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1. Introduction

When the growth limitations are based on the proportion of available resource
utilized, the food-limited model was proposed in [4,7,8] as follows (Model-1):

dN(t)

dt
= rN(t)

K − N(t)

K + cN(t)
.

Here the population density is denoted byN(t) and the positive constantsr andK represent
the growth rate of the population and the carrying capacity of the habitat, respectivel
constantc > 0 andr/c is the replacement of mass in the population atK . This model also
allows incorporation of both environmental and food effects of toxicant stress. Bas
the fact that population density may vary spatially as well as temporally, in [2] the au
proposed two types of diffusive models (Model-2 and Model-3):

∂N(t, x)

∂t
− d∆N(t, x) = r(x)N(t, x)

K(x) − N(t, x)

K(x) + c(x)N(t, x)
,

∂N(t, x)

∂t
− d∆N(t, x) = r(x)N(t, x)

K(x) − aN(t, x) − bN(t − τ, x)

K(x) + ac(x)N(t, x) + bc(x)N(t − τ, x)
,

where∆ denotes the Laplace operator,d > 0 denotes the distributive rate.a andb are
positive constants,c(x) is positive and Hölder continuous inx. The time-delay term is
induced on the assumption that a growing population requires more food (growth and
tenance) than a saturated one (maintenance only). In [2] the existence and unique
a positive steady state solution are established for these two models by using uppe
methods. It is shown that as long as the magnitude of the instantaneous self-lim
and/or toxicant effects are larger than that of the time delay effects in Model-3, th
lutions of both reaction–diffusion systems have the same asymptotic behavior (exti
or converging to the positive steady state solution, depending on the growth rate
species).

From another direction, the derivation of Model-1 is based on the fact that the popu
densities rarely converge monotonically toK and usually have a tendency to fluctua
around the equilibrium; Model-1 can be modified by assuming that the average g
rate is a function of the delayed argumentt − τ . Detailed arguments are given in [5,8
Recently, the authors in [1] also take spatial dispersal and environmental heterog
into consideration and consider the following model (Model-4):

∂N(t, x)

∂t
− ∆N(t, x) = r(x)N(t, x)

K(x) − N(t − τ, x)

K(x) + c(x)N(t − τ, x)
.

Stability and bifurcations of the steady state solutions to Model-4 are discussed
Mathematically speaking, Model-4 can be seen as a particular case of Model-3 for th
a = 0 andb = 1. However, it should be noted that witha = 0, the upper and lower solutio
techniques mentioned above do not apply.

Furthermore, notice that the carrying capacity and the coefficients in the previous
els may vary spatially as well as temporally, and may also vary in a seasonal sca
respect to the seasonal variation of the environment, and also take the effect of time
into consideration, based on Model-3 in [2], we can get a generalized reaction–dif
model as follows:
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∂N(t, x)

∂t
− d∆N(t, x)

= r(t, x)N(t, x)
K(t, x) − a0(t, x)N(t, x) − c0(t, x)N(t − τ, x)

K(t, x) + b0(t, x)N(t, x) + d0(t, x)N(t − τ, x)
,

(t, x) ∈ R+ × Ω, (1.1)

B[N ](t, x) = 0, (t, x) ∈ R+ × ∂Ω, (1.2)

N(t, x) = N0(t, x), (t, x) ∈ [−τ,0] × Ω̄. (1.3)

Here we do not limitb0, d0 to be the formsa0c, c0c as in Model-3, since these limite
forms of coefficients are only for convenience of constructing the upper–lower solu
in [2]. Now that the generalized model is constructed, it is very natural to ask some
tions about this model. Is the upper–lower method still valid for this initial-boundary v
problem? Are there any similar results to those in [2]? It seems plausible that sol
to (1.1)–(1.3) are attracted to a periodic solution. For a smooth functionu(t, x), if there
exists a smooth periodic functionθ(t, x) such that limt→∞[u(t, ·) − θ(t, ·)] = 0 in C(Ω),
then we say the functionu(t, x) has asymptotic periodicity. In this paper we will reve
that this property holds for the solution of our problem by using the upper–lower so
method. Here we mention that in [9] the author gives an early introduction to the m
of using upper and lower solution to find periodic solution for reaction–diffusion syst
the readers can refer to it.

It is reasonable to choose the distributive rated = 1 due to the transform metho
of variables in [1]. If we denoteu(t, x) = N(t, x), a(t, x) = a0(t, x)/K(t, x), b(t, x) =
b0(t, x)/K(t, x), c(t, x) = c0(t, x)/K(t, x), d(t, x) = d0(t, x)/K(t, x) and φ(t, x) =
N0(t, x), then problem (1.1)–(1.3) may be rewritten as:

∂u(t, x)

∂t
− ∆u(t, x)

= r(t, x)u(t, x)
1− a(t, x)u(t, x) − c(t, x)u(t − τ, x)

1+ b(t, x)u(t, x) + d(t, x)u(t − τ, x)
, (t, x) ∈ R+ × Ω, (1.4)

B[u](t, x) = 0, (t, x) ∈ R+ × ∂Ω, (1.5)

u(t, x) = φ(t, x), (t, x) ∈ [−τ,0] × Ω̄. (1.6)

In this paper we mainly study the initial-boundary value problem (1.4)–(1.6) unde
following elementary hypotheses:

(H1) Ω is a bounded domain inRn with smooth boundary∂Ω , the boundary condition i
given by

B[u] = u or B[u] = ∂u

∂n
+ γ (x)u.

Here,γ (x) ∈ C1+α(∂Ω) (0 < α < 1) andγ (x) � 0 on ∂Ω , and∂/∂n denotes the
outward normal derivative on∂Ω , R+ = (0,∞).

(H2) The coefficientsr(t, x), a(t, x), b(t, x), c(t, x) andd(t, x) areT -periodic in t and
Hölder continuous onR × Ω̄ with r(t, x) > 0; a(t, x) > 0; b(t, x) � 0, c(t, x) � 0
andd(t, x) � 0. We denoter1, a1, b1, c1, d1 andr2, a2, b2, c2, d2 to be the minimum
and maximum values ofr, a, b, c, d on [0, T ] × Ω̄ with b2 > 0, respectively.
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(H3) The initial functionφ(t, x) ∈ C0,1([−τ,0] × Ω̄) is a nonnegative, nontrivial func
tion, which satisfies the compatibility condition, i.e.,B[φ](0, x) = 0 on∂Ω .

To study the initial-boundary value problem (1.4)–(1.6), we first state some resu
the following boundary value problem:

∂u(t, x)

∂t
− ∆u(t, x) = u(t, x)

m(t, x) − p(t, x)u(t, x)

n(t, x) + q(t, x)u(t, x)
, (t, x) ∈ R+ × Ω, (1.7)

B[u](t, x) = 0, (t, x) ∈ R+ × ∂Ω, (1.8)

where m(t, x), n(t, x),p(t, x) and q(t, x) are T -periodic in t and Hölder continuou
on R × Ω̄ with m(t, x) > 0, n(t, x) > 0, p(t, x) > 0 and q(t, x) � 0. We also de-
note m1, n1,p1, q1 and m2, n2,p2, q2 to be the minimum and maximum values
m(t, x), n(t, x),p(t, x) andq(t, x) on [0, T ] × Ω̄ . Problem (1.7), (1.8) is the particula
case of problem (1.4), (1.5) withc(t, x) ≡ d(t, x) ≡ 0, r(t, x) = m(t, x)/n(t, x), a(t, x) =
p(t, x)/m(t, x) andb(t, x) = q(t, x)/n(t, x).

Denote

f (t, x,u) = m(t, x) − p(t, x)u(t, x)

n(t, x) + q(t, x)u(t, x)
,

then for any(t, x) ∈ R+ × Ω̄ , we can check thatf (t, x,u) is strictly decreasing inu for
u � 0 andf (t, x,m2/p1) � 0. Furthermore, asm(t, x), n(t, x), p(t, x), andq(t, x) are
all Hölder continuous onR+ × Ω̄ , we can also check thatf,fu ∈ C(R+ × Ω̄ × R+), and
there exists a constantα (0 < α < 1) such thatf (· , · , u), fu(· , · , u) ∈ Cα,α/2(R+ × Ω̄).
So from the results given in [17,18], we get the following lemma.

Lemma 1.1. The eigenvalue problem

∂ϕ(t, x)

∂t
− ∆ϕ(t, x) − m(t, x)

n(t, x)
ϕ(t, x) = σ(m/n)ϕ(t, x), (t, x) ∈ R+ × Ω,

B[ϕ] = 0, (t, x) ∈ R+ × ∂Ω, (1.9)

whereϕ is T -periodic int , has a principal eigenvalueσ(m/n) with positive eigenfunction

(1) If σ(m/n) � 0, then the trivial solution0 is globally asymptotically stable in prob
lem(1.7), (1.8)with respect to every nonnegative smooth initial function.

(2) If σ(m/n) < 0, then problem(1.7), (1.8)admits a positiveT -periodic solutionθ(t, x)

on Ω which is globally asymptotically stable with respect to every nonnegative,
trivial smooth initial function.

We arrange our paper as follows. In Section 2 we will first study the global as
totic stability of trivial solutionu = 0 of the initial-boundary value problem (1.4)–(1.6
and then set forth a result about the periodic quasi-solutions of the boundary value
lem (1.4), (1.5). The proof of existence and uniqueness of periodic solutions to bou
value problem (1.4), (1.5) will be given in Section 3. The effects of time-delay on th
ymptotic behavior will be discussed in Section 4. Some numerical results will be giv
applications in Section 5, and some discussion about the problem is given in Sectio
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2. Stability of trivial solution and periodic quasi-solutions

In this section, we mainly discuss the stability of the steady-state solutionu = 0 and the
existence of the periodic quasi-solutions of the initial boundary value problem (1.4)–
Here we use the upper–lower solution method, and hence the nonlinear term shou
some monotone property, which can be ensured by the following lemma.

Lemma 2.1. For t ∈ R+, x ∈ Ω , 0� u � 1/a1 andξ � 0, if

a2d2 − b1c1 � a1(c1 + d1), (2.1)

then for fixedt, x, u, the functionF(t, x,u, ξ) = (1− au − cξ)/(1+ bu + dξ) is monotone
decreasing inξ .

Proof. To claimF(t, x,u, ξ) is monotone decreasing inξ only if ∂F/∂ξ � 0.

∂F

∂ξ
(t, x,u, ξ) = ∂

∂ξ

(
1− au − cξ

1+ bu + dξ

)

= 1

(1+ bu + dξ)2

[−c(1+ bu + dξ) − d(1− au − cξ)
]

= − 1

(1+ bu + dξ)2

[
c + d + (bc − ad)u

]
.

If a2d2 − b1c1 � 0, then∂F/∂ξ � 0 is trivially satisfied. Ifa2d2 − b1c1 > 0, then the
inequalities 0� u � 1/a1 and (2.1) imply that∂F/∂ξ � 0. Lemma 2.1 is thus proven.�
Remark. Since for fixedt ∈ R+, x ∈ Ω andξ � 0, it is easy to seeF(t, x,1/a1, ξ) � 0,
so 1/a1 is an upper bound ofu in R+ × Ω according to the following lemma.

In the following we denoteuτ = u(t − τ, x) for simplicity.

Lemma 2.2. Under the condition(2.1), if there exist functions̄u(t, x), u(t, x) ∈ C1,2(R+ ×
Ω)∩C0,1([−τ,+∞)× Ω̄) (called coupled upper and lower solutions) such thatū(t, x) �
u(t, x) on [−τ,+∞) × Ω̄ , and they satisfy the following inequalities

∂ū

∂t
− ∆ū � rū

1− aū − cuτ

1+ bū + duτ

, (t, x) ∈ R+ × Ω,

∂u

∂t
− ∆u � ru

1− au − cūτ

1+ bu + dūτ

, (t, x) ∈ R+ × Ω, (2.2)

B[ū] � 0� B[u], (t, x) ∈ R+ × ∂Ω, (2.3)

ū � φ � u, (t, x) ∈ [−τ,0] × Ω̄, (2.4)

then the initial-boundary value problem(1.4)–(1.6)has a unique solutionu ∈ C1,2(R+ ×
Ω) ∩ C0,1([−τ,+∞) × Ω̄) with ū � u � u on [−τ,+∞) × Ω̄ .
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In caseū, u satisfy (2.2), (2.3) with̄u � u onR+ × Ω̄ , we also call̄u, u upper and lower
solutions of problem (1.4), (1.5). For the proof of Lemma 2.2 we refer to the mono
method in [11,16]. Noting the elementary hypotheses(H2) and(H3), there always exist
a positive numberα such thatα � φ(t, x) on [−τ,0] × Ω̄ . Therefore, we can choos
α large enough such thatα and 0 is a pair of upper and lower solutions of the prob
(1.4)–(1.6) according to (2.2)–(2.4). So Lemma 2.2 implies that problem (1.4)–(1.6)
unique smooth solutionu(t, x) on [−τ,+∞) × Ω̄ .

Theorem 2.1. Let the hypotheses(H1)–(H3) and the condition(2.1) hold. If σ(r) � 0,
then the trivial solutionu = 0 is globally asymptotically stable in(1.4)–(1.6)with respect
to every nonnegative nontrivial initial functionφ(t, x).

Proof. Let U(t, x) be the solution of the following parabolic problem:

∂U(t, x)

∂t
− ∆U(t, x) = r(t, x)U(t, x)

1− a(t, x)U(t, x)

1+ b(t, x)U(t, x)
, (t, x) ∈ R+ × Ω,

B[U ](t, x) = 0, (t, x) ∈ R+ × ∂Ω,

U(0, x) = φ(0, x), x ∈ Ω̄. (2.5)

As φ(0, x) � 0 onΩ̄ , it is easy to know thatU(t, x) � 0 onR+ × Ω̄ . Define the function
Ũ (t, x) asŨ (t, x) = φ(t, x) on [−τ,0] × Ω̄ andŨ (t, x) = U(t, x) onR+ × Ω̄ . From the
comparison results, we know thatŨ(t, x) and 0 is a pair of upper and lower solutions of t
initial-boundary value problem (1.4)–(1.6). Therefore, by Lemma 2.2 there exists a u
solutionu(t, x) for (1.4)–(1.6) with 0� u � Ũ on [−τ,+∞) × Ω̄ . According to the cas
σ(r) � 0 in Lemma 1.1, we have

lim
t→∞‖u(t, ·)‖C(Ω̄) � lim

t→∞‖U(t, ·)‖C(Ω̄) = 0.

Theorem 2.1 is thus proven.�
For the following boundary value problem:

∂u(t, x)

∂t
− ∆u(t, x) = r(t, x)u(t, x)

1− a(t, x)u(t, x)

1+ b(t, x)u(t, x)
, (t, x) ∈ R+ × Ω,

B[u](t, x) = 0, (t, x) ∈ R+ × ∂Ω, (2.6)

if the eigenvalueσ(r) < 0, then Lemma 1.1 ensures the existence of a positiveT -periodic
solutionθ0(t, x) onΩ . Moreover, if further

σ

(
r

1− cθ0τ

1+ dθ0τ

)
< 0,

then the boundary value problem

∂u

∂t
− ∆u = ru

(1− cθ0τ ) − au

(1+ dθ0τ ) + bu
, (t, x) ∈ R+ × Ω,

B[u](t, x) = 0, (t, x) ∈ R+ × ∂Ω, (2.7)
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also has a positiveT -periodic solutionΘ(t, x) on Ω . It is easy to check thatθ0 andΘ

is a pair of upper and lower solutions of the boundary value problem (1.4), (1.5)
0 � Θ � θ0 � 1/a1. ForΘ � u � θ0, if a2d2 − b1c1 � a1(c1 + d1), then from Lemma 2.1
we know that the monotone method is valid. Moreover, corresponding to the bou
value problem (1.4), (1.5) we have the system below:

∂u1

∂t
− ∆u1 = ru1

1− au1 − cu2τ

1+ bu1 + du2τ

, (t, x) ∈ R+ × Ω,

∂u2

∂t
− ∆u2 = ru2

1− au2 − cu1τ

1+ bu2 + du1τ

, (t, x) ∈ R+ × Ω,

B[u1] = B[u2] = 0, (t, x) ∈ R+ × ∂Ω. (2.8)

If the solution(u1, u2) of system (2.8) exists and the componentsu1 andu2 satisfyu1 � u2,
then we callu1 andu2 a pair of quasi-solutions of the boundary value problem (1.4), (1
Using the monotone methods and referring to the results in [10,12,19], we get the foll
results.

Theorem 2.2. Let hypotheses(H1)–(H3) and the condition(2.1) hold. If σ(r) < 0 and
σ(r(1− cθ0τ )/(1+ dθ0τ )) < 0, then the boundary value problem(1.4), (1.5)has a pair of
orderedT -periodic quasi-solutions̄θ , θ that satisfy system(2.8) with Θ � θ � θ̄ � θ0 on
R+ × Ω̄ . Moreover, for every nonnegative nontrivial initial functionφ, the time-dependen
solutionu(t, x) of the initial-boundary value problem(1.4)–(1.6)satisfies

lim inf
t→∞

[
u(t, ·) − θ(t, ·)] � 0� lim sup

t→∞
[
u(t, ·) − θ̄ (t, ·)] in C(Ω̄). (2.9)

Remark. If the Laplace operator∆ is substituted by a uniformly strong elliptic operator
the initial-boundary value problem (1.4)–(1.6), then Theorems 2.1 and 2.2 also hold

3. Existence and uniqueness of periodic solution and the asymptotic behavior

Based on the results in Theorem 2.2, to reveal the asymptotic periodicity of the so
for the initial-boundary value problem (1.4)–(1.6), it needs to be shown that there e
periodic solution of the boundary value problem (1.4), (1.5), i.e.,θ̄ ≡ θ . Here we use the
methods in [15] to set forth our arguments. From now on, we assume all the conditi
Theorem 2.2 are satisfied and let

R = r

(1+ bθ̄ + dθτ )(1+ bθ + dθ̄τ )
.

According to Theorem 2.2,̄θ andθ satisfy the system (2.8) and hence

∂

∂t
(θ̄ − θ) − ∆(θ̄ − θ)

= r

{
θ̄ (1− aθ̄ − cθτ )

1+ bθ̄ + dθτ

− θ(1− aθ − cθ̄τ )

1+ bθ + dθ̄τ

}
= R

{
θ̄ (1− aθ̄ − cθτ )(1+ bθ + dθ̄τ ) − θ(1− aθ − cθ̄τ )(1+ bθ̄ + dθτ )

}
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= R
{[

(1+ dθ̄τ )
(
1− a(θ̄ + θ

) − cθτ ) − abθ̄θ
]
(θ̄ − θ)

+ θ(bcθ̄ − adθ + c + d)(θ̄τ − θτ )
}
. (3.1)

Notice that 0� Θ � θ � θ̄ � θ0 � 1/a1 and the condition (2.1) impliesbcθ̄ − adθ + c +
d � 0. We define the numbersP, Q, R1, R2 by

P = sup
(t,x)∈[0,T ]×Ω̄

{
(1+ dθ0τ ) − (2aΘ + cΘτ )(1+ dΘτ ) − abΘ2};

Q = sup
(t,x)∈[0,T ]×Ω̄

{
θ0(bcθ0 − adΘ + c + d)

};
R1 = inf

(t,x)∈[0,T ]×Ω̄

{
r

(1+ bθ0 + dθ0τ )2

}
;

R2 = sup
(t,x)∈[0,T ]×Ω̄

{
r

(1+ bΘ + dΘτ )2

}
. (3.2)

It is easy to check thatR1 � R � R2 andQ � 0. Notice thatθ̄ � θ , the relations in (3.1
imply that

∂

∂t
(θ̄ − θ) − ∆(θ̄ − θ) � RP(θ̄ − θ) + RQ(θ̄τ − θτ ). (3.3)

In the following, we search for the sufficient conditions associated with different bo
ary conditions to ensurēθ ≡ θ .

Part A. Dirichlet conditions

For the Dirichlet boundary conditions̄θ = θ = 0 on ∂Ω , sinceθ̄ − θ � 0, we multi-
ply (3.3) by(θ̄ − θ), and integrate it overΩ , then the left-hand side and the right-hand s
of (3.3) can be defined, respectively,

I =
∫
Ω

(θ̄ − θ)
∂(θ̄ − θ)

∂t
dx −

∫
Ω

(θ̄ − θ)∆(θ̄ − θ) dx

= 1

2

d

dt

∫
Ω

(θ̄ − θ)2 dx +
∫
Ω

∣∣∇(θ̄ − θ)
∣∣2 dx, (3.4)

II = P

∫
Ω

R(θ̄ − θ)2 dx + Q

∫
Ω

R(θ̄ − θ)(θ̄τ − θτ ) dx. (3.5)

From the Poincaré inequality (see [14]),∫
Ω

∣∣∇(θ̄ − θ)
∣∣2 dx � λ1

∫
Ω

(θ̄ − θ)2 dx,

whereλ1 is the principal eigenvalue of−∆ onΩ with zero Dirichlet boundary conditions
Denote by‖ · ‖ theL2 norm onΩ . Then from (3.4) we get

I � 1 d ‖θ̄ − θ‖2 + λ1‖θ̄ − θ‖2. (3.6)

2 dt
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Case 1. If P � 0, noting thatQ � 0 and 0< R1 � R � R2, from (3.5) we have

II � PR2

∫
Ω

(θ̄ − θ)2 dx + QR2

∫
Ω

(θ̄ − θ)(θ̄τ − θτ ) dx

� PR2‖θ̄ − θ‖2 + QR2‖θ̄ − θ‖ · ‖θ̄τ − θτ‖
�

(
PR2 + 1

2
QR2

)
‖θ̄ − θ‖2 + 1

2
QR2‖θ̄τ − θτ‖2. (3.7)

Combining (3.6) with (3.7) leads to

1

2

d

dt
‖θ̄ − θ‖2 �

(
PR2 + 1

2
QR2 − λ1

)
‖θ̄ − θ‖2 + 1

2
QR2‖θ̄τ − θτ‖2. (3.8)

Integrating (3.8) with respect tot on [0, T ], and noting that‖θ̄ − θ‖2 is T -periodic int , it
yields

0=
T∫

0

{
1

2

d

dt
‖θ̄ − θ‖2

}
dt

�
(

PR2 + 1

2
QR2 − λ1

) T∫
0

‖θ̄ − θ‖2 dt + 1

2
QR2

T∫
0

‖θ̄τ − θτ‖2 dt

= [
(P + Q)R2 − λ1

] T∫
0

‖θ̄ − θ‖2 dt. (3.9)

If the inequality(P + Q)R2 − λ1 < 0 is satisfied, then from (3.9) we get

T∫
0

‖θ̄ − θ‖2 dt ≡ 0,

which impliesθ̄ ≡ θ onR+ × Ω̄ .

Case 2. If P < 0, then the same process as in Case 1 reveals thatPR1 + QR2 − λ1 < 0
ensures̄θ ≡ θ onR+ × Ω̄ .

From the above arguments we know that the boundary value problem (1.4), (1.
periodic solutions under certain conditions. Now ifθ1 is any other solution of the bounda
value problem withΘ � θ1 � θ0, thenθ1 andθ is also a pair of upper and lower solutio
of the boundary value problem (1.4), (1.5) and these also satisfy the system (2.8). Ap
the same reasoning as previously forθ̄ andθ , yieldsθ1 ≡ θ on R+ × Ω̄ , provided certain
conditions are satisfied. Hence theT -periodic solution of the boundary value problem
also unique.
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To ensure the existence ofθ̄ andθ , it suffices to check thatσ(r) < 0, σ(r(1 − cθ0τ )/

(1 + dθ0τ )) < 0 anda2d2 − b1c1 � a1(c1 + d1). As r � r(1 − cθ0τ )/(1+ dθ0τ ), σ(r) �
σ(r(1− cθ0τ )/(1+ dθ0τ )), we can get the above conditions provided that

r
1− cθ0τ

1+ dθ0τ

> λ1.

We now state some sufficient conditions for the existence and uniqueness of the p
solution of problem (1.4), (1.5):

(1) P � 0, (P + Q)R2 < λ1 < r
1− cθ0τ

1+ dθ0τ

, a2d2 − b1c1 � a1(c1 + d1);
or

(2) P < 0, PR1 + QR2 < λ1 < r
1− cθ0τ

1+ dθ0τ

, a2d2 − b1c1 � a1(c1 + d1),

(3.10)

whereP,Q,R1,R2 are given by (3.2).

Theorem 3.1. Let hypotheses(H1)–(H3) hold. If either(1) or (2) in (3.10) is satisfied,
then the boundary value problem(1.4), (1.5) with zero Dirichlet boundary condition ha
a unique, smooth,T -periodic solutionθ(t, x) on R+ × Ω . Moreover, for every nonnega
tive, nontrivial initial functionφ(t, x), the time-dependent solutionu(t, x) of the initial-
boundary value problem(1.4)–(1.6)has the asymptotic periodicity:

lim
t→∞

[
u(t, ·) − θ(t, ·)] = 0 in C(Ω̄).

Part B. Neumann conditions

In caseγ (x) ≡ 0 on ∂Ω , we have the Neumann boundary conditions∂θ̄/∂n = ∂θ/

∂n = 0. In this case, we can search for sufficient conditions which only depend o
coefficients and not onθ0, Θ . According to (2.2) and (2.3), we can get a pair of coup
upper and lower positive constant solutionsk2, k1 for the boundary value problem (1.4
(1.5) by solving the following system:

1− a1k2 − c1k1 = 0,

1− a2k1 − c2k2 = 0. (3.11)

Thus, ifa1 > c2, we get

k2 = a2 − c1

a1a2 − c1c2
, k1 = a1 − c2

a1a2 − c1c2
. (3.12)

It is easy to check that 0< k1 � k2 � 1/a1.
In this case we can set the numbersP, Q, R1, R2 as:

P = 1+ d2k2 − (2a1 + c1)(1+ d1k1)k1 − a1b1k
2
1;

Q = k2(b2c2k2 − a1d1k1 + c2 + d2);
R1 = r1

2
; R2 = r2

2
. (3.13)
(1+ b2k2 + d2k2) (1+ b1k1 + d1k1)
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As a2d2 − b1c1 � a1(c1 + d1), it is easy to check thatQ � 0. If P < 0, then following
the same process as in Part A, we can get

1

2

d

dt
‖θ̄ − θ‖2 + ∥∥∇(θ̄ − θ)

∥∥2 �
(

PR1 + 1

2
QR2

)
‖θ̄ − θ‖2 + 1

2
QR2‖θ̄τ − θτ‖2.

(3.14)

Integrating (3.14) with respect tot on [0, T ], and noting that‖θ̄ − θ‖2 is T -periodic int ,
we get

T∫
0

∥∥∇(θ̄ − θ)
∥∥2

dt �
(

PR1 + 1

2
QR2

) T∫
0

‖θ̄ − θ‖2 dt + 1

2
QR2

T∫
0

‖θ̄τ − θτ‖2 dt

= (PR1 + QR2)

T∫
0

‖θ̄ − θ‖2 dt. (3.15)

If PR1 + QR2 < 0, then from (3.15) we get

T∫
0

‖θ̄ − θ‖2 dt ≡ 0.

Henceθ̄ ≡ θ on R+ × Ω̄ . It is easy to see that this result cannot be acquired for the
P � 0. Similar arguments to those in Part A show that theT -periodic solution is also
unique providedPR1 + QR2 < 0.

As the principal eigenvalue of−∆ on Ω with zero Neumann boundary condition
λ1 = 0, for the existence of̄θ andθ , it suffices to have

r1
1− c2k2

1+ d2k2
> 0, i.e., c2k2 < 1,

which can be ensured by insistinga1 > c2. Similar to above, we get that the sufficie
conditions for the existence and uniqueness of the periodic solution of the boundary
problem (1.4), (1.5) are:

a1 > c2, a2d2 − b1c1 � a1(c1 + d1),

P < 0, PR1 + QR2 < 0, (3.16)

whereP, Q R1 andR2 are given by (3.13).

Theorem 3.2. Let hypotheses(H1)–(H3) hold. If the conditions in(3.16) are satisfied,
then the boundary value problem(1.4), (1.5) with Neumann boundary condition has
unique, smooth,T -periodic solutionθ(t, x). Moreover, for every nonnegative, nontrivi
initial function φ(t, x), the time-dependent solutionu(t, x) of the initial-boundary value
problem(1.4)–(1.6)has the asymptotic periodicity:

lim
t→∞

[
u(t, ·) − θ(t, ·)] = 0 in C(Ω̄).
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Remark. By using this method, we can get similar results for the Robin boundary c
tion: ∂u/∂n + γ (x)u = 0 with γ (x) 	= 0.

4. Effect of time-delay

In this section, we consider the effect of the time delay on the asymptotic behavior
solutionu(t, x) of the initial-boundary value problem (1.4)–(1.6). We begin our argum
by dealing with the problem with Dirichlet boundary condition. If the eigenvalueσ(r) < 0,
then Lemma 1.1 ensures the existence of theT -periodic solution for the no-delay bounda
value problem:

∂θ

∂t
− ∆θ = rθ

1− (a + c)θ

1+ (b + d)θ
, (t, x) ∈ R+ × Ω,

θ = 0, (t, x) ∈ R+ × ∂Ω. (4.1)

For the initial-boundary value problem (1.4)–(1.6), if the initial function satisfies�
φ(t, x) � 1/a1 on [−τ,0] × Ω̄ , then the monotone method implies 0� u(t, x) � 1/a1

under the condition (2.1). In order to estimate the effect of the time-delay on the a
totic behavior of the solution, we first make the following definitions:

R = r

(1+ bu + duτ )(1+ (b + d)θ)
;

R1 = inf
(t,x)∈D

{
r

[1+ (b + d)/a1][1+ (b + d)θ ]
}
;

R2 = sup
(t,x)∈D

{
r

1+ (b + d)θ

}
;

P = sup
(t,x)∈D

{
1− aθ(1+ dθ2) + dθ(1+ c/a1)

};
Q = max

{
sup

(t,x)∈D

∣∣θ(adθ2 − c − d)
∣∣, sup

(t,x)∈D

∣∣θ(adθ2 − bc/a1 − c − d)
∣∣};

S = max
{

sup
(t,x)∈D

∣∣θ(1− adθ2 + d)
∣∣, sup

(t,x)∈D

∣∣θ(1− adθ2 + bc/a1 + d)
∣∣} (4.2)

with D = [0, T ] × Ω̄ . The following relations can be obtained by subtracting the
equation in (4.1) from Eq. (1.4):

∂

∂t
(u − θ) − ∆(u − θ) = r

{
u(1− au − cuτ )

1+ bu + duτ

− θ [1− (a + c)θ ]
1+ (b + d)θ

}
. (4.3)

So the right hand (denoted byf ) of (4.3) can be rewritten as:

f = R
{
u(1− au − cuτ )

[
1+ (b + d)θ

] − θ
[
1− (a + c)θ

]
(1+ bu + duτ )

}
,
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f

R
= (u − θ) + dθ(u − uτ ) − a(u + θ)(u − θ) − c(uuτ − θ2) − abuθ(u − θ)

− adθ(u2 − uτ θ) + bcuθ(θ − uτ ) − cduτ θ(u − θ)

= [
1− a(u + θ) − abuθ − cduτ θ

]
(u − θ) + dθ(u − uτ )

− c(uuτ − θ2) − adθ(u2 − uτ θ) + bcuθ(θ − uτ )

= [
1− a(u + θ) − abuθ − cduτ θ

]
(u − θ) + dθ

[
(u − θ) + (θ − θτ ) − (uτ − θτ )

]
− c

[
uτ (u − θ) + θ(uτ − θτ ) − θ(θ − θτ )

] − adθ
[
θ(u + θ)(u − θ)

− θ2(uτ − θτ ) + θ2(θ − θτ )
] + bcuθ

[
(θ − θτ ) − (uτ − θτ )

]
= [

1− cuτ − a(u + θ)(1+ dθ2) − abuθ + dθ(1+ cuτ )
]
(u − θ)

+ θ(adθ2 − bcu − c − d)(uτ − θτ ) + θ(1− adθ2 + bcu + d)(θ − θτ ). (4.4)

Keeping in mind the above definitions, ifP < 0, we can multiply (4.3) by(u − θ), and
integrate it with respect tox on Ω . Then from the left-hand side and the right-hand s
of (4.3), respectively, it follows that

I =
∫
Ω

[
∂(u − θ)

∂t
− ∆(u − θ)

]
(u − θ) dx � 1

2

d

dt
‖u − θ‖2 + λ1‖u − θ‖2, (4.5)

II =
∫
Ω

f · (u − θ) dx

=
∫
Ω

R
[
1− cuτ − a(u + θ)(1+ dθ2) − abuθ + dθ(1+ cuτ )

]
(u − θ)2 dx

+
∫
Ω

Rθ(adθ2 − bcu − c − d)(u − θ)(uτ − θτ ) dx

+
∫
Ω

Rθ(1− adθ2 + bcu + d)(u − θ)(θ − θτ ) dx

�
∫
Ω

PR(u − θ)2dx +
∫
Ω

R
∣∣θ(adθ2 − bcu − c − d)

∣∣ · |u − θ | · |uτ − θτ |dx

+
∫
Ω

R
∣∣θ(1− adθ2 + bcu + d)

∣∣ · |u − θ | · |θ − θτ |dx

� PR1

∫
Ω

(u − θ)2dx + QR2

∫
Ω

|u − θ | · |uτ − θτ |dx

+ SR2

∫
Ω

|u − θ | · |θ − θτ |dx

� PR1‖u − θ‖2 + QR2‖u − θ‖ · ‖uτ − θτ‖ + SR2‖u − θ‖ · ‖θ − θτ‖
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�
(

PR1 + 1

2
QR2δ1 + 1

2
SR2δ2

)
‖u − θ‖2 + QR2

2δ1
‖uτ − θτ‖2

+ SR2

2δ2
‖θ − θτ t‖2. (4.6)

Here the Hölder and Cauchy inequalities are used andδ1 and δ2 are positive number
which can be chosen freely. Denotey(t) = ‖u(t, ·)− θ(t, ·)‖2, η(τ) = sup0�t�T ‖θ(t, ·)−
θ(t − τ, ·)‖2. Then from (4.5), (4.6) andP < 0, we have

d

dt
y(t) � (2PR1 − 2λ1 + QR2δ1 + SR2δ2)y(t) + QR2

δ1
y(t − τ) + SR2

δ2
η(τ). (4.7)

Similarly, for P � 0, we have

d

dt
y(t) � (2PR2 − 2λ1 + QR2δ1 + SR2δ2)y(t) + QR2

δ1
y(t − τ) + SR2

δ2
η(τ). (4.8)

Let

M(δ1, δ2) =
{

2PR1 − 2λ1 + QR2δ1 + SR2δ2 + QR2
δ1

, P < 0;
2PR2 − 2λ1 + QR2δ1 + SR2δ2 + QR2

δ1
, P � 0.

(4.9)

If M(δ1, δ2) 	= 0, then the inequalities (4.7) and (4.8) can be rewritten in the same
namely,

d

dt
ξ(t) �

(
M(δ1, δ2) − QR2

δ1

)
ξ(t) + QR2

δ1
ξ(t − τ) (4.10)

with ξ(t) = y(t) + ε(τ ) and

ε(τ ) = SR2η(τ)

δ2M(δ1, δ2)
. (4.11)

The differential equation corresponding to (4.10) is

d

dt
ξ1(t) =

(
M(δ1, δ2) − QR2

δ1

)
ξ1(t) + QR2

δ1
ξ1(t − τ). (4.12)

The characteristic equation associated with (4.12) is

µ =
(

M(δ1, δ2) − QR2

δ1

)
+ QR2

δ1
e−τµ. (4.13)

Notice thatQR2/δ1 > 0 (refer to Hayes Theorem in [13] and the results in the appe
of [6]), if there exist some positive numbersδ1 andδ2 such that(M(δ1, δ2) − QR2/δ1) +
QR2/δ1 = M(δ1, δ2) < 0, then Eq. (4.13) only has roots with negative real-parts,
is Reµ < 0, and the steady-state solution 0 of Eq. (4.12) is asymptotic stable, t
limt→∞ ξ1(t) = 0. From the comparison of (4.10) and (4.12) we can getξ(t) � ξ1(t), and
so y(t) � ξ1(t) − ε(τ ). From the conditionM(δ1, δ2) < 0, we can deduce the followin
conditions:

(i) P < 0, 2(PR1 − λ1 + QR2) + SR2δ2 < 0; or

(ii ) P � 0, 2(PR2 − λ1 + QR2) + SR2δ2 < 0. (4.14)
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In fact QR2δ1 + QR2/δ1 � 2
√

QR2δ1 × QR2/δ1 = 2QR2 (∀δ1 > 0). From the above
arguments, it directly follows that

Theorem 4.1. Suppose that hypotheses(H1)–(H3) and the condition(2.1)hold. For each
fixedτ > 0, if σ(r) < 0 and either condition(i) or condition(ii) in (4.14)is satisfied for a
suitable positive numberδ2, then for every given initial functionφ with 0 � φ � 1/a1, the
solutionu(t, x) of the delayed problem(1.4)–(1.6) and theT -periodic solutionθ(t, x) of
the no-delay problem(4.1)have the relations

lim
t→∞

∥∥u(t, ·) − θ(t, ·)∥∥2
L2(Ω)

� − SR2η(τ)

δ2M(δ1, δ2)
, (4.15)

whereM(δ1, δ2) is given by(4.9)andη(τ) = sup0�t�T ‖θ(t, ·) − θ(t − τ, ·)‖2.

Remarks. (1) In a particular case of our food-limited model withb(t, x) ≡ d(t, x) ≡ 0, the
result Theorem 4.1 is coincident with that in [3] for the caseτ = mT (m ∈ N ) correspond-
ing to the Logistic model.

(2) If the conditionσ(r(1 − cθ0τ )/(1+ dθ0τ )) < 0 is satisfied in Theorem 4.1, the
R1,R2,P ,Q andS in (4.2) can be redefined byΘ,θ0 andθ . If the boundary condition is
Neumann type, thenR1,R2,P ,Q andS can be redefined byk1, k2 as given by (3.12), an
the corresponding condition to that in (4.14) has the form: 2(PR1 + QR2) + SR2δ2 < 0
with P < 0.

5. Applications

In this section, we give some numerical results for the asymptotic behavi
Eq. (1.4)–(1.6) on the one-dimensional spatial domainΩ = (0,1).

Example 1. We consider the following problem with Dirichlet boundary condition:

∂u(t, x)

∂t
− ∆u(t, x)

= (6+ 2 sin2πt)u(t, x)
1− (3+ sin 2πt)u(t, x) − 1

4(1+ cos2πt)u(t − 1
2, x)

1+ u(t, x)
,

(5.1)

u(t,0) = u(t,1) = 0, t ∈ [0,+∞), (5.2)

u(t, x) = sin(πx), (t, x) ∈ [−1/2,0] × [0,1] (5.3)

with (t, x) ∈ (0,∞) × (0,1) for (5.1). As the principal eigenvalue of−∆ in Ω = (0,1)

with zero Dirichlet boundary conditions isλ1 = π2, andr(t, x) = 6+ 2 sin2πt � 8 < π2,
which impliesσ(r) > 0. Alsoφ(t, x) = sin(πx) � 0 satisfies the compatibility condition
φ(0,0) = φ(0,1) = 0. Moreover, it is easy to see thata1 = 2, a2 = 4, b1 = b2 = 1, c1 =
0, c2 = 1/2 andd1 = d2 = 0, and hencea2d2 − b1c1 � a1(c1 + d1) is naturally satisfied
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Fig. 1. The trivial solution 0 of problem (5.1)–(5.3) is globally asymptotic stable (see text).

According to Theorem 2.1, the trivial solutionu = 0 of problem (5.1)–(5.3) is globall
asymptotically stable (see Fig. 1), i.e.,

lim
t→∞u(t, x) = 0, ∀x ∈ [0,1].

Example 2. We consider the problem with Neumann boundary condition:

∂u(t, x)

∂t
− ∆u(t, x) = r(t, x)u(t, x)

1− a(t, x)u(t, x) − c(t, x)u(t − 1/2, x)

1+ b(t, x)u(t, x) + d(t, x)u(t − 1/2, x)
, (5.4)

∂u(t,0)

∂x
= ∂u(t,1)

∂x
= 0, t ∈ [0,+∞), (5.5)

u(t, x) = φ(t, x), (t, x) ∈ [−1/2,0] × [0,1], (5.6)

with (t, x) ∈ (0,∞) × (0,1) for (5.4) and

r(t, x) = 10; a(t, x) = 6+ sin 2πt; b(t, x) = 2;
c(t, x) = 1

2
(1+ cos2πt); d(t, x) = 0; φ(t, x) = 1

8
(1.2− cosπx). (5.7)

This caser1 = r2 = 10, a1 = 5, a2 = 7, b1 = b2 = 2, c1 = 0, c2 = 1, d1 = d2 = 0. We
check the conditions in (3.16) as follows. It is easy to seea1 > c2 and a2d2 − b1c1 �
a1(c1 + d1). Also, from (3.12),

k2 = a2 − c1

a1a2 − c1c2
= 7− 0

5× 7− 0
= 1

5
; k1 = a1 − c2

a1a2 − c1c2
= 5− 1

5× 7− 0
= 4

35
.

(5.8)
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Fig. 2. The asymptotic periodicity of the solution for problem (5.4)–(5.6) (see text).

So from the definitions in (3.13), it follows that

P = 1+ d2k2 − (2a1 + c1)(1+ d1k1)k1 − a1b1k
2
1

= 1+ 0− (2× 5+ 0)(1+ 0) × 4

35
− 5× 2×

(
4

35

)2

= − 67

245
;

Q = k2(b2c2k2 − a1d1k1 + c2 + d2)

= 1

5
×

(
2× 1× 1

5
− 0+ 1+ 0

)
= 7

25
;

R1 = r1

(1+ b2k2 + d2k2)2
= 10

(1+ 2× 1
5 + 0)2

= 250

49
;

R2 = r2

(1+ b1k1 + d1k1)2
= 10

(1+ 2× 4
35 + 0)2

= 12250

1849
. (5.9)

ClearlyP = − 67
245 < 0,

PR1 + QR2 = − 67

245
× 250

49
+ 7

25
× 12250

1849
≈ −1.20979< 0, (5.10)

and it is easy to check that the compatibility conditions forφ(t, x) are also satisfied. Ac
cording to Theorem 3.2, the boundary value problem (5.4), (5.5) has a 1-periodic so
θ(t, x) on [0,∞) × [0,1], and the time-dependent solutionu(t, x) of the initial boundary
value problem (5.4)–(5.6) has the asymptotic periodicity:

lim
t→∞[u(t, x) − θ(t, x)] = 0, ∀x ∈ [0,1].

This is in line with our numerical simulation of problem (5.4)–(5.6) as given in Fig. 2
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6. Discussion

We have developed a food-limited model based on the consideration that the ca
capacity and the coefficients may vary spatially as well as temporally, may vary in
sonal scale with respect to the seasonal variation of the environment, and they m
affected by the time-delay. The main basis of our reaction–diffusion model (1.1)–(1
Model-3 as given in [2].

From the arguments in this paper we see there are some similar results to those
although the system coefficients considered here are allowed to vary temporarily a
as spatially. The results in [2] show that as long as the magnitude of the instantaneo
limitation and/or toxicant effects are larger than that of the time delay effects in Mo
(mathematically speaking, the coefficientb is very small, the solutionu(t, x) may tend
to 0 provided some conditions for the coefficients are satisfied). Ecologically speak
means an extinction of the species in the long run as shown in Fig. 1; or the solutionu(t, x)

converges to a positive steady state solutionU(x) depending on the growth rater(x) of the
species. This means that if the species have a suitable growth rate, its population b
stable, though it is restricted by food supply and/or toxicant level. The theorems giv
Sections 2 and 3 show that the solutionu(t, x) of problem (1.4)–(1.6) (i.e.,N(t, x) for
(1.1)–(1.3)) converges to a positive periodic solutionθ(t, x) of the boundary value prob
lem (1.4), (1.5) (see Example 2 in Section 5), provided suitable conditions are impos
the growth rate, the restriction of the food and/or the effects of the toxicant. This mea
population of the species may tend to vary periodically under suitable conditions. Th
the conditions for Theorems 3.1 and 3.2 seem very complex, if the coefficientsc andd are
very small with respect toa andb together with a suitabler , then all the conditions can b
met (see Example 2), i.e., if the time-delay effect is very small and the growth rate
species is suitably chosen, then asymptotic periodicity of the solution may appear.

Theorem 4.1 gives an indication of the effects of the time-delay on the asymptot
havior of the solution with respect to the periodic solution of the no-delay boundary
problem. Particularly, for the special time delayτ = mT (m ∈ N ), only if the growth rate
is suitable, the population of the species can tend to vary periodically.

Finally, we mention the case:

∂θ

∂t
− ∆θ = rθ

1− (a + c)θ

1+ ρ(a + c)θ
, (t, x) ∈ R+ × Ω,

θ = 0, (t, x) ∈ R+ × ∂Ω, (6.1)

wherer, a, c are as in (4.1) andρ is a nonnegative parameter. This case is similar to th
Model-3 with no delay. What we want to illuminate is the effect ofρ on θ .

Assume thatr > λ1 and henceσ(r) < 0, so the periodic solution of (6.1) exists. T
upper–lower solution method implies that 1/(a1 + c1) and 0 is a pair of upper and lowe
solutions ofθ and hence 0� θ � 1/(a1 +c1). Denoteθ0 for the caseρ = 0. For a sequenc
of numbers 0= ρ0 < ρ1 < · · · < ρn−1 < ρn < · · ·, noting that 0� θ � 1/(a1 + c1), it is
easy to check

rθ
1− (a + c)θ � rθ

1− (a + c)θ
, ∀n ∈ N. (6.2)
1+ ρn−1(a + c)θ 1+ ρn(a + c)θ
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If θn denotes the periodic solution of problem (6.1) withρ = ρn (n ∈ N ), then the com-
parison results imply that 0� · · · � θn � θn−1 � · · · � θ1 � θ0. So the parameterρ can
affect the size of the periodic solutionθ of the Dirichlet problem (6.1). In fact, the period
solutionθ is monotone decreasing with respect toρ.
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