

Available online at www.sciencedirect.com

Procedia Computer Science 46 (2015) 491 - 498

International Conference on Information and Communication Technologies (ICICT 2014)

A New Reversible Data Hiding Scheme with Improved Capacity Based on Directional Interpolation and Difference Expansion

Sabeen Govind P.V^{a,*}, M.Wilscy^b

^{a,b}Department of Computer Science, University of Kerala, Triruvananthapuram, 695581, India

Abstract

Using reversible data hiding (RDH) we can hide our secret data into a cover image and the receiver can restore both the secret data and the original image. It has wide application in medical imagery, military imagery where no distortion of original cover is allowed. Hong and Chen proposed a RDH scheme based on interpolation and histogram shifting. In their scheme reference pixels are not used for data embedding which leads to low capacity. Huang *et al.* modified this scheme and proposed a high capacity RDH scheme in which prediction errors are used for data embedding. In this paper we propose a further modification to the scheme of Huang *et al.* based on directional interpolation. Directional interpolation yields a better approximation to the original pixel which improves the capacity of embedding. The effectiveness of the proposed scheme is tested using standard test images and the proposed scheme gives better results in terms of embedding capacity and visual quality compared to Huang *et al.* scheme.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of organizing committee of the International Conference on Information and Communication Technologies (ICICT 2014)

Keywords: Difference expansion; Interpolation; Reversible data hiding; Visual quality

1. Introduction

Protection of data transmitted over the Internet is a challenging research area. Data hiding is an approach that conceals secret data into a cover image. Embedding process will change the original cover image but the distortion is

* Corresponding author. Tel.09895414387 E-mail address: sabingovindpv@gmail.com imperceptible to the human visual system. Data hiding techniques are commonly classified into two categories namely reversible and irreversible. As the name indicates, in reversible data hiding receiver can restore both the secret data and the original image. So that sometimes this technique is called loss-less data hiding. Images in many applications like medical imagery, military imagery and satellite imagery allow no distortion. Quality of the stego image and the payload capacity are the two parameters deciding the performance of an RDH scheme. When the embedding rate is high then the quality of the stego image will be less and vice versa.

Lately, several RDH schemes have been developed. Most of the schemes are based on difference expansion (DE) and histogram shifting. Tian suggested a data hiding scheme¹ based upon DE. In his method difference between two adjacent pixels are computed and this difference is doubled, so that the secret bit can be embedded in to the even value. Visual quality of Tian scheme is high but capacity is less. Alattar proposed a scheme² which is based on integer transform and their capacity is higher than Tian method. In 2011, Liu et al proposed a RDH technique based on bilinear interpolation and difference expansion³. In their scheme, in a single cover pixel, two secret bits can be embedded. Histogram modification is another technique used for data hiding. Ni *et al.* proposed a data hiding method⁴ based on histogram modification. In their scheme maximum change made to a pixel is 1, so that quality of the stego image is high but the hiding capacity is less. In 2011, Hong and Chen proposed a reversible data hiding based on interpolation and histogram modification⁵. In their scheme, cover image is divided into complex block and smooth block. Smooth block is only used for data embedding so that it produces a high quality stego image. Huang *et al.* modified Hong and Chen method in 2013 and proposed a high capacity RDH scheme based on interpolation and difference expansion⁶.

In this paper we propose an enhanced hiding scheme to improve Huang *et al.*'s scheme where prediction errors are utilized for data embedding. Data is embedded in a pixel if the prediction error is less than a predetermined threshold. We use directional interpolation for a more accurate prediction reducing the prediction error and thereby finding more embeddable number of pixels. Hence, the capacity of the proposed scheme is high. To test the effectiveness of the proposed scheme, we used some standard test images like Lena, Boats *etc* and the proposed scheme gives better results compared to Huang *et al.*'s scheme.

The rest of the paper is structured as follows. Section 2 discusses our proposed data hiding scheme. Experimental results are stated and analyzed in section 3. Concluding remarks are given in section 4.

2. Proposed RDH scheme

In the proposed scheme, the pixels in a cover image C sized $N \times N$ are classified into two types namely reference pixels and embeddable pixels. Prediction value of all embeddable pixels is computed from its neighboring reference pixels. Data is embedded in a pixel if the prediction error is less than a predetermined threshold. Otherwise, the scheme performs a histogram shift operation. In order to increase the payload capacity, the proposed scheme embeds secret bits into the reference pixels too.

The proposed scheme has two phases- the data embedding phase and the secret extraction and image recovery phase, which have been explained in the following subsection.

2.1. Data embedding phase

In this scheme, the pixels in a cover image are classified into two categories namely reference pixels (RP), and embeddable pixels (EP) as shown in Fig.1. The following pseudo-code is used for the classification of pixels into EPs and RPs.

RP_1	EP_1	RP_2	EP_2
EP_3	EP_4	EP_5	EP_6
RP_3	EP_7	RP_4	EP_8
EP_{9}	EP_{10}	EP_{11}	EP_{12}

Fig.1. Classification

end

After determining the *RP*s and *EP*s, perform the interpolation operation and compute the interpolated values (*IP*s). Prediction value of all embeddable pixels is computed from its neighboring reference pixels in a 3×3 block as shown in Fig.2.

Fig.2. Interpolation

For interpolating EP_3 we use the directional interpolation⁷ proposed by Luo *et al.* In this method the prediction value is calculated as a weighted sum of two directional interpolation values along 45° diagonal and 135° diagonal as shown in Fig.3. The weights are determined to minimize the mean squared error between the original pixel and its interpolated value.

Fig.3. Directional Interpolation

$$IP_3 = w_{45} \times D_{45} + w_{135} \times D_{135} \tag{1}$$

 D_{45} , D_{135} are the directional interpolation values and w_{45} and w_{135} are the corresponding weights, which are computed as follows.

$$D_{45} = \frac{(RP_2 + RP_3)}{2} \tag{2}$$

$$D_{135} = \frac{(RP_1 + RP_4)}{2} \tag{3}$$

$$w_{45} = \frac{\sigma(e_{135})}{\sigma(e_{45}) + \sigma(e_{135})} \tag{4}$$

$$w_{135} = \frac{\sigma(e_{45})}{\sigma(e_{45}) + \sigma(e_{135})} \tag{5}$$

where e_{45} and e_{135} represent the interpolation error along these two directions and $\sigma(e_{45})$ and $\sigma(e_{135})$ represent the variance estimations of e_{45} and e_{135} respectively, which are calculated as follows.

$$e_{45} = D_{45} - EP_3 \tag{6}$$

$$e_{135} = D_{135} - EP_3 \tag{7}$$

$$\sigma(e_{45}) = \frac{1}{3} \sum_{k=1}^{3} (S_{45}(k) - \mu)^2$$
(8)

where $S_{45}(k) = RP_2$, D_{45} , RP_3 for k=1, 2, 3 and μ denotes the Mean value of EP_3 which is calculated as

$$\mu = (RP_1 + RP_2 + RP_3 + RP_4)/4 \tag{9}$$

$$\sigma(e_{135}) = \frac{1}{2} \sum_{k=1}^{3} (S_{135}(k) - \mu)^2$$
(10)

where $S_{135}(k) = RP_1$, D_{135} , RP_4 for k=1, 2, 3 and μ denotes the Mean value of EP_3

It can be seen that the weights w_{45} and w_{135} are calculated in such a way that the direction having higher variance is given less weightage and direction having lower variance is given more weightage, so it gives a better prediction than simple average.

After finding all interpolated pixels, calculates the difference d_l which gives the prediction error between each embeddable pixel value EP_l and its corresponding interpolated value IP_l . The value of difference d_l ranged in [-T, T] is used for data embedding, where T is a threshold shared by both the sender and the receiver. Chang *et al.*'s method⁸ is used to set the threshold. If the absolute value of d_l is smaller than or equal to T, the scheme embed one bit of the secret data 's' using the following equation.

$$EP'_{l} = IP_{l} + 2 \times d_{l} + s \tag{11}$$

where EP_l represents the stego pixel and $s \in \{0,1\}$.

From Eq.11 it is clear that $2 \times d_l$ produces an even number whether the difference d_l is odd or even, so that we have space to conceal one bit of binary information 's' after expanding the difference by a factor 2.

The absolute value of d_l larger than T, indicates that the pixel is non-embeddable. If the pixel is non-embeddable then perform a histogram shift using Eq.12.

$$EP'_{l} = \begin{cases} EP_{l} + (T+1) & d_{l} \ge 0\\ EP_{l} - (T+1) & d_{l} < 0 \end{cases}$$
(12)

After embedding the secret bits into the embeddable pixels, this scheme embeds secret data into the reference pixels RP_k also and the embedding method is as follows.

- Calculate the difference d_k between RP_k and its right pixel EP'_k
- If the absolute value of d_k is smaller than T, we can embed one bit of the secret data 's' using Eq.13.

$$RP'_k = EP'_k + 2 \times d_k + s \tag{13}$$

• If the absolute value of d_k is larger than T, then RP_k is shifted using Eq.14

$$RP_{k}^{'} = \begin{cases} RP_{k} + (T+1) & d_{k} \ge 0\\ RP_{k} - (T+1) & d_{k} < 0 \end{cases}$$
(14)

After all the secret bits have been embedded the resulting stego image can be transmitted to the receiver.

2.2. Data extraction and image recovery

To perform successful extraction, threshold T must be available to the receiver. When receiver receives the stego image, the stego pixels are classified as the reference pixels and embeddable pixels in the same way as done in the data embedding phase. Receiver first extract secret data from the reference pixels and the procedure is listed below.

- Calculate the difference d'_k between the stego reference pixel RP'_k and its right pixel EP'_k .
- If $|d'_k| \le 2 \times T + 1$, which indicates the pixel RP'_k carries a secret data. We can extract the secret bit 's' using Eq.15 and recover the original RP_k using Eq.16.

$$s = mod(d'_k, 2) \tag{15}$$

$$RP_{k} = \begin{cases} EP'_{k} + \left\lfloor \frac{|d'_{k}|}{2} \right\rfloor & \text{if } RP'_{k} \ge EP'_{k} \\ EP'_{k} - \left\lfloor \left\lfloor \frac{d'_{k}}{2} \right\rfloor \right\rfloor & \text{otherwise} \end{cases}$$
(16)

• If $|d'_k| > 2 \times T + 1$, the reference pixel does not carry a secret data. The original pixel RP_k is recovered by reversing the histogram shift using Eq.17

$$RP_{k} = \begin{cases} RP_{k}^{'} - (T+1) & \text{if } RP_{k}^{'} \ge EP_{k}^{'} \\ RP_{k}^{'} + (T+1) & \text{otherwise} \end{cases}$$
(17)

In the first pass this scheme recovers all the reference pixels using Eq.16 and 17. Using these reference pixels the receiver also performs the same interpolation operation and obtains the interpolation pixels IP'_l . Then this scheme computes the difference d'_l between EP'_l and IP'_l . If $|d'_l| \le 2 \times T + 1$, then the secret bit is extracted from embeddable pixel using Eq.18 and original pixel is restored using Eq.19.

$$s = mod(d'_l, 2) \tag{18}$$

$$EP_{l} = \begin{cases} IP_{l}^{'} + \left\lfloor \frac{|a_{l}^{'}|}{2} \right\rfloor & if \ EP_{l}^{'} \ge \ IP_{l}^{'} \\ IP_{l}^{'} - \left\lfloor \left\lfloor \frac{a_{l}^{'}}{2} \right\rfloor \right\rfloor & otherwise \end{cases}$$
(19)

If $|d_l| > 2 \times T + 1$, then EP_l' does not carry a secret bit and we can restore the original pixel by reversing the histogram shift using Eq.20.

$$EP_{l} = \begin{cases} EP_{l}^{'} - (T+1) & \text{if } EP_{l}^{'} \ge IP_{l}^{'} \\ EP_{l}^{'} + (T+1) & \text{otherwise} \end{cases}$$

$$(20)$$

2.3. Extra data for underflow/overflow

Original pixels having grayscale values in the range [0, T] and [255-T, 255] may generate an overflow or underflow. To avoid an underflow original pixels less than T+1 is modified as T+1 and to avoid overflow original pixel is larger than 255- (T+1) is modified as 255- (T+1). We need to record the position (location) information of these modified pixels and the last $[log_2T + 2]$ bits of the original pixel. This extra information is also embedded into the cover image.

3. Experimental results

Four standard grayscale images (Lena, sailboat, airplane, boat) of size 512×512 are used to test the effectiveness of the proposed scheme. Secret data composed of bits '0' and '1' are randomly generated by MATLAB function. The Peak Signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) are the two metrics used to assess the stego image quality. Table 1 shows the comparison result and it shows the pure hiding capacity (bits), PSNR and SSIM of these test images for different values of threshold T. It can be observed that the proposed method provides a higher embedding capacity for all cases and it can also be noted that PSNR and SSIM values are improved slightly. Fig.4. shows the original cover images and its stego images (Lena and Boat), their PSNR values are higher than 30 dB. Normally the image degradation between the cover and stego images cannot be observed by the human eye when the PSNR value crosses 30 dB.

Fig.4. (a) cover image (b) stego image with capacity 250,343 bits and PSNR 34.096 dB (c) cover image (d) stego image with capacity 233,918 bits and PSNR 31.604 dB

RDH scheme ⁶
with
scheme
of the proposed
Comparison
Ë.
Table

T= 14	apacity PSNR SSIM	19,763 33.923 0.9884	50,343 34.096 0.9885	27,687 30.373 0.9818	28,096 30.419 0.9820	28,096 30.419 0.9820 46,811 33.614 0.9905	38,096 30.419 0.9820 46,811 33.614 0.9905 47,297 33.768 0.9906	38,096 30.419 0.9820 46,811 33.614 0.9905 47,297 33.768 0.9906 33,479 31.534 0.9882
T= 10	PSNR SSIM Ca	35.108 0.9892 24	35.201 0.9893 25	31.782 0.9847 22	31.803 0.9848 22	31.803 0.9848 22 34.961 0.9915 24	31.803 0.9848 22 34.961 0.9915 24 35.038 0.9916 24	31.803 0.9848 22 34.961 0.9915 24 35.038 0.9916 24 33.024 0.9898 23
	1 Capacity	8 241,598	9 242,437	1 206,628	2 207,168	2 207,168 1 238,422	2 207,168 1 238,422 1 239,180	 207,168 238,422 239,180 220,409
T= 6	PSNR SSIM	36.963 0.9908	37.023 0.9909	34.215 0.989	34.273 0.989	34.273 0.989 : 37.022 0.993	34.273 0.989 37.022 0.993 37.068 0.993	34.273 0.989 37.022 0.993 37.068 0.993 35.387 0.992
	M Capacity	23,224	23 224,306	22 166,577	22 167,368	22 167,368 42 221,022	22 167,368 42 221,022 43 221,959	22 167,368 42 221,022 43 221,959 39 194,232
T=4	PSNR SSI	38.529 0.99	38.567 0.99	36.312 0.99	36.341 0.95	36.341 0.99 38.692 0.95	36.341 0.99 38.692 0.99 38.715 0.9 9	36.341 0.99 38.692 0.99 38.715 0.9 9 37.303 0.99
Scheme	Capacity	luang <i>et al</i> 201,660	Proposed 202,780	luang <i>et al</i> 133,942	Proposed 134,744	Proposed 134,744 luang <i>et al</i> 201,917	Proposed 134,744 luang et al 201,917 Proposed 202,878	Proposed 134,744 luang et al 201,917 Proposed 202,878 luang et al 169,271
Image		H		H	Sailboat I	Sauboat I H H	Sailboat F H Airplane J	Sailboat F Airplane H I I H H H

The proposed scheme is completely reversible as shown in Fig.5. We are taking the difference of original cover image and its recovered image, Fig.5(c) shows a complete black image which means both the images are same.

Fig.5. (a) Cover image (b) Recovered image (c) Difference between the original and recovered image

4. Conclusion

This paper proposes a new RDH technique based on directional interpolation and difference expansion. Directional interpolation reduces the prediction error so that number of embeddable pixels is increased. Hence the embedding capacity of the proposed scheme is very high. After extracting the secret data restoration of the original image is done without any distortion. As shown in Table.1, with respect to the embedding capacity and visual quality our method gives better results than Huang *et al.*'s scheme⁶.

References

- Tian J. Reversible data embedding using difference expansion. *IEEE Transaction on Circuits and Systems for Video Technology* 2011; 13(8): 890-896.
- Alattar AM.. Reversible watermark using the difference expansion of a generalized integer transform. *IEEE Transaction on Image Processing* 2004; 13(8): 1147-1156.
- Liu YC, Wu HC, Yu SS. Adaptive DE-based reversible steganographic technique using bilinear interpolation and simplified location map. Multimedia Tools and Applications 2011; 52(2-3): 263-276.
- Ni Z, Shi YQ, Ansari N, Su W. Reversible data hiding. IEEE Transaction on Circuits and Systems for Video Technology 2006; 16(3): 354-362.
- Hong W, Chen TS. Reversible data embedding for high quality images using interpolation and reference pixel distribution mechanism. Journal of Visual Communication and Image Representation 2011; 22(2): 131-140.
- Tzu-Chuen, Chin-Chen Chang, Hsuan Huang. High capacity reversible hiding scheme based on interpolation, difference expansion, and histogram shifting. *Multimedia Tools and Applications* 2014; 72(): 417- 435.
- Lixin Luo, Zhang Xiong. Reversible image watermarking using interpolation technique. *IEEE Transaction on Information Forensics and Security* 2010; 5(1): 187-193.
- 8. Kieu TD, Chang CC. A steganographic scheme by fully exploiting modification directions. *Expert System with Applications 2011;* 1():10648-10657.