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Compressive sensing based channel estimation has shown its advantage of accurate reconstruction for sparse signal with less pilots
for OFDM systems. However, high computational cost requirement of CS method, due to linear programming, significantly restricts
its implementation in practical applications. In this paper, we propose a reduced complexity channel estimation scheme of modified
orthogonal matching pursuit with sliding windows for ISDB-T (Integrated Services Digital Broadcasting for Terrestrial) system.
The proposed scheme can reduce the computational cost by limiting the searching region as well as making effective use of the last
estimation result. In addition, adaptive tracking strategy with sliding sampling window can improve the robustness of CS based
methods to guarantee its accuracy of channel matrix reconstruction, even for fast time-variant channels. The computer simulation

demonstrates its impact on improving bit error rate and computational complexity for ISDB-T system.

1. Introduction

Orthogonal frequency division multiplexing (OFDM) that
is a multicarrier modulation technique has been adopted
by ISDB-T (Integrated Services Digital Broadcasting for
Terrestrial) system [1] due to its robustness against multipath
interference and high spectrum availability rate. In ISDB-T
systems, a dynamic and accurate channel estimation method
is normally essential for demodulation, synchronization,
equalization, and so on. Generally, pilot-aided channel esti-
mation schemes are employed to recover the channel impulse
response in ISDB-T systems. Recently, a new technique
named compressive sensing (CS), which can reliably recover
the original sparse signal from very limited samples, has been
exploited for sparse channel estimation. With the definition
of the restricted isometry property (RIP) being introduced,
the concept of CS was firstly proposed in 2006 [2, 3]. After
that, the CS has been intensely investigated for its better
reconstruction performance and wide application field [4-
7]. For channel estimation, CS based approaches can obtain
more accurate estimation with the same number of pilots or
similar estimation performance with less pilots in contrast to
least square (LS) based approaches [8].

For CS based channel estimation methods, an important
assumption of sparse multipath channel, where a multipath
propagation channel can be separated into a few strong
paths and many uncountable weak paths whose transmission
energy is approximate to zero, should stand in practical
application. In other words, most taps of a channel are
negligible, as estimating channel impulse response (CIR). For
ISDB-T system, this assumption is commonly acceptable as
an engineering approximation [9, 10], and it is also assumed
to be true in this paper. Thus, the discussion about the sparsity
of propagation channels is beyond the research range of the
paper.

Bajwa et al. in [10] have proposed several basic CS
based channel estimation methods by using DS solution for
varying communication models, including single-antenna
and multiantenna systems. Berger has detailedly introduced
the CS based sparse channel estimation, including technical
background, basic definitions, algorithm, and practical appli-
cation [8]. In [11], CS based channel estimation is employed
for underwater acoustic communication and compares its
bit error ratio performance with other methods. Based
on conventional matching pursuit algorithm [12], Troop
and Gilbert have proposed an orthogonal matching pursuit



(OMP) algorithm to solve the linear program for CS, which
can significantly reduce the computational complexity to
recover original sparse signal in contrast to basic pursuit
based methods [13]. In order to further decrease the require-
ment of computational cost, an MOMP algorithm has been
proposed to further decrease the computational complexity
of OMP by limiting redundant correlation calculation [14, 15].
Meng et al. proposed a low-cost and high-resolution channel
estimator by using special pilot design [16]. Undoubtedly,
these methods that rearrange the pilot subcarriers are not
available for the ISDB-T system of current version [1]. More
recently, Paderna et al. has proposed an MOMP based chan-
nel estimation method to overcome imperfect synchroniza-
tion via processing received signal in time-domain instead of
frequency-domain [17, 18]. However, in consideration of the
requirement of low computational complexity, for high-speed
moving reception, accurately obtaining channels FIR by
using CS based methods is still a big challenge due to severe
interference from Doppler frequency shift and multipath
propagation.

In this paper, we further improve the conventional
MOMP algorithm by setting a flexible searching range to
enhance its robustness. An improved channel estimation
scheme based on sliding-MOMP (SMOMP) has been pro-
posed, which can adaptively deal with fast and flat fading
channel with relatively low calculation complexity. Also, we
introduce a reconstruction method of channel matrix with
the derivation of initial phases. The remaining part of this
paper is organized as follows. Section 2 introduces the basis
system model, and Section 3 gives a simple review of the CS
based channel estimation methods. The proposed SMOMP
scheme is introduced in detail in Section 4. The numerical
results and conclusions are presented in Sections 5 and 6,
respectively.

2. System Model

Consider an uncoded OFDM system with N subcarriers and
Nep cyclic prefix (CP) as guard interval (GI). The constellated
data stream S, including transmission data S; and pilot
subcarriers S,, has been transformed by N-point inverse
discrete Fourier transform (IDFT) from serial to parallel
signal. After inserting a CP, the transmission signal x () can
be written as

1 N-1 )
x(m)=— Y Sk N, —Nyp<n<N. (1)
k=0

Assume that the synchronization is perfect and the CP is
longer than the channel’s maximum delay. Then, the received
signal y(n), after the removal of CP, can be presented as

L-1
ym = Yhmhxn-)+wm)=HFS+w, (2
1=0

where H, denotes a time-domain channel matrix, F
denotes a complex conjugate transpose of an N x N uni-
tary DFT matrix, and w denotes the additive white Gaus-
sian noise (AWGN). For high-speed moving reception of
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ISDB-T systems, the transmission signal is interfered by a
time/frequency doubly selective multipath fading channel
whose characteristic parameters are time-variant. Without
loss of generality, we here exploit the basis expansion model
(BEM), which commonly describes a random channel with
less second-order diversity than numerous channel parame-
ters over a basis of complex exponentials, to model a time-
variant channel [19]. The BEM can clearly show a channel
dictionary of sparse pattern (SP) of the angle-delay-Doppler
spread with independent diversities on angle, time, and
frequency order. A propagation channel tap h(n;1) is given
by BEM with time-variant impulse response, I € [0, L) where
I presents the /th transmission tap among at most L channel
paths:

Q .
hmh =Y ¢, ()e/e>™ N, (3)
=-Q

where Q is the gth BEM amplitude coeflicient of the Ith
channel tap, ¢ (/) is the BEM model order, and ¢ that denotes
the initial phase of the tap following a uniform distribution in
[0, 27r]. The maximum Doppler spread is given by Q/(T.N).
After removing GI, the received signal that is transformed to
frequency-domain by using DFT is presented by

R(k) = FH,F"'S + Fw = H;S + v, (4)

where H, denotes the frequency-domain channel matrix.
The pilot subcarriers R, are extracted from the R(k) to
derive the FIR at pilot positions H, = R,/S,. Then, we
can use a kind of filter or interpolator to reconstruct a
channel matrix, which is normally called least squares (LS)
based estimation method. However, due to the effect of time-
Doppler spread, the so-called intercarrier interference (ICI)
destroys the subcarriers’ othogonality of the OFDM signal,
which causes the performance declination of ISDB-T system:s.

3. CS Based Channel Estimation

As mentioned before, in contrast to other channel estimation
methods, especially LS based methods, CS based approaches
can recover the CIR via much less pilot subcarriers for OFDM
systems. As a result, in [10, 20], if the actual or effective
number of DoF (Degree of Freedom) is much less than the
maximum number of DoF in a channel, a channel can be
defined as a “sparse” one. For sparse channel estimation,
the recovery results by CS based methods are the channel
characteristic parameters, that is, channel taps, Doppler
frequency offset, channel delay, and distorted phase. Then,
the channel matrix can be reconstructed depending on the
recovered results. In [2, 3], the authors give the definition of
CS and two important preconditions, RIP and uncorrelated
measurement vectors. Moreover, Berger et al. summarizes
the CS based channel estimation methods [8]. Consider a
standard linear measurement model:

r=V¥0+e¢, (5)

where r is an M-vector of responses that can be represented
in an arbitrary basis, ¥ ;_,, with the weighting coefficients
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0. € is an M-vector of random noise with variance 6%, In
general, 0 is an unknown P-vector, and ¥ = (v, ¥, ..., ¥,)
denotes an M x P (M < P) measurement matrix. When
CS based channel estimation is used for OFDM systems, the
measurement matrix commonly consists of some columns of
a2-dimensional DFT matrix that obeys the RIP condition due
to the orthogonality of rows and columns. According to the
RIP, the isometry constant §g of ¥ as the smallest number
such that

(1-8) 1613 < w613 < (1+ ) 11613 (6)

holds for all X-sparse vectors, another representation of X
actual DoFs, where || - ||, is denoted as the #,-norm. For
frequency-selective fading channel, using 1-dimensional DFT
matrix is usually effective and reliable for signal reconstruc-
tion. However, in the case of doubly selective fading channel,
a 2-dimensional DFT matrix is essential. At the receiver, one
can derive /i to obtain an estimate. Here, we have to highlight
an easily overlooked point that the solution result of CS is not
an estimate of a channel matrix, but a CIR matrix, for 2D case,
which represents the path’s characters (delay-angle-Doppler
shift) of a multipath channel. In general, the CS problem can
be solved by two kinds of approaches, basis pursuit (BP) and
matching pursuit (MP) [21]. The former is an #; norm based
approach that has some well-known algorithms, for example,
LASSO and DS (Danztig Selector) [22-24]. The latter is a
dynamic programming based greedy algorithm. However, no
matter which approach we take, the computational cost is
quite high due to large-scale matrix calculations.

3.1. Orthogonal Matching Pursuit. The conventional OMP
is a greedy algorithm that can solve the CS with relatively
low computational complexity, in contrast to most BP based
approaches and original MP. The details of OMP are intro-
duced in [12, 13]. OMP aims to solve a sparse LP problem
without considering any impact of noise for which (5) would
be rewritten as, ¥ = W0, where r, ¥, and 6 have the similar
definitions introduced before. As an iterative algorithm, OMP
aims to detect the columns of ¥ in a greedy fashion, which
is most strongly correlated with the remaining part of r.
Then, the column with maximum correlated value would be
extracted from ¥, while the residual part would be reserved
to the next iteration. After P iterations, the algorithm will
have identified the correct set of columns. Also, one can get
an identified matrix and a location index set, both of which
would be used to reconstruct a new estimate.

4. Proposed Scheme

The procedure of CS based channel estimation consists of two
steps, (1) solving the CS problem and (2) reconstructing the
channel matrix. It is worthy of noticing that research about
the latter is seldom involved in most literatures. Actually,
the results of CS problem are normally not equivalent to the
channel estimates. Taking account of the trade-off between
reducing the computational complexity and increasing the
reconstruction performance, the proposed scheme improves

the conventional OMP based channel estimation schemes
with the following approaches.

4.1. Measurement Matrix. The Fourier matrix is a natural
measurement matrix for the incoherency and orthogonality
characteristic for the OFDM system of ISDB-T. Because of
aiming to deal with the time/frequency doubly selective time-
variant channel, the measurement matrix is comprised of 2-
dimensional (frequency and time axis) DFT matrix to detect
delay-Doppler spread. Consider a NNy x KD measurement
matrix W, as an example, is given below:

_ nkK/2 n(K/2—-1) -nK/2
= [w” e wy ]
nl n(D-1) (7)
®[1 Ny N ]’

where ® is denoted as the Kronecker product and w, =

e 7™ IN that is, the entry of DFT matrix. N, and N ; denote
the time and frequency separation, which are usually equal to
the number of pilots in time- and frequency-domain. Mean-
while, K and D denote the maximum resolvable division of
Doppler shifts and channel delays, respectively. In order to
guarantee the detecting accuracy, V is a big size matrix that
requires large-scale matrix calculations. Therefore, reducing
the size of ¥ can directly improve the computational cost.
In general, D is defined as the length of a whole OFDM
symbol to detect long enough channel delay. Consider that
the assumption of long enough CP is true in most cases. Thus,
the length of D can be shortened. In our case, D is set to the
length of CP and it works well. With the same reason, if the
maximum Doppler shift is known previously, K also can be
shortened to K;, to decrease the size of ¥ further. Thus, (7)
can be rewritten as

_ 1K i /2 1(Kiyin/2-1) 1K in/2
Y= [ri wy s wy ]
1 n(Ngp—1) (8)
1 vy .- cer ] .
® [ Ny Wn,

Then, the size of measurement matrix is decreased to N, N x
KinNep- In most cases, the decreased measurement matrix
is suitable and effective for the proposed scheme. In addition,
increasing the flexibility of the size of the measurement
matrix in terms of the maximum channel delay to realize an
adaptive scheme is also an attractive alternative.

4.2. Modified Matching Pursuit. For a time/frequency dou-
ble selective fast-fading channel, the channel characteristics
coefficients, including maximum Doppler frequency and the
number of propagation paths, usually hardly change during a
short temporal interval. In this paper, some extreme cases, for
example, getting in or out of a tunnel, are beyond our discus-
sion. For the ISDB-T system, the characteristics coeflicients of
the current OFDM symbol seldom change too much between
adjacent several OFDM symbols. Yet the conventional OMP
needs to calculate correlation value of each entry’s pair
between ¥ and r, where the correlation calculation mostly
dominates the complexity cost of the OMP [8]. It is worthy
of mentioning that, in a sparse system, it is reasonable to



neglect the effect from weak paths that are represented as
corresponding columns of measurement matrix V. Therefore,
we just need to calculate the correlation values of nonzero
elements and their adjacent elements that are indexed in the
location index set of the last estimate. So do the measurement
matrix’s columns. The index set, which can be reused to
decrease the calculation time upon correlation operation, is
upgraded after an OMP iterative loop. In other words, this
procedure is equivalent to decreasing the times of correlation
calculations, which is definitely helpful to reduce the overall
computational cost of signal recovery. Additionally, notice
that the sparsity level is an essential input parameter for the
conventional OMP. However, the number of the propagation
paths is an unknown variable before getting an estimate, and
it is also a changeable parameter for time-variant channels.
Our proposed MOMP sets an adaptive parameter of iterative
loop to improve the algorithm’s flexibility and robustness. The
flowchart of the proposed MOMP is shown in Figure 1.
The procedure is as follows:

(1) Astheinitial setting, a M xP measurement matrix ¥ is
given in terms of the target system, and the detection
loop counter i that is marked as superscript is set to 0.

Initial index set In® = [1,1,..., 1] p.
(2) Initialize the residual vector r’i = 7', the index
set Inj = 0 (i # 0), the sensing matrix ®, =

@, and the iteration counter t = 1, t € [1,M].
Meanwhile, a threshold parameter is defined as Th’ =
(oc/M)Z Y1F(k)?, where « € (0,1] denotes a
proportlonal coeflicient.

(3) Find the index in, by searching the position with peak
value over power threshold via correlation calcula-
tion, where the detection range is the last index set
In":

in, = arg max '<7} 1,1//k>' 9)

kelni~!

(4) Make a new index set In} = In,_, Uin, and extract the
corresponding columns from measurement matrix

\I’t"_1 to insert them into the last one, and augment it
to a new sensing matrix as follows:

= [(Diq%nt] . (10)

(5) Solve a LS problem to obtain a new signal estimate:

0, = argmin "ri - QDGHZ . 1

(6) Calculate the new approximation of the data and the
new residual sequence:

rf =r - th@t. (12)

(7) If the residual power is lower than the threshold Pr;‘ <

Th' or the iterative counter is beyond the maximum
iterative times ¢ > M, the iteration procedure will end.
Otherwise, return to Step (2) and start a new iterative
step.
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(8) The estimate result @ = 0, and an upgraded index set
In’ are saved as output signal and sent forward to the
next detection loop as well.

Remark the following:

(1) Only for the initial detection is the index set set to
one vector with all ones, In® = [1,1,...,1],4p, for
which the correlation calculation traverses the overall
V. From the second detection loop, an upgraded In’
that consists of a lot of zero and a few one elements can
be reset according to the last index set. If the element
at In’(k) position is zero, the correlation calculation
and other related processes will be neglected.

(2) In order to detect the quickly changing channel char-
acteristic coefficients in the next loop, it is necessary
to guarantee a modest flexibility of the index set In}
to track the CIR, as well as reducing the nonzero
elements of it. The diagram of the upgraded process
of the index set In’ is shown in Figure 2. In' is renewed
as

. 1 g(k)#0,
In’ (k) = (13)
0 g(k)=0.

(3) Except for some special cases, the difference of chan-
nel characteristic coefficients between two adjacent
OFDM symbols is usually very limited and has little
sudden change. In other words, detecting a merely
small range, front and back positions, around the
last estimated CIR location can effectively track the
change of a fast fading channel. The faster the CIR
changes, the larger the extending unit V' that is set

to 1 in Figure 2 from 0 to g. Also, in consideration
of the robustness of the algorithm, an extending

parameter V is dominated in terms of the power level
of propagation paths. After that, we use a scattered
map of g to derive a new index set In’. The extending
unit V' is the Euclidean distance around every nonzero
6.AsV =1, the processing of getting the map of g is
obtained by
1 1 i
g (k) = 59 (k—-N-1)+ 56 (k-1)+6 (k)
(14)
1 1i
59 (k+1)+50 (k+N+1).

(4) The residual power P, the average power of residual

vector rt, is defined as Pr = (1/M) Z ' t(k)|2 If
most of high-power propagatlon paths have already
been detected and extracted from r, P, willbea small
value. Thus, a detection threshold Th' that is adjusted

by the proportional coefficient « is set to control the
detection process. As the residual power P, is lower

than the threshold Th', an iteration loop does end.
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Initial setting:

IndexsetIn” = [1,1,...,1];xp
Measurement matrix ¥, p

Detection loop i = 0

Extending unit V'

Data vector r} = r'

Threshold Th’

Signal loading input:
Index set In"1 =¢,(fi>1)

Sensing matrix ®; = ¢
Iteration counter t = 1,t € [1, M]

N2
Import the last data: Find the index of max corr.
p i ;
Index s'et In ' in, = arg maxq' <r;_1 R ‘I’k> |
Extending unit V' keln’
Detection loopi =i+ 1 1l

Augment new index set and extract
cols from measurement matrix
iy .

In, = In;_; Uin,

D = [0, ¥, |

Iterative factors:
Residual vector r;_,
Iteration counter t = ¢ + 1

N

Solve LS to update the estimate
0, = arg max”r’ - (Dt@||2

N}
The next new residual vector
i i 3
rp=r— @0
No
Yes

Estimate results output:
Index set In'

-1
Estimate 6

Next loop

FIGURE 1: Flowchart of modified orthogonal matching pursuit.

(5) In consideration of the effect of suddenly changing
channels, such as entering and driving out of a tunnel,
MOMP has to periodically search the full measure-
ment matrix ¥ by resetting the index set In’ as one
vector to track the channel’s sudden change. Thus, an
adaptive parameter p, p € (0,1], is introduced to
adjust the ratio of repeating search.

In brief, the MOMP can effectively reduce the redundant
correlation calculation of OMP and robustly deal with both
fast and flat fading channel. Working with the optimized
measurement matrix together, the MOMP can run much
faster than the conventional OMP and nearly not take any
accuracy loss of estimate.

4.3. Reconstruction of Channel Matrix. The reconstruction
methods of original signal based on CS have been introduced

in many literatures, but another important issue, the recon-
struction of channel matrix, is seldom discussed. According
to the general understanding [2, 8, 10], the reconstruction
of CS is equivalent to finding a suitable dictionary for
sparse representation of channels, which definitely is a very
important research objective. However, an ISDB-T reception
system, in most cases, requires an accurate estimate of
channel matrix rather than a reconstructed dictionary for
representing the channel’s sparsity. Therefore, an improve-
ment on reconstructing channel matrix can further increase
the accuracy of channel estimation, and provide effective
support to improve the ISDB-T system’s performance. Since
the calculation result of CS algorithm with 2-dimensional
measurement matrix is a sparse complex matrix, then from
the sparse matrix, the very limited “big value” elements,
whose module, argument, and position are regarded as FIR
information, are extracted to reconstruct channel matrices.
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Estimated CIR from the calculated results of the current loop
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FIGURE 2: Reconstruction of index set with extending parameter V = 1.
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Initial phase derivation
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FIGURE 3: The derivation of the initial phase of a propagation path in terms of the CS based estimates.

The energy level of propagation paths is almost proportional
to the module of those elements, while the channel delay and
Doppler shift level can be derived from the position of those
elements subject to a particular reconstruction dictionary.
However, it is not accurate enough to get the initial phase of
propagation paths by directly using the element’s argument
of the sparse matrix. As a linear programming method, CS
gives a statistical optimum solution that obeys the piecewise
linear assumption [25, 26]. The element’s argument generally
represents a phase P-g at the middle point of an OFDM
symbol, which is shown in Figure 3. Therefore, the actual
initial phase Py, of the current propagation path, in the
case of Nop = N/4, can be approximately derived by

2m Nep +NJ/2
Pactuat = Pos = 1~ (Nep +N) NN
D Cp
(15)
m(Nep +N)
=Pes——F
D

where N and N, are the length of one OFDM symbol and
the discrete length of Doppler shift, respectively. After that,
the modified initial phase P, ., and other estimated CIR
coefficients are substituted into (3) to reconstruct the channel
matrix. Instead of P, using P . can effectively increase
the accuracy of channel matrix reconstruction and improve
the BER performance of ISDB-T system.

4.4. Sliding-MOMP. The MOMP focuses on reducing the
computation complexity, while in this section we propose an
iterative method with adaptive sliding window to improve
the accuracy of MOMP further, especially for time-variant
fast fading channels. In order to track the quickly changing
channel coefficients due to high-speed mobility reception, the
size of the measurement matrix that is derived from a 2D
DFT matrix has to been increased with the delay-Doppler
spread. With respect to the size of ¥, the MOMP executes
a block-estimation after receiving N, OFDM symbols, but
not for each OFDM symbol. However, for variable speed
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,,,,, Sliding window _ __ Frequency 1
J— i _ a
T OFDM symbol | Estimated chs

|| .
! - |
i : : :
N| ' T e :* Estimated channel
L | OFDM symbol i | matrix of current
o |1 OFDMsymbol <
! —
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S ] .
Estimated H,
w| OFDM symbol | oo, Hmated Hes
g : : : i ;
S | OFDM symbol i Asanexample, ¢

e let R = [N,/E] = 2

FIGURE 4: The sliding-MOMP method with sliding overlapped
window.

mobility reception, only increasing the size of ¥ is quite
inadequate to track the channel’s change. Since CS is a linear
programming based algorithm, the estimate’s accuracy of
MOMP is significantly degraded compared to steady high-
speed mobility reception.

In addition, another problem about spread of estimate
error needs to be faced. The channel matrix is reconstructed
on the basis of the estimated FIR results. However, the speed
of estimator is slower than that of channel coefficients, if
the block-estimation method is employed. The estimate error
due to the variable speed mobility reception spreads into the
adjacent channel matrices, even if the error is slight.

We use a sliding window to adjust the execution fre-
quency of MOMP, where the window’s width and sliding
step length are, respectively, defined as N, and S;, §; < N,.
Sy is set to a suitable value to match the changes of delay-
Doppler spread. As S; = N,, the proposed iterative method
does not work. In the case of S; < N, the sliding windows
are overlapped. One OFDM symbol thus executes R times
of MOMP, where the iterative depth R is derived by R =
[N,/S.1 (operator [-] denotes a roundup operation). The
current channel matrix then is given by

R
— —~(k
HC = a(k)His),
k=0
(16)

R

subject to Za(k) =1,
k=0

where H_, H, :), and a® are denoted as the current channel

matrix, the reconstructed channel matrix from kth MOMP,

and the normalized weight of that estimate, respectively. We

set a;/ Zf;.lﬂ a, = g, where g is a proportionality constant.

The weight of the latest estimate increases with increasing g.

The process of the iterative method with sliding windows is

shown in Figure 4, in which we set R = 2, and the estimate

=0

of the current MOMP and the last MOMP is denoted as H
and H ;, respectively.

As the ISDB-T receiver is on a variable speed moving

status, we have to increase the MOMP’s execution frequency

TABLE 1: Simulation parameters.

FFT size (N) 64,128, 256, 512, 1024, and 2048
Guard interval N/4

Pilot type Scattered type
Modulation type QPSK

Normalized Doppler (F,T) 0.03125, 0.0625, and 0.125
Noise type AWGN

R to update the quickly changing estimates. Conversely, we
decrease the value of R for steady mobility reception, until
R =1 for uniform-speed reception.

5. Numerical Results

In this section, we present simulation results to demonstrate
our proposed scheme’s performance. We employ an uncoded
OFDM system with QPSK constellation, in which the main
parameters are shown in Table 1, similar to the mode 1 of
ISDB-T but without encoding and interleaving procedure.
A random pilot assignment or other especial pilot design
approaches are better options to gain the optimum perfor-
mance according to the CS theory. But ISDB-T standard has
its specific pilot arrangement (see [1]), for which the per-
formance of the proposed scheme is slightly worse than the
optimal performance of CS. We choose the Typical Urban 6
paths (TU6) model (in [27, Annex C3.1]) as a double selective
fading channel model. In our numerical simulation, the TU6
delay parameters, power and delay, have been normalized
with the total signal. However, this model cannot perfectly
simulate a channel of variable speed mobility reception. Thus,
2 key channel parameters, delay time and Doppler spread, are
set to variables ones with a given proportion value. In order
to obtain relatively fair comparative conclusions, we adopt 2
simple equalizers, Zero-Forcing (ZF) and banded minimum
mean squared error (MMSE), for varying schemes.

We firstly compare the computational complexity of
the proposed MOMP with the conventional OMP and DS
method that is solved by the simplex algorithm [28]. With
the increase of FFT size, the execution time of all 3 methods
quickly increases. In contrast to the DS method, both OMP
and MOMP have clear advantage on computational complex-
ity, which is shown in Figure 3. Besides simplex algorithm,
interior point algorithm [29] has also been exploited to
solve the BP problem, but it cannot clearly improve the
computational complexity either. As mentioned before, the
computational complexity of OMP is mainly dominated by
the correlation calculation. Assume that ¥ is a N x M-matrix
with S nonzero vectors and repeating ratio parameter p. Then,
it only costs (1 — p)NS* + pNM?* complex multiplications for
proposed MOMP instead of NM?* complex multiplications
for OMP. Since S « M and low p, the MOMP can
significantly improve the performance on computational
complexity with decrease of a channel’s DoE According to
the introduction to the proposed SMOMD, its computational
complexity increases with the iterative depth R. In consid-
eration of the definition of R, the computational complexity
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FIGURE 6: Comparision of BER performance between basic MOMP
and OMP.

of SMOMP is nearly Y2 k/R times as much as that of
the MOMP. In addtion, for giving perceptual comparison of
computational complexity, the execution time of OMP and
SMOMP has been plotted in Figure 5. With p = 0.05 and
Q = 2, the MOMP steadily costs only about 1/3 execution
time as much as the OMP. For SMOMP, the computational
complexity increases with the iterative depth R.

On the other hand, we also compare the recovery perfor-
mance between MOMP and OMP in terms of bit error rate
(BER) results. Since we do not employ any extra procedure
to mitigate the ICI and other interference, the OMP has an
upper bound of BER performance. The proposed MOMP can
extremely be close to but not attain the bound because of the
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FIGURE 8: BER performance of varying schemes for time-variant fast
fading channels with sudden changes.

sparse searching index. For flat fading channels without the
effect of Doppler shift, the performance difference between
OMP and MOMP is nearly invisible, which is shown in
Figure 6. While, for fast fading channels with normalized
Doppler shift f;T, = 0.0625, the MOMP has a slight
performance loss comparing with OMP. Also, it is easily
noticed that increasing the extending parameter Q can
effectively enlarge the searching range of the sensing matrix
to improve the MOMP’s performance. As Q = 3 in Figure 6,
the BER performance of MOMP is approximate to OMP’s
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bound. So setting Q as an appropriate value is an effective
way to achieve a trade-off between complexity and accuracy.
In addition, Figure 7 shows the BER performance of varying
channel estimation schemes for time-variant doubly selective
channels without sudden change. All the schemes have a
BER performance lower bound, where the conventional LS
is the worst one. Using the BER lower bound as a comparison
index, the OMP can beat the original MOMP but lose to the
SMOMP. The similar comparison between varying schemes is
conducted for time-variant fast fading channels with sudden
change of 5% jumping probability of channel coefficients,
which is shown in Figure 8. The relative BER performance
significantly degrades for all the schemes. In this case, the
advantage of SMOMP is clearer than the original MOMP,
as the iterative depth R = 5. In both Figures 7 and 8, the
performance of DS is really not splendid. Actually, besides
DS, some other BP based schemes have also been proposed,
which may have better performance for fast fading channels.
However, considering the keynote of MP based schemes in
this paper, we only select the DS as a typical example of BP
based schemes. As a result, the SMOMP shows its robustness
regardless of sudden change. To demonstrate the prooposed
scheme’s performance further, the MSE performance of the
estimated matrix channel is also compared between the
proposed scheme and the original LS based scheme. It is
shown in Figure 9 that the MSE performance has the similar
simulation curves with the BER performance. On the other
hand, we notice that SMOMP’s performance is dominated
by the appropriate choice of adaptive parameters that are
empirical values now.

6. Conclusions
In this paper, we have further improved the original MOMP

by using adaptive sliding windows. The proposed sliding-
MOMP has more robust recovery performance and relatively

low computational complexity. The original MOMP requires
only 1/3 computational cost to obtain the similar BER perfor-
mance of the OMP. Adjusting the extending parameter can
make the MOMP extremely approximate the OMP’s bound.
Although the computational complexity increases multiply
in terms of the iterative depth, the SMOMP has better BER
performance than the conventional OMP. Meanwhile, the
increased cost is still under control and lower than the OMP,
when the adaptive parameters are set to an appropriate value.
We think that the proposed SMOMP is a potential scheme asa
low-complexity and high-performance candidate of channel
estimators for ISDB-T system.
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