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A~traet--Multi-commodity flow problems arise naturally in telecommunications and scheduling. Such 
applications typically involve large network optimization problems with constraints of a form which make 
standard optimization techniques inapplicable. Linear programming methods can solve only small 
instances of such problems. New theoretical work by Soviet researchers on network-based techniques is 
shown in this paper to yield practical algorithms which enable certain types of multi-commodity flow 
problems to be solved quickly. As these methods generalize efficient single-commodity methods, there is 
promise that further research will allow more general problems to be solved in an analogous manner. 

1. INTRODUCTION 

It is well-known that problems involving the flow of a single-commodity in a network can be solved 
elegantly and efficiently by methods which combine the merits of graph theory and of linear 
programming. Unfortunately, this does not turn out to be the case in problems involving the flow 
of several commodities which have to share resources, such as telephone calls or information 
packets. Indeed, many important properties are lost in the transition from the single-commodity 
to the multi-commodity case. For example, in the single-commodity case, if capacity limits on arcs 
in the network are all integers, then typical optimization problems will have solutions in integers 
also. For the multi-commodity case, this does not hold. 

Most approaches to multi-commodity flows which are presently successful have used the ideas 
of linear programming [1]. While these approaches are useful for problems of modest size, they 
are unable to handle the sort of large problems that one would like to be able to solve in practice, 
because the computational difficulty grows too quickly with the size of the problem. On the 
other hand, there has been rather little success in generalizing network algorithms to the 
multi-commodity case, although approximate methods are available for some types of problems 
[2]. Efficient exact algorithms are yet to be developed. Recently Lomonosov [3] has reported on 
work by himself and his colleagues which seems to the present authors to offer promise in 
generalizing existing graph-theory based methodology to the multi-commodity case. In this paper 
we describe some of the theoretical work of Lomonosov and show how it may be implemented 
to provide an extremely efficient and practical algorithm for solving certain multi-commodity flow 
problems. We also discuss the limitations of the approach as it stands at present and in particular 
the restricted class of problems which we are able to solve. 

We shall begin by describing the theory behind part of Lomonosov's work. In doing so we show 
how to develop practical algorithms from the theorems that Lomonosov proves. Then we display 
an example of a network problem solved by this method with very modest computing resources. 
Finally, we discuss future developments. 

2. MULTI-COMMODITY FLOWS 

This section introduces some necessary notation and some basic network and multi-commodity 
flow concepts. 

The following notation is used throughout this paper. For sets X and Y we write: 

[X]--the set of all unordered pairs [x,y] of x, y ~X, x ~-y; 
(X)--the set of all ordered pairs (x,y) of x, y eX, x ¢:y; 

IX, Y]--the set of all unordered pairs [x,y] of x ~X, y e Y where XN Y = gf; 
(X, Y)--similarly for (x, y); 

R+--the set of non-negative real numbers. 
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In discussing multi-commodity flows, it is convenient to deal with undirected networks. A 
network is defined to be a triple (V, T; c) where V is the set of nodes, T _ V is the set of terminal 
nodes (nodes which may originate, or be a destination for, flow in the network) and c :[V] ~ R+ 
is a capacity function on the set of all possible undirected arcs. There is no arc set defined as such; 
it may be taken to be the set of arcs on which the capacity function is non-zero. A convenient 
example to bear in mind is that of a set of telephone exchanges (the nodes) with lines connecting 
some pairs of exchanges (the arcs). The capacity of an arc in this example would be the number 
of circuits between the given pair of exchanges. 

A commodity flowing in such a network is identified by its source and sink nodes. So af low in 
a network (V, T; c) is defined to be a function f~,:(V)--* R+ with the following properties: 

(f~,(x,y) --f~t(Y, x)) = O, Vx ~ V\{s, t} 
yEV 
y ~ x  

and 

(f~,(s, y)  - f~,(y, s)) = - ~, (f~,(t, y) -f~,(y,  t)) = IIZ, II, 
y e V  y~V 
y•s y # t  

where j[ f~, II is defined by the above and is known as the magnitude of the flow. 
A multi-commodity flow or multifiow F is defined to be a set of flows and the magnitude of  the 

multiflow is given by 

IIFl l= ~ Hfll. 
fE F 

It is natural to define some sort of "traffic" function of a multiflow, describing the amount of  
traffic due to the multiflow in any given arc. This function ~r: IV] ~ R+ is defined by 

~e[x,y] = ~ ( f ( x , y ) + f ( y , x ) ) ,  V[x,y]~[V]. 
f~ F 

The multi-commodity flow problems solved by Lomonosov appear in the following form. Given 
a network (V, T;e) ,  find a multiflow F =  {f~,:[s, t]E[T]} which solves the external multiflow 
problem (EMF): 

maximize 

subject to 

where 

a[s,t]llf~,ll, 
Is. t] ~ [r] 

(F[X,y] <<. C[x,y], ¥[x,y] ~ IV], 

a :[V] ~ R+ 

is the objective function. 

Lomonosov shows how to solve such problems for restricted cases of the objective function. 
Solution involves repeated solution of a subsidiary problem, known as the locking problem, which 
employs a generalized version of the max-flow algorithm of Ford and Fulkerson [4]. 

3. L O C K I N G  AND D R A I N I N G  

In order to generalize the max-fow algorithm we need to make a few definitions. 
A path P is a sequence of nodes P = Ix0, xt . . . . .  x,]. Sometimes we abbreviate this to P[xo . . .  x,]. 

A segment of the path from node x~ to node xj is denoted by P[x~.. .  x A. The concatenation of 
two paths P [ r . . .  s] and Q[s . . .  t] with a common end-point s is written P [ r . . .  s ] .Q[s . . ,  t] and 
is a path N with endpoints r and t, having the property that N [ r . . .  s] = P and N [ s . . .  t] = Q. 
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A cut in a network (V, T; c) is a set X c V. The capacity of  a cut is written c[X, X'] and is defined: 

c[X, X'] = ~ c[x, y]. 
Ix, y] E [X, X] 

Given a network (V, T; c) together with a multiflow F in the network and a set A c T, the 
internal and external flows of F with respect to A are: 

F ]  = { f~, ~ F:  s, t ~ A } (internal), 

F]  = {f~, ~ F:  [s, t] e [A, T\A]} (external). 

Note that as the network is not directed, we may take all flows in F ]  to be directed from the source 
node in A to a sink node in T\A (denoted by A). 

The set A c T is said to be locked by a multiflow F if F ]  is a maximal multiflow from A to A, 
that is if there exists a set X c V with XN T = A and ]l F ]  ][ = c[X, )7]. The locker of A, written 
A°(A), is defined to be the smallest subset of  V with this property. Any set X with this property 
is a minimal capacity cut in the sense that 

c[X,X']=min{c[Y, F]:Y c V, Y N T =  A}. 

Our objective is to take an intitial flow, and transform it so as to lock A, without diminishing 
its total magnitude. This is achieved by an operation called draining. This operation improves 
external flows of  F with respect to A by sacrificing internal flows. In a telecommunications problem, 
this process might be reducing internal traffic in an exchange group to free up capacity for external 
traffic between that group and some other. The mechanism used to achieve this is analogous to 
the max-flow algorithm of Ford and Fulkerson. 

Given a network (V, T; c) a set A = T a n d  a multiflow F i n  the network the marsh of  A, written 
M(A), is defined to be: 

M(A) =A U{x E V:~ss,(x,y)>O, 3y E V, 3s, t cA} .  

In the exchange group example, the marsh of  a group of  exchanges consists of  the exchanges 
themselves together with any exchange which is used in the routing of  internal calls. 

In the draining operation, the analogy to the familiar flow-augmenting path of  single commodity 
network theory is the active path. This is defined to be a path P = [x0, x~ . . . . .  x,] with the property 
that for all i = 1 . . . . .  n, either 

o r  

;Ax,_, ,  x,] < c[x,_,, x,] 

F]  (xi, x/_ l ) > 0. 

Thus, each arc of P either has available capacity or carries some external flow from A in the 
backwards direction. Ford and Fulkerson showed in the single commodity case that a flow is 
maximal if and only if there is no flow-augmenting path from the source node to the sink node. 
In our example with exchanges, this means there is no route available for a call to get through. 
Ford's and Fulkerson's result extends to multiflows in the following way: 

Proposition (Lomonosov) 

Given a network [V, T; c), a set A c Tand  a multiflow F, F ]  is a maximal multiflow (i.e. Flocks  
A) if and only if there is no active path from M(A) to M(/T). 

Proof (=~) Let F lock A and assume all flows in F ]  are oriented with source in A and sink 
in ,4. Then there some minimal set A'~(A) = V with £~'(A) N T = A and [I F~ [[ = c[A°(A)..~(A)]. 
Clearly M(A ) ~_ £P(A ) and M(A)  ~ .~('(A ) so that for all x ~ A°(A ) and y e .~(A ), both 

(Ax, y] = c[x, y] 

and 

F~(y,x)=O,  

hold.  So there can be no active path from M(A) to M(.4). 
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(~=) Assume there are no active pa ths  f rom M ( A )  to M(/T).  Consider  the set X o f  nodes 
reachable  a long active pa ths  f rom M(A) .  Then  clearly M ( A ) ~ _ X  and by the hypothesis ,  
X A M(/T) = ~ ,  so M ( X )  ~_ .~. Let  x e X and y e .~. Then  

(F[X,y]=c[x,y]  and FeA(y,x)=O, 

since otherwise an active pa th  reaching x could be extended by y. N o w  (G [x ,y]  = 0, since 
M ( A )  ~ X, and (F~r[x, y] = 0 since M(X)___ .~, so since F = F~UF~UF~,i t  must  be the case that  
(F[X, y ] = F~ (x, y).  Hence  for  all [x, y ] e [X, .Fir], F~ (x, y )  = ( r  [x, y ] = c [x, y ] and so II F% II = c [X, ~ .  
Hence F locks A. [ ]  

This propos i t ion  demons t ra tes  the s t rong relat ionship between active pa ths  and maximal  
mult if lows f rom subsets o f  the terminal  nodes. But how can active pa ths  be used to augment  flow 
f rom A to .T? This  is achieved by the draining opera t ion  described below. 

3.1. The drain procedure 

Given  a ne twork  with a mult if low F and  a subset  A of  the terminal  nodes,  the drain procedure  
uses active pa ths  to improve  II F~ II by sacrificing II F~ II and I! F~ II. Repeated  appl icat ions o f  the 
drain procedure  will t r ans fo rm F so tha t  it locks A wi thout  diminishing the total  II F II. The  drain 
procedure  works  as follows. 

Let F be a mult if low in a ne twork  (V, T; c) and let A c T. Assume F does not  lock A. Then  
there exists an active pa th  f rom M ( A )  to M(,,T): say P = [p = x0, x2 . . . . .  x,  = q] is an active pa th  
with p e M ( A  ) and q e M(.,T). 

Let f~t e F and define a line offer to be the f o w  off~, a long a pa th  L = [s = x0, Xl, x2 . . . . .  x ,_  1, 
x, = t]. So ~,(x~_~, x~) > 0, for  all i = 1 . . . . .  n. The  width of  the line is defined to be: 

w(L)  = min{f~,(xi_ 1, x / ) : l  ~< i ~< n}. 

So the width is the m a x i m u m  a m o u n t  by which the flow f~, can be reduced a long L in the draining 
opera t ion.  

N o w  p e M(A  ) means  either p e A or  there exists a line o f  some flow in F ]  which passes through 
p. I f  the lat ter  is the case, call such a line K = [k0, kt . . . . .  k~ = p . . . . .  kin]. Similarly q e M(, ,])  
means  either q e~T or there is some line of  F~r passing th rough  q. Call such a line 
L = [10, Ii . . . . .  lj = q . . . . .  lr] (refer to Fig. 1). The  first pa r t  o f  the drain procedure  is to use the 
active pa th  to " d r a w "  K up towards  q until K passes th rough  q. This is achieved as follows. 

Case I 

The first arc o f  the active pa th  has some residual capaci ty,  i.e. ~F[Xo, Xt] < C[XO, Xl ]. In the ease 
K can be " t h r e a d e d "  up to xt by setting the new width o f  K to be: 

w(K) = m i n  { w ( K ) ,  (c[x0,  xt ] - ~F[Xo, X, ] ) /2}  

and extending K to [k0, kt . . . . .  k~ = x o, x~, Xo, ki+t . . . . .  kin] (refer to Fig. 2). 

I 2. ) 
Fig. 1. The general situation prior to a drain procedure showing the 

active path and the K and L lines. 

X i X 2 Xn- l 

k,, 

Fig. 2. The K line is "threaded" up towards the L line 
by utilizing available capacity. 
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k ~ , ~  I° 

jg----~ 

Fig. 3(a). The first arc of the active path has some back- 
wards flow of F~ passing along the J line. 

- = J s  

S o 

33 

Fig. 3(b). Flow is swapped between the J and K lines. The 
new K line passes from Jo to kin, 

Case  2 

The first arc of the active path has some backward flow, i.e. F ~ ( x l ,  x0)>  0. In this case 
there must exist a line of  some flow in F~ which passes through the arc (xl,x0): say 
J = [Jo,Jl . . . . .  j i  = x t , j i + l  = Xo . . . . .  Js], where fj0js EF~ is such a line [refer to Fig. 3(a)]. Now K 
can be "swapped" with J so that the new K would be [Jo, J~ . . . .  ,Jr = x~ ,Ji+ t = xo = k~, k~+ j . . . . .  k,~] 
and would have new width w ( K ) = m i n { w ( K ) , w ( J ) } ,  while J would be swapped to 
[k0, kl . . . . .  k~ -- x0 =j~+l, • • • ,js], with the same width as the new K [refer to Fig. 3(b)]. 

In either case, the new K line passes through xl. This process can be repeated until the active 
path has degenerated to a single node: until the lines of F~ and F~r (the K and L lines, respectively) 
pass through the common node, q [refer to Fig. 4(a)]. Once this is achieved, the lines of  F~ and 
F~- may be drained, to enable F~ to be increased. This is performed as follows [refer to Fig. 4(b)]. 

Set E = min{w(K), w(L)}. Decrease the flow along the K line (this is a flow in F~) by E and 
decrease the flow along the L line (a flow in F~r) by E also. Increase flow from the source of  K, 
along the K line to q, and along the L line to the sink of  L by e and increase the flow from the 
sink of  K, backwards along K (remember the network is undirected) to q, and then backwards 
along the L line to the source of  L by E also. Since the terminal nodes of K are in A and the terminal 
nodes of  L are in ,4, this process increases II F~ II by 2c, while decreasing [I F~ II and II F~ it by e each. 
Note that if a special case occurs, such as if q ~ ~T so the L line is not needed, one or both of  the 
latter flows may not be decreased. So it is in fact possible to increase II F II. 

It can be shown that if the capacities of the network are integral, with half-integral flows which 
have an integral traffic function, then the drain operation preserves this situation. 

It is clear that repeated applications of  the draining operation will result in a multiflow which 
locks some required subset of  the terminal nodes. 

3.2. S o l v i n g  m u l t i f l o w  p r o b l e m s  

The drain procedure is useful as it can be shown that certain classes of multi-commodity flow 
problems can be solved by simultaneously locking a number of  subsets of the terminal nodes. 
Deciding exactly what families of  subsets of  the terminal nodes are simultaneously lockable is a 

k ~  I° 

Fig. 4(a). The degenerate case: the active path has been 
reduced to a single node by drawing the K line up towards 

the L line. 

ko ~ -4~qP-~---~ ---ql l o 

7" 

k,n 0-" " ~ ir 
Fig. 4(b). Flow is drained from the K and L lines 
and the free capacity is used to push flow from A to .~. 
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problem known as the locking problem. Lomonosov shows how to solve this problem, classifying 
the types of families of sets which may be locked. 

It can be shown that the problem of finding a multiflow of maximum magnitude in a network 
with terminal set T can be solved by simultaneously locking the family of proper subsets of T given 
by {(t):t e T}. This family can be shown to be lockable, so the maximal multiflow problem may 
be solved. 

Lomonosov also shows how to solve the EMF for special cases of {0, 1}-valued objective 
functions a. This type of problem is just the maximal multiflow problem where only flow of specified 
commodities is required. The solution involves locking a family of subsets of the terminal nodes 
and then manipulating the resulting solution. 

4. CONCLUSIONS 

4.1. An example of problems solved 
The following example of a maximal multiflow problem on a network with 10 nodes and 6 

terminal nodes was solved using a desktop computer (IBM-AT clone) in a matter of seconds. Figure 5 
shows the network together with the capacities on the arcs. The maximal multiflow in this network 
is shown in Figs 6(a)-6(d). These figures depict the flows originating the nodes 1, 2, 3 and 4, 
respectively. To avoid clutter, only arcs along which the flow is non-zero are represented. Arcs are 
directed to correspond to the direction of the flow and the amount of flow is indicated against each 
arc. The net flow into or out of a terminal node is indicated by an incoming or outgoing arrow. 
Note that these figures actually represent the combined flow of several commodities. For example 
Fig. 6(b) shows the flows f23, f24, f25 and f26" 

4.2. Performance 
The algorithm was tested on randomly generated networks with a range of values for the number 

of nodes, the number of commodities which is ([ Q)[ ), where t is the number of terminal nodes and 
the density of arcs. The performance is much as one would expect. 

Figure 7 shows the times taken for the algorithm to run for the single commodity case on 
networks having a range of sizes, but all having about two thirds of the possible arcs. A quadratic 
function fitted the data well. 

Fig. 5. Example of  a network with 10 nodes, six of  them terminal nodes. Capacities are indicated against 
each arc. Arcs not drawn have zero capacity. Capacities are integral and range from 0 to 14. 

ter m/hal node 

intermediary node 



New methods for multi-commodity flows 35 

29 

12 

68 

12 

Fig. 6(a). The flow originating at node 1. 
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Fig. 6(b). The flow originating at node 2. 
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Fig. 6(c). The flow originating at node 3. 
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Fig. 6(d). The flow originating at node 4. 
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Figure 8 shows a typical case of the variation of time taken for the algorithm to run as the 
number of commodities (or terminal nodes) varies. The significant part of this graph is the lower 
part, since as the terminal nodes get very dense in the network, most arcs have both their nodes 
being terminal, and so may be immediately saturated with flow, thus speeding up the process of 
maximizing flow. Growth of time taken with number of terminal nodes is not readily fitted by a 
lower-order polynomial; we would expect it to be possibly exponential. 

Figure 9 shows a typical case of the times taken when the number of commodities is fixed while 
the number of nodes varies. This relationship appears to be fitted well by a quadratic function. 

To verify these assertions rigorously will require a lengthy complexity analysis of the algorithm. 

4.3. Future work 

The results so far are sufficiently encouraging to warrant pursuit of generalizations to a wider 
range of problems. 
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Fig. 7. The plotted points show the times taken from the algorithm to run on networks with varying 
numbers of nodes for the single commodity case. A quadratic function has been fitted to the data. 
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Fig. 8. The plotted points show the times taken for the algorithm to run on networks with a fixed number 
of nodes (22 nodes) but with an increasing number of terminal nodes (commodities). 
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Fig. 9. The plotted points show the times taken for the algorithm to run on networks with varying 
numbers of nodes but all having 4 terminal nodes (or 6 commodities). A quadratic function has been fitted 

to the data. 

In some mul t i -commodi ty  flow applications the ability to solve the same sorts o f  problems for 
directed networks  is important .  However ,  the extension to the directed case is not,  as one might  
suppose, a trivial one. Since the directed case is less impor tan t  in mos t  te lecommunicat ions 
applications,  we shall leave discussion o f  this problem to another  time. 

Perhaps the greatest l imitation o f  the a lgor i thm presented is that  it merely maximizes total traffic 
wi thout  giving per formance  to any node pairs. A partial solution is given by the {0, l}-valued 
objective functions ment ioned at the end o f  Section 3.2, in which only selected commodit ies  are 
maximized. Such a problem can be solved by a relatively s t ra ightforward extension o f  the methods  
o f  Section 3. To  determine a complete  solution it is necessary to consider more  general objective 
functions.  Solutions to such general problems appear  to require a more  fully developed duality 
theory. This is a major  thrust  o f  our  research. 
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