Available online at www.sciencedirect.com o

SC'ENCE@D'RECT° MATHEMATICAL
& ANALYSIS AND
LSEVIER J. Math. Anal. Appl. 313 (2006) 381-399 APPLICATIONS

www.elsevier.com/locate/jmaa

Asymptotic periodicity of a food-limited diffusive
population model with time-delay

Jinliang Wang-*, Li Zhou®, Yanbin Tangd

@ Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan,
Hubei 430074, PR China
b Department of Mathematics, Huazhong University of Science and Technology, Wuhan,
Hubei 430074, PR China

Received 18 June 2003
Available online 28 October 2005
Submitted by C.V. Pao

Abstract

In this paper, a general reaction—diffusion food-limited population model with time-delay is pro-
posed. Accordingly, the existence and uniqueness of the periodic solutions for the boundary value
problem and the asymptotic periodicity of the initial-boundary value problem are considered. Finally,
the effect of the time-delay on the asymptotic behavior of the solutions is given.
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1. Introduction

When the growth limitations are based on the proportion of available resources not

utilized, the food-limited model was proposed in [4,7,8] as follows (Model-1):
dN() _ N ) K — N(r) -
dt K +cN(t)

Here the population density is denoted®yr) and the positive constantandK represent
the growth rate of the population and the carrying capacity of the habitat, respectively. The
constant > 0 andr/c is the replacement of mass in the populatio&afThis model also
allows incorporation of both environmental and food effects of toxicant stress. Based on
the fact that population density may vary spatially as well as temporally, in [2] the authors
proposed two types of diffusive models (Model-2 and Model-3):

ON(t,x) K(x)—N(t,x)
———= —dAN(t,x) =r(x)N(t, x) ,
ot K(x)+cx)N(,x)
oN(t,x) K(x)—aN((,x) —bN(t —1,x)
———= —dAN({t,x) =r(x)N(t, x) ,
ot Kx)+ac(x))N({,x) +bc(x)N(t — t,x)

where A denotes the Laplace operatdr> O denotes the distributive rate.and b are
positive constants;(x) is positive and Holder continuous in The time-delay term is
induced on the assumption that a growing population requires more food (growth and main-
tenance) than a saturated one (maintenance only). In [2] the existence and unigqueness of
a positive steady state solution are established for these two models by using upper—lower
methods. It is shown that as long as the magnitude of the instantaneous self-limitation
and/or toxicant effects are larger than that of the time delay effects in Model-3, the so-
lutions of both reaction—diffusion systems have the same asymptotic behavior (extinction
or converging to the positive steady state solution, depending on the growth rate of the
species).

From another direction, the derivation of Model-1 is based on the fact that the population
densities rarely converge monotonically k0 and usually have a tendency to fluctuate
around the equilibrium; Model-1 can be modified by assuming that the average growth
rate is a function of the delayed argument t. Detailed arguments are given in [5,8].
Recently, the authors in [1] also take spatial dispersal and environmental heterogeneity
into consideration and consider the following model (Model-4):

INGX) AN x) = r()N (@ x) 2D =N —T )
at Kx)+cx)N(t —r1,x)
Stability and bifurcations of the steady state solutions to Model-4 are discussed in [1].
Mathematically speaking, Model-4 can be seen as a particular case of Model-3 for the case
a =0 andb = 1. However, it should be noted that with= 0, the upper and lower solution
technigues mentioned above do not apply.

Furthermore, notice that the carrying capacity and the coefficients in the previous mod-
els may vary spatially as well as temporally, and may also vary in a seasonal scale with
respect to the seasonal variation of the environment, and also take the effect of time-delay
into consideration, based on Model-3 in [2], we can get a generalized reaction—diffusion
model as follows:
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ON(t,x)

—dAN(t, x)

K(t,x) —ao(t,x)N(t,x) —colt,x) Nt — 1, x)

=N ) e FON G T dot. ONG — %)

(t,x) e R x 2, (1.2)
B[N1(t,x)=0, (t,x)e Rt x3%, (1.2)
N(t,x) = No(t,x), (t,x)e[—1,0]x £2. (1.3)

Here we do not limitbg, dp to be the formsugc, coc as in Model-3, since these limited
forms of coefficients are only for convenience of constructing the upper—lower solutions
in [2]. Now that the generalized model is constructed, it is very natural to ask some ques-
tions about this model. Is the upper—lower method still valid for this initial-boundary value
problem? Are there any similar results to those in [2]? It seems plausible that solutions
to (1.1)-(1.3) are attracted to a periodic solution. For a smooth funeiiorn), if there
exists a smooth periodic functi@h(z, x) such that lim_, o [u(z, ) — 0(¢, )] =0 in C(£2),
then we say the function(t, x) has asymptotic periodicity. In this paper we will reveal
that this property holds for the solution of our problem by using the upper—lower solution
method. Here we mention that in [9] the author gives an early introduction to the method
of using upper and lower solution to find periodic solution for reaction—diffusion systems,
the readers can refer to it.

It is reasonable to choose the distributive rdte- 1 due to the transform method
of variables in [1]. If we denota(z, x) = N(¢, x), a(t, x) = ao(t,x)/K(t,x), b(t,x) =
bo(t,x)/K(t,x), c(t,x) = co(t,x)/K(t,x), d(t,x) = do(t,x)/K(t,x) and ¢(z,x) =
No(t, x), then problem (1.1)—(1.3) may be rewritten as:

ou(t,x)
ot

— Au(t, x)

1—a(t, x)u(,x)—c(, x)ut —1,x)
1+b@t, x)u(t,x) +dt, xult —1,x)’
Blul(t,x)=0, (t,x)eRT x 9882, (1.5)
u(t,x)=¢(t,x), (,x)e[—1,0]x 8. (1.6)

In this paper we mainly study the initial-boundary value problem (1.4)—(1.6) under the
following elementary hypotheses:

=r(t, x)u(t,x) (t,x) e Rt x 2, (1.4)

(H1) $£2 is a bounded domain iR"” with smooth boundary $2, the boundary condition is
given by

Blul=u or Blu]= g—: + y (x)u.
Here,y (x) € C1%(3£2) (0 <a < 1) andy(x) > 0 on 32, andd/dn denotes the
outward normal derivative odi2, Rt = (0, c0).

(H2) The coefficients (¢, x), a(z, x), b(t, x), c(t, x) andd(t, x) are T-periodic int and
Hélder continuous oR x £ with r(z, x) > 0; a(z,x) > 0; b(t,x) >0, c(t,x) >0
andd(z, x) > 0. We denote, a1, b1, c1, d1 andry, az, by, ¢2, d2 to be the minimum
and maximum values of a, b, ¢, d on [0, T x £2 with by > 0, respectively.
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(H3) The initial functione (¢, x) € C%1([—7, 0] x £2) is a nonnegative, nontrivial func-
tion, which satisfies the compatibility condition, i.8[¢]1(0, x) =0 onas2.

To study the initial-boundary value problem (1.4)—(1.6), we first state some results for
the following boundary value problem:

WD) ) = ute, )P PO R0l @)
ot n(t,x)+q, x)u(t,x)
Blul(t,x)=0, (t,x)eRT x 9882, (1.8)

where m(z, x), n(t, x), p(t,x) and g(z, x) are T-periodic in¢ and Hélder continuous
on R x £ with m(t,x) > 0, n(t,x) >0, p(t,x) >0 andg(r,x) > 0. We also de-
note mi, n1, p1,q1 and mo, no, p2, g2 to be the minimum and maximum values of
m(t, x),n(t, x), p(t,x) andg(z, x) on [0, T] x £2. Problem (1.7), (1.8) is the particular
case of problem (1.4), (L.5) with¢, x) =d(t,x) =0,r(t,x) =m(t,x)/n(t, x), a(t,x) =
p(t,x)/m(t,x) andb(t,x) = q(t, x)/n(t, x).

Denote

f(t X u) = m(t’x) _P(I,X)u(t,x)

n(t,x)+q@t, xu(t,x)’

then for any(z, x) € R* x £2, we can check thaf (¢, x, u) is strictly decreasing im for
u>0andf(t,x,mp/p1) < 0. Furthermore, asi (¢, x), n(t,x), p(t,x), andg(z, x) are
all Holder continuous o™ x £2, we can also check that f, € C(RT x £2 x RT), and
there exists a constant (0 < « < 1) such thatf (-, -, u), fu(-, -, u) € C=*2(RT x ).
So from the results given in [17,18], we get the following lemma.

Lemma 1.1. The eigenvalue problem

dptt.x) _ Ap(t, x) — m(t’x)w(t,x) =o(m/n)e(t,x), (t,x)€RT x 2,
ot n(t, x)
Blp]=0, (t,x)eRT x 352, (1.9)

wherey is T-periodic int, has a principal eigenvalue (m /n) with positive eigenfunction.

(1) If o(m/n) > 0, then the trivial solutiorD is globally asymptotically stable in prob-
lem(1.7), (1.8)with respect to every nonnegative smooth initial function.

(2) If o(m/n) <0, then problen(1.7), (1.8)admits a positivd’ -periodic solutiord (¢, x)
on 2 which is globally asymptotically stable with respect to every nonnegative, non-
trivial smooth initial function.

We arrange our paper as follows. In Section 2 we will first study the global asymp-
totic stability of trivial solutionu = 0 of the initial-boundary value problem (1.4)—(1.6),
and then set forth a result about the periodic quasi-solutions of the boundary value prob-
lem (1.4), (1.5). The proof of existence and uniqueness of periodic solutions to boundary
value problem (1.4), (1.5) will be given in Section 3. The effects of time-delay on the as-
ymptotic behavior will be discussed in Section 4. Some numerical results will be given as
applications in Section 5, and some discussion about the problem is given in Section 6.
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2. Stability of trivial solution and periodic quasi-solutions

In this section, we mainly discuss the stability of the steady-state solutiofl and the
existence of the periodic quasi-solutions of the initial boundary value problem (1.4)—(1.6).
Here we use the upper—lower solution method, and hence the nonlinear term should have
some monotone property, which can be ensured by the following lemma.

Lemma2l. Forte RT,x € 2,0<u <1/a; andé >

azdy — bic1 < ai(e1 +dy), (2.1)

then for fixed, x, u, the functionF (z, x, u, §) = (1 — au — c€) /(1 + bu + d§&) is monotone
decreasing irt.

Proof. To claim F(t, x, u, £) is monotone decreasing &nonly if 9 F /d& < 0.

—(t i, g)__(l—au—cé)

9§ 36 \ 1+ bu +d¢
1
= Aoy gl e tbutdd) —dd—au—ch)]
1
= _m[6+d+ (bc—ad)u].

If axdy — b1c1 <0, thendF /3¢ < 0 is trivially satisfied. Ifaxd, — b1c1 > 0, then the
inequalities 0K u < 1/a1 and (2.1) imply thab F/9& < 0. Lemma 2.1 is thus proven.O

Remark. Since for fixed: € R, x € £2 andé > 0, it is easy to seé (¢, x,1/a1,£) <0
S0 Y/aj is an upper bound of in R™ x £2 according to the following lemma.

In the following we denote, = u(r — t, x) for simplicity.
Lemma 2.2. Under the conditiorf2.1), if there exist functiond(z, x), u(t, x) € CL2(R* x

2)NCO%Y([—7, +00) x £2) (called coupled upper and lower solutigrssich thati(, x) >
u(t,x) on[—t,+00) x £2, and they satisfy the following inequalities

ou _ _l—au—cu, n

——Auzru———, (t,x)eR" x £2,

ot 1+ bu+du,

ou 1—au—cu,

— —Au<ru——=, (1, RT x £, 2.2
or ST ran, O ERTX 2:2)
Bli] > 0> Blu], (t,x)eR" x93, (2.3)
i>¢p>u, (t,x)e[-7,01x42, (2.4)

then the initial-boundary value proble(f.4)(1.6) has a unique solution € C*2(RT x
2)NCOY([—1, 400) x 2) withit > u > u on[—1, +00) x £2.
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In casei, u satisfy (2.2), (2.3) withit > u on R* x £2, we also calli, u upper and lower
solutions of problem (1.4), (1.5). For the proof of Lemma 2.2 we refer to the monotone
method in [11,16]. Noting the elementary hypothegHs) and (H3), there always exists
a positive numberr such thate > ¢(z, x) on [—,0] x £2. Therefore, we can choose
a large enough such that and 0 is a pair of upper and lower solutions of the problem
(1.4)—(1.6) according to (2.2)—(2.4). So Lemma 2.2 implies that problem (1.4)—(1.6) has a
unique smooth solution(z, x) on[—t, +00) x £2.

Theorem 2.1. Let the hypothese&H;)—(H3) and the condition2.1) hold. If o (r) > 0,
then the trivial solution: = 0 is globally asymptotically stable ifl.4){1.6) with respect
to every nonnegative nontrivial initial functiaf(z, x).

Proof. Let U(z, x) be the solution of the following parabolic problem:

aU (¢, x) 1—a(t,x)U(t,x)

- = +
” AU, x)=r(t, x)U(t, x) 1100000 (t,x) e R x §2,
B[UI(t,x)=0, (t,x)eR" x 982,
U@O,x)=¢(0,x), xef. (2.5)

As ¢ (0, x) >0 ong2, itis easy to know that/ (r, x) > 0 on R+ x £2. Define the function
U(t,x)asU(t,x) = ¢(t,x) on[—,0] x £2 andU (¢, x) = U(r, x) on RT x 2. From the
comparison results, we know thié(z, x) and 0 is a pair of upper and lower solutions of the
initial-boundary value problem (1.4)—(1.6). Therefore, by Lemma 2.2 there exists a unique
solutionu(z, x) for (1.4)—(1.6) with 0< u < U on[—t, +00) x £2. According to the case

o(r) > 0inLemma 1.1, we have

. ) T ) - —o.

Theorem 2.1 is thus proven.O

For the following boundary value problem:

ou(t,x) _ 1—a(, x)u(t, x)
3 —AM(I,X)—F(I,X)M(I,X)W,

Blul(t,x)=0, (t,x)e Rt x93, (2.6)

(t,x) e RT x 2,

if the eigenvaluer (r) < 0, then Lemma 1.1 ensures the existence of a positiperiodic
solutionég(z, x) on 2. Moreover, if further

1— cOo;
olr———1] <0,
1+ d6bo;,
then the boundary value problem

0 1—cbp,) —
_”_Au:mw, (t,x) e Rt x 2,
ot (14 d6bo;) + bu

Blul(t,x)=0, (t,x)eR" x93, (2.7)
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also has a positiv& -periodic solution® (¢, x) on £2. It is easy to check thaly and ®

is a pair of upper and lower solutions of the boundary value problem (1.4), (1.5) with
0< O <0< 1/a1. For® < u < 0o, if axdy — bic1 < ai(c1 +d1), then from Lemma 2.1

we know that the monotone method is valid. Moreover, corresponding to the boundary
value problem (1.4), (1.5) we have the system below:

ou1 1—auy —cuy;

= — Aup= , (t,x)ERT x £,

or Am=rug e () %

ous 1—aus —cuie

L Aus=rup——= T (t,x) e RT x 2,

or Auz=ruzgmm e (X x

Bluil = Bluz] =0, (t,x)e Rt x3£2. (2.8)

If the solution(u1, u2) of system (2.8) exists and the componentandu, satisfyu1 > u2,

then we calli1 andu» a pair of quasi-solutions of the boundary value problem (1.4), (1.5).
Using the monotone methods and referring to the results in [10,12,19], we get the following
results.

Theorem 2.2. Let hypothese$H;)—(Hs) and the condition2.1) hold. If o(r) <0 and
o(r(1—cbo;)/ (14 dbo;)) < 0, then the boundary value problegih.4), (1.5) has a pair of
orderedT -periodic quasi-solutions, ¢ that satisfy syster(2.8) with ® <0 <6 < 6 on
R* x £2. Moreover, for every nonnegative nontrivial initial functignthe time-dependent
solutionu(z, x) of the initial-boundary value probleifi.4)«(1.6) satisfies

IitrEiorgf [u(t,) = 0@, )] >0> Ii?lsogp[u(t, ) =0, )] inC&). (2.9)

Remark. If the Laplace operatas is substituted by a uniformly strong elliptic operator in
the initial-boundary value problem (1.4)—(1.6), then Theorems 2.1 and 2.2 also hold true.

3. Existence and uniqueness of periodic solution and the asymptotic behavior

Based on the results in Theorem 2.2, to reveal the asymptotic periodicity of the solution
for the initial-boundary value problem (1.4)—(1.6), it needs to be shown that there exists a
periodic solution of the boundary value problem (1.4), (1.5), fies,6. Here we use the
methods in [15] to set forth our arguments. From now on, we assume all the conditions of
Theorem 2.2 are satisfied and let

r

R = _ —.
(1+50 +d0:)(1+ b0 +dby)
According to Theorem 2.2, andd satisfy the system (2.8) and hence

9 - _
5(9—@—&9—(2)

{é(l—aé —ct;) O(l—af— cé,)}
1+ b6 +db, 1+ b0 +do;
=R{01 —ab — cf:)(1+ b0 +db:) — (1 — af — cb;)(1+ b + df-)}
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=R{[(A+db;)(1— a6 +6) — cb-) —abho](® — )
+0(bch — adf + ¢+ d)(O; — 07)}. (3.1)

Notice that 0< ©® < 0 < 0 < 6g < 1/a1 and the condition (2.1) implielscd — adf + ¢ +
d > 0. We define the numbem, Q, R1, R by

P= sup {(1+d90,)—(Za@—l—c@t)(l—i—d@r)—ab(ﬂz};
(1,x)€[0,T1x 2

0= sup {bo(bchp—ad® +c+d)};
(t,x)€[0,T1x §2

Ri= inf { ’ 2};
(t,x)el0,T1x 2 | (1+ bbo + dbor)

-
o= su { } 3.2
(t,x)e[O,g]xQ (14 b6 +dO,)? (3.2)

It is easy to check thaR1 < R < R» and Q > 0. Notice thatd > 6, the relations in (3.1)
imply that

%(é—@)—A(é—Q)gRP(é—QH—RQ(G}—Q,). (3-3)

In the following, we search for the sufficient conditions associated with different bound-
ary conditions to ensue=16.

Part A. Dirichlet conditions
For the Dirichlet boundary conditior= 6 = 0 on 352, sinced — 6 > 0, we multi-

ply (3.3) by (6 — 0), and integrate it ovef2, then the left-hand side and the right-hand side
of (3.3) can be defined, respectively,

/(9 9)8(9 D 4 —/(é—Q)A(é—Q)dx

2 9}
1d _
== /(9 0)2dx +f|v<9 — o) dx, (3.4)
2 2
Il = P/R(é —0)%dx + Q/R(e‘ —0)(0; —6;)dx. (3.5)
2 2

From the Poincaré inequality (see [14]),

[19@-0Paxzm [@-02dx,

whereAi is the principal eigenvalue 6f A on £2 with zero Dirichlet boundary conditions.
Denote by] - || the L2 norm ons2. Then from (3.4) we get

1d - _
I>=—0—-0|%+r1]60 — 0| 3.6
2dtll 011°+ A1ll0 — 2|l (3.6)
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Casel.If P >0, noting thatQ > 0 and O< R1 < R < Ry, from (3.5) we have
Il < PRz/(é —0)?dx + QRz/(é —0)(0; —0,)dx
2 Q
< PR2|IO — 012+ QR21I0 — 0] - 10 — 0|
1 _ 1 -
< (PR2+§QR2>|I9—QI|2+§QR2||91 —0:1% (3.7)

Combining (3.6) with (3.7) leads to
1d - 2 1 - s 1 - 2
-—6 - < = - - = - . .
57 6 —06l° < <PR2 + 2QRz /\1)”9 ol”+ 2QRz||9r Ol (3.8)

Integrating (3.8) with respect toon [0, 7], and noting thafid — 6|2 is T-periodic int, it

yields
d
—160 —0|“} dt
-

/{

T T
1 - 1 _
< (PR2+§QR2—M)/|I9—Q||2dt+§QR2/||91 — 0 |%dt
0 0

NI =

T
=[(P+Q)R2 — M]f 16 — 6112 dt. (3.9)
0

If the inequality(P + Q)R> — A1 < 0 is satisfied, then from (3.9) we get

which impliesd =6 on Rt x £2.

Case 2. I_f P <0, then t_he same process as in Case 1 revealsPtRat QR — 11 <0
ensure® =6 on Rt x 2.

From the above arguments we know that the boundary value problem (1.4), (1.5) has
periodic solutions under certain conditions. Now#fis any other solution of the boundary
value problem with® < 61 < 6, thend! andg is also a pair of upper and lower solutions
of the boundary value problem (1.4), (1.5) and these also satisfy the system (2.8). Applying
the same reasoning as previously floandg, yieldsé! =6 on Rt x 2, provided certain
conditions are satisfied. Hence tlieperiodic solution of the boundary value problem is
also unique.
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To ensure the existence 6fandg, it suffices to check that (r) < 0, o (r(1 — cbo;)/
(14 dbo;)) < 0 andagdz — bicy < ai(c1+d1). Asr > r(1 — cbor)/(1+dbp), o (r) <
o(r(1—cbo)/(1+ dbo;)), we can get the above conditions provided that

1— cOo;
,
1+ d6bo;
We now state some sulfficient conditions for the existence and uniqueness of the periodic
solution of problem (1.4), (1.5):

> A1.

1— cOo;

1 P>0, (P R A —_—,
D (P+Q)Ry < 1<r1+d901

or
2 P<0, PR1+QRo<M <r

azds — bicy < ai(cr+dy);

o axd b <a ( +d)
1 ’9 ’ 242 1Cl\ 1 Cl 1),

whereP, O, R1, R are given by (3.2).

Theorem 3.1. Let hypotheseéH1)—(H3) hold. If either(1) or (2) in (3.10) is satisfied,
then the boundary value proble¢h.4), (1.5) with zero Dirichlet boundary condition has
a unique, smoothl -periodic solutiond(z, x) on R* x £2. Moreover, for every nonnega-
tive, nontrivial initial function¢ (¢, x), the time-dependent solutior(z, x) of the initial-
boundary value probler(iL.4)}(1.6) has the asymptotic periodicity

lim [u(t,) —60@,)]=0 inC(R).
11— 00
Part B. Neumann conditions

In casey (x) = 0 on 352, we have the Neumann boundary conditiddsydn = 96/
oan = 0. In this case, we can search for sufficient conditions which only depend on the
coefficients and not oflg, ®@. According to (2.2) and (2.3), we can get a pair of coupled
upper and lower positive constant solutigns k1 for the boundary value problem (1.4),
(1.5) by solving the following system:

1—aiky — c1k1 =0,
1— axk1 — c2kp =0. (3.11)
Thus, ifa1 > ¢, we get
hp= 271 k=272 (3.12)
aiaz — ci1c2 aiaz — c1c2
Itis easy to check that @ k1 < k2 < 1/as.
In this case we can set the numb&sQ, R1, R» as:

P =1+ doky — (2a1 + c1) (1 + dik)k1 — arbik?;
O = ka(bacoko — ardiky + c2 + d2);
r r2
R1= ; Ry = .
(1 + boko + dok)? 1+ b1ky + d1kr)?

(3.13)
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As azds — bic1 < ai(c1 + d1), itis easy to check thap > 0. If P < 0, then following
the same process as in Part A, we can get

Ei||é—0||2+||wé—e>||2< PR1+5QR2 ||é—9||2+5QRz||é — 6,12
2 dt = == 2 = 2 o=t
(3.14)

Integrating (3.14) with respect toon [0, 7], and noting thaf|d — 6|2 is T-periodic int,
we get

T T T

- 1 _ 1 _
/||V(0—Q)||2dt< <PR1+EQR2>/||9—Qllzdt+§QR2/IIGz—QTIIZdt
0 0 0

T

=(PR1+ QRz)/ 16 —ol2ar. (3.15)
0
If PR1+ QR> <0, then from (3.15) we get
T
/ 16 —0l2dr =0
0

Henced =6 on R x 2. Itis easy to see that this result cannot be acquired for the case
P > 0. Similar arguments to those in Part A show that fgeriodic solution is also
unique provided® R1 + QR2 < 0.

As the principal eigenvalue of A on £2 with zero Neumann boundary condition is
A1 =0, for the existence dof andé, it suffices to have

11— coko
rn
1+ doko
which can be ensured by insisting > ¢>. Similar to above, we get that the sufficient

conditions for the existence and uniqueness of the periodic solution of the boundary value
problem (1.4), (1.5) are:

>0, ie, ckr<l1,

ai > c, azdy — bicy < ai(c1 +dy),
P <0,  PRi+QR»<0, (3.16)

whereP, Q R; andRy are given by (3.13).

Theorem 3.2. Let hypothese$H1)—(Hs3) hold. If the conditions in(3.16) are satisfied,
then the boundary value problefi.4), (1.5) with Neumann boundary condition has a
unique, smoothT -periodic solutiond(z, x). Moreover, for every nonnegative, nontrivial
initial function ¢ (¢, x), the time-dependent solutiai(z, x) of the initial-boundary value
problem(1.4){1.6) has the asymptotic periodicity

[u(t,) = 6@, )]=0 inC(2).

lim
11— 00
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Remark. By using this method, we can get similar results for the Robin boundary condi-
tion: du/dn + y (x)u = 0 with y (x) # 0.

4. Effect of time-delay

In this section, we consider the effect of the time delay on the asymptotic behavior of the
solutionu(z, x) of the initial-boundary value problem (1.4)—(1.6). We begin our arguments
by dealing with the problem with Dirichlet boundary condition. If the eigenval(e < O,
then Lemma 1.1 ensures the existence offthgeriodic solution for the no-delay boundary
value problem:

26 1- 6
0 pg—rgi= @0 R x .
ot 11 (b+d)o

=0, (f,x)eR" x3f. (4.1)

For the initial-boundary value problem (1.4)—(1.6), if the initial function satisfies 0O
¢(t,x) < 1/ag on [—1, 0] x £2, then the monotone method impliesQu(z, x) < 1/a1

under the condition (2.1). In order to estimate the effect of the time-delay on the asymp-
totic behavior of the solution, we first make the following definitions:

r

R= it adunasr ot a0

Ry = inf { " };
t,0)eD | [T+ B +d)/a1lll+ (b + d)b]

-
R
¢xepl 1+ (B +d)o

P= sup {1—af(1+d6%) +do(1+c/a1)};
(t,x)eD

0= max{ sup |0(ado? —c —d)|, sup |0(ado? — be/ay — c —d) };
(t,x)eD (t,x)eD

S = max{ sup |0(1—ad6? +d)|, sup |0(1—ad6? + be/ay + d) |} (4.2)
(t,x)eD (t,x)eD

with D = [0, T'] x £2. The following relations can be obtained by subtracting the first
equation in (4.1) from Eq. (1.4):

(4.3)

%(”—M—A(u—e)zr{”(l‘““—cur> _ 9[1—(a+c>9]}

1+ bu+du, 1+ b +d)b
So the right hand (denoted k) of (4.3) can be rewritten as:

f=R{ul—au—cu)[1+®b+d)0]—0[1—(a+c)0](L+bu+dur)},
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% =w—-0)+do(u—u;)—aw+60)u—0)—cluu, — 92) —abub(u —0)

— ad@(u2 —u0)+bcub(@ —u;) —cdu0(u — 0)
= [1— a(u—+0)—abub — cdu,Q](u —0)+dO(u —u;)
— c(uuy — 6% — addW? — ur0) + bcud® — uy)
= [1— a(u—+60)—abub — cdu,Q](u —0) +d9[(u -0+ O —06;)— (uy — Gr)]
—c[ur(u—0)+0@; —0;) — 00 —6;)] — ado[0(u +0)(u—6)
—0%(ur — 6:) + 626 — 0:)] + beud[(0 — 0;) — (ur — ;)]
= [1— cur —a(u+ 9)(1+d02) —abub +do(1+ cut)](u —0)
+6(adb? — beu — ¢ — d)(uy — ;) + 0(1 — adb? + beu 4+ d)(0 — 6;).  (4.4)

Keeping in mind the above definitions, i < 0, we can multiply (4.3) by« — 6), and
integrate it with respect t® on 2. Then from the left-hand side and the right-hand side
of (4.3), respectively, it follows that

12/[8(u_9) _A(M—Q):|(u—9)dx> Ld lu—6)%+r1)u —6)%,  (4.5)

ot 2dt
] :/f-(u—@)dx
2
:/R[l—cur —a(u+0)(1+do? — abub +do(1+ cu;)|(u — 0)?dx
2

—{—'/‘RQ(adOz—bcu—c—d)(u—9)(ut —6;)dx

2
+/R9(1—ad92+bcu+d)(u—9)(9—9,)dx

2

</PR(u—G)de—l—/R]@(adQZ—bcu—c—d)|~|u—9|o|uf—9r|dx

2 2
+fR|9(1—ad92+bcu+d)|-|u—9|-|9—9,|dx

2

<PR1/(M—9)2dx+QR2/|u—9|-|u,—9,|dx
2 2

+SR2/|u—9|~|9—0f|dx
2
< PRyllu — 011>+ QRollu — 01| - uz — 6: || + SRallu — 0] - 16 — 6|
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1 1 2 OR; 2
S| PR1+ 50R281+ 5SR282 |llu — O11° + ——llue — 0|l
2 2 251

SR>
285
Here the Holder and Cauchy inequalities are used &ndnd 8, are positive numbers
which can be chosen freely. Denoté) = ||u(t, ) —0(z, -)||%, n(r) = SURy< < 102, 1) —
6(t — 7, -)||%. Then from (4.5), (4.6) an® < 0, we have

OR)

d SR
E)’(Z) < (2PR1—2h1+ QR281+ SR282)y(t) + 8—1)70 —7)+ 8—2277(T)- 4.7)

+ 6 — 6,11 (4.6)

Similarly, for P > 0, we have

d Ro SR>

PTEARAS (2PR2 — 201+ QR261 + SR262)y(t) + Q(S—ly(t —-7)+ En(r). (4.8)
Let
2PRy — 201+ QR251 + SR282 + QS_Ifz’ P <Q;

! (4.9)
2PRy —2h1+ QR281+ SRa82 + 452, P >0,

M(81,82) = {

If M (81, 682) # 0, then the inequalities (4.7) and (4.8) can be rewritten in the same form,
namely,

d R R
Sen < (M(al, 5) - Q)sm + L% o) (4.10)
t 81 5
with £(t) = y(¢) + ¢(r) and
SRon(7)
== 4.11
#(r) 82M (81, 82) @1
The differential equation corresponding to (4.10) is
d R R
d—él(t) = <M(51, 32) — &>$1(t) + &51(1 —1). (4.12)
t 81 81
The characteristic equation associated with (4.12) is
w= (M(81, 82) — %> + %e_ru. (4.13)
61 81

Notice thatQ R>/81 > O (refer to Hayes Theorem in [13] and the results in the appendix
of [6]), if there exist some positive numbetsandé, such that(M (81, 82) — QR2/81) +
OR>/81 = M(81,82) < 0, then Eq. (4.13) only has roots with negative real-parts, that
is Reu < 0, and the steady-state solution 0 of Eq. (4.12) is asymptotic stable, that is
lim;_ 0 £1(¢) = 0. From the comparison of (4.10) and (4.12) we cantget< £1(¢), and

S0 y(t) < &1(r) — e(zr). From the conditionM (81, §2) < 0, we can deduce the following
conditions:

i) P<0, 2(PRi—X1+ QR2)+ SR282<0; or
@iy P>0, 2(PRy—A1+ QR2)+ SR252<0. (4.14)
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In fact QR281 + QR2/81 > 2./ QO R251 x QR2/81 = 2QR2 (V81 > 0). From the above
arguments, it directly follows that

Theorem 4.1. Suppose that hypothes@d;)—(H3) and the conditior{2.1) hold. For each
fixedr > 0, if o (r) < 0 and either conditior{i) or condition(ii) in (4.14)is satisfied for a
suitable positive numbek, then for every given initial functiog with 0 < ¢ < 1/az, the

solutionu(z, x) of the delayed problertl.4)<(1.6) and theT -periodic solutiond (z, x) of

the no-delay problertd.1) have the relations

SRon(z)

__oXen(t) (4.15)
oM (81, 82)

_ 2
Tim ) =020, <
whereM (31, 82) is given by(4.9)andn(v) = sUpyg, <7 161, ) — 6 — 7, )12

Remarks. (1) In a particular case of our food-limited model witty, x) = d(¢, x) =0, the
result Theorem 4.1 is coincident with that in [3] for the case mT (m € N) correspond-
ing to the Logistic model.

(2) If the conditiono (r (1 — cbp;)/(1+ dbo;)) < O is satisfied in Theorem 4.1, then
R1, R2, P, Q andS in (4.2) can be redefined by, 6y andf. If the boundary condition is
Neumann type, theRs, R2, P, Q andS can be redefined b, k2 as given by (3.12), and
the corresponding condition to that in (4.14) has the foraP Ry + QR2) + SR282 <0
with P < 0.

5. Applications

In this section, we give some numerical results for the asymptotic behavior of
Eq. (1.4)—(1.6) on the one-dimensional spatial donsaig (0, 1).
Example 1. We consider the following problem with Dirichlet boundary condition:

ou(t,x)
ot

— Au(t, x)

1— 3+sin2rt)u(t, x) — $(1+cosr)u(t — 3, x)

=(64+2sin2rt)u(t, x)

)

1+ u(t, x)
(5.1)
u(t,00)=u(,1) =0, te[0,+00), (5.2)
u(t,x)=sin(zrx), (,x)e[-1/2,0]x [0,1] (5.3)

with (¢, x) € (0, 00) x (0,1) for (5.1). As the principal eigenvalue efA in 2 = (0, 1)
with zero Dirichlet boundary conditions is = 72, andr(, x) = 6+ 2sin2rt < 8 < 72,
which implieso (r) > 0. Also ¢ (¢, x) = sin(rx) > O satisfies the compatibility conditions
¢(0,0) = ¢(0,1) = 0. Moreover, itis easy to see that =2,ao0 =4, b1 =by=1,c1 =
0,c2 =1/2 andd; = d2 =0, and hencedz — bic1 < ai(c1 + dp) is naturally satisfied.
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Fig. 1. The trivial solution O of problem (5.1)—(5.3) is globally asymptotic stable (see text).
According to Theorem 2.1, the trivial solutian=0 of problem (5.1)—(5.3) is globally
asymptotically stable (see Fig. 1), i.e.,

lim u(z,x)=0, VxelO0,1].
— 00

Example 2. We consider the problem with Neumann boundary condition:

ou(t, x) 1—a(t,x)u(t,x) —c(t, x)u(t —1/2, x)

or T~ Ault ) = ult ) At ont — 121 Y
ut.0) _dult. ) 5 10, 400), (5.5)
0x 0x
u(t,x)=¢(,x), (,x)e[-1/2,0]x [O0,1], (5.6)

with (¢, x) € (0, o0) x (0, 1) for (5.4) and
r(t,x) =10, a(t,x)=6+sin2rr; b(t,x)=2;
c(t,x) = %(1+ COS 2rt); d(t,x)=0; o, x)= %(1.2—C08nx). (5.7)

Thiscase1=rp»=10, a1 =5, ap=7, b1=br=2, c1=0, co=1, di=d»=0.We

check the conditions in (3.16) as follows. It is easy to age- ¢2 andaxdz — bicy1 <

ai(c1 + dp). Also, from (3.12),
ar —c1 7—0

ko = =

. a1 —e 5-1 4
T aiap—cicz 5x7—-0

1_a1a2—c102=5x7—0=3_5'
(5.8)

1.
57
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Fig. 2. The asymptotic periodicity of the solution for problem (5.4)—(5.6) (see text).

So from the definitions in (3.13), it follows that

P =1+ doky — (2a1 + c1)(1 + dak1)ky — arb1k?

4 4\? 67
—14+0-2x54+0)(1+0)x — —5x2x [ —) =———:
+0-@2x5+0)(1+ )><35 X ><<35> 55

Q = ko(bacoka — ardiky + c2 + d2)
1 1 7
:g X (2x1x §—0+1+0>:—'

25’
. r B 10 _ 250
Y7 (A bokg + dok)? (1+2x %+O)2 49’
10 12250
Ry 12 - (5.9)

T A+bik+dik)? (142x g+02 1849

Clearly P = — 2% <0,

67 250 7 12250
PR Ro=——— x — 4+ — x — =~ —1.2097 A
1+ OR> 245x 29 + 25x 1849 0979< 0, (5.10)

and it is easy to check that the compatibility conditions¢gar, x) are also satisfied. Ac-
cording to Theorem 3.2, the boundary value problem (5.4), (5.5) has a 1-periodic solution
6(t,x) on[0, c0) x [0, 1], and the time-dependent solutialy, x) of the initial boundary
value problem (5.4)—(5.6) has the asymptotic periodicity:

l&l‘fgo[u(t,x) —0(t,x)]=0, VxelO,1].

This is in line with our numerical simulation of problem (5.4)—(5.6) as given in Fig. 2.
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6. Discussion

We have developed a food-limited model based on the consideration that the carrying
capacity and the coefficients may vary spatially as well as temporally, may vary in a sea-
sonal scale with respect to the seasonal variation of the environment, and they may also
affected by the time-delay. The main basis of our reaction—diffusion model (1.1)—(1.3) is
Model-3 as given in [2].

From the arguments in this paper we see there are some similar results to those in [2],
although the system coefficients considered here are allowed to vary temporarily as well
as spatially. The results in [2] show that as long as the magnitude of the instantaneous self-
limitation and/or toxicant effects are larger than that of the time delay effects in Model-3
(mathematically speaking, the coefficignis very small, the solutiom(z, x) may tend
to 0 provided some conditions for the coefficients are satisfied). Ecologically speaking, it
means an extinction of the species in the long run as shown in Fig. 1; or the salutian
converges to a positive steady state solutiit) depending on the growth ratéx) of the
species. This means that if the species have a suitable growth rate, its population becomes
stable, though it is restricted by food supply and/or toxicant level. The theorems given in
Sections 2 and 3 show that the solutieft, x) of problem (1.4)—(1.6) (i.e.N(z, x) for
(1.1)—(1.3)) converges to a positive periodic solutign x) of the boundary value prob-
lem (1.4), (1.5) (see Example 2 in Section 5), provided suitable conditions are imposed on
the growth rate, the restriction of the food and/or the effects of the toxicant. This means the
population of the species may tend to vary periodically under suitable conditions. Though
the conditions for Theorems 3.1 and 3.2 seem very complex, if the coefficiantdd are
very small with respect te andb together with a suitable, then all the conditions can be
met (see Example 2), i.e., if the time-delay effect is very small and the growth rate of the
species is suitably chosen, then asymptotic periodicity of the solution may appear.

Theorem 4.1 gives an indication of the effects of the time-delay on the asymptotic be-
havior of the solution with respect to the periodic solution of the no-delay boundary value
problem. Particularly, for the special time delay=mT (m € N), only if the growth rate
is suitable, the population of the species can tend to vary periodically.

Finally, we mention the case:

30 1— 0

— —A@:r@ﬂ, (t,x) e Rt x 2,

at 1+ p(a+c)d

=0, (r,x)eR" xd8, (6.1)

wherer, a, ¢ are as in (4.1) and is a nonnegative parameter. This case is similar to that of
Model-3 with no delay. What we want to illuminate is the effecpadn 6.

Assume that > A1 and hencer (r) < 0, so the periodic solution of (6.1) exists. The
upper—lower solution method implies that(d; + ¢1) and 0 is a pair of upper and lower
solutions of? and hence & 6 < 1/(a1+ c1). Denoted for the case = 0. For a sequence
of numbers G=pg < p1 < -+ < pp—1 < py < --+, NOting that 0< 8 < 1/(ay + c1), it is
easy to check

1—(a+c)o S0 1-—(a+c)o
/r )
1+ pu-1(a+c)6 1+ pula+c)o

r VneN. (6.2)
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If 6, denotes the periodic solution of problem (6.1) with= p,, (n € N), then the com-
parison results imply that € --- < 6, <6,-1 < --- <61 < 6p. So the parametes can
affect the size of the periodic solutienof the Dirichlet problem (6.1). In fact, the periodic
solutiond is monotone decreasing with respecpto
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