordering ≺ is called
an ordered derivation tree. If the interior nodes of D, ordered with respect to ≺, are
v1; v2 : : : ; vn, then the yield of (D;≺) is the pair (�; m)∈ (N ∪T )∗ ×M , where � is the
word obtained by reading the labels of the leaves from the left, and m=m1 ◦m2 : : : ◦mn,
where mi is the valence of vi; 16i6n.
The yield of a subtree is de6ned as for a derivation tree. For a derivation tree D in

G, we denote by ND the set of all nonterminals appearing as a label in D. Analogously,
for a derivation �, let N� be the set of nonterminals appearing in some word during
the derivation process.

Theorem 4.5. Let G=(N; T; P; S;M) be a context-free valence grammar over
M=(M; ◦; e). A derivation of a pair (�; m)∈ (N ∪T )∗ ×M is possible iA there is an
ordered derivation tree with yield (�; m).

Proof. We prove, more speci6cally, that a derivation in n steps is possible i4 there
is a corresponding derivation tree with n interior nodes. As M is non-commutative,
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we use a top-down argument, as opposed to the bottom-up strategy in the context-free
case [14, Theorem 4.1].
For n=0, the claim is obviously true. Let us suppose that the claim is shown for

all 06n6k, for some speci6c k ∈N.
Consider a (k + 1)-step derivation (S; e) ∗⇒ (�; m). By de6nition, there are a k-

step derivation (S; e) ∗⇒ (�1B�2; m1) and a rule (B→ �; m2) such that �= �1��2 and
m=m1 ◦m2. By the induction hypothesis, there is an ordered derivation tree (D;≺)
with n interior nodes and yield (�1B�2; m1). Let v be the (|�1| + 1)th leaf of D; its
label is B. We give this node a valence of m2 and add sons labeled � from left to
right. The thus created tree D′ satis6es the de6nition of a derivation tree in G. We
obtain the order ≺′ on the interior nodes of D′ by appending v to ≺. Obviously, ≺′

is admissible. The yield of (D′;≺′) is (�; m).
Conversely, in an ordered derivation tree with (n + 1) nodes, one can erase those

leaves that are sons of the last interior node, and get, by induction, to an equivalent
derivation with n+ 1 steps.

In a similar way, it can be shown:

Theorem 4.6. Let G=(N; T; P; S;M) be a context-free valence grammar over
M=(M; ◦; e). A leftmost derivation of a pair (�; m)∈ (N ∪T )∗ ×M is possible iA
there is a derivation tree ordered in DFS order with yield (�; m).

4.3. Valences over >nite and commutative monoids

We shall 6rst prove that context-free valence grammars over 6nite or commutative
monoids are not stronger than context-free valence grammars over the corresponding
groups. Basically, this is due to the de6nition of acceptance by the neutral element. 4

For a monoid M=(M; ·; e), let E(M) be the set of elements that can appear in
products yielding e, formally: E(M)= {a∈M : ∃x∃y(x ·a ·y= e)}. Consider a context-
free valence grammar over M. In a derivation with valence e, all applied rules have
valences from E(M). We obtain:

Lemma 4.7. For any monoid M and X ∈{CF;CF− �;REG}; L(Val; X;M)=L(Val;
X; 〈E(M)〉).

Next, we show that 〈E(M)〉 is a group if M is commutative or 6nite. Hence,
context-free valence grammars over 6nite or commutative monoids are not stronger
than context-free valence grammars over 6nite or commutative groups.

4 In [5, Theorem 5], we claimed that context-free valence grammars over 6nite monoids and matrix
grammars are equivalent. Unfortunately, the idea of the proof is not valid for our acceptance condition.
However, it is not very diQcult to prove the mentioned equivalence when the acceptance condition is that
the valence of a derivation evaluates to a monoid element of a given 6nite set.
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Lemma 4.8. If M is commutative; then E(M) is a commutative group.

Proof. Consider a; b∈E(M). Choose a1; a2; b1; b2 such that a1 · a · a2 = b1 · b · b2 = 1.
By commutativity, a1 · a2 · b1 · b2 · a · b=1. Hence, a · b∈E(M) and by 1∈E(M),
E(M) is a submonoid of M. It is even a group, as the arbitrarily chosen element a
has inverse a1 · a2 ∈E(M) due to commutativity.

In the following, let MM bet the set of functions from M into M . Recall that
(MM; ◦; idM ) forms a monoid, where ◦ is the composition of functions [f ◦ g(x)=
g(f(x))], and idM is the identity on M .

Lemma 4.9. Any monoid M=(M; ·; e) is isomorphic to a submonoid of the monoid
(MM; ◦; idM ).

Proof. An element a∈M is mapped on fa : M →M with fa(x)= x · a, for all x∈M .
The mapping a→fa is a homomorphism, as fa·b=fa ◦fb. It is injective, as fa(e)= a �=
b=fb(e) for a �= b.

Lemma 4.10. If M=(M; ◦; e) is >nite; then E(M) is a >nite group.

Proof. By Lemma 4.9, we can assume that M is a submonoid of M′ =(AA; ◦; idA),
for some 6nite set A. If f∈M ⊆AA is not a permutation (i.e., not surjective) then
the range of f1 ◦f ◦f2 cannot be the whole set A and, thus, f =∈E(M)⊆E(M′). On
the other hand, if f∈M is a permutation, then fnf = idA, for some nf¿0 and, thus,
f∈E(M). Hence, f∈M belongs to E(M) i4 f is a permutation. As permutations are
closed under composition, E(M) is a submonoid of M. It is also a group, since any
f∈E(M) has inverse fnf−1.

We could not show whether or not valences over 6nite monoids enhance the power
of context-free grammars. We think this is an interesting open question of context-free
valence languages. At least, it is possible to prove a pumping lemma, similar to that
of context-free languages.

Theorem 4.11. Let M=(M; ◦; e) be a >nite monoid. For any language L⊆L(Val;
CF;M); there is a constant n∈N (depending on L) such that:
For all z ∈L with |z|¿n; there is a decomposition z= uvwxy with |vx|¿0; |vwx|6n;
and uviwxiy∈L; for all i¿1.

Proof. Let G=(N; T; P; S;M) be a context-free valence grammar which generates L.
Due to Lemmas 4.7 and 4.10, we can assume that M=E(M) is a group. Without loss
of generality (see Theorem 4.2), we can further assume that the core rules of G have
the forms A→BC; A→B; A→ a, or A→ �. We choose n=2|N |(p+1), where p= |M |
is the order of the group M.
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Consider a word z ∈L with |z|¿n and an ordered derivation tree D of (z; e). As
we cannot exclude rules of the forms A→B and A→ �, we must slightly modify the
proof of the pumping lemma for context-free languages. The modi>ed height h(t) of
a node t in D is de6ned bottom-up as follows:
• For a leaf t, h(t)= 0 if t is labeled by �, and h(t)= 1 if t is labeled by a∈T .
• If an interior node t has two sons t1; t2 with h(t1)¿0; h(t2)¿0, then h(t)= max

{h(t1); h(t2)}+ 1. Otherwise, h(t)= max{h(s): s is a son of t}.
It is easily shown by induction that the length of the yield of the subtree with root
t is bounded by 2h(t)−1. Hence, for the root r of D; h(r)¿|N |(p + 1) + 1 must
hold. There is a path from r to some leaf such that, for any i∈{1; : : : ; h(r)}, the
path contains a node with modi6ed height i. To construct this path, we start with
the root and always choose the son with the greatest modi6ed height. By the pi-
geonhole principle, the path contains nodes t1; : : : ; tp+2 such that t1; : : : ; tp+2 are labeled
by the same symbol A∈N and |N |(p + 1) + 1¿h(t1)¿h(t2)¿ · · ·¿h(tp+2)¿1. The
subtree between r and t1 has yield u′Ay′; u′; y′ ∈T ∗, the subtrees between ti and
ti+1 (16i6p + 1) have the yields viAxi; vi; xi ∈T ∗, and the subtree of tp+2 yields
w′ ∈T ∗. We have |v1v2 · · · vp+1w′xp+1 · · · x2x1|6n, as this is the yield of the subtree
with root t1.
Now in G, there are derivations (A; e) ∗⇒ (viAxi; mi) for some mi ∈M (16i6p+1),

and thus also derivations

(A; e) ∗⇒(vi · · · vjAxj · · · xi; mi ◦ · · · ◦ mj); 16 i ¡ j 6 p+ 1:

Again by the pigeonhole principle, there are indices 1¡i6j6p+ 1 such that

m1 ◦ · · · ◦ mi−1 = m1 ◦ · · · ◦ mj =: m:

Hence, m(mi ◦ · · · ◦mj)=m. Since M is a group, this implies mi ◦ · · · ◦mj = e and,
moreover, the existence of a derivation (A; e) ∗⇒ (vi · · · vjAxj · · · xi; e) in G. The desired
decomposition z= uvwxy is now found as u= u′v1 · · · vi−1; v= vi · · · vj; w= vj+1 · · ·
vp+1w′xp+1 · · · xj+1; x= xj · · · xi; y= xi−1 · · · x1y′.

Remark 4.12. Note that the construction does not imply uwy∈L, as the derivation
(A; e) ∗⇒ (vAx; e) is not a subderivation of the original derivation.

The preceding theorem can be used to show that certain more general acceptance
criteria in context-free valence grammars enhance the descriptive power when using
6nite control monoids, see [9].
Finally, we are going to show that the family of languages generated by valence

grammars of type X ∈{REG;CF − �;CF} over some commutative monoid is either
L(Val; X;Q+) or L(Val; X;Zk), for some k¿0. This implies that our results on
valence grammars over Zk as presented in the following two sections are of a quite
general nature. Firstly, we shall prove that derivations in valence grammars over
commutative monoids can be analyzed in a bottom-up manner. As the operation in
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a commutative monoid is independent of the operands’ order, we obtain as a special
case of Theorem 4.5:

Corollary 4.13. Let G=(N; T; P; S;M) be a context-free valence grammar over a
commutative monoid M=(M; ◦; e). A derivation of a pair (�; m)∈ (N ∪T )∗ ×M is
possible iA there is an ordered derivation tree with nodes in DFS order yielding (�; m).

Theorem 4.14. Let G=(N; T; P; S;M) be a context-free valence grammar over a com-
mutative monoid M=(M; ◦; e). A derivation (A; e) ∗⇒ (�; m) exists iA there are a rule
(A→X1 · · ·Xk; m0); X1; : : : ; Xk ∈N ∪T; and derivations

(X1; e)
∗⇒(�1; m1); : : : ; (Xk; e)

∗⇒(�k ; mk)

such that �= �1 · · · �k and m=m0 ◦m1 ◦ · · · ◦mk .

As a 6rst application of Theorem 4.14, we show the following result:

Lemma 4.15. Let M=(M; ◦; e) be a >nite commutative monoid; and let k ∈N. Then;
L(Val; X;M×Zk)=L(Val; X;Zk) for X ∈{CF− �;CF}.

Proof. The inclusion L(Val; X;Zk)⊆L(Val; X;M×Zk) is trivial. Let G=(N; T; P;
S;M×Zk) be a context-free valence grammar over M×Zk , with core rules of the
forms A→BC; A→B; A→ a; A→ �, see Theorem 4.2. We construct the context-free
valence grammar G′ =(N ′; T; P′; S ′;Zk) as follows.
• N ′ =N ×M .
• For any rule (A→BC; (m; ṽ))∈P; P′ contains all rules
((A;m0)→ (B;m1)(C;m2); ṽ) with m0 =m ◦m1 ◦m2.

• For any rule (A→B; (m; ṽ))∈P; P′ contains all rules
((A;m0)→ (B;m1); ṽ) with m0 =m ◦m1.

• For any rule (A→ a; (m; ṽ))∈P; P′ contains the rule ((A;m)→ a; ṽ).
• For any rule (A→ �; (m; ṽ))∈P; P′ contains the rule ((A;m)→ �; ṽ).
• S ′ =(S; e).
By a bottom-up induction as indicated in Theorem 4.14, it can be shown that ((A;m); 0̃)
∗⇒ (w; ṽ) holds in G′ for w∈T ∗; A∈N; m∈M; ṽ∈Zk , i4 (A; 0̃) ∗⇒ (w; (m; ṽ)) holds
in G.

Before proving the main result of this section, we give some auxiliary results from
the theory of commutative monoids. The 6rst lemma is known as the Fundamental
Theorem for 6nitely generated Abelian (i.e., commutative) groups [23].

Lemma 4.16. Any >nitely generated commutative group is isomorphic to some group
M×Zk ; where k¿0 and M is a >nite commutative group.

Theorem 4.17. Let M be a commutative monoid and X ∈{REG;CF − �;CF}. Then;
the class L(Val; X;M) equals either L(Val; X;Q+) or L(Val; X;Zk) for some k¿0.
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Proof. By Lemma 4.8, without loss of generality, we can assume that M is a commuta-
tive group. Any context-free valence grammar G over M is a context-free
valence grammar over the 6nitely generated commutative group 〈Lab(G)〉. According
to Lemma 4.16, 〈Lab(G)〉 is isomorphic to some M×Zk , where M is a 6nite com-
mutative group, and k¿0. Finally, by Lemma 4.15, there is an equivalent context-free
valence grammar over Zk .
Now, there are two possibilities for the 6nitely generated subgroups of M. Possibly,

there is a k ∈N such that

(∗) any of these groups is isomorphic to some N × Zi ;

where N is a 6nite commutative group and i6k. Choose the smallest k ∈N such that
(∗) holds. Then, L(Val; X;M)=L(Val; X;Zk). Otherwise, L(Val; X;M)=L(Val;
X;Q+).

We close this section by stating some remarkable closure properties of families of
context-free valence languages over Q+.

Theorem 4.18. The families L(Val; X;Q+); X ∈{REG;CF}; are closed under valence
transductions over Q+. L(Val;CF−�;Q+) is closed under non-erasing valence trans-
ductions over Q+.

Proof. Firstly, note that, for a context-free valence grammar (valence transducer) over
Q+, an equivalent context-free valence grammar (valence transducer) exists over some
Zk for some k¿0 and vice versa. Let G be a context-free valence grammar over
(Zk ;+; 0̃) and A be a valence transducer over (Zl;+; 0̃). Again, the triple construction
for the classical language families can be modi6ed to obtain a context-free valence
grammar H over (Zk+l;+; 0̃) such that L(H)= 'A(L(G)). Note that the commutativity
of addition is essential for the construction.

Remark 4.19. By analyzing the proof of the preceding theorem, one could state even
a bit more generally:
If L∈L(Val; X;M); X ∈{REG;CF}, where M is an arbitrary monoid, and M′ is a

commutative monoid such that ' is a valence transduction over M′, then

'(L) ∈ L(Val; X;M ×M′):

Corollary 4.20. Each of the families L(Val; X;Q+); X ∈{REG;CF}; is closed under
permutation and under intersection with languages from L(Val;REG;Q+).

Proof. In Section 3, it was stated that the mentioned operations are valence transduc-
tions. Therefore, the previous theorem yields the claim.

This generalizes the older result that BLIND is closed under intersection [11].
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5. Normal forms for context-free valence grammars over Zk

5.1. Statement of the main results

In this section, we shall construct Chomsky and Greibach normal forms for context-
free valence grammars over Zk . More speci6cally, we prove:

Theorem 5.1. For any context-free valence grammar over Zk ; there are:
(1) (Chomsky NF I) an equivalent context-free valence grammar over Zk with

valence rules of the forms (A→BC; r̃ ); ‖̃r‖161 or (A→ a; 0̃);
(2) (Chomsky NF II) an equivalent context-free valence grammar over Zk with

valence rules of the forms (A→BC; 0̃) or (A→ a; r̃ ); ‖̃r‖161; as well as
(3) (Greibach NF) an equivalent context-free valence grammar over Zk with valence

rules of the forms (A→ a�; r̃ ); ‖̃r‖161.

In the preceding theorem and in what follows, we use the convention that A; B; C; : : :
denote nonterminal symbols, a; b; c; : : : denote terminal symbols, �; �; � denote words
consisting of nonterminal symbols, and u; v; x; : : : denote (possibly empty) words con-
sisting of terminal symbols.
In [2], it is shown that, for any context-free valence grammar with unit or zero

valence vectors, there is an equivalent context-free unordered vector grammar with the
same set of core rules. This implies:

Corollary 5.2. For any unordered vector grammar; there are equivalent unordered
vector grammars
(1) in Chomsky normal form; i.e.; with core rules of the form A→BC or A→ a; as

well as
(2) in Greibach normal form; i.e.; with core rules of the form A→ a�.

Remark 5.3. The Greibach normal form immediately yields a simple machine char-
acterization of context-free valence languages over Zk via pushdown machines (with-
out �-steps, i.e., working in real-time) endowed with k blind counters. The proofs of
[14, Theorems 5:3, 5:4] can easily be extended to context-free valence grammars and
pushdown automata.

As regards language family hierarchies, we obtain via [27, 28]:

Corollary 5.4. Let k ¿ 0. Then; we have

L(Val;CF− �;Zk) =L(Val;CF;Zk) ⊂ L(Val;CF− �;Zk+1)

=L(Val;CF;Zk+1) ⊂ L(Val;CF− �;Q+)

=L(Val;CF;Q+) = L(UV;CF− �)

=L(UV;CF) ⊂ LOG(CFL):
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Here, LOG(CFL) is a standard complexity class, denoting the closure of the context-
free languages under deterministic logspace reductions.
To keep the construction proving the stated main results readable, we have split it

into three phases, organized in the subsections accordingly. In the 6rst phase of the
construction of the normal form, the erasing rules are replaced; then, unit productions
are eliminated; lastly, the valences are normalized.

5.2. Discussion of the main results

Computational complexity. Besides being an interesting result in itself, the normal
form theorem also has consequences regarding computational complexity. Sudborough
[27] showed that, in analogy to the context-free case, the membership problem can be
eQciently solved for unordered vector grammars without erasing and unit productions
or, more exactly, it was shown to be in LOG(CFL). Satta [26] could prove that com-
plexity result for arbitrary unordered vector grammars, while leaving open the problem
of the existence of normal forms. Our result yields an alternative proof for the relation
L(Val;CF;Q+)⊆LOG(CFL).

Parsing of context-free valence languages. Another idea would be to develop parsing
algorithms for context-free valence grammars in Chomsky normal form, as had been
done by Cocker, Younger and Kasami for the context-free case, yielding the so-called
CYK procedure, which is basically a dynamic programming algorithm whose main
data structure is usually called CYK table, see [14]. A straightforward adaptation of
their dynamic programming method gives an algorithm requiring O(n2k+3) time and
O(nk+2) space:
Namely, for each subword u of a given word w, one has to store the O(nk) pairs

(A; r̃ ) with (A; 0̃) ∗⇒ (u; r̃ ). To compute the entry at position (i; j) (16i¡j6n) of the
CYK table, one needs to study all pairs ((B; r̃ ); (C; s̃), where (B; r̃ ) appears at position
(i; ‘), and (C; s̃) at position (‘+1; j), for i6‘6j. The total time to compute the entry
at a speci6c position thus amounts to O(n2k · n), which yields O(n2k+3) time for the
complete algorithm.

An open question: can the normal form theorem be generalized? The proof of the
normal form theorem often uses bottom-up induction as indicated in Theorem 4.14.
Thus, it cannot be modi6ed for context-free valence grammars over noncommuta-
tive monoids. This remains a challenging open question. Closely related are ques-
tions concerning Chomsky or Greibach normal forms for matrix or vector grammars,
see [2].

5.3. Elimination of erasing rules

The 6rst proposition shows that, given a context-free valence grammar over Zk , an
equivalent context-free valence grammar over Zk can be found whose set of nonterminals
is partitioned into a set generating only nonempty terminal words, and a second set
generating the empty word � as the only terminal word.
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Proposition 5.5. Let G be a context-free valence grammar over Zk . Then; there is
a context-free valence grammar H =(N; T; P; S) over Zk with L(H)=L(G)\{�} such
that
• N =N1 ∪N2; N1 ∩N2 = ∅.
• The core rules of P have one of the following forms:

◦ A→BC; A; B; C ∈N; A∈N1 ∧ (B∈N1 ∨C ∈N1);
◦ A→BC; A∈N2 ∧B∈N2 ∧C ∈N2;
◦ A→B; A∈N1 ∧B∈N1;
◦ A→B; A∈N2 ∧B∈N2;
◦ A→ a; A∈N1 ∧ a∈T;
◦ A→ �; A∈N2.

• The axiom S of H lies in N1.

Proof. Let G=(N1; T; P1; S1;Zk), with core rules as in Theorem 4.2. We choose H =
(N; T; P; S;Zk) as follows. N =N1 ∪N2 where N2 is a disjoint copy of N1, the copy of
A∈N1 is denoted by A′, S = S1, and P is de6ned as

(A → BC; r̃ ) ∈ P1 ⇔ (A → BC; r̃ ); (A → B′C; r̃ );

(A → BC′; r̃ ); (A′ → B′C′; r̃ ) ∈ P;

(A → B; r̃ ) ∈ P1 ⇔ (A → B; r̃ ); (A′ → B′; r̃ ) ∈ P;

(A → a; r̃ ) ∈ P1 ⇔ (A → a; r̃ ) ∈ P;

(A → �; r̃ ) ∈ P1 ⇔ (A′ → �; r̃ ) ∈ P:

It can be easily shown by bottom-up induction on the number of derivation steps that a
derivation (A; 0̃) ∗⇒H (w; r̃ ); A∈N1; w∈T ∗ is possible i4 w �= � and there is a derivation
(A; 0̃) ∗⇒G (w; r̃ ), while a derivation (A′; 0̃) ∗⇒H (w; r̃ ); A′ ∈N2; w∈T ∗ exists i4 w= �
and there is a derivation (A; 0̃) ∗⇒G (�; r̃ ).

Let us consider the tree of an arbitrary derivation in the grammar H of the previous
proposition. Let v be a node labeled by A∈N1 having two sons, v1 and v2, labeled by
B′ ∈N2 and C ∈N1, respectively. The idea of the construction of the �-free grammar
is to delete in the derivation tree the subtree with the root v1 and to insert a path from
v to v2 whose valence is that of the deleted subtree. For this purpose, the following
proposition is of crucial importance.

Proposition 5.6. Let G=(N; T; P; S;Zk) be a context-free valence grammar with core
rules of the forms A→BC; A→B; and A→ �. There is a regular valence gram-
mar G′ =(N ′; T ′; P′; S ′;Zk) with core rules of the forms A→B and A→ � such that
(S; 0̃) ∗⇒G (�; r̃ ) iA (S ′; 0̃) ∗⇒G′ (�; r̃ ). Moreover; if (�; r̃ ) can be derived in G; it can
be obtained in G′ in max{1; ‖̃r‖1} steps.
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Proof. Let U = {a1; : : : ; ak}∪ {b1; : : : ; bk}. We de6ne the mappings word :Zk →U ∗ and
vec :U ∗ →Zk by

word(̃r ) = c|r1|1 : : : c|rk |k ; where

{
ci = ai if ri ¿ 0 and

ci = bi if ri ¡ 0;
and r̃ = (r1; : : : ; rk);

vec(w) = (|w|a1 − |w|b1 ; : : : ; |w|ak − |w|bk ):

Note that the mapping ' :U ∗ →U ∗ with '(w)=word(vec(w)) is a rational valence
transduction over Zk .
In the 6rst step, we construct the context-free grammar G1 = (N;U; P1; S), with

P1 = {A→word(̃r )�: (A→ �; r̃ )∈P}. Then, we can 6nd a right-linear grammar G2 =
(N ′; U; P2; S ′) generating a letter equivalent language [25].
Finally, we can de6ne the regular valence grammar G′ =(N ′; T; P′; S ′;Zk) with L(G′)

= '(L(G2)) according to Theorem 3.5. A pair (�; r̃ ) can be derived in G′ i4 there is
some w∈L(G2) with vec(w)= r̃, i.e., by the symbol equivalence of L(G1) and L(G2),
i4 word(̃r )∈L(G1). Moreover, note that |word(̃r )|= ‖̃r ‖1 and that, without loss of
generality, any word w∈L(G2) is generated in max{|w|; 1} steps. We can conclude
that (S; 0̃) ∗⇒ (�; r̃ ) in G i4 (S ′; 0̃) ∗⇒ (�; r̃ ) in G′ (in max{‖̃r ‖1; 1} steps).

Proposition 5.7. For any context-free valence grammar G over Zk ; there is a valence
grammar G′ over Zk with core rules of the forms A→BC or A→B or A→ a such
that L(G′)=L(G)\{�}.

Proof. Without loss of generality, we can assume that G=(N; T; P; S;Zk) has the form
as in Proposition 5.5. For any B′ ∈N2, we de6ne the context-free valence grammar
GB′ =(N2; T; P2; B′;Zk), where P2 is the set of all rules whose left-hand side is an
element of N2. By Proposition 5.6, there is a regular valence grammar G′

B′ =(NB′ ; T; PB′ ;
SB′) such that (B′; 0̃) ∗⇒ (�; r̃ ) holds in GB′ i4 (SB′ ; 0̃) ∗⇒ (�; r̃ ) holds in G′

B′ . Without
loss of generality, we assume that NB′ and NC′ are disjoint for di4erent B′; C′ ∈N2,
and set M =

⋃
B′∈N2

NB′ , Q=
⋃

B′∈N2
PB′ .

Now we are ready to construct the �-free valence grammar G′ =(N ′; T; P′; S ′;Zk).
We choose the set of nonterminals as N ′ =N1 ∪M ×N1. P′ consists of P1, the set of
all rules in P with a left-hand side from N1, and of the following rules:

(A → (SB′ ; C); r̃ ) ∈ P′ ⇔ (A → B′C; r̃ ) ∈ P or (A → CB′; r̃ ) ∈ P;

((X; C) → (Y; C); r̃ ) ∈ P′ ⇔ (X → Y; r̃ ) ∈ Q;

((X; C) → C; r̃ ) ∈ P′ ⇔ (X → �; r̃ ) ∈ Q:

G and G′ are equivalent, since any leftmost derivation (A; 0̃) ⇒ (B′C; r̃ ) ⇒∗ (C; r̃+ s̃)
in G can be replaced by the leftmost derivation (A; 0̃) ⇒ ((SB′ ; C); r̃ ) ⇒∗ (C; r̃+ s̃) in
G′, and vice versa.
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5.4. Elimination of unit productions

In this subsection, we are going to substitute the unit productions of the form
(A→B; r̃ ), where A and B are nonterminals. The basic idea is to construct, for a
given context-free valence grammar G=(N; T; P; S) over Zk , a context-free valence
grammar GM;2 in Chomsky normal form and a regular valence grammar GM;1, for all
M ⊆N . A pair (w; 0̃) can be derived in G i4 there are M ⊆N and r̃ ∈Zk such that
(w; r̃ ) is derivable in GM;2 and (�;−r̃ ) is derivable in GM;1. From GM;1 and GM;2

we construct a context-free valence grammar GM in Chomsky normal form generating
(w; 0̃) i4 (�;−r̃ ) and (w; r̃ ), respectively, are derivable in GM;1, GM;2, respectively,
for some r̃. Finally, a context-free valence grammar G′ in normal form is constructed
generating

⋃
M⊆N L(GM )=L(G).

We start with some useful de6nitions. Let G=(N; T; P; S;Zk) be a context-free
valence grammar over Zk with rules of the form as in Proposition 5.7. Let D be
a derivation tree in G. If a subtree D(v1 − v2) is a nontrivial path and v1 and v2
have the same label, it is called a loop-path. A derivation is called loop-free if the
corresponding derivation tree does not contain any loop-path. For a nonterminal A∈N
and for a subset M ⊆N , we de6ne

LOOP(A) = { r̃ ∈ Zk : (A; 0̃) ∗⇒(A; r̃ ) };

LOOP(M) =

{
r̃ ∈ Zk : ∃A1; : : : ; An ∈ M ∃̃r1 ∈ LOOP(A1); : : : ; r̃n ∈ LOOP(An)

with r̃ =
n∑
i=1

r̃i

}
:

Proposition 5.8. Let G=(N; T; P; S) be a �-free context-free valence grammar over
Zk . Then (S; 0̃) ∗⇒ (w; 0̃); w∈T+; iA there is a loop-free derivation � yielding (w; r̃ );
where −r̃ ∈ LOOP(N�) and N� is the set of nonterminals occurring in �.

Proof. Let r̃ ∈LOOP(M), with r̃=
∑n

i=1 r̃i ; r̃i ∈LOOP(Ai); Ai ∈M and i6n, for some
M ⊆N . Let D be a derivation tree with M ⊆ND (where ND is the set of nonterminals in
D) yielding (w; s̃). By induction over n, it is easily shown that there exists a derivation
tree D′ yielding (w; s̃+ r̃ ).
On the other hand, let D0 be a derivation tree yielding (w; 0̃). We shall construct a

(6nite) sequence D0; D1; : : : ; Dt of derivation trees such that
(1) The yield of Di is (w; s̃i), with s̃i ∈LOOP(NDt ), for all 16i6t,
(2) Dt has no loop-paths.
If the tree Di contains a loop-path, we de6ne Di+1 as follows. Let Vi be the set of all
nodes v in Di that are starting points of some loop-path.
Let vi be the minimal node (in DFS order) which is a starting point of some loop-

path, and let ui be the maximal end point of a loop-path starting at vi. Let r̃i be the
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valence of this path, and let Ai be the common label of vi and ui. Di+1 is obtained
by cutting the path Di(vi − ui) from Di, i.e., the subtree with root vi is removed and
replaced by the subtree with root ui.
The newly obtained tree Di+1 is obviously a derivation tree in G yielding (w; s̃i+1)

with s̃i+1 = s̃i − r̃i. Since Di+1 has less nodes than Di, there must be some t such that
Dt has no loop paths.
Note that the choice of vi and ui guarantees that the node ui is not deleted in the

further process. Hence, the node set of Dt contains ui, for all 06i6t − 1. Therefore,
Ai ∈NDt , for all 06i6t − 1. It follows that Val(Dt)= −∑t−1

i=0 r̃i. Since the vectors r̃i
belong to LOOP(Ai) and Ai ∈NDt , 16i6s, we get −val(Dt)∈LOOP(NDt ).

Proposition 5.9. Let G be a context-free valence grammar over Zk with core rules of
the forms A→BC; A→B; A→ a. For any M ⊆N; there is a regular valence grammar
GM;1 over Zk such that a pair (�; r̃ ) is derived in GM;1 iA r̃ ∈LOOP(M); in this case;
the number of derivation steps is max{1; ‖̃r‖1}.

Proof. Let G=(N; T; P; S;Zk). For A∈N , set GA=(N; T; PA; A;Zk) with PA=
{(B→C; r̃ )∈P}∪{(A→ �; 0̃)}. A pair (�; r̃ ) is generated in GA i4 r̃ ∈LOOP(A). By re-
naming the symbols in GA, we obtain context-free valence grammars GA=(NA; T; P′

A; SA;
Zk), such that NA ∩NB= ∅ for A �=B. For M ⊆N , let GM be the context-free va-
lence grammar with the set of nonterminals

⋃
A∈M NA ∪ {S}, the set of valence rules⋃

A∈M PA ∪{(S→ SAS; 0̃); (S→ SA; 0̃): A∈M}, and the start symbol S. Obviously, (�; r̃ )
is generated in GM i4 r̃ ∈LOOP(M).
The regular valence grammar GM;1 with the properties mentioned above can be

constructed as in the proof of Proposition 5.6.

Proposition 5.10. Let G be a context-free valence grammar over Zk with core rules
of the forms A→BC; A→B; A→ a. For any M ⊆N; there is a context-free valence
grammar GM;2 over Zk such that:
(1) For any pair (w; r̃ ); there is a derivation in GM;2 iA there is a loop-free derivation

� in G for this pair with M ⊆N�.
(2) The core rules of PM;2 have the forms A→BC or A→ a.

Proof. Let G=(N; T; P; S;Zk). Consider the following set

Q ⊆ N × (N ∪ T )∗ × Zk ×P(N ):

For any loop-free derivation � : (A; 0̃) ∗⇒ (A′; r̃′) ⇒ (�; r̃ ) with �∈T ∪ N 2, Q contains
(A→ �; r̃; N�).
Set GM;2 = (N ×P(N ); T; P′; (S;M)), where P′ contains all valence rules

• ((A;M0)→ (B;M1)(C;M2); r̃ ) with (A→BC; r̃; M3)∈Q and M0 ⊆M1 ∪M2 ∪M3 for
some M3 ⊆N , and

• ((A;M0)→ a; r̃ ) with (A→ a; r̃; M1)∈Q and M0 ⊆M1 for some M1 ⊆N .
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By bottom-up induction on the number of derivation steps, it can be shown that
((A;M0); 0̃)

∗⇒ (w; r̃ ) in GM;2 i4 there is a loop-free derivation � : (A; 0̃) ∗⇒ (w; r̃ ) in
G with M0 ⊆N�.

Proposition 5.11. Let c be a positive integer; let G1 = (N1; T; P1; S1;Zk) be a regular
valence grammar over Zk ; and let G2 = (N2; T; P2; S2;Zk) be a context-free valence
grammar over Zk with core rules of the forms A→BC; A→ a.
Then; there is a context-free valence grammar G=(N; T; P; S;Zk) with core rules of

the forms A→BC; A→ a; generating a pair (w; r̃ ); w∈T ∗; r̃ ∈ Zk , iA there are r̃1; r̃2
such that (1) (�; r̃1) is derivable in G1 in at most c|w| steps; (2) (w; r̃2) is derivable
in G2 and (3) r̃= r̃1 + r̃2.

Proof. Given G1 and G2, the desired grammar G is obtained by the following triple
construction:

N = (N1 ∪ {�})× N2 × (N1 ∪ {�});
S = (S1; S2; �);

P = {((A1; A; A2) → (A1; B; B2)(B2; C; A2); r̃ ):

A1; A2; B2 ∈ N1 ∪ {�}; A; B; C ∈ N2; (A → BC; r̃ ) ∈ P2}
∪ {((A1; A; A2) → a; r̃ ): A1; A2 ∈ N1 ∪ {�}; A ∈ N2; a ∈ T;

(A1; 0̃)
∗⇒G1 (A2; r̃1) in maximal c steps;

(A → a; r̃2) ∈ P2; r̃ = r̃1 + r̃2}:
Again, by bottom-up induction, it is provable that ((A1; A; A2); 0̃)

∗⇒G (w; r̃ ) i4 there
are r̃1; r̃2 such that (1) (A1; 0̃)

∗⇒G1 (A2; r̃1) in at most c|w| steps, (2) (A; 0̃) ∗⇒G2 (w; r̃1)
and (3) r̃= r̃1 + r̃2.

Proposition 5.12 (Chomsky normal form). For any context-free valence grammar G
over Zk ; there is an equivalent context-free valence grammar G over Zk with core
rules of the form A→BC; A→ a.

Proof. Let G=(N; T; P; S;Zk). For any subset M of N , let GM;1 and GM;2 be con-
structed as in Propositions 5.9 and 5.10. Then, for w∈T ∗, there is a derivation � of
(w; 0̃) in G with M ⊆N� i4 there is an r̃ ∈Zk such that (1) (�; r̃ ) is generated in GM;1

and (2) (w;−r̃ ) is generatable in GM;2. Since (w;−r̃ ) is generated in (2|w|−1) steps in
GM;2, the inequality ‖̃r‖16c′(2|w|−1) holds, where c′ is the greatest 1-norm appearing
in the rules of GM;2. Hence, (�; r̃ ) is generated in GM;1 in less than 2c′|w| steps.

According to Propositions 5.9–5.11 and choosing c=2c′, we can construct a context-
free valence grammar GM =(NM ; T; PM ; SM ;Zk) such that (w; 0̃) is generated by GM i4
there are a vector r̃ ∈LOOP(M) and a loop-free derivation � of (w;−r̃ ) in G with
M ⊆N�.
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Finally, it is easy to construct a context-free valence grammar G′ with core rules
of the forms A→BC; A→ a, and L(G′)=

⋃
M⊆N L(GM ). By Proposition 5.8, L(G′)=

L(G).

By Proposition 5.12, we may assume in the following that the core rules of a
context-free valence grammar over Zk are in Chomsky normal form.

5.5. Normalization of the valences

In order to prove the following proposition, we need another lemma:

Lemma 5.13. Let G=(N; T; P; S;Zk) be a context-free valence grammar so that the
core rules of G are in Chomsky normal form. Then; for every positive integer ‘;
there is an equivalent context-free valence grammar G′

‘ =(N ′; T; P′; S ′;Zk) over Zk
such that any derivation (S ′; 0̃) ∗⇒ (A; r̃ ) in G′

‘ of some sentential form A with |A|6‘
implies r̃= 0̃. Moreover; the core rules of G′

‘ are in Chomsky normal form; as well;
and the new start symbol S ′ does not appear on the right-hand side of any rule
in G′

‘.

Proof. Let N ′ =N ×E ∪ {S ′}, where
E = { r̃ ∈ Zk : ∃A; |A|6 ‘; (S; 0̃) ∗⇒G(A; r̃ ) }:

Note that 0̃∈E and |E|¡∞, since the underlying context-free grammar of G is as-
sumed to be in Chomsky normal form. Consider, for each r̃ ∈E, the function f̃r which
reads a sentential form B of G from left to right, outputs a when it reads a terminal
symbol a, outputs (A; r̃ ) the 6rst time it reads some nonterminal symbol A of G and
outputs (A; 0̃) when it encounters further nonterminals A. This means that

fr̃ (�0A1 : : : �j−1Aj�j) = �0(A1; r̃ )�1(A2; 0̃) : : : �j−1(Aj; 0̃)�j

for terminal strings �0; : : : ; �j and nonterminal symbols A1; : : : ; Aj. Furthermore, let

L‘ = { (A; r̃ ) ∈ (N ∪ T )∗ × E: |A|6 ‘; (S; 0̃) ∗⇒G(A; r̃ ) }:
It is quite easy to de6ne a context-free (valence) grammar in Chomsky normal form
(satisfying the requirements of the lemma) for the 6nite language { �∈T ∗: (�; 0̃)∈L‘ }.
Let P′′ be the rule set of this grammar. Now, de6ne

P′ = { (S ′ → fr̃(A); 0̃): (A; r̃ ) ∈ L‘ ∧ A =∈ T ∗ }

∪ { ((A; r̃ ) → (B; 0̃)(C; 0̃); r̃ + s̃): (A → BC; s̃) ∈ P }

∪ { ((A; r̃ ) → a; r̃ + s̃): (A → a; s̃) ∈ P }

∪ P′′:

It is easy to verify that the grammar G′
‘ constructed in this manner satis6es the

claim.
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Proposition 5.14. Let G be a context-free valence grammar over Zk . Then; there is
an equivalent context-free valence grammar G′ over Zk with valence rules of the
forms (A→BC; r · ẽj); r ∈Z; and (A→ a; 0̃).

Proof. The case k =1 is quite easy and is hence left to the reader. Therefore, let
k¿1 in the following. Let G=(N; T; P; S;Zk) be a context-free valence grammar with
core rules in Chomsky normal form according to Proposition 5.12. Moreover, let G
satisfy the statement of the preceding lemma with ‘= k + 1. Let r be large enough
such that r exceeds the maximum norm of any vector r̃ which might be obtained as
(A; 0̃) ∗⇒G (A; r̃ ) for some sentential form A with |A|6k + 1. Let R ⊂ Zk be the 6nite
set of all vectors whose maximum norm is at most r.
Consider N ∪ (N6k ×R)∪T ′ as new nonterminal alphabet, where T ′ consists of

primed copies of the letters of the terminal alphabet T . Moreover, consider ′ as a ho-
momorphism which maps a∈T into a′ and A∈N into A. Now add, for each sentential
form A∈ (N ∪T )k+1 such that (A; 0̃) ∗⇒G (A; r̃ ) with r̃=

∑n
j=1 rjẽj and A= x1 · · · xk+1,

xi ∈N ∪T , the rules (A→ x′1(x2 · · · xk+1; r̃− r1ẽ1); r1ẽ1) and ((xj · · · xk+1; r̃−
∑j−1

i=1 rĩei)
→ x′j(xj+1 · · · xk+1; r̃ − ∑j

i=1 rĩei); rjẽj) for j=2; : : : ; k − 1 and ((xkxk+1; rk ẽk)→
x′kx

′
k+1; rk ẽk).
Moreover, the rule set of G′ contains the same start rules as G and termination rules

(a′ → a; 0̃) for each a∈T .
The containment L(G′)⊆L(G) is obvious. Conversely, a word w∈L(G) has a

derivation of length 2|w| − 1 in G. If |w|6k + 1, w∈L(G′) by a one-step deriva-
tion due to the construction of the preceding lemma. Otherwise, w can be derived in
a leftmost derivation manner according to G as follows:

(S; 0̃) ∗⇒(w0A0; 0̃)
∗⇒(w0w1A1; r̃1)

∗⇒· · · (w = w0w1 : : : wn; 0̃ = r̃n)

with |w0|6k and |wi|= k for 16i6n. By construction, each of the involved subderiva-
tions

(Ai; 0̃)
∗⇒G(wiAi+1; r̃i − r̃1)

for 06i¡n can be simulated by a series of rule applications of G′. Moreover, the rule
(S→w0A0; 0̃) is in the rule set of G′. Therefore, we can conclude that w∈L(G′).

Proposition 5.15. Let G be a context-free valence grammar over Zk . Then; there is
an equivalent context-free valence grammar G′ over Zk with valence rules of the
forms (A→BC; r · ẽj); r ∈{−1; 0; 1}; and (A→ a; 0̃).

Proof. Let G=(N; T; P; S;Zk) be of the form given in Proposition 5.14, and set c= max
{‖̃r‖1: ∃(A→ �; r̃ )∈P2}. We construct G′ =(N ′; T; P′; S ′) with

N ′ =N × {0; : : : ; c − 1}k ;
S ′ = (S; 0̃);

P′ = { ((A; 0̃) → a; 0̃): (A → a; 0̃) ∈ P }
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∪{ ((A; r̃) → (B; r̃1)(C; r̃2); s̃):

s̃ ∈ {̃0; ẽj ;−ẽj} ∧ ∃r0(r0 ∈ {−c + 1; : : : ; c − 1} ∧
(A → BC; r0ẽj) ∈ P ∧ c̃s+ r̃= r̃1 + r̃2 + r0ẽj)}:

By bottom-up induction, it can be shown that ((A; r̃ ); 0̃) ∗⇒G′ (w; s̃) i4 r̃ ∈{−c+1; : : : ;
c − 1}k and (A; 0̃) ∗⇒G (w; c̃s + r̃ ). In the induction step, one has to take care that all
possible vectors r̃ ∈{−c + 1; : : : ; c − 1}k are covered.

Proposition 5.16. Let G be a context-free valence grammar over Zk . Then; there is an
equivalent valence grammar G′ over Zk with valence rules of the forms (A→BC; 0̃);
and (A→ a; r · ẽj); r ∈{−1; 0; 1}.

Proof. Let G=(N; T; P; S;Zk) have valence rules as in Proposition 5.15. Now, G′ =(N ′;
T; P′; S ′;Zk) with N ′ =N ×E, where E= {r · ẽj: r ∈{−1; 0; 1}; 16j6k}, S ′ =(S; 0̃),
and

P′ = { ((A; r̃) → (B; r̃)(C; s̃); 0̃): (A → BC; s̃)∈P; r̃ ∈E}

∪ { ((A; r̃) → a; r̃): (A → a; 0̃) ∈ P; r̃ ∈ E}:

Again, it can easily be shown by bottom-up induction that ((A; r̃ ); 0̃) ∗⇒G′ (w; s̃) holds
i4 (A; 0̃) ∗⇒G (w; s̃+ r̃ ) is true.

5.6. Greibach normal form

Proposition 5.17. Let G=(N; T; P; S;Zk) be a context-free valence grammar over Zk .
There is an equivalent context-free valence grammar G′ =(N ′; T; P′; S ′;Zk) such that
the rules of P′ have the form (A→ a�; r̃ ); A∈N ′, a∈T , �∈N ′∗, r ∈Zk ; ‖r‖161.

Proof. Let G be a context-free valence grammar over Zk with core rules in Chomsky
normal form. Nearly literally the same construction as in the context-free case
[14, Section 4:6] can be applied to obtain an equivalent context-free valence gram-
mar G′ with core rules in Greibach normal form. The shape of the valences in G
guarantees that during the construction, only valence rules of the forms (A→ �; 0̃) or
(A→ a�; r̃ ), ‖̃r‖161, are produced.

Remark 5.18. With some additional e4ort, other normal forms, e.g., a quadratic double
Greibach normal form, could be shown for L(Val;CF;Zk). The interested reader should
study the corresponding construction in [1].

6. An iteration lemma

We are going to prove iteration lemmas similar to the pumping lemmas for context-
free and regular languages. We use the idea of minimal cycles, already present in
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Vicolov’s proof of the strictness of the inclusions L(Val;CF;Zk) ⊂ L(Val;CF;Zk+1)
[28]. We also need the normal form theorem from the previous section and the fol-
lowing elementary results:
On Nt , let 6 denote the natural partial order with (a1; : : : ; at)6(b1; : : : ; bt) i4 a16

b1; : : : ; at6bt . Instead of “̃a6̃b and ã �= b̃”, we simply write “̃a¡̃b”.

Lemma 6.1 (Dickson’s Lemma). Any in>nite set S ⊆Nt ; t¿1; contains two elements
ã; b̃ such that ã¡̃b.

Lemma 6.2. Let A∈Zk×t be a matrix with t¿k. If the equation system A · x̃= 0̃ has
a solution in Nt\{̃0}; then it has a solution in Nt\{̃0} with at most k + 1 positive
components.

Proof. Consider a solution ã∈Nt\{̃0} with more than k + 1 positive components.
Without loss of generality, let us assume that ã=(a1; : : : ; at), with a1¿0; : : : ; as¿0,
as+1 = · · · = at =0, for some s¿k + 2. In Zt\{̃0}, the equation system has a solution
b̃=(b1; : : : ; bt), with b1 = bs+1 = · · · = bt =0, and br¡0, for some 26r6s. Let j be
the index such that bj=aj6bi=ai, for all 16i6s. This implies bj¡0 and ajbi−bjai¿0,
for all 16i6s. Then, c̃=(c1; : : : ; ct)=−bjã+ aj̃b is in Nt\{̃0} and has at most s− 1
positive components, since c1 =−bja1¿0, ci =−bjai+ajbi¿0 for 26i6s, and cj =0,
ci =0 for s+16i6t. By iteration, a solution with at most k +1 positive components
is reached.

Given a context-free valence grammar G=(N; T; P; S;Zk) over Zk (in normal form),
a cycle is a derivation (A; 0̃) ∗⇒ (vAw; r̃ ) with A∈N; vw∈T+. A derivation is called
cycle-free i4 none of its subderivations is a cycle. A cycle is called minimal i4 none
of its proper subderivations is a cycle. For M ⊆N , let Z(M) be the set of all minimal
cycles B=(A; 0̃) ∗⇒ (vAw; r̃ ) with A∈M .

Theorem 6.3. For any in>nite language L∈L(Val;CF;Zk); L⊆T ∗; there are a con-
stant n and a >nite set of iterative (2k + 2)-tuples I ⊆ (T ∗)2k+2 such that:
(1) |�1 : : : �2k+2|¿0; for all (�1; : : : ; �2k+2)∈ I; and
(2) for all w∈L; |w|¿n; there are a decomposition w= z1z2 · · · z2k+2z2k+3 and an

iterative tuple (�1; : : : ; �2k+2) such that

z1�i1z2�
i
2 · · · z2k+2�i2k+2z2k+3 ∈ L for all i¿0:

Proof. Let G=(N; T; P; S;Zk) be a context-free valence grammar over Zk in Chomsky
normal form generating L. The normal form guarantees that a derivation contains no
(nontrivial) subderivations of the form (A; 0̃) ∗⇒ (A; r̃ ). Given a derivation � : (S; 0̃) ∗⇒
(w; 0̃), w∈T ∗, we can successively erase minimal cycles to obtain a cycle-free deriva-
tion �̂ : (S; 0̃) ∗⇒ (ŵ; r̃ ), ŵ∈T ∗. Moreover, if N�=M and Z(M)= {B1; : : : ; Bt}, Bi : (Ai; 0̃)∗⇒ (viAiwi; r̃i), we can de6ne a deletion vector x̃(�)∈Nt whose ith component is the
number of times that the minimal cycle Bi is deleted in the above process.
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Now let Ninf be the set of all M ⊆N with N�=M , for in6nitely many derivations
of the form � : (S; 0̃) ∗⇒ (w; 0̃), w∈T ∗, and consider some M ∈Ninf .
Since the number of cycle-free derivations is 6nite, there are in6nitely many deriva-

tions �i, i=1; 2; : : : ; such that �̂i = �̂1, for all i¿1 and N�=M . Moreover, the set
{̃xi : x̃i = x̃(�i); i¿1}, is in6nite. By Lemma 6.2, there are two indices j; k such that
x̃j¡x̃k . Let Z∈Zk×t be the matrix whose columns are the valences of the derivations
B1; : : : ; Bt (in this sequence). Clearly, all x̃i, i¿1, are solutions of Z · x̃=−val(�̂1).
Consequently, ỹ= x̃k − x̃j is a solution of Z · x̃= 0̃ with ỹ∈Nt\{̃0}. By Lemma 6.2,
there is vector ã=(a1; : : : ; at)∈Nt\{̃0} with at most k + 1 positive components and
Z · ã= 0̃.

Let us assume that ak+2 = ak+3 = · · ·= at =0 (otherwise, rearrange the minimal cy-
cles in Z(M)). A derivation � : (S; 0̃) ∗⇒ (z; 0̃), z ∈T ∗ can now be extended to deriva-
tions (S; 0̃) ∗⇒ (zi; 0̃), zi ∈T ∗, i∈N, by inserting the cycles Ba1·i1 ; : : : ; Bak+1·i

k+1 at appropriate

places. (For a cycle B : (A; 0̃) ∗⇒ (vAw; r̃ ), Bm is de6ned as the cycle (A; 0̃) ∗⇒ (vmAwm;
m · r̃ ).)
With respect to M , we obtain the set of iterative (2k + 2)-tuples I(M) as the set

of permutations of {va11 ; wa1
1 ; : : : ; v

ak+1
k+1 ; w

ak+1
k+1}. (In fact, only certain permutations are

really possible.) The set of iterative tuples I mentioned in the theorem is found as
I =

⋃
M∈Ninf

I(M), and the constant n from the theorem is

n = max{|w|: w ∈ T ∗ ∧ ∃�(� : (S; 0̃) ∗⇒(w; 0̃) ∧ N� =∈ Ninf )}:

In the case of regular valence languages, we can analogously show (now using minimal
cycles of the form (A; 0̃) ∗⇒ (wA; r̃ )):

Theorem 6.4. For any in>nite language L∈L(Val;REG;Zk); L⊆T ∗; there are a
constant n and a >nite set of iterative (k + 1)-tuples I ⊆ (T ∗)k+1 such that:
(1) |�1 : : : �k+1|¿0; for all (�1; : : : ; �k+1)∈ I; and
(2) for all w∈L; |w|¿n; there are a decomposition w= z1z2 · · · zk+1zk+2 and an

iterative tuple (�1; : : : ; �k+1) such that

z1�i1z2�
i
2 · · · zk+1�ik+1zk+2 ∈ L for all i¿0:

As usual, iteration lemmas can be used to give simple proofs that certain lan-
guages cannot be generated by valence grammars over Zk . For instance, it is easily
shown that Lk = {(anbn)k+2: n¿1} is not in L(Val;CF;Zk). As Lk is obviously in
L(Val;CF;Zk+1), this provides an alternative proof for the strictness of the inclusion
L(Val;CF;Zk) ⊂ L(Val;CF;Zk+1).
Finally, we give a re6nement of the last two theorems, stating that particular cycles

appear in some iteration. We apply this result in [6] to show that a certain type of
parallel valence systems (ET0L systems with table valences) cannot produce languages
with arbitrarily fast growing length sets.
For a derivation � and a cycle B, let nB(�) be the number of appearances of the

subderivation B in �.
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Corollary 6.5. Let G=(N; T; P; S;Zk) be a context-free valence grammar producing
an in>nite language. Let B=(A; 0̃) ∗⇒ (vAw; r̃ ) be a minimal cycle such that

{nB(�): � : (S; 0̃) ∗⇒(u; 0̃); u ∈ T ∗}
is unbounded. Then; there is a word z ∈L(G) such that some iterative tuple applicable
on z has the form

(�1; : : : ; �2k+2); with �i = vm; �j = wm for some 16 i¡j 6 2k + 2; m¿0:

Proof. As L(G) is in6nite and N is 6nite, there has to be a subset M ⊆N such that

{nB(�): � : (S; 0̃) ∗⇒(u; 0̃); u ∈ T ∗; N� = M}
is unbounded. Inspecting the proof of Theorem 6.3, we can order Z(M) such that
B1 = B, and 6nd an in6nite sequence of deletion vectors x̃1; x̃2; : : : such that the 6rst
component is strictly growing. By Lemma 6.1, there are i¡j such that x̃i¡x̃j. The
vector x̃= x̃j − x̃i is in Nt\{̃0}, has a positive 6rst component, and satis6es Z̃x= 0̃.
When constructing the solution with at most k+1 positive components as indicated in
the proof of Lemma 6.2, the 6rst component is not changed.

Completely analogously, we can derive:

Corollary 6.6. Let G=(N; T; P; S;Zk) be a regular valence grammar producing an
in>nite language. Let B=(A; 0̃) ∗⇒ (vA; r̃ ) be a minimal cycle such that

{nB(�): � : (S; 0̃) ∗⇒(u; 0̃); u ∈ T ∗}
is unbounded. Then; there is a word z ∈L(G) such that some iterative tuple applicable
on z has the form

(�1; : : : ; �k+1); with �i = vm for some 16 i 6 k + 1; m¿ 0:

7. Conclusions and perspectives

We have given an overview of the potentials of (sequential, context-free) valence
grammars. Many problems remain open. It would, for instance, be very interesting to
investigate valence grammars over other speci6c monoids than discussed here in order
to describe di4erent language classes. Another interesting issue could be the investiga-
tion of deterministic valence automata and their characterizations in terms of valence
grammars. Of course, one has to be aware of the close equivalences to k-BLIND and
reversal-bounded multi-counter machines and their deterministic variants, see [11, 12].
The latter question could be very interesting keeping in mind the correspondence of
Chomsky normal form grammars and machine models, since we can hope for eQcient
LR-style parsing algorithms for context-free valence grammars. Valences can be used
in this way as attributes which can be easily handled.
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As pointed out in Section 4.3, it is of interest to discuss context-free valence gram-
mars accepting with a 6nite set of monoid elements. With this modi6ed de6nition,
the equivalence of valence grammars over 6nite monoids and matrix grammars can be
established. We will discuss this issue in a forthcoming paper [9].
An interesting variant of context-free valence grammars are grammars with valua-

tions, where valences are assigned to terminals instead of rules. In the case of com-
mutative monoids, these languages are homomorphic pre-images of valence languages.
We discussed these “algebraic issues” in [8].
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